
Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from 
the IEEE by sending an email to pubs-permissions@ieee.org. 
 

 

Abstract— The problem of robust mode-dependent delayed 
state feedback  control is investigated for a class of 
uncertain time-delay systems with Markovian switching 
parameters and mixed discrete, neutral and distributed 
delays. Based on the Lyapunov-Krasovskii functional theory, 
new required sufficient conditions are established in terms of 
delay-dependent linear matrix inequalities for the stochastic 
stability and stabilization of the considered system using some 
free matrices. The desired control is derived based on a convex 
optimization method such that the resulting closed-loop 
system is stochastically stable and satisfies a prescribed level 
of   performance, simultaneously. Finally, two numerical 
examples are given to illustrate the effectiveness of our 
approach. 
 
 

I. INTRODUCTION 
In recent years, more attention has been devoted to the study 
of stochastic hybrid systems, where the so-called Markov 
jump systems. These systems represent an important class of 
stochastic systems that is popular in modeling practical 
systems like manufacturing systems, power systems, 
aerospace systems and networked control systems that may 
experience random abrupt changes in their structures and 
parameters [1]-[10]. Random parameter changes may result 
from random component failures, repairs or shut down, or 
abrupt changes of the operating point. Many such events can 
be modeled using a continuous time finite-state Markov 
chain, which leads to the hybrid description of system 
dynamics known as a Markov jump parameter system [11]-
[13]; such a description will be utilized in the paper. The 
state of a Markov jump parameter system is described by 
continuous range variables and also a random discrete event 
variable representing the regime of system operation. A 
great number of results on robust stability, stabilization, 

 control and filtering problems related to such systems 
have been reported in the literatures ([1], [3], [4]-[6], [8]-[9], 
[14]). For example,  control has been discussed in [3], 
[4], [9], filtering problem has been discussed in [5], [8] and 
[15], stability and stabilization problems have been 
considered in [1], [6] and [16], respectively. More recently, 
the fault detection problem for a class of discrete-time 
Markov jump linear system with partially known transition 
probabilities was investigated in [17]. The proposed systems 
are more general, which relax the traditional assumption in 
Markov jump systems that all the transition probabilities 
must be completely known. 
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On another research front line, time delays for many 
dynamic systems have been much investigated; see for 
example [18]. Time-delayed systems represent a class of 
infinite-dimensional systems largely used to describe 
propagation and transport phenomena or population 
dynamics. Delay differential systems are assuming an 
increasingly important role in many disciplines like 
economic, mathematics, science, and engineering. For 
instance, in economic systems, delays appear in a natural 
way since decisions and effects are separated by some time 
interval. The delay effects on the stability of systems 
including delays in the state and/or input is a problem of 
recurring interest since the delay presence may induce 
complex behaviors for the schemes [18]-[24].  
On the other hand, stability of neutral delay systems proves 
to be a more complex issue because the system involves the 
derivative of the delayed state. Especially, in the past few 
decades increased attention has been devoted to the problem 
of robust delay-independent stability or delay-dependent 
stability and stabilization via different approaches for linear 
neutral systems with delayed state and/or input and 
parameter uncertainties (see [20]-[28]). Among the past 
results on neutral delay systems, the LMI approach is an 
efficient method to solve many control problems such as 
stability analysis and stabilization [29]-[31] and ∞ control 
problems [32]-[35]. It is also worth citing that some 
appreciable works have been performed to design a 
guaranteed-cost (observer-based) control for the neutral 
system performance representation [36]-[38]. Furthermore, 
from the published results, it appears that general results 
pertaining to robust mode-dependent delayed state feedback 
∞ control for uncertain Markovian jump systems with 

