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Abstract— In this paper, a sliding-mode approach is proposed for exponential H∞  synchronization problem of a class of master-

slave time-delay systems with both discrete and distributed time-delays, norm-bounded nonlinear uncertainties and Markovian 

switching parameters. Using an appropriate Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and a 

synchronization law which include the master-slave parameters are established for designing a delay-dependent mode-

dependent sliding mode exponential H∞  synchronization control law in terms of linear matrix inequalities. The controller 

guarantees the H  synchronization of the two coupled master and slave systems regardless of their initial states. Two numerical 

examples are given to show the effectiveness of the method. 

 

Index Terms—Synchronization; master-slave systems; sliding mode; delay; H
 
performance; nonlinear uncertainties. 

 

I. INTRODUCTION 

The sliding mode method has been recognized as one of the efficient tools to design robust controllers for the complex high-

order nonlinear dynamic system operating under uncertainty conditions. The research in this area were initiated in the former 

Soviet Union about 40 years ago, and then the sliding mode control methodology has been receiving much more attention from 

the international control community within the last two decades. The major advantage of sliding mode is low sensitivity to plant 

parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding mode control enables the 

decoupling of the overall system motion into independent partial components of lower dimension and, as a result, reduces the 

complexity of feedback design [1]-[5].  

In recent years, more attention has been devoted to the study of stochastic hybrid systems, where the so-called Markov jump 

systems. These systems represent an important class of stochastic systems that is popular in modeling practical systems like 

manufacturing systems, power systems, aerospace systems and networked control systems that may experience random abrupt 

changes in their structures and parameters [6]-[9]. Random parameter changes may result from random component failures, 

repairs or shut down, or abrupt changes of the operating point. Many such events can be modeled using a continuous time finite-

state Markov chain, which leads to the hybrid description of system dynamics known as a Markov jump parameter system [10]-

[16]. Furthermore, the delay effects problem on the stability of systems is a problem of recurring interest since the delay presence 

may induce complex behaviors for the schemes, see for instance [17]-[18]. The problem of filtering for state delayed systems 

with Markovian switching is proposed in [19]-[23].The problem of robust mode-dependent delayed state feedback 𝐻∞ control is 

investigated for a class of uncertain time-delay systems with Markovian switching parameters and mixed discrete, neutral and 

distributed delays in [24]. Moreover, the sliding mode control problem for uncertain systems with time delays and stochastic 

jump systems are also investigated in [25]-[33], respectively. Recently, the problem of sliding mode control for a class of 

nonlinear uncertain stochastic systems with Markovian switching is studied in [34]. More recently, in [35], sliding mode control 

of nonlinear singular stochastic systems with Markovian switching is proposed.  

On another research front line, synchronization is a basic motion in nature that has been studied for a long time, ever since the 

discovery of Christian Huygens in 1665 on the synchronization of two pendulum clocks. The results of chaos synchronization 

are utilized in biology, chemistry, secret communication and cryptography, nonlinear oscillation synchronization and some other 

nonlinear fields. The first idea of synchronizing two identical chaotic systems with different initial conditions was introduced by 

Pecora and Carroll in [36], and the method was realized in electronic circuits. The methods for synchronization of the chaotic 
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systems have been widely studied in recent years, and many different methods have been applied theoretically and 

experimentally to synchronize chaotic systems; see for instance [37]-[40]. On the synchronization problems of systems with 

time-delays and nonlinear perturbation terms, we see that there have been some research works; see for instance [41]-[46] and 

the references therein. So the development of synchronization methods for master-slave systems with Markovian switching 

parameters and time-varying delays is important and has not been fully investigated in the past and remains to be important and 

challenging. This motivates the present study. 

In this paper, the problem of exponential H∞ synchronization is studied for a class of master-slave systems with both discrete 

and distributed time-delays, norm-bounded nonlinear uncertainties and Markovian switching parameters. Using an appropriate 

Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and a synchronization law which include the 

master-slave parameters are established for designing a delay-dependent mode-dependent sliding mode exponential H∞ 

synchronization control law in terms of linear matrix inequalities (LMIs). The controller guarantees the H  synchronization of 

the two coupled master and slave systems regardless of their initial states. Two numerical examples are given to show the 

effectiveness of the method. The contribution of this paper is three-fold: first, this paper extends previous works on 

synchronization problem to time-delay systems with Markovian jumping parameters and nonlinear uncertainties and derives 

some new theoretical results; second, this paper shows how the synchronization problem can be reduced to a convex problem 

with additional degrees of freedom to design a synchronization law; third, using a Lyapunov-Krasovskii functional and a 

suitable change of variables, we establish new required sufficient conditions in terms of delay-dependent mode-dependent LMIs 

under which the desired sliding mode synchronization law exists, and derive the explicit expression of these salve systems to 

satisfy both stochastically exponential stability and an H∞  performance condition.  

