Robust Delay-Dependent H,, Control of Uncertain Time-Delay
Systems with Mixed Neutral, Discrete and Distributed Time-
Delays and Markovian Switching Parameters

Hamid Reza Karimi, Senior Member, IEEE

Abstract— The problem of robust mode-dependent delayed
state feedback H, control is investigated for a class of
uncertain time-delay systems with Markovian switching
parameters and mixed discrete, neutral and distributed
delays. Based on the Lyapunov-Krasovskii functional theory,
new required sufficient conditions are established in terms of
delay-dependent linear matrix inequalities for the stochastic
stability and stabilization of the considered system using some
free matrices. The desired control is derived based on a convex
optimization method such that the resulting closed-loop
system is stochastically stable and satisfies a prescribed level
of H, performance, simultaneously. Finally, two numerical
examples are given to illustrate the effectiveness of our
approach.

I. INTRODUCTION

In recent years, more attention has been devoted to the study
of stochastic hybrid systems, where the so-called Markov
jump systems. These systems represent an important class of
stochastic systems that is popular in modeling practical
systems like manufacturing systems, power systems,
aerospace systems and networked control systems that may
experience random abrupt changes in their structures and
parameters [1]-[10]. Random parameter changes may result
from random component failures, repairs or shut down, or
abrupt changes of the operating point. Many such events can
be modeled using a continuous time finite-state Markov
chain, which leads to the hybrid description of system
dynamics known as a Markov jump parameter system [11]-
[13]; such a description will be utilized in the paper. The
state of a Markov jump parameter system is described by
continuous range variables and also a random discrete event
variable representing the regime of system operation. A
great number of results on robust stability, stabilization,
H,, control and filtering problems related to such systems
have been reported in the literatures ([1], [3], [4]-[6], [8]-[9],
[14]). For example, H, control has been discussed in [3],
[41, [9], filtering problem has been discussed in [5], [8] and
[15], stability and stabilization problems have been
considered in [1], [6] and [16], respectively. More recently,
the fault detection problem for a class of discrete-time
Markov jump linear system with partially known transition
probabilities was investigated in [17]. The proposed systems
are more general, which relax the traditional assumption in
Markov jump systems that all the transition probabilities
must be completely known.
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On another research front line, time delays for many
dynamic systems have been much investigated; see for
example [18]. Time-delayed systems represent a class of
infinite-dimensional systems largely used to describe
propagation and transport phenomena or population
dynamics. Delay differential systems are assuming an
increasingly important role in many disciplines like
economic, mathematics, science, and engineering. For
instance, in economic systems, delays appear in a natural
way since decisions and effects are separated by some time
interval. The delay effects on the stability of systems
including delays in the state and/or input is a problem of
recurring interest since the delay presence may induce
complex behaviors for the schemes [18]-[24].

On the other hand, stability of neutral delay systems proves
to be a more complex issue because the system involves the
derivative of the delayed state. Especially, in the past few
decades increased attention has been devoted to the problem
of robust delay-independent stability or delay-dependent
stability and stabilization via different approaches for linear
neutral systems with delayed state and/or input and
parameter uncertainties (see [20]-[28]). Among the past
results on neutral delay systems, the LMI approach is an
efficient method to solve many control problems such as
stability analysis and stabilization [29]-[31] and H,, control
problems [32]-[35]. It is also worth citing that some
appreciable works have been performed to design a
guaranteed-cost (observer-based) control for the neutral
system performance representation [36]-[38]. Furthermore,
from the published results, it appears that general results
pertaining to robust mode-dependent delayed state feedback
H, control for uncertain Markovian jump systems with
mixed discrete, neutral and distributed delays are few and
restricted ([39]-[45]), despite its practical importance,
mainly due to the mathematical difficulties in dealing with
such mixed delays. Hence, it is our intention in this paper to
tackle such an important yet challenging problem.

In this paper, we are concerned to develop an efficient
approach for robust H,, control problem of uncertain time-
delay systems with Markovian switching parameters and
mixed discrete, neutral and distributed delays. The main
merit of the proposed method is the fact that it provides a
convex problem such the delay-dependent control gains can
be found from the LMI formulations. New required
sufficient conditions are established in terms of delay-range-
dependent LMIs combined with the Lyapunov-Krasovskii
method for the existence of the desired control such that the
resulting closed-loop system is stochastically stable and
satisfies a prescribed level of H, performance,
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simultaneously. Numerical examples are given to illustrate
the use of our results. The main contribution of the paper is
three folds: 1) for the addressed problem, the assumption
that the random jumping process appears in the system with
neutral, discrete and distributed delays is different from the
existing results. Based on the proposed design method,
controllers can be obtained by solving a set of LMIs; 2)
delay-dependent and delay-discretization techniques are
applied successfully into the analysis and synthesis results;
3) a Lyapunov-Krasovskii functional-based method is
provided to derive a new form of the bounded real lemma
(BRL) for the system under consideration.

The remainder of this paper is organized as follows. The
problem of robust control design for uncertain time-delay
systems with Markovian switching parameters and mixed
time-delays and norm-bounded time-varying uncertainties
and some preliminaries are provided in Section II. Section
IIT presents the results on performance analysis and
H,, control synthesis. Section IV gives two illustrative
examples. At last we conclude the paper in Section V.

Notation: The notations used throughout the paper are fairly
standard. I and 0 represent identity matrix and zero matrix;
the superscript ‘T’ stands for matrix transposition. ||. || refers
to the Euclidean vector norm or the induced matrix 2-norm.
diag{---} represents a block diagonal matrix and the operator
sym(A) represents A + AT. Let BT = [0, o) and £{.} denotes
the expectation operator with respect to some probability
measure P. If x(t) is a continuous R"-valued stochastic
process on t € [—k, ), we let x, = {x(t+6): —x <0 < 0}
for t >0 which is regarded as a C([—x,0]; R™)-valued
stochastic process. The notation P > 0 means that P is real
symmetric and positive definite; the symbol * denotes the
elements below the main diagonal of a symmetric block
matrix.