mixed discrete, neutral and distributed delays are few and 
restricted ([39]-[45]), despite its practical importance, 
mainly due to the mathematical difficulties in dealing with 
such mixed delays. Hence, it is our intention in this paper to 
tackle such an important yet challenging problem. 
In this paper, we are concerned to develop an efficient 
approach for robust ∞ control problem of uncertain time-
delay systems with Markovian switching parameters and 
mixed discrete, neutral and distributed delays. The main 
merit of the proposed method is the fact that it provides a 
convex problem such the delay-dependent control gains can 
be found from the LMI formulations. New required 
sufficient conditions are established in terms of delay-range-
dependent LMIs combined with the Lyapunov-Krasovskii 
method for the existence of the desired control such that the 
resulting closed-loop system is stochastically stable and 
satisfies a prescribed level of   performance, 
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simultaneously. Numerical examples are given to illustrate 
the use of our results. The main contribution of the paper is 
three folds: 1) for the addressed problem, the assumption 
that the random jumping process appears in the system with 
neutral, discrete and distributed delays is different from the 
existing results. Based on the proposed design method, 
controllers can be obtained by solving a set of LMIs; 2)  
delay-dependent and delay-discretization techniques are 
applied successfully into the analysis and synthesis results; 
3) a Lyapunov-Krasovskii functional-based method is 
provided to derive a new form of the bounded real lemma 
(BRL) for the system under consideration.  
The remainder of this paper is organized as follows. The 
problem of robust control design for uncertain time-delay 
systems with Markovian switching parameters and mixed 
time-delays and norm-bounded time-varying uncertainties 
and some preliminaries are provided in Section II. Section 
III presents the results on performance analysis and 

 control synthesis. Section IV gives two illustrative 
examples. At last we conclude the paper in Section V. 
 
Notation: The notations used throughout the paper are fairly 
standard.  and 0 represent identity matrix and zero matrix; 
the superscript  stands for matrix transposition. .  refers 
to the Euclidean vector norm or the induced matrix 2-norm. 

 represents a block diagonal matrix and the operator 
 represents . Let 0, ∞   and .  denotes 

the expectation operator with respect to some probability 
measure . If  is a continuous -valued stochastic 
process on , ∞ , we let : 0   
for 0 which is regarded as a  , 0 ; -valued 
stochastic process. The notation 0  means that  is real 
symmetric and positive definite; the symbol   denotes the 
elements below the main diagonal of a symmetric block 
matrix.  
 
 

II. Problem Description 
Consider a class of uncertain time-delay systems with 
Markovian switching parameters and mixed neutral, discrete 
and distributed delays and norm-bounded time-varying 
uncertainties represented by 
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where n)t(x  , m)t(u  , ),0[L)t(w s
2    and z)t(z   are 

state, input, disturbance and controlled output, respectively. 
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are matrix functions of the random jumping process )}t(r{ . 
}0t),t(r{   is a right-continuous Markov process on the 

probability space which takes values in a finite space 
}s,,2,1{S   with generator )Sj,i(][ ij  given by 
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where 0 , 0/)(olim 0   and 0ij  , for ji  , is the 

transition rate from mode i  at time t  to mode j  at time 

t  and  





sj

ij,1j
ijii .The time-varying function )t(  is 

continuous vector valued initial function and d,h  and   are 

constant time delays with , , . Moreover, the 
norm-bounded uncertainties are defined as follows: 
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where ))t(r,t(  is the uncertain time-varying matrix function 
of the random jumping process, which satisfies 

I))t(r,t())t(r,t(T   for Si)t(r;0t   and ))t(r(E i  and 

))t(r(H1  are known real constant matrices of the random 

jumping process with appropriate dimensions. 
 
Remark 1. The model (1) can describe a large amount of 
well-known dynamical systems with time-delays, such as the 
delayed Logistic model, the chaotic models, the artificial 
neural network models, and the predator-prey model with 
time delays. 
 
Remark 2. It is shown in [44] that the , 0 ;  

valued process  ,  is a time homogenous strong 
Markov process. Furthermore, the stability in distribution of 
solutions to stochastic neutral differential delay equations 
with Markovian switching parameters can be proved by 
Lyapunov function type methods [45]. 
 