The rest of this paper is organized as follows. Section 2 formulates the exponential H  synchronization problem of the master 

and slave systems with Markovian switching parameters and mixed discrete and distributed time-varying delays and nonlinear 

perturbations. In Section 3, both H
 
performance analysis and sliding model control design are presented for the system under 

consideration. In Section 4, computer simulations are provided to demonstrate the effectiveness of the proposed synchronization 

scheme. Finally, conclusions are presented in Section 5. 

 

Notation: The notations used throughout the paper are fairly standard. I and 0 represent identity matrix and zero matrix; the 

superscript ′T′ stands for matrix transposition.  .   refers to the Euclidean vector norm or the induced matrix 2-norm. diag{⋯ } 

represents a block diagonal matrix and the operator sym A  represents A + AT. Let ℜ+ = [0, ∞)  and ℰ{. } denotes the 

expectation operator with respect to some probability measure 𝒫. If x(t) is a continuous ℜn-valued stochastic process on 

t ∈ [−κ,∞), we let xt =  x t + θ : − κ ≤ θ ≤ 0   for t ≥ 0 which is regarded as a  C  −κ, 0 ;ℜn -valued stochastic process. 

The notations ℊji  stand for ℊj(i). The notation P > 0  means that P is real symmetric and positive definite; the symbol   denotes 

the elements below the main diagonal of a symmetric block matrix. 

II. PROBLEM DESCRIPTION 

Consider a model of master and slave systems with Markovian switching parameters and mixed discrete and distributed time-

varying delays and nonlinear perturbations in the form of 
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where },h{max: MM  , )t(x),t(x sm are the 1n   state vector of the master and slave systems, respectively, )t(w is the 

disturbance and )t(u  is the 1r  control input. )t(zm
 and )t(z s  

are the controlled outputs of the drive and the response system, 

respectively. ))t(r(N)),t(r(D)),t(r(C)),t(r(C)),t(r(C)),t(r(B)),t(r(A)),t(r(A)),t(r(A 1321321 and ))t(r(N2
are matrix functions of 

the random jumping process )}t(r{ . }0t),t(r{   is a right-continuous Markov process on the probability space which takes 

values in a finite space }s,,2,1{S   with generator )Sj,i(][ ij  given by 
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where 0 , 0/)(olim 0 
 and 0ij  , for ji  , is the transition rate from mode i  at time t  to mode j  at time t  

and 





sj

ij,1j
ijii . The vector valued initial functions )t(  and )t(  are continuously differentiable functionals and (.,.)f i  are 

also time-varying vector-valued functions. )t(h  and )t(
 
denote the time-varying bounded delays satisfying 
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Assumption 1. The continuous functions 
nn

i :f
   are unknown and satisfy 0)0,t(f i   and the Lipschitz conditions, 

i.e., )yx()y,t(f)x,t(f 00i0i0i 
 
for all t  and for all 

n

00 y,x 
 
such that i  are some known matrices. 

 

Definition 1. The Markovian systems (1)-(2) are said to be globally exponentially stable in the mean square sense if, when 

u t = 0, for any finite φ t ,ϕ(t) ∈ ℜn  defined on [−κ, 0], and r0 ∈ S the following condition is satisfied 

 

ℰ  e t  2 ≤ ce−α  t sup
−κ≤s≤0

 e(s) 2,   t > 0 

 

where  e t = xm t − xs t  is the synchronization error of the master and slave systems (1)-(2) system from initial system state 

ϕ 0 − φ(0) and initial mode r0, and c is a positive constant. Constant α is said to be the degree of exponential synchronization. 

 

Definition 2. The H∞  performance measure of the system (1)-(2) is defined as J∞ = ℰ   [ze t Tze t − γ2wT t w t ]
∞

0
 dt , 

where ze t = zm t − zs t  and the positive scalar γ is given. 