I1. Problem Description
Consider a class of uncertain time-delay systems with
Markovian switching parameters and mixed neutral, discrete
and distributed delays and norm-bounded time-varying
uncertainties represented by

X(1) = Ag () X(t = d) =(A (r(t) + A A (£, (D) (1)
+ (A2 (r(0) + A A, (1, (r()))) x(t=h) + (A3 (r(1))

t
+AA3(4,((1)) [x(5) ds+(As(r(1) + AA (¢, (D) x(t—d)

t—1

+(By (r() + ABy (&, (r(D))) u(t) + (B (1(1) + AB, (&, (r(D)) (1),

(1a)
x(t) = (1), te[-x, 0] (1b)
r(t) =1, te[-«, 0] (1c)
z(t) = C(r(D) x(t) + Cy (r()x(t —d) + C;, (r(t))x(t —h)
(1d)

+C.(r(1)) ffx(s) ds+D(r(t))u(t),

t—1
where x(t) e R", u(t)e R™, w(t) e L5[0,) and z(t) e R* are
state, input, disturbance and controlled output, respectively.

A (r(1), B, (r(1), C(r(1)), C4(x(1)),Cy, (x(1)),C.(x(t)) and D(x(t))
are matrix functions of the random jumping process {r(t)}.
{r(t),t>0} is a right-continuous Markov process on the
probability space which takes values in a finite space
S={L2,....s} with generator IT=[n;](i.,jeS) given by

T A+o(4), ifi#]
1+ 7;A+0(A),

P{r(t+A) = jr(t) =i} = { )

ifi=j

where A>0, lim, ,,0(A)/A=0 and n;>0, for i#j, is the

transition rate from mode i at time t to mode j at time
j=s

t+A and m; =- >'m; .The time-varying function ¢(t) is
jol,

continuous vector valued initial function and h,d and T are

constant time delays with k :=max{h,d,t}. Moreover, the
norm-bounded uncertainties are defined as follows:

AA(t,r(1) = Hy ()AL K(O)E, (x(1), i=12,+-4
AB;(t.1(1) = H, ()AL H(O)E 4, (D), j=12

(32)
(3b)

where A(t,r(t)) is the uncertain time-varying matrix function
of the random jumping process, which satisfies
AT(t,r() At r(t)) <1 for Vt>0;r(t)=ieS and E,(r(t)) and
H,(r(t)) are known real constant matrices of the random
jumping process with appropriate dimensions.

Remark 1. The model (1) can describe a large amount of
well-known dynamical systems with time-delays, such as the
delayed Logistic model, the chaotic models, the artificial
neural network models, and the predator-prey model with
time delays.

Remark 2. It is shown in [44] that the C([—k,0]; R™) x
S —valued process (x;,r(t)) is a time homogenous strong
Markov process. Furthermore, the stability in distribution of
solutions to stochastic neutral differential delay equations
with Markovian switching parameters can be proved by
Lyapunov function type methods [45].

Definition 1. Uncertain time-delay system (1) with
Markovian switching parameter in (2) is said to be
stochastically mean square stable if, when u(t) = 0, for any
finite ¢(t) € R™ defined on [—«, 0], and r, € S the following
condition is satisfied

Elllx®I?Y < c sup llx(s)II? t>0
—K<s<0

where x(t) is the trajectory of the system state from initial

system state ¢(0) and initial mode r,, and ¢ is a positive

constant.

Definition 2. The H,, performance measure of the system (1)
is defined as J,, =& (f, 2" (©)z(®) —y*wT (Ow(D)] dt),
where the positive scalar y is given.



The weak infinitesimal operator LV(.) of the stochastic
process {(x;, r(t)),t = 0}, acting on V € C(R™ x R" x Rt x §)
at the point {t,x(t),r(t) =i}, is given by (see Lemma 3.1,
[43]) )
LV (x, %, t,1) = Alirg+ Z{E[V(x(t + A), X4t
+ A, r(t+ A)|x(t), x., t,(t) =i)]
—V(x,x,t,0)}
= Ve (x(t) = Ay (Dx(t — d), t,1) + () — A (Dx(t — d) Ve (x
—A,(Dx(t —d),t, i)
S

£ V(@) = 4,0t - d),1,))
=1

where
oV (x,x.,t, 1
Vt(x’ xt’ tl i) = % )
N OV(xxetD) vV (x,x,t,D\T
V;c(x: xtl tl l) - ( 696'1 ) ) axn ) .

Then the generalized 1t6 formula reads for V(x,x.¢t,i) as
follows:

eV (x() - A, (r@®)x(t - ), t,7(0))} =
WV (x(0) — 44(r(0))p(~), 0,7(0) )}
t
+ E{f LV(x(x), X, S, r(s)) ds}
0

Remark 3. Let us consider

(1) = A4 (r(0) X(t = d) = A (r(©) x() + A, (((D) x(t — d),
x(®)=¢(t),  tel-d 0],
r(t) =19, te [—d, 0] ,

with  V(x,x.ti) = xT P; x. Then the operator
associated with the system above has the form

LV()

LV (x, x;,1) =
2(x(t) — A, (D)x(t — d))T Py; (x(t) — A, (D)x(t — d)) +
i1 (x(®) — A, (D)x(t — d)T Py (x(t) — A, (D)x(t — d))

It can be shown that

x(t) x(t)

D = [ oo d)]T 0 [ue— o)

where

[sym(PliAl(i)) =4, (D" P;A D" + PliAZ(i)]
@i = T .
* - Sym(A4(l) PliAZ(l))

+ [—Ain(i)T] (Z "gPy) [—Ain(i)T]T

Assumption 1. The full state variable x(t) is available for
measurement.

In this paper, the author’s attention will be focused on the
design of the following robust mode-dependent delayed state
feedback H,, control law,

u =K x(t) + Kgi x(t —d) + Ky x(t —h) + Ky ftt_rx(s) ds

4)

where the matrices K; Kg;, Ky, K;; of the appropriate

dimension is to be determined such that for any r(t) =i €S

the resulting closed-loop system is stochastically stable and
satisfies an H,, norm bound y, i.e. J,, < 0.

