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Abstract One of the main advantages of the Gantry-
Tau machine is a large accessible workspace/footprint
ratio compared to many other parallel machines. The
optimal kinematic, elastostatic and elastodynamic de-
sign parameters of the machine are still difficult to
calculate and this paper introduces an optimisation
scheme based on the geometric and functional de-
pendencies to define the workspace and first res-
onance frequency. This method assumes that each
link and universal joint can be described by a mass-
spring-damper model and calculates the transfer func-
tion from a Cartesian force or torque to Cartesian
position or orientation. The evolutionary algorithm
based on the complex search method is compared
to the gradient-based search function in Matlab in-
tegrated optimisation toolbox. Kinematic design ob-
tained by optimisation according to this paper gives a
2D workspace/footprint ratio more than 1.66 and first
resonance frequency is more than 50 Hz with compo-
nents of an existing lab prototype at the University of
Agder, Norway.

Keywords PKM · Evolutionary · Design ·
Optimisation · Flexible · Dynamics · Model

I. Tyapin
Lulea University of Technology, Luleå, Sweden
e-mail: ilya.tyapin@ltu.se

G. Hovland (�)
University of Agder, Grimstad, Norway
e-mail: geir.hovland@uia.no

1 Introduction

A generalised parallel kinematic manipulator (PKM)
is a closed-loop kinematic chain mechanism where the
end-effector is linked to the base by several indepen-
dent kinematic chains [1]. It may consist of redun-
dant mechanisms with more actuators than the number
of controlled degrees of freedom of the end-effector.
From the first ideas of [2] and [3], many PKMs and
design methods have been developed.

The Tau family of PKMs was invented by ABB
Robotics, see [4]. The Gantry-Tau was designed to
overcome the workspace limitations while retaining
many advantages of PKMs such as low moving mass,
high stiffness and no link twisting or bending mo-
ments. For a given Cartesian position of the robot
each arm has two solutions for the inverse kinemat-
ics, referred to left- and right-handed assembly modes.
It is possible to operate the Gantry-Tau in both as-
sembly modes without passing a singularity, see [5],
and the workspace volume is significantly larger in
comparison with both a serial Gantry-type robot and
other PKMs with the same footprint and with only ax-
ial forces in the links of the arms. The intended ap-
plications of the robot are machining operations re-
quiring a workspace equal to or larger than a typical
serial-type robot’s, but with higher stiffness. However,
the robot can also be designed for very fast mater-
ial handling, assembly and high precision processes
such as laser cutting, water jet cutting and measure-
ment.
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In order to calculate the workspace one can em-
ploy discretisation, analytical and geometrical meth-
ods. A grid of nodes with position and orientation is
defined for both discretisation and analytical methods.
Then the kinematics is calculated for each node and
it is straightforward to verify whether the kinemat-
ics can be solved and to check when joint limits are
reached or link interference occurs. The discretisation
algorithm is simple to implement but has some seri-
ous drawbacks. It is expensive in computations and
results are limited to the nodes of the grid, [6]. Us-
ing geometrical methods the workspace can be cal-
culated as an intersection of simple geometrical ob-
jects, [1], for example spheres. In this paper the maxi-
mum workspace is found as described in [1]. However,
a fully geometric method to evaluate the unreachable
areas on the boundary of the workspace caused by the
end-effector’s kinematics is presented. The collisions
between the platform and support frame detected are
also taken into account (also presented in [7]).

A frequency response model of a PKM over the en-
tire working envelope is an essential tool when design-
ing and dimensioning PKMs for high-speed machin-
ing and other applications. The flexibility of PKMs
may cause structural resonance in the cutting process
and mechanical interaction with the control system
because of regenerative and modal chattering, which
is the main concern in high-speed machining. More-
over, high structural resonance frequencies are needed
to obtain a high bandwidth robot control. High band-
width control means accurate and fast control of the
tool position, speed and force.

