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Abstract— This paper deals with a convex optimization ap-
proach to the problem of robust network-based H∞ control
for linear systems connected over a common digital com-
munication network with norm-bounded parameter uncer-
tainties. Firstly, we investigate the effect of both the output
quantization levels and the network conditions under static
quantizers. Secondly, by introducing a descriptor technique,
using Lyapunov-Krasovskii functional and a suitable change of
variables, new required sufficient conditions are established in
terms of delay-range-dependent linear matrix inequalities for
the existence of the desired network-based quantized controllers
with simultaneous consideration of network induced delays
and measurement quantization. The explicit expression of the
controllers is derived to satisfy both asymptotic stability and
a prescribed level of disturbance attenuation for all admissi-
ble norm bounded uncertainties. One example is utilized to
illustrate the design procedure proposed in this paper.

I. INTRODUCTION

Networked control systems (NCS) in which control and
communication issues are combined together, and all the de-
lays and limitations of the communication channels between
sensors, actuators, and controllers are taken into accounthas
become an enabling technology for many military, commer-
cial and industrial applications. The study of NCSs is an
interdisciplinary research area, combining both network and
control theory. That is, in order to guarantee the stabilityand
performance of an NCS, analysis and design tools based on
both network and control parameters are needed. Modeling,
analysis, and design of NCSs have received increasing atten-
tion in recent years (see [1], [2], [8] and [21]).

However, due to network bandwidth restriction, the in-
sertion of communication network in the feedback control
loop inevitably leads to communication delays and makes
the analysis and design of NCSs complex. Communication
delays can deteriorate the performance of NCSs and even can
destabilize the systems when they are not considered in the
design of NCSs. So far, a variety of efforts have been devoted
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to analyzing NCSs with communication delays (see, e.g., [3],
[4],[15]-[19] and the references therein). Specifically, [1] and
[20] analyzed the stability of NCSs and obtained stability
regions using a hybrid systems technique. [10] presented
linear matrix inequality (LMI) conditions for obtaining max-
imum allowable delay bounds, which guarantee the stability
of NCSs. Based on Lyapunov-Razumikhin function method,
[19] presented conditions on the admissible bounds of data
packet loss and delays for NCSs in terms of LMIs. Based
on stochastic control theory, optimal controller design of
NCSs with stochastic network delays was investigated in (
[7], [12]). For other control schemes, we refer readers to
the survey ([14]). Recently, the problem of output feedback
control for networked control systems (NCSs) with limited
communication capacity was studied by Tian et al. in [13].

In this paper, we contribute to the further development
of a convex optimization approach to the problem of ro-
bust network-basedH∞ control for uncertain linear systems
connected over a common digital communication network.
Here, We consider the case where quantizers are static and
the parameter uncertainties are norm bounded. Firstly, we
propose a new model to investigate the effect of both the out-
put quantization levels and the network conditions. Secondly,
by introducing a descriptor technique, using Lyapunov-
Krasovskii functional and a suitable change of variables,
new required sufficient conditions are established in terms
of delay-dependent linear matrix inequalities (LMIs) for the
existence of the desired network-based quantized controllers
with simultaneous consideration of network induced delays
and measurement quantization. The explicit expression of
the controllers is derived to satisfy both asymptotic stability
and a prescribed level of disturbance attenuation for all ad-
missible norm bounded uncertainties. A numerical example
is provided to illustrate the effectiveness of the approach
presented in this paper.

The notations used throughout the paper are fairly stan-
dard.In and 0n represent, respectively,n by n identity matrix
and n by n zero matrix; the superscriptT stands for matrix
transposition;ℜn denotes then-dimensional Euclidean space;
ℜn×m is the set of all realm by n matrices. The matriceŝI
and Ĩ are defined, respectively, aŝI := [I,0] and Ĩ := [0, I].
‖.‖ refers to the Euclidean vector norm or the induced matrix
2-norm anddiag{· · ·} represents a block diagonal matrix.
λmin(A) and λmax(A) denote, respectively, the smallest and
largest eigenvalue of the square matrixA. The operator
sym{A} denotesA+AT and[.] is the operation of round. The
notationP > 0 means thatP is real symmetric and positive
definite and the symbol∗ denotes the elements below the



main diagonal of a symmetric block matrix.

