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A mathematical model to compute the overall vibrational response of connected multistructure
mechanical systems is presented. Using the proposed model, structural vibration control strategies
for seismic protection of multibuilding systems can be efficiently designed. Particular attention
is paid to the design of control configurations that combine passive interbuilding dampers with
local feedback control systems implemented in the buildings. These hybrid active-passive con-
trol strategies possess the good properties of passive control systems and also have the high-
performance characteristics of active control systems. Moreover, active-passive control configu-
rations can be properly designed for multibuilding systems requiring different levels of seismic
protection and are also remarkably robust against failures in the local feedback control systems.
The application of the main ideas is illustrated bymeans of a three-building system, and numerical
simulations are conducted to assess the performance of the proposed structural vibration control
strategies.

1. Introduction
Over the last years, seismic protection of adjacent buildings has been attracting an increasing
interest. For this kind of systems, the action of seismic excitations can produce interbuilding
collisions (pounding), which can cause severe damage to the buildings structure and contents
[1–5]. Consequently, structural vibration control (SVC) strategies for multibuilding systems
must aim at mitigating not only the vibrational response of individual buildings, but also the
negative interbuilding interactions.
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The connected control method (CCM) is a SVC strategy for multibuilding systems that
consists in linking adjacent buildings by coupling devices to provide appropriate reaction
control forces. The application of the CCM using different types of passive [6–16], active [17–
19], and semiactive [20–23] linking devices has been extensively investigated with positive
results. Recently, more complex control configurations combining passive interbuilding
dampers with local feedback control systems implemented in the buildings have been
proposed [24, 25]. These active-passive SVC strategies combine the good properties of
passive control systems and the high-performance characteristics of active control systems
[26–28]. It should be highlighted, however, that most of the research effort undertaken to date
has been directed at the two-building case, while more complex multibuilding problems still
remain virtually unexplored. Obtaining a suitable formulation for the dynamical response of
certain classes of connected multistructure mechanical systems is one of the major obstacles
that has to be overcome in order to design SVC strategies for multibuilding systems. A
preliminary work in this line presenting an active-passive SVC strategy for seismic protection
of a three-building system can be found in [29].

The main contribution of the present paper is twofold: (i) a mathematical model to
compute the overall vibrational response of connected multistructure mechanical systems is
provided. (ii) Active-passive SVC strategies for seismic protection of multibuilding systems
are designed using the proposed model and the CCM approach.

The paper is organized as follows: in Section 2, a general second-order model for the
unforced response of connected multistructure mechanical systems is provided. The forced
response is also studied for some particular cases of special relevance in SVC. In Section
3, passive, active, and active-passive SVC strategies for seismic protection of multibuilding
systems are discussed. The main ideas are presented by means of a three-building system.
Finally, in Section 4, a set of numerical simulations is conducted to assess the effectiveness of
the proposed control strategies.

2. Multistructure Connected System

In this section, we present a mathematical model to compute the dynamical response of the
multistructure system S schematically depicted in Figure 1. The overall system S consists of
p parallel substructures S(1), . . . ,S(p). Each substructure S(j) is a mass-spring-damper system
with nj degrees of freedom, and between adjacent substructures S(j) and S(j+1), there is a
linking system L(j) formed by a maximum number of rj = min(nj, nj+1) spring-damper
elements. The aim of this section is to obtain a proper formulation of the second-order
equation that describes the overall motion of system S in the form

Mq̈(t) + Cq̇(t) +Kq(t) = f(t), (2.1)

where M is the global mass matrix; C and K are the total damping and stiffness matrices,
respectively, including the internal stiffness and damping coefficients of the substructures
S(j) as well as the stiffness and damping coefficients of the linking systems L(j); f(t) is the
vector of external forces.
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Figure 1: Multistructure system S formed by interconnected multiple-degree-of-freedom mass-spring-
damper systems S(j).

2.1. Unforced Response

Let us consider the jth substructure displayed in Figure 2. The vector of relative displace-
ments is

q(j)(t) =
[
q
j

1(t), . . . , q
j
nj
(t)

]T
, (2.2)

where q
j

i (t) represents the relative displacement of the mass m
j

i with respect to the fixed
reference O, which in this subsection is assumed to be an inertial frame.
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Figure 2: Multi-degree-of-freedom mass-spring-damper subsystem S(j).

A second-order model for the substructure S(j) can be written in the form

M(j) q̈(j)(t) + C(j) q̇(j)(t) +K(j) q(j)(t) = f
(j)
� (t), (2.3)

where f (j)
�
(t) denotes the vector of interstructure forces resulting from the interaction between

adjacent substructures through the linking elements. The mass matrix is a diagonal matrix

M(j) = diag
[
m

j

1, . . . , m
j
nj

]
, (2.4)

and the damping matrix has the following tridiagonal structure:

C(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c
j

1 + c
j

2 −cj2
−cj2 c

j

2 + c
j

3 −cj3
. . . . . . . . .