Definition 1. Uncertain time-delay system (1) with 
Markovian switching parameter in (2) is said to be 
stochastically mean square stable if, when 0, for any 
finite  defined on , 0 , and  the following 
condition is satisfied 
 

sup ,   0 

 
where   is the trajectory of the system state from initial 
system state 0  and initial mode , and  is a positive 
constant. 
 
Definition 2. The  performance measure of the system (1) 
is defined as   , 
where the positive scalar  is given. 



  

 
The weak infinitesimal operator  .  of the stochastic 
process , , 0 , acting on  
at the point , , , is given by (see Lemma 3.1, 
[43]) 
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Then the generalized Itô formula reads for , , ,  as 
follows: 
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0 0 , 0, 0
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Remark 3. Let us consider 
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with  , , ,  1  . Then the operator  .  
associated with the system above has the form 
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Assumption 1. The full state variable  is available for 
measurement. 
 

In this paper, the author’s attention will be focused on the 
design of the following robust mode-dependent delayed state 
feedback  control law, 
 

             
(4) 

where the matrices , , ,  of the appropriate 
dimension is to be determined such that for any   
the resulting closed-loop system is stochastically stable and 
satisfies an  norm bound , i.e. 0.  
 
Remark 4. Note that the state feedback control in (4) is the 
general form. When   0 it is just the 
instantaneous state feedback. Moreover, if the closed-loop 
system can be stabilized with   0, in order 
to make the controller simpler and more practical, we should 
use the control law as  . 
 
Lemma 1. [46] (Jensen’s Inequality) Given a positive-
definite matrix nnP   and two scalars 0ab   for any 
vector n)t(x  , we have 
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Lemma 2. Given matrices ,YY T D , E  and F  of 

appropriate dimensions with IFFT  , then the matrix 
inequality 

0)EFD(symY   

 holds for all F  if and only if there exists a scalar 0  such 
that  

0EEDDY T1T   . 

 
 

III. Main Results 
In this section, we first investigate both the stochastic 
stability and  performance of the system (1) with norm-
bounded uncertainty parameters. A new delay-dependent 
stochastic stability condition by a discretization technique is 
proposed in Theorem 1. Then, we will show the procedure to 
design the controller gains  , ,  ,  , which guarantee 
the resulting closed-loop system is stochastically stable and 
satisfies an  norm bound . 
 
Theorem 1. Let ,  be given for any positive 
integer N . The time-delay system (1) with Markovian 
switching parameters in (2) and without the norm-bounded 
uncertainties in (3) is stochastically mean square stable with 
an  performance level 0, if there exist some 
matrices , , , , , , , , , , , and positive 
definite matrices , ,  ,   , 0,1, , ;
1,2, ,   satisfying the following LMIs 
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where , , ,   , , , 

, , , ,  , 1,2, ,  and 
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Proof. The time-delay system (1) with Markovian switching 
parameters in (2) and the mixed neutral, discrete and 
distributed delays and without norm-bounded uncertainties 
is of the following form, 
 

),t(wBds)s(xA

)ht(xA)dt(xA)t(xA)dt(xA)t(x

i2

t

t
i3

i2i5i1i4










 

(6a) 

,ds)s(xC)ht(xC)dt(xC)t(xC)t(z
t

t
ihidii 


  

(6b) 
The notations ihidiijiji C,C,C,C,B,A  and iD stand for ),i(A j  

)i(C),i(C),i(C),i(C),i(B hdj  and )i(D , respectively. It is noting 



  

that the Markov process  takes values in the finite 
space . 
According to Remark 1, it is clear that the process 

, , 0  is a Markov process with initial state 
. , . Now, we choose a stochastic Lyapunov-

Krasovskii functional candidate . , . , . , . :
 for the system (6) as 
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where , , , , , ,   and 
  are continuous matrix functions and ,   

 is a mode-dependent matrix function. Differentiating 
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Differentiating other Lyapunov terms in (7) give  
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Moreover, from (6a), the following equation holds for any 
matrices ,    with appropriate dimensions: 
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From the obtained derivative terms in (8)-(11) and adding 
the left-hand side of the equation (12) into x, x , t, r t , 
we obtain the following result for x, x , t, r t , 
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where , , ,  and 
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According to the discretization technique in [19], the delay 
intervals , 0  and , 0   are, respectively, divided into  
segments ,   and , , 1, , , of equal 
length (or uniform mesh case), where   and 

