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Abstract

The objective of this paper is to design linear quadratic controllers for a system with an in-
verted pendulum on a mobile robot. To this goal, it has to be determined which control strategy
delivers better performance with respect to pendulum’s angle and the robot’s position. The in-
verted pendulum represents a challenging control problem, since it continually moves toward an
uncontrolled state. Simulation study has been done in MATLAB Simulink environment shows
that both LQR and LQG are capable to control this system successfully. The result shows,
however, that LQR produced better response compared to a LQG strategy.

1 Introduction

Inverted pendulum has been the subject of nu-
merous studies in automatic control since the for-
ties. The inverted pendulum is a typical repre-
sentative of a class of high-order nonlinear and
non-minimum phase systems [1]. Since the sys-
tem is inherently nonlinear, it is useful to illus-
trate some of the ideas in nonlinear control.

Wheeled mobile robots have in the recent years
become increasingly important in industry, since
they provide a large degree of flexibility and ef-
ficiency with respect to transportation, inspec-
tion, and operation. In many cases, however, it
is the control, or lack of knowledge in control,
which limit the area of application. In this sys-
tem, an inverted pendulum is attached to a robot
equipped with a motor that drives it along a hor-
izontal track (robot will in the following mean an
autonomous robot provided with the Robotics
Starter Kit from National Instruments). The
user is able to dictate the position and velocity of
the robot through the motor. The pendulum is
characterized by an unstable equilibrium point,
and its behavior can be used in the analysis and
stability control of many similar systems.

Many different control methods are pro-
posed for the inverted pendulum problem.
The Proportional-Integral-Derivative (PID) and
Proportional-Derivative (PD) controllers [2] and
[3], Model Predictive Control (MPC) [4], and
fuzzy control [5] to mention a few. However
one of the obstacles by using the PID and PD
controllers are that they alone cannot effec-
tively control all of the pendulum state variables
(modes) since they are of lower order than the
pendulum itself. Hence, they are usually re-
placed by a full-order controller [3]. A linear
state feedback controller based on the linearized
inverted pendulum model can instead be used,
and may also be extended with a disturbance
observer (Kalman filter) to improve the distur-
bance rejection performance.

The proposed method is to balance an inverted
pendulum placed on top of a mobile robot by use
of LQR/LQG control methods. Our solution im-
plements an LQG controller with comparison to
a simple LQR controller. The controller found
by means of a more analytical approach will be
tested with implementation of the controller in
the MATLAB/Simulink environment.

With varying input forces the goal is to design
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a controller capable of meeting the following re-
quirements

• settling time, Ts, less than 5 seconds

• maximum overshoot of 10 degrees (0.175
radians)

• rise time Tr less than 0.5 s

We will in part one describe a simplified mathe-
matical model of the problem. Then, when hav-
ing a state space model of the system, we can
in part two go on and determine the controllers
and observers. Finally, the results from simu-
lations will then be presented and compared in
part three.

2 Derivation of the Mathemat-
ical Model

The main objective in this part is to come up
with a valid model that can be used as a basis
for the control design. The overall system can
be described as Figure 1 depicts. The mass of
the robot and the pendulum is here denoted as
M and m, respectively, together with the applied
force F and the angle θ referred to the vertical
axis.

Figure 1: The inverted pendulum placed on a
simplified mobile robot

There are a lot of aspects to take into consider-
ation when modeling this system, of which some
are more crucial than others. Without loosing
the generality of the model, the authors have
considered the following assumptions as good

approximations for the sake of simplifying the
model:

• no friction in the hinge between the pen-
dulum and the robot

• no friction between the wheels and the hor-
izontal plane

• small angle approximations, i.e the pendu-
lum does not move more than a few degrees

• sensors for measuring all the states are
when considering LQR control assumed to
be available

By applying the Lagrange’s equations with re-
spect to the position of the robot, x, and the
pendulum deflection angle θ, and taking into ac-
count the moments around the center of mass,
the following nonlinear dynamic equations of the
pendulum system are obtained [6]:

(I +ml2)θ̈ −mglsinθ = −mlẍcosθ (1)

where I is moment of inertia of the pendulum,
θ is the angle in counterclockwise direction with
respect to the vertical line (see figure 1), and l
is the distance to the center of mass (equal to
L/2). Furthermore, the robot is governed by a
equation of motion relating the forces applied by
the pendulum on the robot. Then, according to
Newtons law of motion, the equation of motion
of the robot in horizontal direction can be given
as

