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Abstract— This paper deals with a convex optimization ap-
proach to the problem of robust network-based H., control
for linear systems connected over a common digital com-
munication network with norm-bounded parameter uncer-
tainties. Firstly, we investigate the effect of both the output
guantization levels and the network conditions under static
quantizers. Secondly, by introducing a descriptor technique,
using Lyapunov-Krasovskii functional and a suitable change of
variables, new required sufficient conditions are established in
terms of delay-range-dependent linear matrix inequalities for
the existence of the desired network-based quantized controllsr
with simultaneous consideration of network induced delays
and measurement quantization. The explicit expression of the
controllers is derived to satisfy both asymptotic stability and
a prescribed level of disturbance attenuation for all admissi-
ble norm bounded uncertainties. One example is utilized to
illustrate the design procedure proposed in this paper.

[. INTRODUCTION

to analyzing NCSs with communication delays (see, e.g., [3]
[4],[15]-[19] and the references therein). Specifically, {nd
[20] analyzed the stability of NCSs and obtained stability
regions using a hybrid systems technique. [10] presented
linear matrix inequality (LMI) conditions for obtaining ma
imum allowable delay bounds, which guarantee the stability
of NCSs. Based on Lyapunov-Razumikhin function method,
[19] presented conditions on the admissible bounds of data
packet loss and delays for NCSs in terms of LMIs. Based
on stochastic control theory, optimal controller design of
NCSs with stochastic network delays was investigated in (
[7], [12]). For other control schemes, we refer readers to
the survey ([14]). Recently, the problem of output feedback
control for networked control systems (NCSs) with limited
communication capacity was studied by Tian et al. in [13].
In this paper, we contribute to the further development
of a convex optimization approach to the problem of ro-

Networked control systems (NCS) in which control and, st network-base#i., control for uncertain linear systems

communication issues are combined together, and all the

ynnected over a common digital communication network.

lays and limitations of the communication channels betweerqere, We consider the case where quantizers are static and

sensors, actuators, and controllers are taken into act@msnt

become an enabling technology for many military,

commers

the parameter uncertainties are norm bounded. Firstly, we
propose a new model to investigate the effect of both the out-

cial and industrial applications. The study of NCSs is aw quantization levels and the network conditions. Selypnd
interdisciplinary research area, combining both netwaortt a by introducing a descriptor technique, using Lyapunov-

control theory. That is, in order to guarantee the stabiitd  (raqoyskii functional and a suitable change of variables,
performance of an NCS, analysis and design tools based g, required sufficient conditions are established in terms

both network and control parameters are needed. Modeli

NS delay-dependent linear matrix inequalities (LMIs) foet

analysis, and design of NCSs have received increasing atteQistence of the desired network-based quantized coeisoll

tion in recent years (see [1], [2], [8] and [21]).

_ with simultaneous consideration of network induced delays

However, due to network bandwidth restriction, the inynq measurement quantization. The explicit expression of

sertio_n of_ communication networl_< in_ the feedback control,e controllers is derived to satisfy both asymptotic sitybi
loop inevitably leads to communication delays and makegng a prescribed level of disturbance attenuation for all ad
the analysis and design of NCSs complex. Communicatiqjssible norm bounded uncertainties. A numerical example

delays can deteriorate the performance of NCSs and even Ganrovided to illustrate the effectiveness of the approach
destabilize the systems when they are not considered in fhgssented in this paper.

design of NCSs. So far, a variety of efforts have been devoted The notations used throughout the paper are fairly stan-
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dard.l,, and @, represent, respectively,by n identity matrix
andn by n zero matrix; the superscrit stands for matrix
transposition{1" denotes th@-dimensional Euclidean space;
O™M is the set of all ream by n matrices. The matricels
andi are defined, respectively, 4s= [I,0] and i := [0,1].