 . For instance, this scheme divides the square 
, 0 , 0  into  small squares ,   

,   and each small square is further divided into two 
triangles. It is easily seen using [19] and [35] that although 
the LKF candidate for the nonuniform mesh case is no more 
complicated than the uniform mesh case, it is not the case 
for the LKF derivative condition. Also, a uniform mesh is 
not possible for the incommensurate delay case and is not 
practical in the case of commensurate delays with small 
common factor. In the sequel, . , . , . , . , .  and 

. , .  are chosen to be piecewise linear, i.e.  
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Now, from (13)-(14), one has 
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~  . Assume Θ 0, 1, 2. Then 

use the Jensen Inequality (Lemma 1) to the fourth and fifth 
terms in (15), we have 
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Using the above inequalities in (15) we conclude that  
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On the other hand, for a prescribed 0 and under zero 
initial conditions,    can be rewritten as 
 

  , , , |

, , , |  

        =  , , ,   

  (18) 
and the condition Ξ 0 means that the condition 0 is 
satisfied, and by applying Schur complement on the forst 
element of the matrix Ξ , one gets LMI (5d). On the other 
hand, let , . Premultiplying  and 
postmultiplying  to the inequalities  Θ 0, 1, 2, one 
obtains LMIs (5b)-(5c). Moreover, the condition  0  for 

0 implies  , , , 0. Then, we have 
 

, ,                       (19) 
 

where min Ξ ,  , then 0. By 
Dynkin’s formula, we have 
 

, , 0 , , 0     

(20) 
or 

 0 ,              (21) 

 
Moreover, if the LMI condition (5a) (see [19]) is satisfied, 
the following LKF condition holds  
 

x, xt, ,                         (22) 
 

where min P ,  . In a manner similar to [9], 
from (21) and (22), we obtain 
 

 0 , . 

 
hence 
 

   1  0 , , 

or  

lim
∞

   0 ,  

 
which indicates that, from Definition 1, the system in (6) 
with Markovian switching parameters in (2) is stochastically 
mean square stable. This completes the proof.  ■ 
 

Remark 5. Note that the matrix 
0

 (or, 

equivalently, the matrix ) is non-singular due to the fact 
that the only matrix which can be negative definite in the 
first block on the diagonal of LMI (5d) is  Σ 0.  
 
Remark 6. If the switching modes are not considered, i.e. 

}1{S  , the jump linear system is simplified into a general 
linear system with nonlinearities and time delays. Then it is 



  

easy to conclude a criterion from Theorem 1, which can be 
used to determine the stability of such a system. 
In the following, we present a condition for the stability of 
the time-delay system (1) with Markovian switching 
parameters in (2) and norm-bounded uncertainties in (3). 
 
Corollary 1. Let ,  be given for any positive 
integer N . The time-delay system (1) with Markovian 
switching parameters in (2) is stochastically mean square 
stable with an  performance level 0, if there exist a 
scalar , matrices  , , , , , , , , , , , and 
positive definite matrices ,  , ,   , 0,1, , ;
1,2, ,  satisfying the LMIs (5a)-(5c) and 
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where Γ , 0, ,0 ,   Γ , 0, , , 0, , 0, ,0 . 
 
Proof. If the matrices i1A , i2A , i3A , i5A  in (6a) are replaced 

with )t(AA i1i1  , )t(AA i2i2  , )t(AA i3i3  and )t(AA i4i5  , 

respectively, then (5d) with the admissible uncertainties (3) 
is equivalent to the following condition: 
 

Π sym ΓT  Δ t Γ 0.                               (24) 
 

It is noting that the notations )t(A ji and )t(B ji stand for 

)i,t(A j and )i,t(Bj , respectively. By Lemma 2, a 

necessary and sufficient condition for (24) is that there exists 
a scalar 0 such that 
 

  Π µ  ΓT  Γ µ  ΓT Γ 0                  (25) 
 

then, applying Schur complements, we find that (25) is 
equivalent to LMI (23). ■ 
 
Note that the delay-dependent stability condition in Theorem 
1 covers a special case 1N   (without discretization 
technique). Then we have the following corollary. 
 