II. SYSTEM DESCRIPTION

Consider the following continuous-time system with time-
varying structured uncertainties:

ẋ(t) = (A+∆A(t))x(t)+Du(t)+(B+∆B(t))w(t), (1)

y(t) =Cx(t), (2)

z(t) = Gx(t), (3)

where x(t) ∈ ℜn is the state vector,y(t) ∈ ℜm is the mea-
sured output, considered as the control input;w(t) ∈ ℜl

and z(t) ∈ ℜr are the disturbance and the signal to be
estimated, respectively. The coefficient matricesA,B,C,G
are real matrices with appropriate dimensions. The time-
varying structured uncertainties∆A(t) and∆B(t) are said to
be admissible if the following form holds

[

∆A(t) ∆B(t)
]

= M1F(t)
[

La Lb
]

, (4)

whereLa,Lb are constant matrices with appropriate dimen-
sions; andF(t) is an unknown, real, and possibly time-
varying matrix with Lebesgue measurable elements, and its
Euclidean norm satisfies

‖F(t)‖ ≤ 1, ∀t. (5)

We are interested in investigating the stability property
of systems when the observer undergoes quantization and
delays. This kind of problem arises in scenarios in which
a finite bandwidth channel lies in the feedback loop and
introduces a delay.

In this paper, a quantizer means a piecewise constant
function q : ℜp → Q, whereQ is a finite subset ofℜl . We
will use quantized measurements of the form

qµ(z) := µq

(

z
µ

)

=















µM∆, z
µ > (M+0.5)∆

−µM∆, z
µ <−(M+0.5)∆

µ∆
[

z
µ

]

,

∣

∣

∣

z
µ

∣

∣

∣
≤ (M+0.5)∆

(6)

whereµ > 0 and the range of this quantizer isµM and the
quantization error isµ∆ ([11]).

The problem considered here is to design the signalu(t) by
a network-based quantized controller of a general structure
described by

ẋ f (t) = A f x f (t)+B f µ1kq1

(

y(ikh)
µ1k

)

(7)

u(t) =C f x f (t), t ∈ [ikh+ηsc
k , ik+1h+ηsc

k+1) (8)

wherex f (t) is the controller state vector,µ1kq1

(

y(ikh)
µ1k

)

is the
quantized plant output withikh as the sampling instant of the
sensor andh as the sampling period,u(t) is the control signal
andA f ,B f ,C f are appropriately dimensioned matrices to be
designed.ηsc

k denotes the transmission delay from sensor
to the controller. When considering the network conditions
from the controller to the plant output, the quantized output
signal can be expressed as

µ2kq2

(

u( jkh)
µ2k

)

. (9)

Defineη1(t) = t − ikh−η1m for t ∈ [ikh+ηsc
k , ik+1h+ηsc

k+1)
and η2(t) = t − jkh−η2m for t ∈ [ jkh+ηca

k , jk+1h+ηca
k+1)

with a natural assumption on the network induced delays as
follows

η1m ≤ ηsc
k ≤ η1M (10)

η2m ≤ ηca
k ≤ η2M (11)

where constantsηim and ηiM, i = 1,2, denote the minimum
and maximum delays, respectively.ηca

k denotes the transmis-
sion delay from the controller to the actuator. Then, from
(10)-(11) we have

0≤ ηi(t)≤ η̄i (12)

where η̄i := ηiM −ηim. We assume that the values in both
sets{i1, i2, i3, · · ·} and{ j1, j2, j3, · · ·} are ordered as follows
ik+1 > ik and jk+1 > jk , which means that there is no wrong
packet sequences in the network, and satisfy the following
conditions, respectively,

(ik+1− ik)h+ηsc
k < η1M (13)

( jk+1− jk)h+ηca
k < η2M (14)

Furthermore, it is noting that there aren − 1 continuous
packets dropped or lost ifik+1− ik = n(n ≥ 2) ([18]).