Remark 4. Note that the state feedback control in (4) is the
general form. When Ky = Ky; = K;; =0 it is just the
instantaneous state feedback. Moreover, if the closed-loop
system can be stabilized with K;; = Ky; = K;; = 0, in order
to make the controller simpler and more practical, we should
use the control law as u; = K; x(t).

Lemma 1. [46] (Jensen’s Inequality) Given a positive-
definite matrix Pe®R™" and two scalars b>a>0 for any
vector x(t) e R", we have

TxT (@Px(©) do2 ! (Tx(m) d0)"P( [x(®) do).
t-b —a t=b

Lemma 2. Given matrices Y=Y',D, E and F of

appropriate dimensions with F'F<I, then the matrix
inequality
Y +sym(DFE)<0
holds for all F if and only if there exists a scalar ¢ >0 such
that
Y+eDD" +¢'E'E<0.

I1l. Main Results

In this section, we first investigate both the stochastic
stability and H,, performance of the system (1) with norm-
bounded uncertainty parameters. A new delay-dependent
stochastic stability condition by a discretization technique is
proposed in Theorem 1. Then, we will show the procedure to
design the controller gains K;, Ky, K;, K, which guarantee
the resulting closed-loop system is stochastically stable and
satisfies an H,, norm bound y.

Theorem 1. Let hy = %, h, =% be given for any positive
integer N. The time-delay system (1) with Markovian
switching parameters in (2) and without the norm-bounded
uncertainties in (3) is stochastically mean square stable with
an H, performance level y >0, if there exist some
matrices Py, P3;, H;j, Qur, Rj» = Rf;, T = T}, and positive
definite matrices Py, Uy, Uy, S (,r=01,-,N;l =
1,2,-+-,s) satisfying the following LMIs

P Q
{* R+S}>O’ (5a)



U, -U
! "1>o0, (5b)
% Sd
U, -U
{ g 2} >0, (5¢)
* Sd
Eq D* (o) D? o?
* =5 —Ry 0 0 0
I =| = * -Hy-Ty, O 0 [<0 (5d)
* * * =30, 0
* * * * —3U2

where Rys = hl[Rr—l,j—l - Rr,j]! Tys = hy [Tr—l,j—l - Tr,j]a
R= [Rr—l,j—l]a Rys = hl[Rr—l,j—l - Rr,j] (r.j=12,-,N) and

[ Tar —owscTe 1 T 2y
%y +diag{C{ C;,0} Prda (T)lN +G G { Ta }
P3iAy; P5iAsi
* —Sy +CLCy; 0
E‘ei = * * 23i
* * *
* * *
* * %
T T T T i
{(PZi Py )A4i:| {PziAy +C; Cri:| |:P2iBzi }
T T T
P3jAy; P3iAj; P3iBy;
0 0 0
T
AyiPiAy 0 0
-y, 0 0
x clc,-u, 0
* * — 'YZI
-2Qj; +Rp; -2Q% +R{ -2QiN +RoN
S S S
+2 1 Q5 +2. Q% +2 Qi
iz =l J':l
Qi Qh - Qin
Ry, R\ -Ryn
D* =hy| [ 2A4Qj 245Q% 2A5Q ;
S S S
T T T
-2 miA4Q5 | | — 2 miALsQY -2 miA4Qin
= il Fl
-2A5Q ~2A5Q% L —2A4QN
0 0 . 0
L 0 0 e 0 |
i a S a a S a a S a ]
Ro;+2 Q5 Rf,+2 miQ% RN + 2 mQN
= = =
Qj} Qh Qin
. -R{p -RY; —R{na1
D" = hl S T Ha S T Ha S T AHa
-2 miALQ 2 miA4Q% -2 miA4QiN
= = Fl
0 0 ) 0
0 0 o |

Tor Too Tox
0 0
0 0 0
O°=h, T TR TN |”
0 0 0
L 0 0 0 |
Tox  Toz Ton
0 0 0
0 0 0
0% =h, Trz,o T;,l TIEI,N—I ’
0 0 - 0
| 0 0 - 0 |

Sq =diag{S; —5,,S,; =S,,:--,Sy; =Sy},
H,y =diag{H, -H,,H, -H,,---.Hy, —Hy},
Qi =[Qi0,Qi1>++Qin 1,

S=1/h, diag{S,,S,"--,Sx} »

with P = [ )

] and
T 0 1 : S
% =sym|P; Ay I + dlag{ijlﬂijP1j+
sym(Qy) + So + Hy +72U5,U; },

S
T T
2oi = PyiAsi +Ci Cgi + (XL 7Py — Qio) A
-1

S
T T
23 = CgiCqi —Hn + X AgmiiPjAy;
=

Qh = Qi +Qip1))/2
Qi =(Qip = Qip1)/2
Ria =Ry +R,01)/2,
Ria =Ry =Ry 1)/2s
Toa = (Toq + Tpq)/2>
T = (Toq = Tpq)/2-

Proof. The time-delay system (1) with Markovian switching
parameters in (2) and the mixed neutral, discrete and
distributed delays and without norm-bounded uncertainties
is of the following form,

X(1) = A g x(t—d) =A}; x(1) + Agx(t—d) + Ay x(t—h)

t
+Az; [x(s)ds+By; w(t),

t-1 (6a)

2(t) =C,; x(t) + Cyx(t —d) + Cpx(t—h) + C jx(s) ds,

t-1

(6b)
;i:B;i-Ci,Cy.Cy.C and D; stand for A (i),

B;(i),C(1),C,4 (i), C, (i), C. (i) and D(i), respectively. It is noting

The notations A



that the Markov process {r(t)} takes values in the finite
space S.