||.|| refers to the Euclidean vector norm or the induced matrix

of Technology 2.norm anddiag{---} represents a block diagonal matrix.
Agder, N-4898 Grimstad, Norway.)\ ]
mi

n(A) and Anax(A) denote, respectively, the smallest and
largest eigenvalue of the square matdx The operator
sym{A} denotesA+AT and|.] is the operation of round. The
notationP > 0 means thaP is real symmetric and positive
definite and the symbot denotes the elements below the



main diagonal of a symmetric block matrix. Defineni(t) =t —ixh—nim for t € [ixh+ nfc,ik+1h+n|§ﬁl)

Il. SYSTEM DESCRIPTION and na(t) =t~ jh —nom for t € [jkh+ M jirah+midy)
with a natural assumption on the network induced delays as
Consider the following continuous-time system with time+g|jows

varying structured uncertainties:

X(t) = (A+DA))X(t) +Du(t) + (B+AB(t)w(t), (1) Mim < ”E,: < Mm (10)
y(t) =Cx(t), ) Nam < N™ < Nam (11)
z(t) = Gx(t), (3) Where constant§im andniv, i = 1,2, denote the minimum

and maximum delays, respectivefjf® denotes the transmis-

wherex(t) € 0" is the state vectory(t) € O™ is the mea- gjon delay from the controller to the actuator. Then, from
sured output, considered as the control inputt) € O (10)-(11) we have

and z(t) € O" are the disturbance and the signal to be _

estimated, respectively. The coefficient matricks,C,G o< ni(t)<ni (12)
are real matrices with appropriate dimensions. The tim
varying structured uncertainti€sA(t) andAB(t) are said to
be admissible if the following form holds

%\’/herelﬂ ‘= Nim — Nim- We assume that the values in both
sets{iy,ip,i3,---} and{ja, j2, j3,--- } are ordered as follows
iki1 > ik and jkr1 > jk , which means that there is no wrong
[AA(t) AB(t)] = MzF(t) [La Lb] (4) packet sequences in the network, and satisfy the following

conditions, respectively,
wherel,, Ly are constant matrices with appropriate dimen- P y

sions; andF(t) is an unknown, real, and possibly time- (iker — i)+ NE < N (13)
varying matrix with Lebesgue measurable elements, and its (jket — i+ NS < Naw (14)
Euclidean norm satisfies

Furthermore, it is noting that there are— 1 continuous
IFOI <1, vt. ®) packets dropped or lost if.1 —ix =n(n>2) ([18]).

We are interested in investigating the stability property Replacingixh and jxhin the quantized plant and controller
of systems when the observer undergoes quantization a@dtputs witht — nim— n1(t) andt —nom—n2(t) , respectively,
delays. This kind of problem arises in scenarios in whicln (7) and (9), we obtain
a finite bandwidth channel lies in the feedback loop and
introduces a delay. Xt (t) = Arxt (t) + Bt lakth <

In this paper, a quantizer means a piecewise constant
function q: OP — Q, whereQ is a finite subset ofl'. We
will use quantized measurements of the form

CX(t — Nim— nl(t))>
Hak

= AsXt (t) + BfCX(t — N1m— N1(t)) + B o (t) (15)

UMA, ﬁ > (M +0. 5)A and, fort € [th+'7|fa, jk+lhJr ’7;‘31) )
o Z _ z u(jkh
Qu(2) = “q<u) “MA <~(M+054 (§) H2x0l2 (“k)) =Cixt(t—nNam—n2(t)) + &(t)  (16)
2l <(M+05)A Hax
where
whereu > 0 and the range of this quantizer (igvl and the 0 = Cx(t — Nim—N1(t))
quantization error isuA ([11]). Ou(t) = Hth o
The problem considered here is to design the sigftalby
392?;tr\i,éoer<lj(-gjsed guantized controller of a general stractur —CX(t — Nam— Ma(t)) 17)
X (t) = Arx (t) + Bt kg ylih) (7) and Ci Xt (t = Nam—N2(t))
P = A PRUA e &(t) = szQZ< ok )
u(t) =Cext(t), telfih+neih+nd)  (8)
—Cixt (t = N2m—n2(t)) (18)

wherex; (t) is the controller state vectqu "1‘;? is the
guantized plant output withh as the sampling instant of the By connecting the plant (1)-(3) and the controller (7)-(Bya
sensor andh as the sampling periodit) is the control signal from the Leibniz-Newton formula, i.e.