Replacingikh and jkh in the quantized plant and controller
outputs witht−η1m−η1(t) andt−η2m−η2(t) , respectively,
in (7) and (9), we obtain

ẋ f (t) = A f x f (t)+B f µ1kq1

(

Cx(t −η1m −η1(t))
µ1k

)

= A f x f (t)+B fCx(t −η1m −η1(t))+B f δ1(t) (15)

and, fort ∈ [ jkh+ηca
k , jk+1h+ηca

k+1) ,

µ2kq2

(

u( jkh)
µ2k

)

=C f x f (t −η2m −η2(t))+δ2(t) (16)

where

δ1(t) = µ1kq1

(

Cx(t −η1m −η1(t))
µ1k

)

−Cx(t −η1m −η1(t)) (17)

and

δ2(t) = µ2kq2

(

C f x f (t −η2m −η2(t))

µ2k

)

−C f x f (t −η2m −η2(t)) (18)

By connecting the plant (1)-(3) and the controller (7)-(8) and
from the Leibniz-Newton formula, i.e.

X(t −η1m −η1(t)) = X(t −η1m)

−
∫ t−η1m

t−η1m−η1(t)
Ẋ(s) ds (19)

we obtain the following closed-loop system as

Ẋ(t) = (Ā+∆Ā(t))X(t)+ D̄1X(t −η2m)



−D̄1

∫ t−η2m

t−η2m−η2(t)
Ẋ(s) ds+ B̄1X(t −η1m)

−B̄1

∫ t−η1m

t−η1m−η1(t)
Ẋ(s) ds+ B̄2δ1(t)+ D̄2δ2(t)

+(B̄3+∆B̄3(t))w(t) (20)

and

z(t) = C̄1X(t) (21)

whereX(t) = [x(t)T ,x f (t)T ]T and

Ā =

[

A 0
0 A f

]

,∆Ā(t) =

[

∆A(t) 0
0 0

]

, B̄1 =

[

0 0
B fC 0

]

,

D̄1 =

[

0 DC f

0 0

]

, B̄2 =

[

0
B f

]

, D̄2 =

[

D
0

]

, B̄3 =

[

B
0

]

,

∆B̄3 =

[

∆B(t)
0

]

,C̄1 =
[

G 0
]

Finally, the problem of robust network-basedH∞ control for
uncertain linear systems with both the output quantization
levels and the network conditions can be expressed as below.

Problem: Given system (1)-(3), design the controller (7)-
(8) such that the augmented system (20)-(21) fromw(t)
to z(t) is asymptotically stable with a prescribedH∞ per-
formanceγ, that is ‖z(t)‖2

2 < γ2‖w(t)‖2
2 under zero initial

conditions for all admissible uncertain parameters.

III. H∞ PERFORMANCE ANALYSIS

In this section, we investigate the problem ofH∞ perfor-
mance analysis for nominal system (1)-(3) with no uncer-
tainties and exactly known controller matrices. Specifically,
we will be concerned with the conditions under which the
closed-loop system with finite delay components is asymp-
totically stable fromw(t) to z(t) with an H∞ performance
γ.

Theorem 1. Given the positive constantsγ ,∆i and
the matrices A f ,B f ,C f , if there exist positive-definite
matrices P1,R1,R2,S1,S2,Q1,Q2,Z1,Z2,T1,T2 and matrices
P2,P3,H1,H2,U1,U2,Ni, j(i = 1,2, · · · ,4; j = 1,2, · · · ,10) of
appropriate dimensions such that the following LMIs hold












Π η1mχ1 η2mχ2 η1Mχ3 η2Mχ4

∗ −η1mT1 0 0 0
∗ ∗ −η2mT2 0 0
∗ ∗ ∗ −η1MQ1 0
∗ ∗ ∗ ∗ −η2MQ2













< 0 (22)

[

Hi Ui

∗ Zi

]

≥ 0 (i = 1,2) (23)

with χi = [NT
i,1,N

T
i,2, · · · ,N

T
i,10,0]

T (i = 1,2, · · · ,4),
Π = ΠT = [Πi, j]i, j=1,2,··· ,11, Ñi = N1,i + N2,i + N3,i + N4,i ,

P =

[

P1 0
P3 P2

]

andΠ1,1 = sym

{

PT

[

0 I
Ā −I

]}

+∑2
i=1 η̄iHi+

diag
{

R1+S1,∑2
i=1 ηiMQi +2η̄iZi +ηimTi

}

+ sym
{

Ñ1Î
}

,

Π1,2 = PT

[

0
B̄1

]

−N1,1+ ÎÑT
2 , Π1,3 =U1−PT

[

0
B̄1

]