According to Remark 1, it is clear that the process
{(x,, r(t)),t =0} is a Markov process with initial state
(@(.),19). Now, we choose a stochastic Lyapunov-
Krasovskii functional candidate V(.,.,.,.):R® x R® x Rt x
S — R* for the system (6) as

4
V(X,X,t,1) = ZVi(x,x[,t,i)
i=1

(7

where

0
Vitx6) =x(0" Py x(®)+2x(0)" [ Q&) x(t+8) de,

-h

0

Vi (%, x, i) = [x(t+8)T S@)x(t+8) dg
—h
0 0
+ [ [x(t+5)"R(s.8) x(t+8) dsdE,

( hoh 0
Vi(xxti) = [%(s)" Upx(s) ds+ [x(t+8)" HE)x(t+8) dg
t—d —d

00
+ [ [x(t+9)TT(s,8) x(t+8) dsde,
-d—d

t ot t
Vy(xx,ti)= [ [[x(0)" doJU,[[x(6) do] ds
t—-1t s s
Tt
+[ [(0-t+5)x(0)" U, x(0) dods

0t—s

where  R(s,§) = R(s,§)",5() = S()",T(5,§) =T(s,$)" and
H(&) = H(§)T are continuous matrix functions and Q(¢,i)
(i € §) is a mode-dependent matrix function. Differentiating
Vi (x, x, 1) in t we obtain

LVi(x,x¢,t,1)

0
=2(k(t) = Ag X(t—d) " {P; (x(1) — Agyx(t—d)) + I QE, i) x(t+8&) d&}
h

+ D((x() ~ Agx(t =) mPy ((x(0) — Agix(t - d))
=1

0 s 0
+2(x() = Agx(t-d) ([ QED X(t+8) de+Y [ miQEj) x(t+8) d&)
-h =l -h

Differentiating other Lyapunov terms in (7) give ®
LV, (X, X, t,1) =2 (j))';(t +6)TSE)x(t+8) dg
~h 9
+2 ? TX(t +8)TR(s,8) x(t+£) dsd, ¥
LV, (x,X, ,t,i)ﬁi ;(lt)T U, x(t)—x(t—d) T U x(t—d)
+2 (j)dxa +&) T HE)x(t+8) dg (10)

00
+2 [ [x(t+5)" T(s,&) x(t+8) dsde,
—d-d

t t t t
LV, (x.x.t.0) = [x(6)" dOU,[ [x(8) do]+2 [ x(6)" U,[[x(6)do] ds

t—1 t—1 t—1

T Tt
+[sx(®" U, x(t) ds—[ [ x(6)" U, x(6) dods
0

Ot—s

t T
< [O-t+D[x(O" Upx()+x(0)" Rsx(8)] do+[sx(t)" Uy x(t)ds
t—T 0

t t t
[ [x(®)" dO]U,[ [x(6) dO]- [(6—t+1)x(8)" U x(6) db

t—1 t—1 t—1

t t
<t x(0)" Uy x() [ [x(®)T dOJU,[ [x(6) do]
t—1 t—1
(11)
Moreover, from (6a), the following equation holds for any
matrices P,;, Py; (i € S) with appropriate dimensions:

2(x() TP + () TP )(X(t) + Ay x(t—d) + Ay x(t) + Agx(t —d)

t
+Ay x(t—h)+ Ay [x(s)ds+By w(t)=0
t-1
(12)
From the obtained derivative terms in (8)-(11) and adding
the left-hand side of the equation (12) into LV (x,x; t, r(t)),
we obtain the following result for LV (%, xq, t, r(t)),

0
LV(x, X, t1) <3 T (DZi0(0) + 2 () - Ay X(t—d) " [ Q;(&) x(t+8) d&
~h
0 s
+2 (x(O)-Agx(t-d)T [ Y miQi(@) x(t+8) dg

-h j=1

0 0
—2%(0)" PRAy [ x(t+8) de-2x(t—h)" [ R(-h,&) x(t+£&) d¢

e ~h
0

—x(t-d)" U k(t—d)-2x(t-d)" [ T(-d,&) x(t+&) d&
—d

00 .o 5
_J‘h:[h x(t+s) (g R(s, §)+a—aR(s,§)) x(t+§&) dsdg
0 0

- [x(t+8)" S@x(t+8) de+2x()" [ (R(0,6)- Q1) x(t+8) d&

-h -h

0 0
+2x(t-d)" A [ QED x(t+8) dg-2x()" PYAy; [ x(t1+8) d&
~h -7

0
- [x(t+ )T HEx(t+8) dg-2x()" +x(t—d)T AL)IPA % (t—d)
—d

- ? T x(t+s)T (ET(S g)+iT(s £)) x(t+&) dsde
i os T 0g
+2(x()" Py +%(1) T P5;)(A 4 X(t—d)+ By w(t)

t t
~[ [x(®)" dOJU,[ [x(6) do]

t-1 t-1

(13)
where y(t) := col{x(t), x(t), x(t — h),x(t — d)} and



[1]

i

s [PzTiAZz - Qi(— h)] [PZLASl (Q:(0)+ Z?]ﬂ TPy j)As
1i

PSLAZL P?TiASi
* —S(=h) 0
* *

—H(—d) + AZ! Z?’:l T[ijplj A4i

According to the discretization technique in [19], the delay
intervals [—h, 0] and [—d, 0] are, respectively, divided into N
segments [6,,0,,] and [0,,8,4],p=1-+,N, of equal
length (or uniform mesh case), where 6, =—-ph; and
6, = —p h,. For instance, this scheme divides the square
[<h,0] x [-d,0] into N XN small squares [6,,0,_1] X
[64,04-1] and each small square is further divided into two
triangles. It is easily seen using [19] and [35] that although
the LKF candidate for the nonuniform mesh case is no more
complicated than the uniform mesh case, it is not the case
for the LKF derivative condition. Also, a uniform mesh is
not possible for the incommensurate delay case and is not
practical in the case of commensurate delays with small
common factor. In the sequel, Q;(.),S(.),H(.),R(.,.)and
T(.,.) are chosen to be piecewise linear, i.e. Q;(6, + k hy) =
(1= ©)Qip + K Qup—1y, S(Op + K hy) = (1 = K)Sp + K Sp_y,
H(6, + K hy) = (1 — K)H, + k H,_,, Where

R(0, +kh,,0, +Bh,)