andAs,B¢,Cs are appropriately dimensioned matrices to be

designed.n denotes the transmission delay from sensor X(t=N1m=M1(t)) = X(t = Nam)
to the controller. When considering the network conditions Ny _
from the controller to the plant output, the quantized otitpu _/ X(s) ds (19)
signal can be expressed as t=Nim—m(t)
<u(jkh)> ©) we obtain the following closed-loop system as
Ha \ ™ e X(t) = (A% AA))X(t) + DiX (t — o)



—  (t=Nom . _ - N -
0 [ X(s) ds+BiX(t— ) (N, Mg = —Nay+ K, Myg = PT [Dg] o 4 TR
t—nam—n2(t) 3 0
—  t=Nim . _ . _ - _ S To o
-8 [ o X9 ds+B28i(1) + D2 (1) Mis = —Nax + IR], Mz = Uz = PT |5 | + 1],
—Mm—m 0 3 D B
Mg = P B * N, Mo = P! {52] + INJ,

+(Ba +ABs(t))w(t) @) S P s
- =3 + y - y =
and 110 Bs lo M = | 21 | 22
= _ _. N TeTel o NT
z(t) = C1X(t) 1 R-R- Wm{Tl,z}, M23 = —gz ITC'CI N#@
M2a = —N12 — Nyglloe = —Na2 — Nyg 27 = —Nj 4,
hereX(t) = [x()T,xs (t)T]T and ) v 14 : 160 12, 17
W (1) =Xx®"x:(t)"] Mg = —Njg Moo = —Nlg Moo = —Nlp
— — _ — AZ ~
A= I:'S X.f:| ’AA(t) = |:AAE)(t) (()):| , D1 = |:B?C 8:| s |_|3A,3 = _n]_ 1Zl + sz_lifk |’TCTC|,I_I3A = _N3,31
Mas = —Nog, Mae = —Nas, Mas = ~Re — sym{Naa},
= 0 Dcf} = [0} = {D} ~ {B} M4s = —N24 — N35,Map = —Ngg — N3, Ma7 = —N3 4,
D; = By = Do=|-|,Bs= .|, , 5 14, 7 360 |14, 37
1 |:0 0 2 Bf 2 0 3 0 |_|4_’8 = *N;B, |_|4_’9 = ;Ng:g, |-|4’10 = 7N:1:10, |_|575 =
8 iTeTe.d T
= S ~ S —sym{N 2_[TCTCqT, Msg = —Nas— N,
ABg = {AB(U} C1=1[G 0 2= S -omi 252} g Sl Tse 45 28
Finallv. the broblem of rob cbaskd o 87 ~NJ7 — gz ["CICilMsg = —~NJg, Mso = —NJ,,
inally, the problem of robust network-baskg, control for T e T
uncertain linear systems with both the output quantizatioHE’*10 B ElleTO HG’IEI_ EZ _SNyT {N47f|5_;f’ ”6,1 _Nl\i“’
levels and the network conditions can be expressed as below?® — —4& :’f Ao 610 = 4,10
Problem Given system (1)-(3), design the controller (7)-M77 = *nflzz + M§E22k ITCTCil, Mgg = Mgg = —I

(8) suc.h that the .augmented system (20)—(_21) frout) Mi010=—Y?l, M1111 = —I and other elementd; ; for j > i
to z(t) is asymptotically 2stab|e with a prescribédl, per-  gre equal to zero. Then, system (22)-(23) is asymptotically
formancey, that is ||z(t)[|; < y*|lw(t)||3 under zero initial gtaple with theH., performance levey > O.

conditions for all admissible uncertain parameters. Proof. Firstly, we represent (20) in an equivalent descrip-