−N1,1+

ÎÑT
3 , Π1,4 = −N3,1 + ÎÑT

4 , Π1,5 = PT

[

0
D̄1

]

− N2,1 + ÎÑT
5 ,

Π1,6 = −N4,1 + ÎÑT
6 , Π1,7 = U2 − PT

[

0
D̄1

]

+ ÎÑT
7 ,

Π1,8 = PT

[

0
B̄2

]

+ ÎÑT
8 , Π1,9 = PT

[

0
D̄2

]

+ ÎÑT
9 ,

Π1,10 = PT

[

0
B̄3

]

+ ÎÑT
10, Π1,11 =

[

C̄1 0
]T

, Π2,2 =

−R1 − R2 − sym{N1,2}, Π2,3 = −
∆2

1
M2

1µ2
1k

ÎTCTCÎ − NT
1,3,

Π2,4 = −N1,2 − NT
1,4,Π2,6 = −N4,2 − NT

1,6,Π2,7 = −NT
1,7,

Π2,8 = −NT
1,8, Π2,9 = −NT

1,9, Π2,10 = −NT
1,10,

Π3,3 = −η̄−1
1 Z1 +

∆2
1

M2
1µ2

1k
ÎTCTCÎ,Π3,4 = −N3,3,

Π3,5 = −N2,3, Π3,6 = −N4,3, Π4,4 = −R2 − sym{N3,4},
Π4,5 = −N2,4 − NT

3,5,Π4,6 = −N4,4 − NT
3,6, Π4,7 = −NT

3,7,
Π4,8 = −NT

3,8, Π4,9 = −NT
3,9, Π4,10 = −NT

3,10, Π5,5 =

S2− S1− sym
{

N2,5
}

+
∆2

2
M2

2µ2
2k

ĨTCT
f C f Ĩ, Π5,6 = −N4,5−NT

2,6,

Π5,7 = −NT
2,7−

∆2
2

M2
2µ2

2k
ĨTCT

f C f Ĩ,Π5,8 = −NT
2,8, Π5,9 = −NT

2,9,

Π5,10 = −NT
2,10, Π6,6 = −S2 − sym

{

N4,6
}

, Π6,7 = −NT
4,7,

Π6,8 = −NT
4,8, Π6,9 = −NT

4,9, Π6,10 = −NT
4,10,

Π7,7 = −η̄−1
2 Z2 +

∆2
2

M2
2µ2

2k
ĨTCT

f C f Ĩ, Π8,8 = Π9,9 = −I ,

Π10,10=−γ2I, Π11,11=−I and other elementsΠi, j for j ≥ i
are equal to zero. Then, system (22)-(23) is asymptotically
stable with theH∞ performance levelγ > 0.

Proof. Firstly, we represent (20) in an equivalent descrip-
tor model form as



















Ẋ(t) = ξ (t),
0=−ξ (t)+ ĀX(t)+ B̄1X(t −η1m)+ D̄1X(t −η2m)

−B̄1
∫ t−η1m

t−η1m−η1(t)
Ẋ(s) ds− D̄1

∫ t−η2m
t−η2m−η2(t)

Ẋ(s) ds

+B̄2δ1(t)+ D̄2δ2(t)+ B̄3w(t)
(24)

Define the Lyapunov-Krasovskii functional [9]

V (t) =
5

∑
i=1

Vi(t) (25)

where

V1(t) = X(t)T P1X(t) :=
[

X(t)T ξ (t)T
]

T P

[

X(t)
ξ (t)

]

,

V2(t) =
∫ t

t−η1m

X(s)T R1X(s) ds

+
∫ t−η1m

t−η1M

X(s)T R2X(s) ds

V3(t) =
∫ t

t−η2m

X(s)T S1X(s) ds

+
∫ t−η2m

t−η2M

X(s)T S2X(s) ds



Vi+3(t) =
∫ t

−ηiM

∫ t

t+θ
ξ (s)T Qiξ (s) ds dθ

+2
∫ −ηim

−ηiM

∫ t

t+θ
ξ (s)T Ziξ (s) ds dθ

+
∫ −ηim

−ηiM

∫ t

t+θ
ξ (s)T Tiξ (s) ds dθ

with i = 1,2 and T = diag{I,0}. DifferentiatingV1(t) in t
we obtain

V̇1(t) = 2X(t)T P1Ẋ(t) = 2
[

X(t)T ξ (t)T
]