(M +m)ẍ+mlθ̈cosθ −mlθ̇2sinθ = F (2)

where F can be derived out from the physical
properties of the motor to be [7]

F = ηtKmKt

Rr
V −

Km2K2
g

Rr2 ẋ (3)

Here Km,Kt, ηt,Kg, R, and r are coefficients de-
pendent on the physical properties of the motor
and gear. The different parameters for (3) is not
known for the robot used in this project. How-
ever, [8] provide values which will be used in the
following. Based on the previous derivation, we
can now define four state variables, given as the
state vector

~x =
[
x1 x2 x3 x4

]T
=

[
x ẋ θ θ̇

]T
(4)
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Equations (1), (2), and (3) need to be linearized
in order to represent the system on state space
form

ẋ = Ax+BV (5)
y = Cx (6)

where A, B, and C are matrices needed for the
control design and V is the (input) voltage ap-
plied on the motor. The linearizing point of in-
terest is the unstable equilibrium point

~x =
[
0 0 0 0

]T

The assumption of small angle approximation
gives sinθ = θ, cosθ = 1, and θ̇ = 0. This lead
to the following linearized equations of motion
(note that (3) will be the same)

θ̈ = (mglθ −mlẍ)
(I +ml2) (7)

ẍ = (F −mlθ̈)
(M +m) (8)

We want to make (7) and (8) more convenient
for the state space representation by expressing
θ̈ and ẍ in the following way

θ̈ =
K2

mK
2
g

Rr2(MtL−ml)
ẋ+

g

L−ml
θ − KmKg

Rr(MtL−ml)
V (9)

ẍ = −
LK2

mK
2
g

Rr2(LMt −ml)
ẋ−

mlg

(LMt −ml)
θ + LKmKg

Rr(LMt −ml)
V(10)

where for simplicity L = I+ml2

ml andMt = M+m

Based on these equations and the following rela-
tion

~̇x =
[
x2 ẍ x4 θ̈

]T

we can now represent (9) and (10) as a first order
system. The system on state space form then be

~̇x =


0 1 0 0
0 K2

mK2
g

Rr2(MtL−ml)
g

L−ml 0
0 0 0 1
0 − LK2

mK2
g

Rr2(LMt−ml) − mlg
(LMt−ml) 0

 ~x+


0

LKmKg

Rr(LMt−ml)
0

− KmKg

Rr(MtL−ml)

V (11)

y =
[
1 0 0 0
0 0 1 0

]
~x (12)

Now, by using the values for the different con-
stants given in [8], the matrix equations becomes

~̇x =


0 1 0 0
0 −15.14 −3.04 0
0 0 0 1
0 37.23 31.61 0

~x +


0

3.39
0

−8.33

~V

y=
[
1 0 0 0
0 0 1 0

]
~x

When having the system on state space form, the
following step is to design a LQR controller (as-
suming that all the states are known and can be
measured). Then, by assuming no sensor avail-
able for measuring the angle, we will continue
with an observer design. Finally, an optimal
LQR (LQG controller)will be proposed by im-
plementing a Kalman filter.

3 Linear Quadratic Regulator
(LQR) design

There are different methods, or procedures, to
control the inverted pendulum. One is the pole
placement procedure having the advantage of
giving a much clearer linkage between adjusted
parameters and the resulting changes in con-
troller behavior. However, one disadvantage
with this method is that the placing of the poles
at desired locations can lead to high gains [8]. In
this section a linear quadratic regulator (LQR)
is proposed as a solution. The principles of a
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LQR controller is given in Figure 2. Here is the
state space system represented with its matrices
A, B, and C with the LQR controller (shown
with the -K).

Figure 2: Schematic representation of state
space control using a LQR controller

The LQR problem rests upon the following three
assumptions [9]:

1. All the states (x(t)) are available for feed-
back, i.e it can be measured by sensors etc.

2. The system are stabilizable which means
that all of its unstable modes are control-
lable

3. The system are detectable having all its un-
stable modes observable

To check whether the system is controllable and
observable, we use the functions obsv(A,C) and
ctrb(A,B) and find this to be true.