The majority of published works about PKM struc-
tures has been on kinematics and singularity analysis.
The study of dynamics of PKMs has received less at-
tention, and flexible dynamics less than rigid-body dy-
namics. One of the first published works on flexible
PKM dynamics was presented in [8]. A 3-DOF spatial
PKM with three flexible links was modelled and sim-
ulated. The model took both axial forces and bending
moments into account. The model was only simulated
in the time-domain, and no frequency response data
was presented.

Very little work has been presented on flexible dy-
namic modelling of Hexapod PKMs, for example [9].
In [10] the Lagrange equations for flexible Stewart ma-
nipulators using tensor representation has been mod-
elled as a mass-spring-damper. In [11] a flexible model
using finite elements is presented. Two recent publica-
tions dealing with modelling of flexible PKMs were

presented in [12] and [13]. Both papers modelled Tri-
pod PKMs with flexible links. Because of the Tripod
structure, the flexible dynamic models must take link
bending and twisting moments as well as axial forces
into account. [13] presents a frequency response di-
agram of a Tripod and is able to quantify the low-
est resonance frequency of the machine over the en-
tire working envelope. In [14] a new and general ap-
proach for calculating the dynamic frequency response
of PKM with six links is presented. This method ex-
ploits the fact that this type of PKMs only experiences
axial link forces and the method is significantly faster
than general Finite Element Method (FEM) used for
other PKM structures which also take link bending
and twisting moments into account. Another interest-
ing work related to the Gantry-Tau is presented in [15].
The authors used the Modelica object-oriented pro-
gramming language to define the Gantry-Tau dynamic
model based on non-parallel actuator axis but the sta-
tic matrix and flexible links design are not used in
[15]. A dynamic model optimisation is also presented
in [15].

In [14] the variations of link stiffness and mass
as a function of link length were ignored because
of the assumption that the joint stiffnesses are being
much lower than the link stiffnesses. In this paper the
link stiffness values are functions of the link lengths
and link stiffness is found for each link. As a result,
the method presented in this paper is more accurate
and 12 times faster. The time saving is possible be-
cause the static matrix and Jacobian matrices for the
Laplace transform are found from a functional de-
pendency, where the coefficients of the functions are
found analytically. In addition, the workspace is dis-
cretised in one axis only. In [14] the static matrix had
to be recalculated for every point of the workspace
and for different frequencies ω of the Laplace oper-
ator.

As stated in [16] the optimisation process may con-
sist of the following stages: translate the end-user re-
quirements into numerical indices, choose the struc-
ture and choose the dimensioning. The transforma-
tion of the user’s requirements into numerical per-
formances is given by number of DOF, workspace
description, geometry and mass of load, footprint
of the robot, actuators, joints, stiffness, position ac-
curacy, internal sensors, dynamics and cost [16].
The priority levels have to be chosen for all perfor-
mances.
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The workspace is one of the most important indices
in design of a parallel manipulator. However, a parallel
manipulator designed to maximise workspace may not
be a good design in practice, because it may have un-
desirable kinematic characteristics such as poor dex-
terity or manipulability. In [17] this problem was in-
vestigated for a 3-DOF translational parallel manip-
ulator. In order to avoid the undesirable effects of
workspace maximisation, researchers introduced other
performance criteria into the optimal design problem.
Gosselin and Angeles designed a planar [18] and a
spherical [19] 3-DOF parallel manipulator by max-
imising the workspace volume, while taking into ac-
count the isotropy index. In [17] total volume of well-
conditioned workspace optimisation is presented. The
well-conditioned workspace is given by the integral
of inverse condition number of the kinematic Jaco-
bian matrix over the workspace. In [20] the design
of a 3-DOF purely translational parallel mechanism is
presented. The optimisation is based on the use of the
performance chart for a good conditioned workspace,
a global conditioning index, and a global stiffness
index. In [21] a linear combination of measures on
manipulability and workspace volume in the objec-
tive function is presented. The design optimisation
problem is described as a multi-objective optimisation
problem in [21]. In [22] the design optimisation for 3-
DOF PKM is conducted on the basis of a prescribed
Cartesian workspace with prescribed kinetostatic per-
formances. In [23] performance evaluation and dimen-
sional synthesis based on the kinematic optimisation
for the planar parallel manipulator with a new index
of transmissibility was presented. In [24] an optimal
design of PKM is based on a search of optimal geome-
try that maximises the effective regular workspace and
includes constraints on joint limits and link interfer-
ence. In this paper the optimisation problem includes
the collisions free workspace, joint angle limits, dy-
namics performances, installation space and user’s re-
quirements. The use of evolutionary approach to op-
timise the parallel kinematic structure, where the op-
timal design is found as a trade-off between the kine-
matics and dynamics performances is also presented
in this paper.