 

Remark 1. The model (1)-(2) can describe a large amount of well-known dynamical systems with time-delays, such as the 

delayed Logistic model, the chaotic models with time-delays and the artificial neural network model with discrete time-delays. In 

real application, these coupled systems can be regarded as interacting dynamical elements in the entire system, such as physical 

particles, biological neurons, ecological populations, genic oscillations, and even automatic machines and robots. A feasible 

coupling design for successful synchronization leads us to fully command the intrinsic mechanism regulating the evolution of 

real systems, to fabricate emulate systems, and even to remotely control the machines and nodes in networks with large scales 

(see for instance [41], [47]). 

 

Assumption 2. The full state variables xs t  and xm t  are available for measurement. 

 

Now, it is required to synchronize the slave system with the master system at the same time. Let e  t = eαte(t) and α is called 

the exponential decay rate. Then the error dynamics, namely synchronization error system, can be expressed by 
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ds)s(êe))t(r(C
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From Assumption 1, the corresponding uncertainty set is denoted by 

 

}ê))t(ê,t(f̂:))t(ê,t(f̂{:))t(ê( iiii                                                                               (6) 

 

Now the original synchronization problem can be replaced by the equivalent problem of stabilizing the system (5) by a suitable 

choice of the sliding mode control. In the following, the sliding mode controller will be designed using variable structure control 

and sliding mode control methods [1]. Let us introduce the sliding surface as 

 

Si(t) = Vie  t − Vi  [ A1i + α I − BiK1i e  s + eα  h(s) A2i − BiK2i e  s − h(s) ] ds
t

0

− Vi   eα  (s−r) A3i − BiK3i e  r 
s

s−τ(s)

 dr ds
t

0

 

(7) 

where Vi ∈  ℛm×n , Kji ∈  ℛr×n , j = 1,2,3 are real matrices to be designed and the notations Aji , Bi stand for Aj(i) and B(i), 

respectively, with }s,,2,1{Si  . It is clear that S i t = 0 is a necessary condition for the state trajectory to stay on the 

switching surface Si t = 0. Therefore, by S i t = 0 and (5), we get 

 

0 = Vi[BiK1ie  t + eα  h t  BiK2ie  t − h t  +  eα   t−r  BiK3i  e  r 
t

t−τ t 

 dr 

+N1if 1(t, e  t ) + N2if 2(t, e  t − h t  ) − Bi  u i t − Di  w  t ] 
(8) 

Solving equation (8) for u i t  yields the equivalent control 

 

u ieq
 t = K1ie  t + eα  h(t) K2ie  t − h t  +  eα  (t−r)K3i  e  r 

t

t−τ t 
 dr + V iN1if 1(t, e  t ) + V iN2if 2(t, e  t − h t  ) − V iDi  w  t   

(9) 

where V i = (ViBi)
−1Vi.  

By using (9) in (5), the error dynamics in sliding mode is given as follows: 
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The problem to be addressed in this paper is formulated as follows: given the master-slave systems (1)-(2) with both discrete and 

distributed time-delays and Markovian switching parameters, find a mode-dependent sliding mode exponential H∞  

synchronization control u(t) with any r t = i ∈ S  for the slave system (2) such that the resulting closed-loop system is 

stochastically stable and satisfies an H∞  norm bound γ, i.e. J∞ < 0.  

III. MAIN RESULTS 

In this section, we propose sufficient conditions for the stochastic stability of the sliding error motion (10) using the Lyapunov 

method.  

 

3.1 𝐻∞  performance analysis  

Define the following Lyapunov-Krasovskii functional 
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where P1i , Si , Ri   and  Ui are mode-dependent matrix functions. The weak infinitesimal operator  ℒV(. ) of the stochastic process 

{(et , r(t)), t ≥ 0}, acting on V ∈ C ℜn × ℜ+ × S  at the point {e (t), t, r(t) = i}, is given by (see Lemma 3.1, [48]) 
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Differentiating other Lyapunov terms in (11) give  
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According to Assumption 1, ones read 
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On the other hand, for a prescribed γ > 0 and under zero initial conditions,  J∞   can be rewritten as 
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From the obtained derivative terms in (12)-(14) and adding the left-hand side of the equation (15) into ℒV e , t, i , we obtain 
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mean that the condition J∞ < 0 is satisfied. Moreover, the condition  J∞ < 0  for w t = 0 implies ℰ{ℒV e , t, i } < 0. Then, we 

have 

ℰ{ℒV e , t, i } ≤ −ς1ℰ{e  t Te  t }                                                                                 (19) 