Il. Ho PERFORMANCE ANALYSIS tor model form as
In this section, we investigate the problemtaf perfor- vy
mance analysis for nominal system (1)-(3) with no uncer- X(t)=20), — — —
tainties and exactly known controller matrices. Specifjcal 0:__5(;1) +AX(D) + BaX(t - 'Z{“??)ZJF D1X(t —Nam)
we will be concerned with the conditions under which the | ~Bi/i " p 1) X(8)dS=Dafi_; " ) X(s) ds
closed-loop system with finite delay components is asymp- { +Byd(t) + D2d(t) + Baw(t)
totically stable fromw(t) to z(t) with an H., performance (24)

Y.
Theorem 1 Given the positive constanty,d; and Define the Lyapunov-Krasovskii functional [9]
the matrices A¢,B¢,Ct, if there exist positive-definite

matrices P1,R1,R2,S1,$,Q1,Q2,21,2>,T1, T, and matrices . > .
Po, Py, My, Hp, Us,Up, Ny (i = 1,2, 4] = 1,2,+--,10) of V=23 v (25)
appropriate dimensions such that the following LMIs hold

M DXt MemXe  MmXs  NovXa where

* —r,lmTl 0 0 0 X(t

« %~ O 0 |<0 (22 Vi(t) =X(O)TPX(t) := [X)T EW)T]TP [58} ;

* * * 7I’]1MQ1 0

* * * * —NamQ2

Va(t) = /t CX(9)TRX(S) ds

H U o .
[* Zi] >0(i=1,2) (23) o
+ X(s)TRxX(s) ds
with  xi = [NT,NT,- N7, 07 (i = 1,2,---,4), t—1m
M=nN"=[Mijlije12-11 N = Ngj+Ngj+Ngj+Ngj ,
_ | 0 _ 70 | 2 Aol t
P= |:P3 P2:| andl'll_l—SVm{P |:A _|:| }+2|1’7|H|+ Vg(t) :/ X(S)TS]_X(S) ds
t—nom

diag{Ri+S1, Y21 imQi + 20 Z + NimTi } + sym{Nal}

A T
My =PT [BQJ =Ny1+1R, My g=Uy - P {BQJ ~Nui+ + X(s)'SX(s) ds



|+3 /”IM +QE ) QIE( )dee ,/timME(S)TQiE(S) ds— '/ttinimE(S)TZiE(S) ds

—nNim
Nim
+2 / TZ,&(s) dsd6
Nim +9 — 4 t—Nim T t—"Nim
M A / £(9)7 dsz / £(s) ds
+/n TTi&(s) dsdb t=Nim—1i(t) t—im—i(t)

iM
with i=12 andT = dlag{I,O}. Differentiating Vi (t) in t .
we obtain - / £(9TTiE(s) ds. (30)

y J1=1im

Va(t) = 2X (1) TPIX(t) = 2 [X ()T E(t)T]PT {X(()t)]

Moreover, from the Leibniz-Newton formula, the follow-
ing equations hold for any matrice{f;li}ilzo1 with appropriate

—2[X®T EM)T]P { {% | } [X(t)} dimensions, fofi = 1,2,:

20T (X (1) —><<t—mm>—_/ttn_ £(9dy=0 (31)

0
+ [B_} X(t—nNim) + [51] X(t—nam)
t
—- —- 2v(t) TTha2(X (1) — X(t — f/ 5 ds)=0 (32
Q] wmes[O] [ e O T2(X(O - X(t—nw) = | &5 ds)=0 (32)
im 1 —2m=12
vvthere v(t) = col {X(t),&(t),X(t — Nim),
Nim
+[§}51(t)+{g}az(t)+{89]w(t)} 26) - m( &(s) dsX(t — nm) X(t - N2m), X(t —
2 2 3 Nam)s oo oy & (8) ds,8u(t), &2(t), w(t) } is an augmented
By Lemma 1 (in Appendix), it is clear that state vector. According to the property of the quantizers
01 /t-m gi(.) and using the Leibniz-Newton formula, we readily
T T f
—2[X®T E®T]P [B }/ &(s) ds obtain
1 Nim—na(t) 5
AY:
_ 0<—&(t) &(t) + —5— (X(t— Nim)
t=m _ X(t)]T [X(t)] M2
< s)TZ1&(s) ds+ { H i Hik
Jpgy EOT2EE O ] |
t—"im
X(t) T [0} /t*”lm - / %(s) ds)TCTC(X(t — Mim)
2 U —P d 27 im
i [E(t)] (L1 AL t*nlm*nl(t)f(S) s @ ()
and, similarly,
t—"lim
01 /t-Nem - X(s) ds). (33)
_2[X()T ftTPT[—W £(s) ds /_._.
[ () () ] D M) () t—nim—n;i(t)
T Now, to establish theH, performance measure for the
t=M2m — [ X(t) X(t) system (1)-(3), assume zero initial condition, then we have
< T L 1
*/t,,,ZM £(5)' Z2&(s) ds+n2 L‘(t)] K {E (t) ()\t o_o ConSIder the indext., in the form J,, =
Io |z —yw(t)" , then along the solution of
t—"N2m 1 for an nonzeraw there holds
42 @((:)] (Up—PT {S] / £ ds (28 y ()
(t) 1) Jt-ngm-—na(t) o
Differentiating other Lyapunov terms in (25) give Jeo S/O VZW +V( )] dt (34)
Va(t) +Va(t) = X(t)T (R + S)X (t) = X(t = n1m)" From (26)-(30), (34) and adding the left and right sides of