_ (I_K)qu +BRp—l,qfl +(K_B)RP*I,Q’ KZB
(I-BRyg+xR +(B-©R, ., k<P
and
T(0, +1h,.0, +Bh,)
{(1 )Ty +BTy g1 +(k=B)T, 1, k2P

T]A=B) Ty + KT s +(B=)T, s K<B
with $&)=h;'(S,5-S,), LQED=h"(Qipr -Qp)>

H(E)=h;'(H,, -H >,a R(¢,0) +—R(a,e) hi' R

E; p-1q-1
and —T§9 +—T§6 h

_Rp,q )

Ty141 —T,q) - Thus, one obtains

0
2%(0)" [ Q&) x(t+8) dg=
- (14a)

2h, i)’((t)TJI' [Qfp +(1- ZK)pr )] x(t+ Gp +xh,)dk
p=l 0

S 0
23 mi(x() - Agx(t-d) " [ QE.j) x(t+8) dg=
=1 ~h
2h ZZTcU(x(t) Agx(t— d))Tj [Q5p +(1-21)Q5,)] x(t+6,, +xh;) d
j=lp=l1
. (14b)
2x(t—h)Tj R(-7,,&) x(t+&) d&g=
(14¢)

2h zx(t h)j [RY, +(1-2)R &, 1x(t+8, +Kh,) dk
p=1

(]
2x(t7d)T_[ T(-d,, &) x(t+8&) dg =

(14d)
2h Zx(t a)" j [Ty, + (1= 20T% 1 x(t+0, +1ch,) dk
p=1
j x(t+8)" SE)x(t+¢) dg=
-h
N1 (14e)
Y[ x(t+6, +xh)" (S, —S,) x(t+6, +xh,)dc
p=lo
0 .
[x(t+&)" HE)x(t+&) dg=
-d
N1 . . (141)
Y x(t+0, +xhy) (H,, —H ) x(t+0, +xh,)dx
p=10

ri—.o

p t, 0 0 B
jhx(t +5) (gR(s, &)+ a—éR(s,c’;)) x(t+§&) dsd§=

N N1
by Y 3] x(t+0, +Bh) (R, ey ~R,,) x(t+6, +xh,) de dp

q=lp=lg

(14¢)
jjx(t+s) (—T(s §)+—éT(S ,E) x(t+8) dsdE=
—d-d
N N1 ~ N
h2zlzlj x(t+0, +Bhy) (T, — T, 0) X(t+0, +ch,) dicdp
q=1p=1¢

(14h)
0
2x(0)" [ (QED+RO,) x(t+8) de=
-h

N 1
2h; Y x() [ (-2Q%, +R§, + (1-26)R§ ;) x(t+6,, +xh,) dc

p=I1 0
(14i)
0
2x(t-d)" A [ QD x(t+8) dg=
o 1 (14))
2h; Y x(t—d)T Ay [ 2QF, x(t+6, +xh))dx
p=l1 0
and
2x(0)" T T(0,6) x(t+¢) d&=
(14Kk)

2h zx(t) J(T0p+(l ZK)TOP)X(H-G +1ixh,)di
p=l1

Now, from (13)—(14), one has

2L (©)z(t) =y W (WD) +LV(x,x,.,i)

1
<xe (OZeite (O Ge(50)"Sq he (00 dic
0

1 . . 1
~[ G0 Hy b0 dic+ 201 (O] (D° +(1-20D") ¢, (100 dic
0 0

1 1 1 R
] de(co)” diRys [ 9 (100) dic+2xg (D] (O° +(1-2K)0™) d (1cs00) e
0 0 0

L L
[ b0’ diTy [ delic) di
0 0



=" )E,+D'U, D" +O°'U, 0% +%(Da U,D" +0° U, 0" )y ()

O — ) —

11 n n
(1500 Ry § (s:00] dicds—[ [, (ics0)" Ty b, (5;00) dic s
00

¢D(Ke0«) 6, ¢p(ica) de— .[ ¢0(K70L) 0, ¢o (i) dx

o'—.»—‘ o'—.»—-

(15)
with

Te (1) = col{x(t), X(t—d), [x(8) dO,w (1)},

t—1

20O =D’ +(1-20)D") 2, (1),
%o(t)=(0° +(1-2K)0") (1),
dp (500 =[xp ()", ¢, ()",

b () =1, ()", ¢, (k)T
0. () = col{x(t+0, +ich),x(t+8, +ih)), -, x(t+0y +xh))},

&)E(K;OL) =col{x(t+é1 +1<h2),x(t+é2 +xh,), --»,x(t+éN +xh,)},

0, = U -l >0,
* Sd

0, = U, -1 >0,
* Hd

=U;'and U, =U;'. Assume ©; > 0,i = 1,2. Then
use the Jensen Inequality (Lemma 1) to the fourth and fifth
terms in (15), we have

where U,

1
J. ¢D(K;0°)T®1 ¢p(k;0) dx
0

s NS (t)
[x © 6.0c0) ]{DUD DH Ye }
s, |00

1
I ¢O(K;Q)T®2 do(k;0) dx
0

0’U,0° —0°|[ %V
>l d.(c0) 2 { : }
[ ]{ H, } ¢ (i)

Using the above inequalities in (15) we conclude that

2T (®)z() — y?*wT (Ow(®) + LV (%, x, 1) < Fe(®)TEei Fe(t)

(16)

where 7,(t) = [1e (007, [} ¢e(; @) dic, [} §o(oc; @) dic | and

= +oU D +0 0,07 - ey
. 3
By = * —Sy —Ryq 0 (17)
* * —Hy =Ty

On the other hand, for a prescribed y > 0 and under zero
initial conditions, J, can be rewritten as

Jo < E (J-m[zT(t)z(t) —v2wT(@®w©)] dt + V(x, xe, t, )0
0

- V(x4 t, i)|t=0>

=& (f, [z"®©z(®) —y*wT (Ow(D) + LV (x, x¢, £, )] dt)