 

where ς1 = min{λmin  −Ξ ei , i ∈ S}, then ς1 > 0. By Dynkin‘s formula, we have 
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t
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−1V ϕ 0 − φ 0 , 0, r0                                                                 (20) 

 

Moreover, from LKF (11) the following condition holds  
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where ς2 = min{λmin  P1i , i ∈ S}. From (19)-(21), we obtain 
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Therefore, from (22) and the inequality above, we have 
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which indicates that, from Definition 1, the system in (10) with Markovian switching parameters in (3) is globally exponentially 

stable in the mean square sense and has the exponential decay rate α. The following result is now concluded for the H∞  

performance analysis of the error dynamics (10) with Markovian switching parameters. 

 

Theorem 1. Let the matrices Vi , Kji  (i = 0,1,⋯ , N; j = 1,2,3)  with det(Vi  Bi) ≠ 0  be given. The master-slave time-delay 

systems (1)-(2) with Markovian switching parameters in (3) is synchronized exponentially with a degree 𝛼  and an H∞  

performance level γ > 0 at least in the sense of Definition 1, if there exist some positive definite matrices P1i , Ui , Ri , Si  satisfying 

the LMIs (18). 

 

Remark 2. If the switching modes are not considered, i.e. S = {1}, the jumping master-slave systems (1)-(2) are simplified into a 

general linear system with nonlinearities and time delays. Then it is easy to conclude a criterion from Theorem 1, which can be 

used to determine the stability of such master-slave systems. 

 

Now we are in the position to solve the synchronization problem of the systems (1)-(2). Based on Theorem 1, we can obtain a 

mode-dependent delayed H∞   synchronization law in the form of (9) in the following theorem. 

 

Theorem 2. Under Assumptions 1-2, a synchronization law given in the form (9) exists such that the Markovian jumping 

synchronization error system (5) with time-varying delays in (4) is stochastically exponentially stable with a degree 𝛼  and an 
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H∞  performance level γ > 0 at least in the sense of Definition 1, if there exist some matrices K ji ,V i and positive definite matrices  

P 1i , U i , R i ,  S i  (i = 1,⋯ , s; j = 1,2,3) satisfying the following LMIs 
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 ,                                                                                       (24b) 

IBV
~

ii  ,                                                                                                     (24d) 

where  

i

2

MiiMi1ii1i111 U
~

S
~

R
~

h)K
~

BP)IA((sym:  , 

)K
~

BPA(e: i2ii1i2
Mh

12 
 , 

i3ii1i313 K
~

BPA:  , 

]D)V
~

BI(,NV
~

BN,NV
~

BN[: iiii2iii2i1iii114  , 

 T

2i1

T

1i115 PP:  , 

,I,I{diag:44  }Ie 22  ,  

 i1isi11iii11iii11i17 PPPP:      

}P,,P,P,,P{diag: s1iss11ii111ii111i77     .  

 

Then, the equivalent control in (9) is given by 

u ieq
 t = K 1iP 1i

−1e  t + eα  h t  K 2iP 1i
−1e  t − h t  +  eα  (t−r)K 3iP 1i

−1 e  r 
t

t−τ t 
 dr + V iN1if 1(t, e  t ) + V iN2if 2(t, e  t − h t  )  

(25) 

Proof. By performing a congruence transformation diag{P 1i
T , I,… , I}, where P1i : = P1i

−1 ,  to both sides of (18a), applying Schur 

complements  and considering 
i1i1i1 PKK

~
  result in (24a). The other two conditions (24b)-(24c) are easily concluded from 

Theorem 1. ■ 

 

Remark 3. By setting δ = γ2 and minimizing δ subject to (24), we can obtain the optimal H∞  performance index γ∗ (by γ =  δ) 

and the corresponding control gains as well. 

 

3.2 Sliding model control design 

After designing the switching surface, in this section, an appropriate control law will be constructed such that the system state 

trajectories from arbitrary initial values are globally attracted to the switching surface in a finite time and maintain them on the 

surface afterwards. 