equations (31)-(32) and (33), respectively, iM(x), we get
xRy — Ro)X (t — N1m) — X(t — N2m) T SX(t — n2m)

] 3o < / v®)TEV() dt (35)
—X(t—nNm) " ReX(t —Nam) 0
; where Z = N + n1Mx1T YT+ nawxeT, 'x3 +
—X(t—nzm) (S — S)X(t - Nam) (29) MmxaQrXs + NamxaQs x4 . Now, if > < 0, then
and, using Jensen’s Inequality in Lemma 2 (in Appendix}l» <0 which means that the,-gain from the disturbance
one gets, foii = 1,2, w(t) to the controlled output(t) is less thary . By applying

: T _ Schur complements, we find th&t < 0 is equivalent to
Vigs(t) < &) (MimQi+2NiZi + NimT)E (1) (22). <



IV. ROBUSTH., CONTROL DESIGN Proof. The state-space malrice!g and Bs in (22) are
In this section we investigate the robust network-base@Placed withA+MiF (t)La andBs +M:F (t)Lp, respectively.

. . _ . T _ T .
H. control design problem for system (1)-(3) with the norrTPy consideringPs N eF, with D' Py = PuuD” and introduc-
bounded uncertainty parameters defined in (4). ing change of variables

Theorem 2 Consider system (1)-(3) with the quantizer [Wl V\/z} =P, [Af Bf] (37)
given in (6). Given positive constantg,y and A,
there exist a network-based quantized controller in the W3:I5fle (38)

form of (7)-(8) such that the closed-loop system (20)-

(21) is asymptotically stable with arH, disturbance then the inequality (22) is equivalent to the following con-
attenuation level if there exist the scalap > 0, positive-  dition:

definjte mgtrigesPl,Bl,R2751,SZ,Q17Q2,21,22,T1,T2 .and I:I+wm{l‘gF(t)Fe}<0 (39)
matrices P]_,P‘z,P22,P]_l,Wl,\Nz,\Ng,Hl,Hz,Ul,Uz,NLJ‘(I =

1,2,---,4;j = 1,2,---,10) of appropriate dimensions and By Lemma 3 (in Appendix), a necessary and sufficient

satisfying (23) and the LMI condition for (39) is that there exists a scafasuch that
n rl prl N+p rirg+prire<o (40)
: 75' —cﬁ))l <0 (36) then, applying Schur complements, we find that (40) is

equivalent to (36)«
with Remark 2. In Theorem 2, the results are expressed within
the framework of LMIs, which can be easily computed by