In [25] the first implementation of the multi-
objective evolutionary algorithm is presented. Since
then, a considerable amount of research has been done
in this area. For example, in [26] evolutionary multi-
objective algorithm with preference is proposed. The

constraints are considered as a new objective, a prior
method including the user preferences is adopted, and
a multi-criteria decision aid method to rank the mem-
bers of the population is used in [26]. A detailed re-
view of various constraint handling techniques used
with evolutionary algorithms is presented in [27]. The
most common approach to deal with constrains is the
use of penalty functions, where the amount of con-
straint violations is used to penalise an infeasible so-
lution and feasible solutions are favoured by the selec-
tion process.

The complex search method was used for the me-
chanical design optimisation in [28] and [29]. In [28]
a mechanical design optimisation of a hydraulically
actuated manipulator is presented. The main objec-
tive is minimising the energy consumption with side
constraints on stability, response time and load de-
pendency. The initial population has 30 designs and
the optimum design is found in 250 iterations. In
[29] a multi-objective design optimisation of a servo-
robot for pallets handling is presented. The objec-
tives are the cost and speed. The accuracy of the tool
point, an expected life of the planetary gears and the
welded structure, vibrations and thermal conditions
of the servo motors are the main side constraints.
Discrete design variables are originally handled by a
mapping technique. The optimum design was found
in 50 iterations with the initial population of 10. In
[30] the complex search method is used to optimise
kinematic and elastostatic properties of the 3-DOF
Gantry-Tau manipulator, where a trade-off between
workspace to installation space ratio and required level
of Cartesian stiffness is found. Compared to this paper,
the dynamic performances are not taken into account
in [30].

Brief descriptions of the kinematics and workspace
evaluation are presented in Sects. 2 and 3. The statics
and dynamics are explained in Sects. 4 and 5. The first
resonance frequency calculation method based on the
Laplace transform is also presented in Sect. 5. The op-
timisation problem formulation is presented in Sect. 6.
The results are given in Sect. 7 and conclusions are
presented in Sect. 8.

2 Kinematic description

In this paper we consider the triangular-link version
of the Gantry-Tau structure with no telescopic links,



116 Meccanica (2011) 46: 113–129

Fig. 1 The 3-DOF reconfigurable Gantry-Tau robot in left- and right-hand assembly modes. (Tiy Tiz) are actuator positions, Q1–Q4
are optimisation variables, L1–L3 are the arm lengths and θ is a joint angle limit

Fig. 2 Prototype of a Gantry-Tau with a triangular-mounted
link pair

which is illustrated in Figs. 1 and 2. The architec-
ture consists of a fixed base and a mobile platform
connected by three arms. Figure 1 shows the PKM
structure in both the left- and right-handed assembly
modes. As for the basic Gantry-Tau structure, the po-
sition of one end of each arm (lengths L1, L2 and
L3) is controlled by a linear actuator with actuation
variables q1, q2 and q3, see Fig. 2. The actuators are
aligned in the direction of the global X coordinate.