(18)
and the condition Z,; < 0 means that the condition J,, < 0 is
satisfied, and by applying Schur complement on the forst
element of the matrix Z,;, one gets LMI (5d). On the other
hand, let ¢{; =diag{U;I}. Premultiplying ¢; and
postmultiplying ¢7 to the inequalities ®; > 0,i = 1,2, one
obtains LMIs (5b)-(5¢). Moreover, the condition J, < 0 for
w(t) = 0 implies S{LV(x, X, t, i)} < 0. Then, we have

E(LV (x,x, 1)} < —0, E{x ()T x(8)} (19)

where gy = min {A;n(—Ee;),i €5}, then

Dynkin’s formula, we have

o, >0. By

EW(x, x, 1)} — EWV($(0),75,0)} < —0, & {ftx(s)Tx(s) ds}
0

(20)
or

£ {fotx(s)Tx(s) ds} < a7 'V (¢(0),75) (21)

Moreover, if the LMI condition (5a) (see [19]) is satisfied,
the following LKF condition holds

EV(%x,60)} = 0, (x(O)Tx(t)} (22)

where ¢, = min {1,,,;,(P),i € S}. In a manner similar to [9],
from (21) and (22), we obtain

ExOTx(D)} < —0,051€ { f () x(s) ds} + o1V ($(0), o).
0
hence

£ {fotx(s)Tx(s) ds} < oft1- e_‘fl"z_it] V(¢(0), 7).

or

¢
tll)rg & {f x()Tx(s) ds} < o7 W (¢(0),1p)
0

which indicates that, from Definition 1, the system in (6)
with Markovian switching parameters in (2) is stochastically
mean square stable. This completes the proof. m

Remark 5. Note that the matrix P; = g“ PO] (or,
2 Pai

equivalently, the matrix P;;) is non-singular due to the fact
that the only matrix which can be negative definite in the
first block on the diagonal of LMI (5d) is Z; < 0.

Remark 6. If the switching modes are not considered, i.e.
S={l}, the jump linear system is simplified into a general
linear system with nonlinearities and time delays. Then it is



easy to conclude a criterion from Theorem 1, which can be
used to determine the stability of such a system.

In the following, we present a condition for the stability of
the time-delay system (1) with Markovian switching
parameters in (2) and norm-bounded uncertainties in (3).

Corollary 1. Let hy = %, h, =% be given for any positive
integer N. The time-delay system (1) with Markovian
switching parameters in (2) is stochastically mean square
stable with an H,, performance level y > 0, if there exist a
scalar p;, matrices Py, P3;, H;,Qyy. Ry = R}, Tj = Tf,, and
positive definite matrices Py, Uy, U, S; (j,r =0,1,+-,N;1 =
1,2,--+,s) satisfying the LMIs (5a)-(5¢c) and

I, Ty ply
* -l 0 [<0 (23)
* * -l

where Tg; = [HT,,0,-+,0]", Toi = [Eyi, 0, Eyg, Egi, 0, By, 0, -+-,0].

Proof. If the matrices A};,A,, Ay ,As; in (6a) are replaced
With A, +AA (1), Ay +AA, (D), Ay +AA; (D) and Ay +AA (1),
respectively, then (5d) with the admissible uncertainties (3)
is equivalent to the following condition:

IT; + sym(Tg; A;(DT;) < 0. (24)

It is noting that the notations AA (t) and ABj(t) stand for

AA (L) and AB;(t,i), respectively. By Lemma 2, a

necessary and sufficient condition for (24) is that there exists
a scalar y; > 0 such that

T+ T T+ T Ty <0 (25)
then, applying Schur complements, we find that (25) is
equivalent to LMI (23). m

Note that the delay-dependent stability condition in Theorem
1 covers a special case N=1 (without discretization
technique). Then we have the following corollary.

Corollary 2. The time-delay system (6) with Markovian
switching parameters in (2) is stochastically mean square
stable with an H, performance level y > 0, if there exist
some matrices Py, Ps;, Hj, @y, Rjr = Rfr, T, = TJTr, and
positive definite matrices Py;, U;, Uy, S; (,r=0,1; 1 =
1,2,-+,s) satisfying the LMIs (5) with Rgs = h[Rgp —
Ry), Tas = d[Top — Ti1], R = [Ro,] and

0

TA.. —0O. Te.. .
5y +diagiclc, 0 [ P22~ QGG { Z }
P3iAy; P3iAs;
* =S, +ChChi
Eei = * *

%

*

*

*

*

Z3i
*
*

*

|:(P;i _Pli)A4i:| {PzTiAy +C?Cri} {P;BZi }
PiAy PiA; PiBy;
0 0 0
ALiPiA 0 0
-~y 0 0
x clc,-u, 0
* * —yzl

_ . i}
-2Qf +Ry; + 2 7;Q5
=
Qi
-Rj,
S
T Tas |
2A4Qf - 2 miiA4Q5
=
-2A4Q
0

D* =

=

0
R} +Zsln~Q?‘
0,1 ij<jl
i
a
Qi
-Ri

D*=h s T
a
-2 miA4Qf
=

OS :d Til D)

0" =d

with S, =S,-S,, and
S=1/h, diag{S,.S,}.

Now we are in the position to solve the stabilization problem
of the system (1). Based on Theorem 1, we can obtain a

Hy,=Hy-H,, Q;=[Q,Qj]



mode-dependent delayed state feedback H,, control law in
the form of (4) in the following theorem. Ay =