PT
[

Ẋ(t)
0

]

= 2
[

X(t)T ξ (t)T
]

PT
{[

0 I
Ā −I

][

X(t)
ξ (t)

]

+

[

0
B̄1

]

X(t −η1m)+

[

0
D̄1

]

X(t −η2m)

−

[

0
B̄1

]

∫ t−η1m

t−η1m−η1(t)
ξ (s) ds−

[

0
D̄1

]

∫ t−η2m

t−η2m−η2(t)
ξ (s) ds

+

[

0
B̄2

]

δ1(t)+

[

0
D̄2

]

δ2(t)+

[

0
B̄3

]

w(t)} (26)

By Lemma 1 (in Appendix), it is clear that

−2
[

X(t)T ξ (t)T
]

PT
[

0
B̄1

]

∫ t−η1m

t−η1m−η1(t)
ξ (s) ds

≤
∫ t−η1m

t−η1M

ξ (s)T Z1ξ (s) ds+ η̄1

[

X(t)
ξ (t)

]T

H1

[

X(t)
ξ (t)

]

+2

[

X(t)
ξ (t)

]T

(U1−PT
[

0
B̄1

]

)
∫ t−η1m

t−η1m−η1(t)
ξ (s) ds (27)

and, similarly,

−2
[

X(t)T ξ (t)T
]

PT
[

0
D̄1

]

∫ t−η2m

t−η2m−η2(t)
ξ (s) ds

≤

∫ t−η2m

t−η2M

ξ (s)T Z2ξ (s) ds+ η̄2

[

X(t)
ξ (t)

]T

H2

[

X(t)
ξ (t)

]

+2

[

X(t)
ξ (t)

]T

(U2−PT
[

0
D̄1

]

)
∫ t−η2m

t−η2m−η2(t)
ξ (s) ds (28)

Differentiating other Lyapunov terms in (25) give

V̇2(t)+V̇3(t) = X(t)T (R1+S1)X(t)−X(t −η1m)
T

×(R1−R2)X(t −η1m)−X(t −η2M)T S2X(t −η2M)

−X(t −η1M)T R2X(t −η1M)

−X(t −η2m)
T (S1−S2)X(t −η2m) (29)

and, using Jensen’s Inequality in Lemma 2 (in Appendix),
one gets, fori = 1,2,

V̇i+3(t)≤ ξ (t)T (ηiMQi +2η̄iZi +ηimTi)ξ (t)

−

∫ t

t−ηiM

ξ (s)T Qiξ (s) ds−
∫ t−ηim

t−ηiM

ξ (s)T Ziξ (s) ds

−η̄−1
i

∫ t−ηim

t−ηim−ηi(t)
ξ (s)T dsZi

∫ t−ηim

t−ηim−ηi(t)
ξ (s) ds

−
∫ t

t−ηim

ξ (s)T Tiξ (s) ds. (30)

Moreover, from the Leibniz-Newton formula, the follow-
ing equations hold for any matrices{Ni}

10
i=1 with appropriate

dimensions, fori = 1,2,:

2ν(t)T Ti(X(t)−X(t −ηim)−
∫ t

t−ηim

ξ (s) ds) = 0 (31)

2ν(t)T Ti+2(X(t)−X(t −ηiM)−
∫ t

t−ηiM

ξ (s) ds) = 0 (32)

where ν(t) := col {X(t),ξ (t),X(t −η1m),
∫ t−η1m

t−η1m−η1(t)
ξ (s) ds,X(t − η1M),X(t − η2m),X(t −

η2M),
∫ t−η2m

t−η2m−η2(t)
ξ (s) ds,δ1(t),δ2(t),w(t)} is an augmented

state vector. According to the property of the quantizers
qi(.) and using the Leibniz-Newton formula, we readily
obtain

0≤−δi(t)
T δi(t)+

∆2
i

M2
i µ2

ik

(x(t −ηim)

−
∫ t−ηim

t−ηim−ηi(t)
ẋ(s) ds)TCTC(x(t −ηim)

−
∫ t−ηim

t−ηim−ηi(t)
ẋ(s) ds). (33)

Now, to establish theH∞ performance measure for the
system (1)-(3), assume zero initial condition, then we have
V (t) |t=0 = 0. Consider the indexJ∞ in the form J∞ =
∫ ∞