−cjnj−1 c
j

nj−1 + c
j
nj

−cjnj

−cjnj
c
j
nj

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.5)

The stiffness matrixK(j) has an analogous structure and can be obtained by replacing entries
c
j

i by k
j

i in (2.5). We also define the damping and stiffness matrices of the linking system L(j)

as follows:

Ĉ(j) = diag
[
ĉ
j

1, . . . , ĉ
j
rj

]
, K̂(j) = diag

[
k̂
j

1, . . . , k̂
j
rj

]
, rj = min

(
nj , nj+1

)
. (2.6)

The main difficulty in obtaining a simple formulation for the overall second-order
model (2.1) arises from the fact that adjacent substructures have, in general, different number
of masses. This problem can be conveniently solved by extending the damping and stiffness
matrices of the linking systems with a proper number of zero rows and columns. The benefits
of this simple resource are twofold: (i) a plain and elegant matrix formulation of equation
(2.1), and (ii) an extremely easy computational implementation. Next, we introduce the zero-
extension of matrices and provide a simple Matlab function to compute it.
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S(1)

[ ꉱK(1)]n1×n2 q
(2) − [ ꉱK(1)]n1×n1 q

(1)

[ ꉱC(1)]n1×n2 q̇
(2) − [ ꉱC(1)]n1×n1 q̇

(1)

Figure 3: Force diagram for the initial substructure S(1).

Definition 2.1. Given an m × n matrix A and two integers m′ ≥ m and n′ ≥ n, we define the
m′ × n′ zero-extension of A as the matrix

[A]m′×n′ =

[
A [0]m×(n′−n)

[0](m′−m)×n [0](m′−m)×(n′−n)

]
, (2.7)

obtained from A by adding m′ −m final zero-rows and n′ − n final zero-columns.
The following Matlab function computes the matrix zero-extension:
Function M=zex(A,m1,n1)
[m,n]=size(A);
M=[A zeros(m,n1−n)
zeros(m1−m,n1)].

For the matrix

A =
[
1 2
3 4

]
, (2.8)

the 3 × 5 zero-extension can be computed with the command zex(A,3,5), resulting

[A]3×5 =

⎡⎣1 2 0 0 0
3 4 0 0 0
0 0 0 0 0

⎤⎦. (2.9)

To obtain the expression for the vector of linking interstructure forces f
(j)
�
(t), we

consider three different cases corresponding to the relative position of the substructure S(j):
(a) initial substructure S(1), (b) interior substructure S(j), 1 < j < p, and (c) final substructure
S(p). For the initial substructure S(1), from the force diagram in Figure 3, we have

f
(1)
�

=
[
Ĉ(1)

]
n1×n2

q̇(2) −
[
Ĉ(1)

]
n1×n1

q̇(1) +
[
K̂(1)

]
n1×n2

q(2) −
[
K̂(1)

]
n1×n1

q(1). (2.10)
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q(j)[ ꉱK(j−1)]nj×nj
q(j) − [ ꉱK(j−1)]nj×nj−1 q
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Figure 4: Force diagram for interior substructures S(j), 1 < j < p.

Equation (2.3) for S(1) takes now the form

M(1) q̈(1) +
{
C(1) +

[
Ĉ(1)

]
n1×n1

}
q̇(1) −

[
Ĉ(1)

]
n1×n2

q̇(2)

+
{
K(1) +

[
K̂(1)

]
n1×n1

}
q(1) −

[
K̂(1)

]
n1×n2

q(2) = 0.

(2.11)

Note that, for simplicity, the explicit dependence on time has been omitted in (2.10), (2.11),
and Figure 3, and notations like f (1)

� and q(1) have been used instead of f (1)
� (t) and q(1)(t). The

same will be done in the sequel when convenient.
Analogously, from the force diagram in Figure 4, it results

f
(j)
�

=
[
Ĉ(j−1)

]
nj×nj−1

q̇(j−1) −
{[

Ĉ(j−1)
]
nj×nj

+
[
Ĉ(j)

]
nj×nj

}
q̇(j) +

[
Ĉ(j)

]
nj×nj+1

q̇(j+1)

+
[
K̂(j−1)

]
nj×nj−1

q(j−1) −
{[

K̂(j−1)
]
nj×nj

+
[
K̂(j)

]
nj×nj

}
q(j) +

[
K̂(j)

]
nj×nj+1

q(j+1),

(2.12)

and the second-order model for S(j) can be written as

M(j) q̈(j) −
[
Ĉ(j−1)

]
nj×nj−1

q̇(j−1) +
{
C(j) +

[
Ĉ(j−1)

]
nj×nj

+
[
Ĉ(j)

]
nj×nj

}
q̇(j)

−
[
Ĉ(j)

]
nj×nj+1

q̇(j+1) −
[
K̂(j−1)

]
nj×nj−1

q(j−1)+

+
{
K(j) +

[
K̂(j−1)

]
nj×nj

+
[
K̂(j)

]
nj×nj

}
q(j) −

[
K̂(j)

]
nj×nj+1

q(j+1) = 0.