 

Theorem 3. Under Assumptions 1-2, it is supposed that the sliding surface function is given as (7), where Vi is chosen to satisfy 

Vi I − BiV i = 0 and ViBi  is nonsingular. Then, the trajectories of the error dynamics (5) can be driven onto the sliding mode 

surface if the control is designed as follows 

u i t = K 1iP 1i
−1e  t + eα  h(t) K 2iP 1i

−1e  t − h t  +  eα  (t−r) K 3iP 1i
−1  e  r 

t

t−τ t 

 dr + V i  [τi + ϵi e  t  + ϵ2i e  t − h t   

+ 2 ρi w  t  ] sign(Vi
TSi(t)) 

(26) 
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where τi is a positive constant, ϵji ≔  Nji   Γj , j = 1, 2 and ρi ≔ maxi∈S  (λmax (DiDi
T))0.5 with K ji  , V i can be found from 

(24). 

 

Proof. Choose the following Lyapunov function  

Wi t = 0.5 Si
T t  Si t                                                                                          (27) 

By considering the time derivate of the sliding mode surface Si t  and (7), we obtain 

 

W i t = Si
T t  S i t  

= Si
T t [Vie   t − Vi A1i + α I − BiK1i e  t − eα  h(t) Vi A2i − BiK2i e  t − h t  − Vi  eα  (t−r) A3i − BiK3i e  r 

t

t−τ t 
 dr ] 

= Si
T t  [Vi  N1if 1(t, e  t ) + Vi  N2if 2(t, e  t − h t  − 2Vi  Diw  t − Vi  [τi + ϵi e  t  + 2ρi w  t  ] sign(Vi

TSi(t))] 

≤  Si t Vi  [ N1i  Γ1  e  t  +  N2i  Γ2  e  t − h t   + 2 Di  w  t  ]

−  Si t Vi  τi + ϵ1i e  t  + ϵ2i e  t − h t   + 2ρi w  t    

≤ −τi   Si t Vi  

= − 2τi   Vi  Wi t 0.5 

(28) 

It is shown from (28) that the system trajectories can be driven onto the predefined sliding surface in a finite time, ti
∗ =

 2 Wi 0 0.5 (τi  Vi ). In other words, the sliding mode surface Si t  must be reachable. ■ 

 

Remark 4. In order to eliminate the chattering behavior caused by sign(Vi
TSi(t)), a boundary layer is introduced around each 

switch surface by replacing sign(Vi
TSi(t)) in (26) by saturation function. Hence, the control law (26) can be expressed as 

u i t = K 1iP 1i
−1e  t + eα  h(t) K 2iP 1i

−1e  t − h t  +  eα  (t−r) K 3iP 1i
−1  e  r 

t

t−τ t 

 dr + V i  [τi + ϵi e  t  + ϵ2i e  t − h t   

+ ρi w  t  ] sat(
Vi

TSi(t)

δ
) 

(29) 

The j-th element of sat(
Vi

T S i (t)

δ
) is described as 

sat 
 Vi

TSi t  
j

δj

 =

 
 

 
 sign(Vi

TSi t ) 
j
  ,    if    Vi

TSi t  
j
 > δj  , j = 1,… , m 

 Vi
TSi t  

j

δj

,                                                   otherwise 

  

where δj  is a measure of the boundary layer thickness around the j-th switching surface. 

 

Remark 5. It is noting that the number of the matrices to be determined in the LMIs (24) is 8s, where s is the number of modes, 

i.e., }s,,2,1{S  . It is also observed that the LMIs (24) are linear in the set of matrices. Of course, the high dimension of the 

resulting LMIs will increase the computational complexity of the proposed approach to some extent. The LMIs can be solved by 

the Matlab LMI Control Toolbox [49], which implements state-of-the-art interior-point algorithms and is significantly faster than 

classical convex optimization algorithms. 

 

Remark 6. It is noted that our approach is different from that in the references [25] and [35] in the following perspectives: a) the 

system structure in [35] does not consider the synchronization problem and the time-delays, i.e., the results in [25] and [35] 

cannot be directly applied to the system under consideration in this paper; b) the proposed delay-discrete-distribute-dependent 

conditions in Theorems 1-3 are obtained without resorting to any model transformations and bounding techniques for some cross 

terms, see for instance [25], thus reducing the conservatism in the derivation of the stability conditions. 