LQR design is a part of what in the control area
is called optimal control. This regulator pro-
vides an optimal control law for a linear system
with quadratic performance index yielding a cost
function on the form [10]

J =
∫ ∞

0
xT (t)Qx(t) + uT (t)Ru(t) dt (13)

where Q = QT and R = RT are weighting pa-
rameters that penalize the states and the control
effort, respectively. These matrices are therefore
controller tuning parameters. It is crucial that Q
must be chosen in accordance to the emphasize
we want to give the response of certain states, or
in other word; how we will penalize the states.
Likewise, the chosen value(s) of R will penalize
the control effort u. Hence, in an optimal con-
trol problem the control system seeks to maxi-
mize the return from the system with minimum
cost. In a LQR design, because of the quadratic
performance index of the cost function, the sys-
tem has a mathematical solution that yields an

optimal control law

u(t) = −Kx(t) (14)

where u is the control input and K is the gain
given as K = R−1BTS. It can be shown (see
[10])that S can be found by solving the algebraic
Riccati Equation

SA + ATS + Q−PBR−1BTS = 0 (15)

The process of minimizing the cost function
therefore involves to solve this equation, which
will be done with the use of MATLAB function
lqr. In this project the parameters in Q was
initially chosen according to Bryson’s Rule (see
[11] for details) to be

Q =


100 0 0 0
0 1 0 0
0 0 32.65 0
0 0 0 1

 (16)

and the control weight of the performance index
R was set to 1.

Here we can see that the chosen values in Q re-
sult in a relatively large penalty in the states x1
and x3. This means that if x1 or x3 is large, the
large values in Q will amplify the effect of x1 and
x3 in the optimization problem. Since the opti-
mization problem are to minimize J, the optimal
control u must force the states x1 and x3 to be
small (which make sense physically since x1 and
x3 represent the position of the robot and the an-
gle of the pendulum, respectively). This values
must be modified during subsequent iterations to
achieve as good response as possible (refer to the
next section for results). On the other hand, the
small R relative to the max values in Q involves
very low penalty on the control effort u in the
minimization of J , and the optimal control u can
then be large. For this small R, the gain K can
then be large resulting in a faster response. In
the physical world this might involve instability
problems, especially in systems with saturation
[8].

After having specified the initial weighting fac-
tors, one important task is then to simulate to
check if the results correspond with the specified
design goals given in the introduction. If not, an
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adjustment of the weighting factors to get a con-
troller more in line with the specified design goals
must be performed. However, difficulty in find-
ing the right weighting factors limits the appli-
cation of the LQR based controller synthesis [?].
By an iterative study when changing Q values
and running the command K=lqr(A,B,Q,R) K=[
−10.0000 −12.6123 −25.8648 −6.7915

]
The simulation of time response with this con-
troller will be shown in the next section.

3.1 State Estimation

As mentioned for the case of the LQR controller,
all sensors for measuring the different states are
assumed to be available. This is not a valid as-
sumption in practice. A void of sensors means
that all states (full-order state observers), or
some of the states (reduced order observer), are
not immediately available for use in any control
schemes beyond just stabilization. Thus, an ob-
server is relied upon to supply accurate estima-
tions of the states at all robot-pendulum posi-
tions. The schematics of the system with the
observer is shown in figure 3 below.

Figure 3: Schematic of state space control using
a observer where L is the observer gain and K is
the LQR gain matrix

As can be seen from figure 3, the observer state
equations are given by

˙̂x = Ax̂+Bu+ L(y − Cx̂) (17)
ŷ = Cx̂ (18)

where x̂ is the estimate of the actual state x.
Furthermore, equations (17) and (18) can be re-

written to become
˙̂x = (A− LC)x̂+Bu+ Ly (19)

This, in turn, is the governing equations for a
full order observer, having two inputs u and y
and one output, x̂. Since we already know A,
B and u, observers of this kind is simple in de-
sign and provides accurate estimation of all the
states around the linearized point. From Fig-
ure 3 we can see that the observer is imple-
mented by using a duplicate of the linearized sys-
tem dynamics and adding in a correction term
that is simply a gain on the error in the esti-
mates. Thus, we will feed back the difference
between the measured and the estimated out-
puts and correct the model continuously. The
proportional observer gain matrix, L, can be
found by pole placement method by use of the
place command in MATLAB. The poles were
determined to be ten times faster than the sys-
tem poles. These were found to be eig(A − B ∗
K) = [−18.0542,−5.4482,−3.4398,−2.4187]T ,
which yields the gain matrix

L =


34.4 0.2
91.0 1.1
30.4 52.5

1103.6 726.4

 (20)

When combining the control-law design with the
estimator design we can get the compensator (see
Section 6 for results).