The actuator track locations are fixed in the Y and Z

directions and locations are denoted as T1y , T1z, T2y ,
T2z, T3y and T3z, respectively. The dimensioning of
the PKM’s support frame is given by the four variables
Q1, Q2, Q3 and Q4 as illustrated in Fig. 1, where Q1

is the depth, Q2 is the height of the support frame, Q3

is the Z-coordinate of the actuator T1 and Q4 is the
Y -coordinate of the actuator T2. The width of the ma-
chine in the X direction is given by the length of the
actuators or specified by the user.

Figures 3 and 4 show the manipulated platform and
fixed kinematic parameters of the moving platform,
which are not included into the design optimisation
scheme. Lp is the platform length, Rp is the plat-
form radius, Ltool is the tool length, Lpin is the length
from the platform circle of radius Rp to the connection
point of the universal joints, Lb is the length from the
connection point to the centre of the joint. The points
A,B,C,D,E and F are the link connection points.
The arm with one single link connects the actuator q1

with platform point F . The arm with two links con-
nects actuator q2 with the platform points A and B .
The arm with three links connects actuator q3 with
the platform points C,D and E. The triangular pair
is connected to points C and E. The TCP of the ro-
bot is located at the tip of the milling tool. Each link
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Fig. 3 The manipulated platform of the Gantry-Tau robot. A–F are the points on the platform, L4–L8 are the distances between the
points

Fig. 4 Kinematic platform parameters. Lp is the platform
length, Rp is the platform radius, Ltool is the tool length, Lpin

is the length from the platform circle of radius Rp to the con-
nection point of the universal joints, Lb is the length from the
connection point to the centre of the joint

has a passive 2D universal joint at one end and a pas-
sive 3D joint at the other end. In Fig. 5 the manip-

Fig. 5 Robot’s kinematic parameters in the XZ-plane. α is the
platform orientation angle, (qi Tiy Tiz) is the actuator position,
[Xa Ya Za] are the point A coordinates in a world frame, XT CP

and ZT CP are TCP coordinate axis

ulated platform orientation angle α around Y -axis is
shown. The prototype of the 3-DOF Gantry-Tau with
a triangular-mounted link pair built at the University
of Agder (Norway) is shown in Fig. 2. The struc-
ture and full kinematics of the Gantry-Tau is presented
in [7].
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3 Workspace

A fully geometric approach to define the maximum
workspace of the Gantry-Tau is based on approach
presented in [1] and full description is given in [7].

Figure 6 shows three circles in the YZ-plane, one
for each arm, while Fig. 7 shows the entire workspace
in the XZ-plane. The centres of the circles 1, 2
and 3 are located at the points ((T1y + Lp + Ltool)

(T1z +Rp +Lpin + Lb

2 )), ((T2y +Yoff +Ltool) (T2z))

and ((T3y + Yoff + Ltool) (T3z)) respectively, where
Yoff is shown in Fig. 1. The radii of the circles equal
the arm lengths and distance from the connection point
on the platform to the TCP in the XZ-plane. The TCP
can only reach points inside of all circles. Figure 6 also

Fig. 6 The cross-sectional workspace area of the Gantry-Tau
in the YZ-plane. Three circles define the maximum workspace
(grey area). Points 1, 2, 3 are actuator positions, [yij zij ] are
cross-points between the circles i and j , R2 is the radius of cir-
cle 2

contains three solid lines in the YZ-plane. The TCP
is not allowed to move outside of these lines because
they indicate the positions of the support framework.
The valid TCP positions are illustrated in grey colour
in Fig. 6.

The maximum workspace is limited by the colli-
sions between the links. The distance between two
line segments is defined as the minimum distance be-
tween two points on these segments. Link collisions
occur when the distance between two points on the
links is less than the sum of radii of these links. The
links of the manipulator are assumed to be cylindri-
cal elements. The Gantry-Tau link collisions detection
method presented in [7] is based on the conditional
equations (boundaries) search and not presented in this
paper because of limited space. The functional depen-
dency analysis is applied to the condition equations.