0 [z(t)T z(t)− γ2w(t)T w(t)] dt , then along the solution of
(1) for any nonzerow(t) there holds

J∞ ≤
∫ ∞

0
[e(t)T e(t)− γ2w(t)T w(t)+V̇ (t)] dt (34)

From (26)-(30), (34) and adding the left and right sides of
equations (31)-(32) and (33), respectively, intoV̇ (t), we get

J∞ ≤
∫ ∞

0
ν(t)T Σν(t) dt (35)

where Σ := Π + η1Mχ1T−1
1 χT

1 + η2Mχ2T−1
2 χT

2 +
η1Mχ3Q−1

1 χT
3 + η2Mχ4Q−1

2 χT
4 . Now, if Σ < 0, then

J∞ < 0 which means that theL2-gain from the disturbance
w(t) to the controlled outputz(t) is less thanγ . By applying
Schur complements, we find thatΣ < 0 is equivalent to
(22). ⊳



IV. ROBUST H∞ CONTROL DESIGN

In this section we investigate the robust network-based
H∞ control design problem for system (1)-(3) with the norm
bounded uncertainty parameters defined in (4).

Theorem 2. Consider system (1)-(3) with the quantizer
given in (6). Given positive constantsε ,γ and ∆i,
there exist a network-based quantized controller in the
form of (7)-(8) such that the closed-loop system (20)-
(21) is asymptotically stable with anH∞ disturbance
attenuation levelγ if there exist the scalarρ > 0, positive-
definite matricesP1,R1,R2,S1,S2,Q1,Q2,Z1,Z2,T1,T2 and
matrices P̂1, P̂2,P22, P̄11,W1,W2,W3,H1,H2,U1,U2,Ni, j(i =
1,2, · · · ,4; j = 1,2, · · · ,10) of appropriate dimensions and
satisfying (23) and the LMI





Π̃ ΓT
d ρΓT

e
∗ −ρI 0
∗ ∗ −ρI



< 0 (36)

with

Π̃ :=













Π̂ η1mχ1 η2mχ2 η1Mχ3 η2Mχ4

∗ −η1mT1 0 0 0
∗ ∗ −η2mT2 0 0
∗ ∗ ∗ −η1MQ1 0
∗ ∗ ∗ ∗ −η2MQ2













Γd =
[

εMT
1 P2 MT

1 P2 · · · 0 0
]

, Γe =
[

La 0 · · · 0 Lb 0
]

with Π̂ = Π̂T = [Π̂i, j]i, j=1,2,··· ,11,

andP2 =

[

P11 P11

P22 P22

]

and

Π̂1,1 := sym{









ε
[

PT
11A W1

PT
11A W1

]

P1− εPT
2

[

PT
11A W1

PT
11A W1

]

−PT
2









}

+
2

∑
i=1

η̄iHi +diag

{

R1+S1,

2

∑
i=1

ηiMQi +2η̄iZi +ηimTi

}

+sym
{

Ñ1Î
}

,

Π̂1,2 = (ε ÎT + ĨT )

[

W2C 0
W2C 0

]

− N1,1 + ÎT ÑT
2 ,

Π̂1,3 = U − (ε ÎT + ĨT )

[

W2C 0
W2C 0

]

+ ÎT ÑT
3 , Π̂1,5 =

(ε ÎT + ĨT )

[

0 DW3

0 DW3

]

− N2,1 + ÎÑT
5 , Π̂1,7 = U2 − (ε ÎT +

ĨT )

[

0 DW3

0 DW3

]

+ ÎÑT
7 , Π̂1,8 = (ε ÎT + ĨT )

[

W2

W2

]

+ ÎT ÑT
8 and

other elementŝΠi, j are equal to their counterpart elements
in the matrix Π. Moreover, if the above conditions are
feasible, desired controller gain matrices are given by
C f = (P̄T

11)
−1W3 and

[

A f B f
]

= (PT
22)

−1[W1 W2
]

where DT = U
[

D̂ 0
]

V T , P11 = V

[

P̂1 0
0 P̂2

]

V T , P̄11 =

UD̂P̂1D̂−1UT with the unitary matricesU,V and a diagonal
matrix D̂ with positive diagonal elements in decreasing order.