AgiPyi + ByiLp; — qul
—68;(A2:P5; + ByiLyy)
Theorem 2. Let h, = % h, =% be given for any positive

integer N . Under Assumption 1, a state feedback controller Ao AsiPy; + ByLyg; + wi(Zleﬂi jﬁl j— 0i0)
given in the form (4) exists such that the time-delay system B o5 . N
(1) with Markovian switching parameters in (2) is 8idsiPai + Biilai + @i(Zj=1 TijP1j = Qio))
stochastically stable with an H,, performance level y > 0, if ~
there exist some scalars &;, y;, matrices Py;, Hj, Qs Rj, = A AyiPri — wipul
~ ~ ~ .. . 14 — — >
Rl T, = Tﬁ,éb Laiy Lniy L, and positive definite ;A4 Pa;
matrices Py, Uy, Uy, S5 (Gor =01, ,N;1=12,-+,5),
satisfying the following LMIs - Ay;Py; + ByiLyy l
P, Q 0 263) —6;(A3;P2; + ByiLyy)
>0, a
* R+S _
- B,iPyi
U, -U, A1 = _
I: xS, } o0 (26b) 8iB5iPa;
{Uz _NUZ} >0, (26¢) Ay = [CiTﬁzi + DiTLi],
xS, 0

and Agz = _ﬁN + ArznaX(Az&i) Z}?:l T[L'jﬁlja Ag7 = D Ly,

+ -l 0 [<0 (26d) )
Asy = D] Lgi, Asy = D Ly withw; =2 __ (Ay)

o _ _ _ R D" =
where R = [Rr—l,j—l]v Ry = hl[Rr—l,j—l - Rr,j]a Tys = r ~a ~. o~ ~ = V]
ho|Tyojor = Trj] (rj = 1,2, N), where Ty = —2Qi1 +Ro; | [ -2Qi2 +Ry —2QiN +Ron
T T T T .= , L. , S ~ S ~ S ~
[Hyi 8iHy, 0,017, Ty = [Ey +E51LL_' 0, Ey; + +Z“ijQ§1 +ZnijQ§2 +ZnijQ§N
EgiLpi, Ey; + EsiLg;, 0,E3; + Es;Lyy, Egi Py, 0,-+,0] and Iy = =
gisl 9152 QiSN
g, -D° -0 p* O -Ry, R\ -RYN
S SiRe 000 hy| [ @;2Qf @i (2Q} Q| |
IT, =| = * —-Hy =Ty 0 0 ’ s - s - s -
. " £ 230, 0 -2mQ) | |~ 2XmQh) -2 mQ3N)
* * % * _3[~j H H H
’ -@;2Qj -®;2Q% - @; 2QiN
0 0 0
(A, DMz Ags Ay A5 A My : :
x -5 o0 O 0 0 Ay 0 0 0 |
A * * A3z @iPy 0 0 Az
Zei = | * * * -0 Q 0 0|
* * * % ! -0, 0 Asgy D? =
* * * * * _YZI 0 —N s N N s B B . B -
* * * * * * —1 RGO+ miQ5 Ri2+2.miQ% - Ron+2miQin
=1 j=1 =
where 9?1 (3?2 - NQ?N
—_ - — _Ra _Ra ... _Ra .
Ay = sym AqiPy; + ByiL; Py — Py, h, s N0 s N s NN ’
11 — _ — ~a Aa Aa
6; (An-le- + BliLl-) —6;Py; mi%“UQﬂ “’i%“uQJ‘z miE”UQJN
S B B ~ _ 0 0 . 0
+diag{z ;P j + sym(Qy) + So + H : : ’ :
= 0 0 0 |

+120,,0,}},



Tor Toz Tox
0
0 0 0
0” =h, Ty TR Tn |’
0 0 0
L0 o0 0 |
Tor Too Tox
0 0
0
0" =h, Tho Thy TRN-
0 0 0
0 0 0

§d =diag{§0 *glagl *gza“'agwq *gN} 5

H, =diag{H, -H,,H, -H,,--,Hy, —Hy},

S=1/h, diag {S,.S,.--,Sx},

with

Q5 = (Qyp + Qip))/2 5

QL =(Q, —éup—l))/z ’
ta=(R,+R . )/2,
te= (R, -R, /2,
Toa =T +To0)/2,
Ty =T —T,q /2.

Moreover, the controller gains in (4) can be designed as
Ki = LiPyi', Kai = LaiP3i" Kni = LniPyi, Koy = Lo Pyt

Proof. It can be easily seen that the resulting closed-loop
system (1) with (4) is of the following form,

x()—Ay, x(t—d)=N x(t) + Ngx(t—d) + Ny; x(t —h)

+ Ny l x(s)ds + (B,; + AB,; (1)) w(t),

(27a)
z(t) = (C; + D;K)x(t) +(Cy + D;K g)x(t —d)

t
+(Cyi +DiK)x(t—h)+(C; + DK ) IX(S) ds,

t-t

27b
where N = A, +AA, (1) +(By; + AB, (1)K, , N, =Ay +AA2(i(t)+)
+(By; +AB;())Ky,  Ng=Ag +AA, 1)+ (B, +AB;(D))Ky,
Ni =Ay; +AA;(OD+ (B + AB (1)K ;.
the notations AA;(t)andAB; (1) stand for AA;(t,i) and

It is noting that

AB(t,1), respectively. Then, we choose Ps; = §;P,;,8; € R,

where §; is a tuning scalar parameter (which may be
restrictive). From Remark 5, by performing a congruence

transformation diag{Py, ...,PJ, P, ..,PL} , where P,:=
P;;%, to both sides of (24), applying Schur complements and

Li = K; Py, Lai = KgiPai, Lpi = KniPai, Ly =

K,;P,; resultin

considering

By Lemma 2, a necessary and sufficient condition for (28) is
that there exists a scalar g; > 0 such that
M+t T T+ T T <0 (29)
then, applying Schur complements, we find that (29) is
equivalent to LMI (26d). It is noting that the symbol

—T — . .
g stands for P,;g P,; for any matrices g, for instance

Py =ﬁ;P1,-ﬁ2i. On the other hand, let {; = diag{P}, P};}.
Premultiplying {; and postmultiplying ¢/ to the LMIs (5b)-
(5c), one obtains LMIs (26b)-(26c). This completes the
proof. m

Remark 7. By setting 7 =y? and minimizing n subject to
LMIs (26), we can obtain the optimal H,, performance level
y* (by y* =+/y) and the corresponding control gains as well.