ﬁ
) . l?rlyTn)f'll'l 028X2 rmSXs f72|\6X4 the interior-pint method.
M:=|x * —Nom T2 0 0 V. NUMERICAL RESULTS
* * * —MmQu 0 Consider an uncertain linear system with the system
* * * * —N2mQ2 matrices given by
q = [eM]R MR -~ 0 0, e = -1 04 1 1
[La O - 0 Lp O] with I =0T = [T j]ij=12.- 11, A= [0.2 0.1} B [l} ©= H G=i 1.
Pin P
andpP, = [ ] and 01 O 0
P P =14 = = =cs
2 La {0.1 0.05} Lo {0.1] My =1,F(t) =csin(t)
PLA Wi - . .
A € PlTlA W PL—¢P, where|c| < 1. It is assumed that the network-induced delay
I_I171 = Sym{ PT:LJA Wl } bOUﬂdS are g|Ven balm = r’2m = 20’]’]37 r’lM = ’72M = ZOOT\S_
[PlTlA Wﬂ —P2T In addition, the quantizer parameters in (5) are assumed to
11

be A; = A, = 0.1,M; = M, =5 and the sampling period
h = 20ms. By using the convex problem in Theorem 2
with a constant = 0.1, we obtain the minimum guaranteed

2 2
+_ZﬁHi +diag{R1+Sl,ZiniMQi +2niZ; +flimTi}
. . performance in terms of the feasibility of (23) and (36) as

tym{Nd}. DT s
. C 0 N
n = (T Ty | e - N iTNT,
12 ( + )|:\N2C 0:| 11+ 2 ,
Ais = U — (e + ) [ g] LRI, figs =
0 D NS
T+ |0 Doe] -~ Nea + TG, Ay = Uz — (el

i) {g B&] LR, figg — (&7 +07) [\AW;J +ITRY and
other elementsﬁiﬁj are equal to their counterpart elements
in the matrix M. Moreover, if the above conditions are

feasible, desired controller gain matrices are given by
Ct = (P{}) "W and

[Ar Bi] =(PL) ' Wi W

o P 0 _
T _ T _ 1 YViyr _
WhAefeAD =U[D OVi, P =V {o PZ]V + P With the initial conditionsx(0) = [1,1]7 and x(0) =
UDP,D~'UT with the unitary matrice),V and a diagonal [0,0]", and an exogenous disturbance input as a unit step

matrix D with positive diagonal elements in decreasing ordefunction within [0,1], then the controlled output signaft)

Time (s)

Fig. 1. Controlled output signals for the plant.
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Fig. 2. QuantizeH., Control signal. -
is plotted in Figure 1 for different values of the parameter [4]
i.e.,{0,0.3,0.6}. The quantized. output feedback Control

signal is also shown in Figure 2 in the case 0.3. [5]
(6]

VI. CONCLUSION

we have investigated the problem of robust quantized?]
H. output feedback control for linear systems with norm-
bounded uncertainties connected over a common digitgk)
communication network. Firstly, we studied the effect of
both the output quantization levels and the network condil?
tions. Secondly, by introducing a descriptor techniquégais
Lyapunov-Krasovskii functional and a suitable change ofl0]
variables, new required sufficient conditions were essablil
in terms of delay-range-dependent linear matrix inegealit |11
for the existence of the desired network-based quantized
controllers with simultaneous consideration of network inft?
duced delays and measurement quantization. The explicit
expression of the controllers was derived to satisfy botli3]
asymptotic stability and a prescribed level of disturbance
attenuation for all admissible norm bounded uncertainties 14

APPENDIX [15]
Lemma 1: ([6]) For any arbitrary column vectoegt), b(t)
, matrices®(t),H,U andW the following inequality holds:
t [16]
—2 [ a(s)Td(s)b(s) ds<
e [17]
/t a(s)]' [H U—o(9)] [a9)] 4
t—r | D(S) * w b(s) [18]
H U [19]
where W >0.
Lemma 2 ([5]) (Jensen’s Inequali}yGiven a positive- [20]
definite matrixP € O"™" and two scalard > a > 0 for any
vectorx(t) e O" , we have 24

x(w) TPx(w) dw >

[
o ([ ) o[ o)

Lemma 3: Given matricesy =Y',D,E andF of appro-
priate dimensions witlFTF <1 , then the following matrix
inequality

Y +sym{DFE} <0

holds for allF if and only if there exists a scalar> 0 such

Y+eDD"+¢ETE <.
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