Corollary 2. The time-delay system (6) with Markovian 
switching parameters in (2) is stochastically mean square 
stable with an  performance level 0, if there exist 
some matrices  , , , , , , , , , , , and 
positive definite matrices , ,   ,  , 0,1;  
1,2, ,  satisfying the LMIs (5) with ,

, ,   , , , ,  and 
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with 10d SSS  , 10d HHH  , ]Q,Q[Q 1i0ii   and 

}S,S{diagh1S 101 . 

Now we are in the position to solve the stabilization problem 
of the system (1). Based on Theorem 1, we can obtain a 



  

mode-dependent delayed state feedback  control law in 
the form of (4) in the following theorem. 
 
Theorem 2. Let ,  be given for any positive 
integer N . Under Assumption 1, a state feedback controller 
given in the form (4) exists such that the time-delay system 
(1) with Markovian switching parameters in (2) is 
stochastically stable with an  performance level 0, if 
there exist some scalars , , matrices  ,  ,  , , ,

,  , , , , , ,  ,  , and positive definite 
matrices ,  , ,  , 0,1, , ; 1,2, , ,  
satisfying the following LMIs 
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ŜR̂

Q̂P
~

ii1 













,                              (26a) 

 0
S
~
U
~

U
~

d

11 















,                              (26b) 

 0
S
~
U
~

U
~

d

22 















,                              (26c) 

    

  

0

I

0I

ˆˆˆ

i

i

eidii























                          

(26d) 

 
where , , , , , 

, ,  , 1,2, , ,  where Γ

, , 0, ,0 ,  Γ , 0,

,  , 0, ,  , 0, ,0  and 
 

































2

1

dsd

dsd

aass
ei

i

U
~

3

0U
~

3

00T̂H
~

000R̂S
~

O
~

D
~

O
~

D
~ˆ

:ˆ , 

 

Ξ

Λ Λ
SN

Λ
0
Λ

Λ
0  
i
2

1

U

Λ
0
0
0
U

Λ
0
0
0
0
γ I

Λ
Λ
Λ

0
Λ

0
I

,

   
where  

Λ  

τ U , U , 
 

  Λ , 

 

Λ
∑

∑
, 

 

Λ 1 , 

 

  Λ , 

 

  Λ , 

 

 Λ  
0

,  

 
and Λ HN λ A4i ∑ 11 , Λ , 

Λ , Λ  with i λmax A4i  
 

































































































































































































000

0
Q
~

2
0

Q
~

2
0

Q
~

2

)Q
~

Q
~

2(

)Q
~

Q
~

2(

)Q
~

Q
~

2(

R
~

R
~

R
~

Q
~

Q
~

Q
~

Q
~

R
~

Q
~

2

Q
~

R
~

Q
~

2

Q
~

R
~

Q
~

2

h

D
~

a
iNi

a
2ii

a
1ii

s

1j

s
jNij

a
iNi

s

1j

s
2jij

a
2ii

s

1j

s
1jij

a
1ii

s
N,N

s
2,N

s
1,N

s
iN

s
2i

s
1i

s

1j

s
jNij

s
N,0

a
iN

s

1j

s
2jij

s
2,0

a
2i

s

1j

s
1jij

s
1,0

a
1i

1

s


















, 

 





















































000

000

Q
~

Q
~

Q
~

R
~

R
~

R
~

Q
~

Q
~

Q
~

Q
~

R
~

Q
~

R
~

Q
~

R
~

h

D
~

s

1j

a
jNiji

s

1j

a
2jiji

s

1j

a
1jiji

a
1N,N

a
1,N

a
0,N

a
iN

a
2i

a
1i

s

1j

a
jNij

a
N,0

s

1j

a
2jij

a
2,0

s

1j

a
1jij

a
1,0

1

a















, 

 