The collisions between the support frame and ma-
nipulated platform reduce the maximum workspace. In
Fig. 8 the square in the middle defines the user’s speci-
fied workspace, where all user’s requirements are met.
The areas where the collisions occur are shown in a
grey colour. The lengths of these areas ha1, ha2, ha3

and total area AU are expressed as follows.

AU = AU1(ha1) + AU2(ha2) + AU3(ha3) (1)

ha1 = Lp + Ltool (2)

ha2 = R∗
p cos(αmin) (3)

ha3 =
(√

L2
3 − R∗2

p sin2
(

2π

3

)

+ R∗
p cos

(
2π

3

))
R∗

p sin( 2π
3 )

L3
(4)

Fig. 7 The workspace area of Gantry-Tau machine in the XZ-plane when it is reconfigured to work in both positive and negative
x-direction. In section 2 the workspace is fixed and in 1 and 3 it shrinks
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Fig. 8 Illustration of the areas where the collisions between
the platform and support frame are detected (grey areas).
The square in the middle is an example of a user’s specified
workspace. Cross-points between the circles and lengths ha1,
ha2, ha3 are also shown

αmin = π

2
− arcsin

(
Q2

den

)
if (Q2 < den) (5)

αmin = 0 if Q2 ≥ den (6)

den =
√

L2
3 − R∗2

p sin2
(

2π

3

)
+ R∗

p sin

(
2π

3

)
+ R∗

p

(7)

R∗
p = Lpin + Rp + Lb

2
(8)

where αmin is a minimum possible platform orien-
tation angle for the current design. For more details
about the workspace evaluation, link collisions and
collisions between the platform and support frame re-
fer to [7].

4 Static analysis

This section contains equations and matrices which
are required for the dynamic analysis in Sect. 5.

X = [X Y Z]T θ = [α β γ ]T

F = [Fx Fy Fz]T M = [Mx My Mz]T

L = [l1 l2 l3 l4 l5 l6]T Fa = [F1 F2 F3 F4 F5 F6]T

where X, Y , Z are the Cartesian TCP coordinates,
α, β , γ are the Cartesian TCP orientation angles,

li are the link lengths and Fi are link forces where
i = 1, . . . ,6. Fx , Fy and Fz are the external Cartesian
forces acting on the TCP and Mx , My and Mz are the
external Cartesian torques acting on the TCP. The re-
lationship between the TCP forces and link forces are.

F =
6∑

i=1

Fiui M =
6∑

i=1

FiAi × ui (9)

where ui is a unit vector in the direction of link i and
Ai is a vector pointing from the TCP to the end-point
of link i on the platform. The two equations above can
be rewritten using the 6 × 6 statics matrix H.[

F
M

]
= HFa

[
�X
�θ

]
= J�L (10)

The Jacobian matrix of the PKM relates changes
in Cartesian position �X and orientation �θ with
changes in the link lengths �L as shown in (10)
(right). [31] show the duality between the statics and
the link Jacobian for PKMs, i.e.

H−1 = JT (11)

Based on the duality result, the Cartesian stiffness ma-
trix K can be derived as a function of the statics matrix
as follows.[

F
M

]
= K

[
�X
�θ

]
= HFa = HKL�L

HKLJ−1
[
�X
�θ

]
= HKLHT

[
�X
�θ

]

⇒ K = HKLHT (12)

where KL is a 6 × 6 diagonal matrix with the indi-
vidual link stiffnesses along the diagonal. Note that
in [32] a Congruence Transformation Matrix Kg is
defined, which represents the changes in geometry
through the differential Jacobian matrix, and exter-
nally applied forces. In this paper, the Kg matrix is not
taken into account, since the joint stiffness Kθ domi-
nates for small external forces. The result in (12) has
the benefit that no matrix inversions are required to
calculate the Cartesian stiffness at X,Y and Z coordi-
nates, including coordinates where H is singular.