(2.13)

Finally, from Figure 5, we get

f
(p)
�

= −
[
Ĉ(p−1)

]
np×np

q̇(p) +
[
Ĉ(p−1)

]
np×np−1

q̇(p−1)

−
[
K̂(p−1)

]
np×np

q(p) +
[
K̂(p−1)

]
np×np−1

q(p−1),
(2.14)
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[ ꉱC(p−1)]np×np
q̇(p) − [ ꉱC(p−1)]np×np−1 q̇

(p−1)

[ ꉱK(p−1)]np×np q
(p) − [ ꉱK(p−1)]np×np−1 q

(p−1)
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Figure 5: Force diagram for the final substructure S(p).

and the corresponding second-order model is

M(p) q̈(p) −
[
Ĉ(p−1)

]
np×np−1

q̇(p−1) +
{
C(p) +

[
Ĉ(p−1)

]
np×np

}
q̇(p)

−
[
K̂(p−1)

]
np×np−1

q(p−1) +
{
K(p) +

[
K̂(p−1)

]
np×np

}
q(p) = 0.

(2.15)

From (2.11), (2.13), and (2.15), we can now obtain an overall second-order model for
the unforced response of the multibuilding coupled system in the form

M q̈(t) + C q̇(t) +K q(t) = 0, (2.16)

where

q(t) =
[
{q(1)(t)}T , . . . , {q(p)(t)}T

]T
, (2.17)

is the overall vector of displacements. To this end, we express the global damping and
stiffness matrices in the form

C = C + Ĉ, K = K + K̂, (2.18)

where matrices C and K correspond to the internal damping and stiffness of the substruc-
tures, respectively, and have the following block diagonal form:

C = diag
[
C(1), . . . , C(p)

]
, K = diag

[
K(1), . . . , K(p)

]
, (2.19)

and matrices C(j), K(j) have the form given in (2.5). The damping matrix Ĉ corresponds to
the linking systems and has the tridiagonal block structure shown in Figure 6, the stiffness
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Figure 6: Damping matrix Ĉ for the overall linking system.
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matrix K̂ has the same structure as Ĉ and can be obtained by replacing the entries [Ĉ(j)]n×n′

by [K̂(j)]n×n′ . Finally, the global mass matrixM is the block diagonal matrix

M = diag
[
M(1), . . . ,M(p)

]
, (2.20)

where M(j), 1 ≤ j ≤ p are the substructure mass matrices given in (2.4).

2.2. Forced Response

Now, we assume that some external excitations are acting upon the substructures S(j).
Specifically, we will turn out our attention to the particular case schematically depicted in
Figure 7, where ω(t) represents the acceleration of the reference frame O, and the element
a
j

i is a force actuation device implemented between the adjacent masses m
j

i−1 and m
j

i that
produces a pair of opposite forces of magnitude |uj

i (t)| as indicated in the figure. This case is
particularly relevant for structural vibration control of seismically excited buildings, where
the external acceleration corresponds to the seismic ground acceleration, and the actuation
devices aj

i are interstory force actuators that implement suitable control forces to mitigate the
vibrational response of the building.

A second-order model for the vibrational response of the substructure S(j) can now be
written in the form

M(j) q̈(j) + C(j) q̇(j) +K(j) q(j) − f
(j)
� (t) = f

(j)
u (t) + f

(j)
ω (t), (2.21)
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where the term f
(j)
u (t) is the vector of control forces acting on S(j), and f

(j)
ω (t) contains the

inertial forces resulting from the fact that O is now an accelerated reference frame. Denoting
by [1]nj×1 the column vector with nj entries equal to 1, the vector of inertial forces can be
written as

f
(j)
ω (t) = −M(j)[1]nj×1 ω(t). (2.22)

For the vector of control actions, we consider the control location matrix of size nj × nj

T
(j)
u =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1

1 −1
. . . . . .