Remark 8. The reduced conservatism of Theorems 1-2
benefit from the construction of the Lyapunov-Krasovskii
functional in (7), introducing some free weighting matrices
to express the relationship among the system matrices and
neither the model transformation approach nor any bounding
technique are needed to estimate the inner product of the
involved crossing terms. It can be easily seen that results of
this paper is quite different from existing results in the
literature in the following perspective. The Markovian jump
structures at most of references, for instance [9], [14] and
[39] consider a retarded time-delay systems and in compare
to our case do not center on mixed time-delays, i.e., the
results in the references above cannot be directly applied to
the Markovian jump systems with different neutral, discrete
and distributed time delays and nonlinear perturbations.

Remark 9. Note that the corresponding condition developed
using the discretized LKF method will allow to overcome
the conservatism of the bounds proposed using other time-
domain approach. However, we approach the optimal bound,
in the sense ‘necessary and sufficient’, if the grid size tends
to zero, which is expensive in terms of computational effort
[18]-[19]. On the other hand, the discretization technique of
LKFs developed in this paper is based on LMIs. It is clear
that the standard LMI has a polynomial-time complexity.
Therefore, the size of the corresponding LMIs is an
important problem to be considered if we are interested in
further refinements. In this sense, the LMI simplification
proposed by Gu in [47] can be used to simplify the
conditions above.
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IV. Simulation Results A= [ » 2} [ } :
In this section, with the aid of MATLAB LMI Toolbox [48],

we use two numerical examples to illustrate the A, () = {O 01 -0. 04} { _0’04}
effectiveness and advantage of our design methods. 0.02  0.01 002 0.1
0.1 03 0

Example 1. We give an example for the application of the As(l)—{ 0 01 s As(2)= { 0 0. 2}
theoretical results to a realistic neutral delay differential C-
equations problem. Here the delay elements are used for Al = 0 0.1} ALQ2)= 0.1 0.1
modeling transmission lines, and partial element equivalent N 0 01)° N 0 05]
circuits (PEEC) model. One of the PEEC models used in the 77 s
literature (see, e.g. [18] and [49]) is given by B, (1) { ; Bi(2)= O. J ;

Cov(®) +Ciy(t—T)+Goy(t) + G, y(t —1) = Bu(t, t — 1) 0] [0.5

’ ' ’ ! BWM=| s B.@=| |

where C, is diagonal, and 7 is the delay (retarded mutual
coupling between partial inductances and current sources). C)=CQ2) = {0 }
The associated neutral system is 01

o]
Yy -Nyt—-1)=Ly(®)+My(t—1) D(1)=D(2)={1 ;
with L, M, N appropriately defined. The matrices for our S = I & 1
example are Yo 12 ?
1
L[ 2 Hl(l)—Hl(Z)—M;
Too = 3 -9 01
1 2 -6 E,()=E,2)=[1 0.1];
\ [ 1 0 —3] E,()=E,(2)=[0.5 02];
—=|-05 -05 -1}, E;(1)=E;(2)=[0.2 0.3];
o5 —15 0 (()=Ex(2) =], J
E4(1)=E4(2)=03
1[-1 5 2 E5(1) = E5(2)=0
w=2l% o 3]_ S =Es(2)
-2 4 1 h=08,d=03, t=0.5.

If the switching modes are not considered, i.e. S={l}, the The following transition matrix is considered.
stability criterion of Theorem 1 for different values of the

parameter N, i.e. N = {1, 2,3}, is compared with those of = [_0-5 0.5

[25], [27] and [28] for the above system in Table 1. Hence, 03 -03

for this example, the stability criterion we derived for linear
time-delay systems is less conservative than those reported L .
in [25], [27] and [28]. Note that the result of [49] is a delay- € initial mode is assumed to be ro = 1.
independent stability analysis which guarantees a feasible
solution for an upper bound of the delay t=1.

A realization of the jumping mode is plotted in Fig. 1, where

Random Mode

2 T OET T namT T e
Table 1 | ! | | :
The upper bound of the time delay for stability analysis. 15 THE : 5 | !
| | | | |
Delay  [25]  [28] [27] Thi  Thl  Thl ) | | B | |
bound N=1 N=2 N=3 | | : T | | | | :
| | | | | | | | |
| | | | | | | | |
T 0.43 1.1413 1.5022 1.6405 1.6537 1.6851 0'5”’f”4""l”’f”ﬁ’”}”’T”f”’}”f

A A T N R S I
0 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50

Time (sec.)
Example 2. Consider a continuous-time uncertain system (1)  Fig 1. Random jumping mode.

with two Markovian switching modes and the following
state-space matrices



Table 2
Y optimat COMparision w.r.t. N .

N:1 N:Z N:3

0.4015 0.3750 0.3625

Y optimal

Time (sec.)

u(t)

Time (sec.)

Fig 3. Control signal.

Using Matlab LMI Control Toolbox, LMIs (6) are solved for
different values of the parameter N, i.e. Ne{l,2,3}, and
corresponding values of the parameter y in optimal H,,

performance measure, y . » are obtained and shown in

Table 2. It is easily seen that the parameter y . 18

decreased as the parameter N is increased.

For simulation purpose, we simply choose a unit step in the
time interval [1,2] as the disturbance, A(t)=sin(t) as the
norm-bounded uncertainty. The simulation results are shown
in Fig. 2 and Fig. 3. Responses of two states of the closed-
loop system is depicted in Figure 1 under the initial
condition x(0)=[0.5 —-0.3]". It is seen from Figure 1 that the

closed-loop system is asymptotically stable. The
corresponding control signal (37) is shown in Figure 2.

V. Conclusion

The problem of robust mode-dependent delayed state
feedback H,, control was proposed for a class of uncertain
systems with Markovian switching parameters and mixed
discrete, neutral and distributed delays. New required
sufficient conditions were derived in terms of delay-
dependent linear matrix inequalities for the stochastic
stability and stabilization of the considered system using
some free matrices and the Lyapunov-Krasovskii functional
theory. The desired control is derived based on a convex
optimization method such that the resulting closed-loop
system is stochastically stable and satisfies a prescribed
level of H,, performance, simultaneously. Future work will
investigate fault detection and mode-dependent mixed time
delays for Markovian jump systems with partially known
transition probabilities (see more details in [15]-[17]).
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