4 Kalman filter design

In the previous design of the state observer, the
measurements y = Cx were assumed to be noise
free. This is not usually the case in practical life.
Other unknown inputs yielding the state equa-
tions to be on the general stochastic state space
form

ẋ = Ax+Bu+Gd

y = Cx+Hd+ n (21)

where the matrices G can be set to an identity
matrix, H can be set to zero, d is stationary,
zero mean Gaussian white process noise, and n
is sensor noise of the same kind.
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In this section we will show how the Kalman fil-
ter can be applied to estimate the state vector,x̂
and the output vector ŷ by using the known in-
puts u and the measurements y. Block schemat-
ics of a Kalman filter connected to the plant is
depicted in Figure 4.

Figure 4: Kalman filter used as an optimal ob-
server

It can be shown that this will result in an optimal
state estimation. The Kalman filter is essentially
a set of mathematical equations that implement
a predictor-corrector type estimator that is opti-
mal in the sense that it minimizes the estimated
error covariance when some presumed conditions
are met [12]. The mean square estimation error
is given by

J = E[(x(t)− x̂(t))T (x(t)− x̂(t))] (22)

where

E[(x(t)− x̂(t))T y(t) = 0 (23)

The optimal Kalman gain is given by

L(t) = Se(t)CTR−1 (24)

where Se(t) is the same as J given in (22). Fur-
thermore, when t → inf, the algebraic Riccati
equation can be written as Ṡe(t) = 0

0 = SeA
T +ASe +Qn − SeC

TR−1
n CSe (25)

where Qn and Rn are the process and measure-
ment noise covariances, respectively. Tuning of
the Kalman filter are required if these are not
known. Note that when controlling the robot,
a quadrature encoder will be used for measure-
ment of the position. Since this device does not
involve any noise, we can in the following set
Rn = 0. Finally, the sub-optimal Kalman gain
for a steady state Kalman filter can be expressed
as L = SeC

TR−1.

5 LQG controller

The LQG controller is simply the combination of
a Kalman filter with a regular LQR controller.
The separation principle guarantees that these
can be designed and computed independently
[13]. LQG controllers can be used both in lin-
ear time-invariant systems as well as in linear
time-variant systems. The application to linear
time-variant systems enables the design of linear
feedback controllers for non-linear uncertain sys-
tems, which is the case for the pendulum-robot
system. The schematics a LQG is in essence
similar to that depicted in figure 3 in Section
3.1. Hence, the observer gain matrix L in this
figure can now be defined as the Kalman gain.
However, we also assume disturbances in form of
noise, such that the system in compressed form
can be described as in Figure 5

Figure 5: LQG regulator

From the system given by (21), the feedback con-
trol law given by (14), and the full state observer
equation given by (19) defined previously, we
can by combing these have the following output-
feedback controller to be

˙̂x = (A− LC −BK)x̂+ Ly

u = −Kx̂ (26)

which is the equations the software is based upon
when calculating the state estimates. Since the
optimal LQR controller for this system is already
found to have the feedback gain matrix K=[
−10.0000 −12.6123 −25.8648 −6.7915

]
this will be used directly in the LQG design.
The remaining is to find the Kalman gain ma-
trix. We first assume the system as given in
(21). After the measurement and disturbance
noise covariance matrices are determined, the
MATLAB function kalman was used to find the
optimal Kalman gain L and the covariance ma-
trix P . Measurement noise covariance matrix is
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determined out from an expected noise on each
channel. The Kalman gain was found as

L =


4.9544 5.0879
−0.7797 −0.8612
5.0879 5.4689
25.9957 27.8975

 (27)

6 Simulations

Figure 6 gives the time response of the system
with a step input simulated by use of lsim func-
tion in MATLAB.

Figure 6: Time response of the system using a
LQR controller

Note that a steady state error was reduced by a
scaling factor N after the reference. This factor
was calculated by a rscale function. Figure 8
below is the response when using a observer to
estimate the states. Note that the simulation in
this case was done in the Simulink environment
with a impulse function as input.

Figure 7: Time response of the system with LQR
and observer

The reason for the difference between the plots is
due to the different simulation methods. When
simulating the LQG, we made it be that only
the pendulum was subjected to a impulse force.
This resulted in the following plot

Figure 8: Time response of the system with LQG
and impulse force on pendulum

We actually see here that the LQR gave better
results.

Conclusion

This report has shown that by manipulating
the state/control weightings and noise covari-
ance matrices properly, both LQR and LQG will
give satisfactory result. Although the results has
been somewhat limited, it has provided us with
some useful knowledge concerning differences be-
tween LQR and LQG control. It could have been
interesting to see how other cost functions would
have affected the results, and how the system
would have reacted if some of the input values
had been changed.
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