1 −1
1

⎤⎥⎥⎥⎥⎥⎥⎦, (2.23)

and the vector of control actions

u(j)(t) =
[
u
j

1(t), . . . , u
j
nj
(t)

]T
, (2.24)

to obtain

f
(j)
u (t) = T

(j)
u u(j)(t). (2.25)

Finally, considering (2.21), (2.22), (2.25), and the results presented in the previous subsection,
we can derive a second-order model for the overall vibrational response of the multistructure
system S in the following form:

M q̈(t) + C q̇(t) +K q(t) = Tuu(t) + Tω ω(t), (2.26)

where q(t) is the overall displacement vector defined in (2.17); matricesM, C,K are given in
(2.18), (2.19), (2.20), and Figure 6; ω(t) is the external acceleration, and Tω = −M[1]n×1 is the
external disturbance matrix; u(t) represents the overall vector of actuation forces

u(t) =
[{

u(1)(t)
}T

, . . . ,
{
u(p)(t)

}T
]T

, (2.27)
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and Tu is the overall location control matrix defined as

Tu = diag
[
T
(1)
u , . . . , T

(p)
u

]
, (2.28)

n = n1 + · · · + np is the total number of degrees of freedom, and p is the number of
substructures. If no active control system has been implemented in the subsystem S(j), u(j)(t)
can be taken as a zero vector and T

(j)
u as a zero matrix of appropriate dimensions. The

proposed model includes the action of external acceleration disturbance and active control
systems implemented in the substructures and, moreover, is formally analogous to the usual
formulation used in single-structure SVC problems.

3. Structural Vibration Control Strategies for Multibuilding Systems

In this section, we are interested in designing SVC strategies for seismic protection of
multibuilding systems. For clarity and simplicity, the main ideas are presented through
the three-story building system schematically depicted in SubFigure 8(a), where the central
five-story building is assumed to require a special level of seismic protection. For this
particular multibuilding system, four control configurations are considered: (a) active-
passive, (b) passive, (c) uncoupled-active, and (d) uncontrolled. In the active-passive control
configuration (see SubFigure 9(a)), an active local state-feedback control system with the
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(a) Active-passive (b) Passive (c) Active (d) Uncontrolled

Figure 9: Control configurations for the three-building system.

actuation scheme presented in SubFigure 8(b) has been implemented in the central building.
Moreover, two passive dampers have been placed as interbuilding linking elements: one at
the third-floor level between buildings 1 and 2 and the other at the second-floor level between
building 2 and building 3. The passive control configuration (SubFigure 9(b)) only comprises
the interbuilding passive dampers. In the uncoupled-active control configuration (SubFigure
9(c)), an active local feedback system has been implemented in the central building, but no
passive interbuilding elements have been installed. Finally, no seismic protection is provided
in the uncontrolled control configuration (SubFigure 9(d)), which will be used as a reference
in the performance assessments.

The section has been structured in three parts. First, the results presented in Section
2 are applied to obtain a second-order model for the three-building system. Next, suitable
state-space models are derived. Finally, a state-feedback LQR controller is designed to drive
the active local feedback control system implemented in building 2.

To compute the LQR local controller, the following particular values of the building
parameters have been used: mj

i = 1.3 × 106 kg, cji = 105 Ns/m, k1
i = 2.0 × 109 N/m, k2

i =
4 × 109 N/m, k3

i = 2.0 × 109 N/m, for 1 ≤ j ≤ 3, 1 ≤ i ≤ nj , n1 = 3, n2 = 5, n3 = 2. The linking
elements are considered as pure dampers with a damping constant ĉji=3.0 × 106 Ns/m and
null stiffness; the value ĉ

j

i=0 indicates that no linking element exists at the ith level between
buildings B(j) and B(j+1). The actuation elements a2

i , 1 ≤ i ≤ 5 are assumed to be ideal force
actuation devices, which are able to implement exactly the control actions u2

i (t) producing
the opposite pairs of control forces represented in Figure 8(b). These values will also be used
in the numerical simulations conducted in Section 4.

3.1. Second-Order Model

Let us consider the three-story building system displayed in Figure 8(a) as a lumped-mass
planar system with displacements in the direction of the ground motion. In this case, the
multibuilding system can be represented by the connected multistructure system shown in
Figure 10. Using the results presented in the previous section, a second-order model in the
form

M q̈(t) + C q̇(t) +K q(t) = Tu u(t) + Tω ω(t), (3.1)



12 Mathematical Problems in Engineering

m1
3

k1
3

c1
3

m1
2

k1
2

c1
2

m1
1

k1
1

c1
1

ω(t)

ꉱk1
3ꉱc1

3
ꉱk1

2ꉱc1
2

ꉱk1
1

ꉱc1
1

ꉱk2
2ꉱc2

2
ꉱk2

1ꉱc2
1

m2
5

k2
5

c2
5

m2
4

k2
4

c2
4

m2
3

k2
3

c2
2

m2
2

k2
2

c2
3c2

1

m2
1

k2
1

m3
2

k3
2

c3
2

m3
1

k3
1

c3
1

S(1)