  

































000

000

T
~

T
~

T
~

000

000

T
~

T
~

T
~

hO
~ s

N,N
s

2,N
s

1,N

s
N,0

s
2,0

s
1,0

2
s















, 

 































 

000

000

T
~

T
~

T
~

000

000

T
~

T
~

T
~

hO
~ a

1N,N
a

1,N
a

0,N

a
N,0

a
2,0

a
1,0

2
a















, 

 
}S

~
S
~

,,S
~

S
~

,S
~

S
~

{diagS
~

N1N2110d   ,  

 
}H

~
H
~

,,H
~

H
~

,H
~

H
~

{diagH
~

N1N2110d   , 

 

]Q
~

,,Q
~

,Q
~

[Q̂ iN1i0ii  ,  

 

}S
~

,,S
~

,S
~
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Moreover, the controller gains in (4) can be designed as 

, , , . 
 
Proof. It can be easily seen that the resulting closed-loop 
system (1) with (4) is of the following form, 
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  (27b) 
where ii1i1i1i1xi K))t(BB()t(AA:  ,  )t(AA: i2i2hi  

hii1i1 K))t(BB(  , dii1i1i4i5di K))t(BB()t(AA:  , 

 )t(AA: i3i3i ii1i1 K))t(BB(  . It is noting that 

the notations )t(A ji and )t(B ji stand for )i,t(A j
 

and

)i,t(Bj , respectively. Then, we choose ,  , 

where  is a tuning scalar parameter (which may be 
restrictive). From Remark 5, by performing a congruence 

transformation , … , , I, , … ,  , where  :
,  to both sides of (24), applying Schur complements  and 

considering  ,  ,  ,  

   result in 
 

 Π sym ΓT  Δ t Γ 0.                               (28) 
 

By Lemma 2, a necessary and sufficient condition for (28) is 
that there exists a scalar 0 such that 
 

  Π µ  ΓT  Γ µ  ΓT Γ 0                   (29) 
 

then, applying Schur complements, we find that (29) is 
equivalent to LMI (26d). It is noting that the symbol 

  stands for    for any matrices  , for instance 

. On the other hand, let , . 
Premultiplying   and postmultiplying   to the LMIs (5b)-
(5c), one obtains LMIs (26b)-(26c). This completes the 
proof.  ■ 
 
Remark 7. By setting    and minimizing  subject to 
LMIs (26), we can obtain the optimal ∞ performance level 

 (by  √ ) and the corresponding control gains as well. 
 
Remark 8. The reduced conservatism of Theorems 1-2 
benefit from the construction of the Lyapunov-Krasovskii 
functional in (7), introducing some free weighting matrices 
to express the relationship among the system matrices and 
neither the model transformation approach nor any bounding 
technique are needed to estimate the inner product of the 
involved crossing terms. It can be easily seen that results of 
this paper is quite different from existing results in the 
literature in the following perspective. The Markovian jump 
structures at most of references, for instance [9], [14] and 
[39] consider a retarded time-delay systems and in compare 
to our case do not center on mixed time-delays, i.e., the 
results in the references above cannot be directly applied to 
the Markovian jump systems with different neutral, discrete 
and distributed time delays and nonlinear perturbations.  
 
Remark 9. Note that the corresponding condition developed 
using the discretized LKF method will allow to overcome 
the conservatism of the bounds proposed using other time-
domain approach. However, we approach the optimal bound, 
in the sense ‘necessary and sufficient’, if the grid size tends 
to zero, which is expensive in terms of computational effort 
[18]-[19]. On the other hand, the discretization technique of 
LKFs developed in this paper is based on LMIs. It is clear 
that the standard LMI has a polynomial-time complexity. 
Therefore, the size of the corresponding LMIs is an 
important problem to be considered if we are interested in 
further refinements. In this sense, the LMI simplification 
proposed by Gu in [47] can be used to simplify the 
conditions above. 
 