Proof. The state-space matrices̄A and B̄3 in (22) are
replaced withĀ+M1F(t)La andB̄3+M1F(t)Lb, respectively.
By consideringP3 = εP2 with DT P11 = P̄11DT and introduc-
ing change of variables

[

W1 W2
]

= PT
22

[

A f B f
]

(37)

W3 = P̄T
11C f (38)

then the inequality (22) is equivalent to the following con-
dition:

Π̃+ sym
{

ΓT
d F(t)Γe

}

< 0 (39)

By Lemma 3 (in Appendix), a necessary and sufficient
condition for (39) is that there exists a scalarρ such that

Π̃+ρ−1ΓT
d Γd +ρΓT

e Γe < 0 (40)

then, applying Schur complements, we find that (40) is
equivalent to (36).⊳

Remark 2. In Theorem 2, the results are expressed within
the framework of LMIs, which can be easily computed by
the interior-pint method.

V. NUMERICAL RESULTS

Consider an uncertain linear system with the system
matrices given by

A =

[

−1 0.4
0.2 0.1

]

,B =

[

1
1

]

,C =

[

1
1

]

,G =
[

1 1
]

,

La =

[

0.1 0
0.1 0.05

]

,Lb =

[

0
0.1

]

,M1 = I,F(t) = c sin(t)

where|c| ≤ 1. It is assumed that the network-induced delay
bounds are given byη1m =η2m = 20ms,η1M =η2M = 200ms.
In addition, the quantizer parameters in (5) are assumed to
be ∆1 = ∆2 = 0.1,M1 = M2 = 5 and the sampling period
h = 20ms. By using the convex problem in Theorem 2
with a constantε = 0.1, we obtain the minimum guaranteed
performance in terms of the feasibility of (23) and (36) as
γ = 0.45.

0 5 10 15
−2

−1

0

1

2

3

4

5

6

7

Time (s)

z(
t)

c=0
c=0.3
c=0.6

Fig. 1. Controlled output signals for the plant.

With the initial conditionsx(0) = [1,1]T and x f (0) =
[0,0]T , and an exogenous disturbance input as a unit step
function within [0,1], then the controlled output signalz(t)
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Fig. 2. QuantizedH∞ Control signal.

is plotted in Figure 1 for different values of the parameterc,
i.e., {0,0.3,0.6}. The quantizedH∞ output feedback Control
signal is also shown in Figure 2 in the casec = 0.3.

VI. CONCLUSION

we have investigated the problem of robust quantized
H∞ output feedback control for linear systems with norm-
bounded uncertainties connected over a common digital
communication network. Firstly, we studied the effect of
both the output quantization levels and the network condi-
tions. Secondly, by introducing a descriptor technique, using
Lyapunov-Krasovskii functional and a suitable change of
variables, new required sufficient conditions were established
in terms of delay-range-dependent linear matrix inequalities
for the existence of the desired network-based quantized
controllers with simultaneous consideration of network in-
duced delays and measurement quantization. The explicit
expression of the controllers was derived to satisfy both
asymptotic stability and a prescribed level of disturbance
attenuation for all admissible norm bounded uncertainties.

APPENDIX

Lemma 1: ([6]) For any arbitrary column vectorsa(t),b(t)
, matricesΦ(t),H,U andW the following inequality holds:

−2
∫ t

t−r
a(s)T Φ(s)b(s) ds ≤

∫ t

t−r

[

a(s)
b(s)

]T [
H U −Φ(s)
∗ W

][

a(s)
b(s)

]

ds

where

[

H U
∗ W

]

≥ 0 .

Lemma 2: ([5]) (Jensen’s Inequality) Given a positive-
definite matrixP ∈ ℜn×n and two scalarsb > a ≥ 0 for any
vectorx(t) ∈ ℜn , we have

∫ t−a

t−b
x(w)T Px(w) dw ≥

1
b−a

(

∫ t−a

t−b
x(w) dw

)T

P

(

∫ t−a

t−b
x(w) dw

)

Lemma 3: Given matricesY = Y T ,D,E and F of appro-
priate dimensions withFT F ≤ I , then the following matrix
inequality

Y + sym{DFE}< 0

holds for allF if and only if there exists a scalarε > 0 such
that

Y + εDDT + ε−1ET E < 0.
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