L(1)

S(2)

L(2)

S(3)

Figure 10: Connected three-building system.

to describe the buildings motion can be easily obtained. The overall vector of story displace-
ments with respect to the ground is

q(t) =
[
q11(t), q

1
2(t), q

1
3(t), q

2
1(t), q

2
2(t), q

2
3(t), q

2
4(t), q

2
5(t), q

3
1(t), q

3
2(t)

]T
, (3.2)

where qji (t) represents the displacement of the ith story in the jth building. The mass matrix
is

M =

⎡⎢⎢⎢⎢⎣
M(1) [0]3×5 [0]3×2
[0]5×3 M(2) [0]5 × 2

[0]2×3 [0]2×5 M(3)

⎤⎥⎥⎥⎥⎦, (3.3)

with

M(1) =

⎡⎣m1
1 0 0
0 m1

2 0
0 0 m1

3

⎤⎦, M(2) =

⎡⎢⎢⎢⎢⎢⎣
m2

1 0 0 0 0
0 m2

2 0 0 0
0 0 m2

3 0 0
0 0 0 m2

4 0
0 0 0 0 m2

5

⎤⎥⎥⎥⎥⎥⎦, M(3) =
[
m3

1 0
0 m3

2

]
. (3.4)

The total damping matrix can be written in the form

C = C + Ĉ, (3.5)
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where

C =

⎡⎢⎢⎢⎣
C(1) [0]3×5 [0]3×2
[0]5×3 C(2) [0]5×2

[0]2×3 [0]2×5 C(3)

⎤⎥⎥⎥⎦, (3.6)

C(1) =

⎡⎢⎢⎢⎣
c11 + c12 −c12 0

−c12 c12 + c13 −c13
0 −c13 c13

⎤⎥⎥⎥⎦, C(3) =

⎡⎣c31 + c32 −c32
−c32 c32

⎤⎦, (3.7)

C(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c21 + c22 −c22 0 0 0

−c22 c22 + c23 −c23 0 0

0 −c23 c23 + c24 −c24 0

0 0 −c24 c24 + c25 −c25
0 0 0 −c25 c25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

and the matrix corresponding to the linking elements Ĉ has the following block tridiagonal
structure:

Ĉ =

⎡⎢⎢⎢⎢⎢⎣

[
Ĉ(1)

]
3×3

−
[
Ĉ(1)

]
3×5

[0]3×2

−
[
Ĉ(1)

]
5×3

[
Ĉ(1)

]
5×5

+
[
Ĉ(2)

]
5×5

−
[
Ĉ(2)

]
5×2

[0]2×3 −
[
Ĉ(2)

]
2×5

[
Ĉ(2)

]
2×2

⎤⎥⎥⎥⎥⎥⎦, (3.9)

Ĉ(1) =

⎡⎣ĉ11 0 0
0 ĉ12 0
0 0 ĉ13

⎤⎦, Ĉ(2) =
[
ĉ21 0
0 ĉ22

]
, (3.10)

where [Ĉ(j)]r×s denotes the r × s zero-extension of Ĉ(j), for example

[
Ĉ(1)

]
5×5

=

⎡⎢⎢⎢⎢⎢⎣
ĉ11 0 0 0 0
0 ĉ12 0 0 0
0 0 ĉ13 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦,
[
Ĉ(2)

]
5×2

=

⎡⎢⎢⎢⎢⎢⎣
ĉ21 0
0 ĉ22
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦. (3.11)

To obtain the total stiffness matrix

K = K + K̂, (3.12)
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matricesK, K̂ can be computed replacing the damping coefficients cji , ĉ
j

i by the corresponding
stiffness coefficients kj

i , k̂
j

i in (3.7), (3.8), (3.10), and matrices C(j), Ĉ(j) by K(j), K̂(j) in (3.6),
(3.9). For the active-passive control configuration depicted in Figure 9(a), the vector of control
actions is

u(t) =
[
0, 0, 0, u2

1(t), u
2
2(t), u

2
3(t), u

2
4(t), u

2
5(t), 0, 0

]T
, (3.13)

and the control location matrix Tu to produce the corresponding control forces can be written
as follows:

Tu =

⎡⎢⎢⎢⎢⎣
[0]3×3 [0]3×5 [0]3×2

[0]5×3 T
(2)
u [0]5×2

[0]2×3 [0]2×5 [0]2×2

⎤⎥⎥⎥⎥⎦, T
(2)
u =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦. (3.14)

Finally, the disturbance input matrix is

Tw = −M [1]10×1 . (3.15)

3.2. First-Order State-Space Model

Now, we take the state vector

x(t) =
[
q(t)
q̇(t)

]
, (3.16)

and derive the first-order state-space model

ẋ(t) = Ax(t) + Bu(t) + Eω(t),

y(t) = Cyx(t),
(3.17)

where the state, control, and disturbance input matrices are, respectively,

A =
[
[0]10×10 I10
−M−1K −M−1C

]
, B =

[
[0]10×10
M−1Tu

]
, E =

[
[0]10×1
−[1]10×1

]
. (3.18)

Regarding the output, we consider two different cases: interstory drifts and interbuilding
approaches. The interstory drifts represent the relative displacements between consecutive
stories in the jth building and are defined by

{
ys

}j
1(t) = q

j

1(t),{
ys

}j
i (t) = q

j

i (t) − q
j

i−1(t), 1 < i ≤ nj,
(3.19)
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where nj is the number of stories in building B(j). The vector of interstory drifts

ys(t) =
[{
ys

}1
1,
{
ys

}1
2,
{
ys

}1
3,
{
ys

}2
1,
{
ys

}2
2,
{
ys

}2
3,
{
ys

}2
4,
{
ys

}2
5,
{
ys

}3
1,
{
ys

}3
2

]T
(3.20)

can be obtained with the output matrix

Cys =

⎡⎢⎢⎢⎢⎣
C

(1)
ys

[0]3×5 [0]3×2 [0]3×10

[0]5×3 C
(2)
ys

[0]5×2 [0]5×10

[0]2×3 [0]2×5 C
(3)
ys

[0]2×10

⎤⎥⎥⎥⎥⎦, (3.21)

where

C
(1)
ys

=

⎡⎣ 1 0 0
−1 1 0
0 −1 1

⎤⎦, C
(2)
ys

=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎦,

C
(3)
ys

=
[
1 0
−1 1

]
.

(3.22)

The interbuilding approaches describe the approaching between the stories placed at the ith
level in the adjacent buildings B(j), B(j+1) and are defined by

{
ya

}j
i (t) = −

(
q
j+1
i (t) − q

j

i (t)
)
, 1 ≤ i ≤ rj , 1 ≤ j ≤ 2, (3.23)

where rj = min(nj, nj+1). The vector of interbuilding approaches

ya(t) =
[{
ya

}1
1(t),

{
ya

}1
2(t),

{
ya

}1
3(t),

{
ya

}2
1(t),

{
ya

}2
2(t)

]T
, (3.24)

can be computed with the output matrix

Cya =
[

I3 −[I3]3×5 [0]3×2 [0]3×10
[0]2×3 [I2]2×5 −I2 [0]2×10

]
. (3.25)

Finally, let us suppose that the state-feedback controller

u(j)(t) = G(j)x(j)(t) (3.26)
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has been computed to drive a local active control system in B(j). We write the local vector of
control actions as

u(j)(t) = G(j)x(j)(t) =
[
G

(j)
1 G

(j)
2

][q(j)(t)
q̇(j)(t)

]
, (3.27)

where matrices G
(j)
1 , G(j)

2 are obtained by splitting the control matrix G(j) after the nj-th
column. The seismic response of the overall three-building system for different active-passive
control configurations can be computed using the closed-loop state-space model as follows:

ẋ(t) = Ax(t) + Ew(t),

y(t) = Cyx(t),
(3.28)

where the state matrixA = A+BG can be obtained using the matricesA, B, E given in (3.18),
and the overall control matrix

G =

⎡⎢⎢⎢⎢⎢⎣
G

(1)
1 [0]3×5 [0]3×2 G

(1)
2 [0]3×5 [0]3×2

[0]5×3 G
(2)
1 [0]5×2 [0]5×3 G

(2)
2 [0]5×2

[0]2×3 [0]2×5 G
(3)
1 [0]2×3 [0]2×5 G

(3)
2

⎤⎥⎥⎥⎥⎥⎦, (3.29)

with

G
(j)
i =

{
G

(j)
i , if B(j) is actively controlled,

[0]nj×nj
, otherwise.