  

 
IV. Simulation Results 

In this section, with the aid of MATLAB LMI Toolbox [48], 
we use two numerical examples to illustrate the 
effectiveness and advantage of our design methods. 
 
Example 1. We give an example for the application of the 
theoretical results to a realistic neutral delay differential 
equations problem. Here the delay elements are used for 
modeling transmission lines, and partial element equivalent 
circuits (PEEC) model. One of the PEEC models used in the 
literature (see, e.g. [18] and [49]) is given by 
 

     ,  
 
where  is diagonal, and  is the delay (retarded mutual 
coupling between partial inductances and current sources). 
The associated neutral system is 
 

    
 

with , ,  appropriately defined. The matrices for our 
example are 
 

7 1 2
3 9 0
1 2 6

, 

 
1 0 3
0.5 0.5 1
0.5 1.5 0

, 

 

1
72

1 5 2
4 0 3
2 4 1

. 

 
If the switching modes are not considered, i.e. }1{S  , the 
stability criterion of Theorem 1 for different values of the 
parameter , i.e. 1, 2, 3 , is compared with those of 
[25], [27] and [28] for the above system in Table 1. Hence, 
for this example, the stability criterion we derived for linear 
time-delay systems is less conservative than those reported 
in [25], [27] and [28]. Note that the result of [49] is a delay-
independent stability analysis which guarantees a feasible 
solution for an upper bound of the delay τ=1. 
 
 
Table 1 
The upper bound of the time delay for stability analysis. 

 
Delay 
bound 

[25] [28] [27] Th.1
1N 

 

Th.1
2N 

 

Th.1
3N 

 

 

τ 43.0
 

1413.1
 

5022.1
 

6405.1
 

6537.1
 

6851.1
 

 

 
 
Example 2. Consider a continuous-time uncertain system (1) 
with two Markovian switching modes and the following 
state-space matrices 
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0)2(E)1(E 55  ,  

8.0h  , ,3.0d  5.0 . 
 

The following transition matrix is considered. 
 

0.5 0.5
0.3 0.3

 

 
A realization of the jumping mode is plotted in Fig. 1, where 
the initial mode is assumed to be 1. 
 
 

Fig 1. Random jumping mode. 
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Table 2 

optimal  comparision w.r.t. N . 

 1N   2N  3N   

optimal  4015.0  3750.0  3625.0  

 
 
 

 
Fig 2. State responses. 
 
 
 

 
Fig 3. Control signal. 
 
 
Using Matlab LMI Control Toolbox, LMIs (6) are solved for 
different values of the parameter N , i.e. }3,2,1{N , and 

corresponding values of the parameter   in optimal  
performance measure, optimal , are obtained and shown in 

Table 2. It is easily seen that the parameter optimal   is 

decreased as the parameter N  is increased. 
For simulation purpose, we simply choose a unit step in the 
time interval ]2,1[  as the disturbance, )tsin()t(   as the 

norm-bounded uncertainty. The simulation results are shown 
in Fig. 2 and Fig. 3. Responses of two states of the closed-
loop system is depicted in Figure 1 under the initial 

condition  T3.05.0)0(x  . It is seen from Figure 1 that the 

closed-loop system is asymptotically stable. The 
corresponding control signal (37) is shown in Figure 2. 
 

 
V. Conclusion 

The problem of robust mode-dependent delayed state 
feedback   control was proposed for a class of uncertain 
systems with Markovian switching parameters and mixed 
discrete, neutral and distributed delays. New required 
sufficient conditions were derived in terms of delay-
dependent linear matrix inequalities for the stochastic 
stability and stabilization of the considered system using 
some free matrices and the Lyapunov-Krasovskii functional 
theory. The desired control is derived based on a convex 
optimization method such that the resulting closed-loop 
system is stochastically stable and satisfies a prescribed 
level of   performance, simultaneously. Future work will 
investigate fault detection and mode-dependent mixed time 
delays for Markovian jump systems with partially known 
transition probabilities (see more details in [15]-[17]). 
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