 

IV. SIMULATION RESULTS 

In this section, with the aid of MATLAB LMI Toolbox [49], we use two numerical examples to illustrate the effectiveness and 

advantage of our design methods. 
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Example 1. We give an example for the application of the theoretical results to a realistic master-slave time-delay 

synchronization problem without the switching modes, i.e., }1{S  . One of the master-slave single flexible link model used in the 

literature (see, e.g. [50]) is given by 
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with )1)t(x1)t(x(5.0))t(x,t(f   and )e1()e1(h)t(h tt

M

  .  

The LMIs (24) in Theorem 3 are solved by considering 2.0h,0,35.1 M  and obtained 

 

 47.11951.0508-K11  ; 

 1.15990.9061K21  ; 

 0.08760.0117K31  ; 

 
For simulation purpose, an exogenous disturbance input is set as 

0t,
t101

1
)t(w

2



  

The H∞  synchronization signal is shown in Figure 1 for different values of the upper bound of the time-varying delay, i.e., 

}0.1,5.0,2.0{hM  . The tip position of the flexible-link manipulator is also depicted for those upper bounds in Figure 2. 

 

 
Fig. 1. Synchronization control signal. 
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Fig. 2. Regulation of tip position. 

 

 

Example 2. Consider a continuous-time master-slave system (1)-(2) with two Markovian switching modes and the following 

state-space matrices 

 

Mode 1: 























5.000

8.020

4.26.05

)1(A1 ;























1.011

1.01.02.0

11.01.0

)1(A10)1(A 32 ;



















15.0

1.0

25.0

)1(B ; 



















3.0

1.0

2.0

)1(D ; 









110

101
)1(C1 ;



















1

1

1

)1(N)1(N 21 ; 

Mode 2: 

























5.200

6.010

18.01

)2(A1 ;























01.002.001.0

1.002.01.0

1.004.01.0

)2(A10)2(A 32 ;



















2

3

2

)2(B ; 



















1

1.0

5.0

)2(D ; 









110

001
)2(C1 ;



















1

1

1

)2(N)2(N 21 ; 

 

with nonlinear functions )1)t(x1)t(x(5.0))t(x,t(f))t(x,t(f 21  . The delays )e1()e1()t()t(h tt  
 

satisfy 

1)t()t(h0   and 5.0)t()t(h   . The following transition matrix is considered 

 

π =  
−0.33 0.33
0.53 −0.53

 , 

 

for the system with two operating modes and the initial mode r0 = 1. It is required to design the sliding mode exponential H∞  

synchronization signal (26) such that the trajectories of the slave subsystem and master subsystem (1)-(2) can be synchronized. 

To this end, in light of Theorem 3, we solved the LMIs (24) for 0,25.0    and obtained  

 

 377.790649.834852.2850K11  ; 

 7.67506.11635.8019K12  ; 

 0.43440.16430.1336-K 21  ; 
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 0.01380.01210.0067-K 22  ;

  0.04840.01450.0120-K31  ; 

 0.00290.00010.0029K32  . 

 

 

 
Fig. 3. Synchronization error signals. 

 

 

 
Fig. 4. Synchronization control signal. 

 

 

Now, by applying the synchronization signal (26) and the parameters above, the temporal evolution of the master-slave 

synchronization errors, i.e., )t(x)t(x)t(e ms  , are shown in Figure 3. Moreover, the synchronization control signal )t(u  is 

depicted in Figure 4.  

V. COCLUSION 

In this paper, the problem of exponential H∞  synchronization was studied for a class of master-slave systems with both discrete 

and distributed time-delays, norm-bounded nonlinear uncertainties and Markovian switching parameters. Using an appropriate 

Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and a synchronization law which include the 

master-slave parameters were established for designing a delay-dependent mode-dependent sliding mode exponential H∞  

synchronization control law in terms of linear matrix inequalities. The controller guarantees the H  synchronization of the two 

coupled master and slave systems regardless of their initial states. Two numerical examples were given to show the 

effectiveness of the method. Future work will investigate the synchronization problem over a network with mode-dependent 

mixed time delays for Markovian jump master-slave systems (see more details in [15]-[16], [24] and [42]). 
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