(3.30)

In particular, for the active-passive control configuration depicted in Figure 9(a), the overall
control matrix has the form

G =

⎡⎢⎢⎢⎢⎢⎣
[0]3×3 [0]3×5 [0]3×2 [0]3×3 [0]3×5 [0]3×2

[0]5×3 G
(2)
1 [0]5×2 [0]5×3 G

(2)
2 [0]5×2

[0]2×3 [0]2×5 [0]2×2 [0]2×3 [0]2×5 [0]2×2

⎤⎥⎥⎥⎥⎥⎦. (3.31)

3.3. Local State-Feedback Controller Design

To compute a local state-feedback LQR controller [30] for the actuation system in building
B(2), we consider the local second-order model

M(2) q̈(2)(t) + C(2) q̇(2)(t) +K(2) q(2)(t) = T
(2)
u u(2)(t), (3.32)
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where

q(2)(t) =
[
q21(t), q

2
2(t), q

2
3(t), q

2
4(t), q

2
5(t)

]T
(3.33)

is the vector of story displacements relative to the ground,

u(2)(t) =
[
u2
1(t), u

2
2(t), u

2
3(t), u

2
4(t), u

2
5(t)

]T
(3.34)

is the vector of control actions, and matrices M(2), C(2), K(2), T (2)
u have been given in the

previous subsection. From (3.32), we obtain the first-order state-space model

ẋ(2)(t) = A(2)x(2)(t) + B(2)u(2)(t),{
ys

}(2)(t) = C
(2)
ys

x(2)(t),
(3.35)

with local state vector

x(2)(t) =
[
q(2)(t)
q̇(2)(t)

]
, (3.36)

state matrix

A(2) =

[
[0]5×5 I5

−{M(2)}−1K(2) −{M(2)}−1C(2)

]
, (3.37)

and control input matrix

B(2) =

[
[0]5×5{

M(2)}−1T (2)
u

]
. (3.38)

To obtain the local vector of interstory drifts

{
ys

}(2)(t) = [{
ys

}2
1(t),

{
ys

}2
2(t),

{
ys

}2
3(t),

{
ys

}2
4(t),

{
ys

}2
5(t)

]T
, (3.39)

we take the matrix C
(2)
ys

given in (3.22) and define the local output matrix

C
(2)
ys

=
[
C

(2)
ys

[0]5×5
]
. (3.40)

Next, we consider the weighting matrices

Q(2) =
{
C

(2)
ys

}T

C
(2)
ys
, R(2) = 10−17.5 × I5, (3.41)
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Figure 11: North-South El Centro 1940 seismic record.

and define the quadratic cost function

J(2)
(
x(2), u(2)

)
=
∫∞

0

[{
x(2)(t)

}T
Q(2)x(2)(t) +

{
u(2)(t)

}T
R(2)u(2)(t)

]
dt

=
∫∞

0

[{
y
(2)
s (t)

}T
y
(2)
s (t) +

{
u(2)(t)

}T
R(2)u(2)(t)

]
dt,

(3.42)

to compute a local state-feedback LQR controller

u(2)(t) = G(2) x(2)(t) (3.43)

with the following control gain matrix:

G(2)

=107×

⎡⎢⎢⎣
−3.9335 0.0000 0.0000 0.0000 0.0000 −0.8574 −0.3617 −0.2497 −0.2051 −0.1878
3.9335 −3.9335 0.0000 0.0000 0.0000 0.4957 −0.7454 −0.3171 −0.2323 −0.2051
0.0000 3.9335 −3.9335 0.0000 0.0000 0.1120 0.5403 −0.7280 −0.3171 −0.2497
0.0000 0.0000 3.9335 −3.9335 0.0000 0.0446 0.1294 0.5403 −0.7454 −0.3617
0.0000 0.0000 0.0000 3.9335 −3.9335 0.0173 0.0446 0.1120 0.4957 −0.8574

⎤⎥⎥⎦.
(3.44)

4. Numerical Simulations

In this section, the vibrational response of the three-building system presented in Section 3
is computed for several control configurations. Specifically, the maximum absolute interstory
drifts andmaximum interbuilding approaches are computed for three control configurations:
(a) active-passive, (b) passive, and (c) uncoupled-active, which are schematically depicted in
Figures 9(a), 9(b), and 9(c). The vibrational response of the uncontrolled system (SubFigure
9(d)) is also computed, and it is used as a natural reference in the performance assessment. In
all the cases, the full-scale North-South El Centro 1940 seismic record obtained at the Imperial
Valley Irrigation District substation in El Centro, CA, during the Imperial Valley earthquake
of May 18, 1940, has been used as a ground acceleration input (see Figure 11).

The maximum absolute interstory drifts are displayed in Figure 12. Looking at
the central graphic, the excellent behavior of the active-passive (black asterisks) and the
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Figure 12: Maximum absolute interstory drifts for the North-South El Centro 1940 seismic excitation.

Table 1: Percentages of reduction in maximum absolute interstory drifts with respect to the uncontrolled
response.

Building 1 Building 2 Building 3
{ys}11 {ys}12 {ys}13 {ys}21 {ys}22 {ys}23 {ys}24 {ys}25 {ys}31 {ys}32

(a) Active-passive 24.7 26.7 37.4 72.4 71.7 71.3 71.1 71.5 43.3 43.7
(b) Passive 17.3 19.3 27.9 40.1 45.5 45.8 47.3 43.2 46.4 44.0
(c) Uncoupled-active 0 0 0 70.1 70.3 71.0 70.3 69.9 0 0

uncoupled-active (blue circles) control configurations can be clearly appreciated. In fact, the
data in Table 1 indicate that these active control configurations attain reductions of about 70%
in the peak interstory drift values with respect to the uncontrolled response. For the lateral
buildings, however, the situation is totally different. In this case, the active-passive control
configuration produces a lower but still significant reduction of the interstory drifts, while no
seismic protection is provided by the uncoupled-active configuration.

Regarding the interbuilding approaches, we can see in Figure 13 that interbuilding
separations of about 7.5 cm would have resulted in interbuilding collisions for the uncon-
trolled configuration. In contrast, interbuilding separations of about 2.5 cm can be considered
safe for the active-passive control configuration. An important reduction in the interbuilding
approaches is also achieved by the uncoupled-active configuration, but the data in Table 2
indicate that the percentages of reduction obtained by this configuration are about 25 points
inferior to those obtained by the active-passive control configuration.

To complete the comparison between the active-passive and the uncoupled-active
configurations, the corresponding maximum absolute control efforts are presented in Table 3.
The values in the table indicate that the active-passive configuration requires a slightly
higher level of control effort. However, considering the superior performance exhibited by
the active-passive configuration, the extra cost is certainly small.

The behavior of the passive control configuration is also remarkable. Despite its
simplicity and null power consumption, percentages of reduction in the interstory drifts
peak values of about 45% are achieved in buildings 2 and 3 and around 20% in building
1. Reductions of about 60% are also produced for the interbuilding approaches.
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Figure 13: Maximum interbuilding approaches for the North-South El Centro 1940 seismic excitation.

Table 2: Percentages of reduction in maximum interbuilding approaches with respect to the uncontrolled
response.

Buildings 1-2 Buildings 2-3
{ya}11 {ya}12 {ya}13 {ya}21 {ya}22

(a) Active-passive 68.3 73.1 74.2 68.7 68.3
(b) Passive 55.4 57.8 58.6 63.8 63.7
(c) Uncoupled-active 43.3 48.6 48.5 45.5 49.9

Table 3: Maximum absolute control forces exerted by actuation devices in building 2.

Control actions in B(2) (×106 N)
a2
1 a2

2 a2
3 a2

4 a2
5

(a) Active-passive 4.64 4.22 3.48 2.49 1.30
(c) Uncoupled-active 4.33 3.88 3.14 2.27 1.26

Finally, it should be highlighted the robustness of the active-passive control configura-
tion against failures in the local active control system. Actually, in case of a full failure of the
active control system, the passive level of seismic protection can still be guaranteed by the
passive-active control configuration. In contrast, the same kind of failure in the uncoupled-
active configuration would produce a total loss of seismic protection.

5. Final Remarks and Conclusions

In this work, a mathematical model to compute the overall vibrational response of connected
multistructure mechanical systems has been presented. Using the proposed model and
following the connected control method approach, structural vibration control strategies
for seismic protection of multibuilding systems can be efficiently designed. As a practical
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application of the new ideas, different control configurations for seismic protection of a par-
ticular three-building system have been designed. For these control configurations, numerical
simulations of the three-building system vibrational response have been conducted using
the full-scale North-South 1940 seismic record as a seismic excitation. The simulation results
come to confirm the excellent properties of control configurations that combine passive
interbuilding dampers with local feedback control systems implemented in the buildings.
These hybrid active-passive control strategies possess the good properties of passive control
systems and also have the high-performance characteristics of active control systems.
Moreover, active-passive control configurations can be properly designed for multibuilding
systems that require different levels of seismic protection and are also remarkably robust
against failures in the local feedback control systems. Finally, it is worth highlighting that
the proposed active-passive control strategy is compatible with practically any control design
methodology of the local feedback control systems and also with semiactive implementations
of the actuation systems. Consequently, further research effort needs to be aimed at exploring
more complex scenarios involving issues of practical interest such as wireless implementation
of the communications systems [31], actuator saturation [32], actuation and sensor failures
[33], structural information constraints [34, 35], uncertain stochastic networked systems [36–
38], or limited frequency domain [39].
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[34] F. Palacios-Quiñonero, J. M. Rossell, and H. R. Karimi, “Semi-decentralized strategies in structural
vibration control,”Modeling Identification and Control, vol. 32, no. 2, pp. 57–77, 2011.
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