The elements of the matrix H are the X, Y and
Z components of the vectors pointing from the actu-
ator positions to the points A,B,C,D,E,F on the
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platform and X, Y and Z components of the cross-
products of these vectors and vectors pointed from the
TCP to the points on the platform, see Fig. 3. The vec-
tors pointing from the actuator positions to the points
on the platform are given below

A = [Ax Ay Az]T B = [Bx By Bz]T

C = [Cx Cy Cz]T D = [Dx Dy Dz]T

E = [Ex Ey Ez]T F = [Fx Fy Fz]T

The 6 × 6 static matrix H is given below.

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ax . . . Fx

Ay . . . Fy

Az . . . Fz

(A × ATCP)x . . . (F × FTCP)x
(A × ATCP)y . . . (F × FTCP)y
(A × ATCP)z . . . (F × FTCP)z

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

where ATCP . . .FTCP are vectors pointed form TCP to
the points on the platform.

According to the kinematic description presented
in [7], the vectors from the actuators to the points on
the platform are expressed as follows.

A = [(axC + azS + dX1)n (ay + dY1)n

(azC − axS + dZ1)n]T

B = [(bxC + bzS + dX2)n (by + dY2)n

(bzC − bxS + dZ2)n]T

C = [(cxC + czS + dX3)n (cy + dY3)n

(czC − cxS + dZ3)n]T
(14)

D = [(dxC + dzS + dX4)n (dy + dY4)n

(dzC − dxS + dZ4)n]T

E = [(exC + ezS + dX5)n (ey + dY5)n

(ezC − exS + dZ5)n]T

F = [(fxC + fzS + dX6)n (fy + dY6)n

(fzC − fxS + dZ6)n]T

where C = cosα, S = sinα, dXi = X − Tix ,
dYi = Y − Tiy , dZi = Z − Tiz, [axayaz], [bxbybz],
[cxcycz], [dxdydz], [exeyez], [fxfyfz] are the coordi-
nates of the points A,B,C,D,E,F in the TCP coor-
dinate frame, subscript n indicates normalised vector’s

components. The cosα and sinα are given as follows.

cosα = T3z − Z√
L2

3m − (Y + My − T3y)2 +
√

M2
x + M2

z

(15)

sinα =
√

1 − cos2 α (16)

L3m is the middle length of the triangular-mounted
arm 3. Mx,My,Mz are coordinates of a midpoint M

between the triangular link coordinates C and E on
the platform, see Fig. 3. In [7] the YZ functional de-
pendency to define the elements of the static matrix is
presented.

5 Dynamics model

The flexible model of a single link in Fig. 9 assumes
that the actuator is rigid and stationary. Figure 10
shows the flexible model for all six links. The para-
meters kj and damper zj represent the flexibility in
the universal joint. The mass mj is the total weight of
the joint. In Fig. 9 the platform mass MT CP equals the
platform mass plus six halves of the joint masses, i.e.
MT CP = m2 + 3mj . The mass Ma equals the sum of
the masses of the two joint halves and the total weight
of the link, i.e. Ma = ma +mj . Isolating the dynamics
for link i and then the platform, the flexible equations
of motion become

Maäi = −k1ai − z1ȧi + (li − ai)k2

+ (l̇i − ȧi )z2 (17)

MT CP Ẍ = F +
∑
j

(aj − lj )k2uj

+
∑
j

(ȧj − l̇j )z2uj (18)

Fig. 9 Simplified flexible link model
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Fig. 10 Flexible model of 6-link PKM

IT CP θ̈ = M +
∑
j

(aj − lj )k2A
∗
j

+
∑
j

(ȧj − l̇j )z2A
∗
j (19)

A∗
j = (Aj × uj )

where uj and Aj were introduced in (9). For small
motions, the equations above are linear in the vari-
ables a and l as functions of the external TCP forces
F and torques M and the TCP linear and rotary ac-
celerations. By introducing the Laplace transform, the
18 equations above can be written on matrix form as
follows.

[
A −B

C D

][
ai

li

]
=

⎡
⎣ 0

F

M

⎤
⎦ (20)

where 0 is a 6 × 1 zero vector. The matrix elements A,
B , C and D are functions of the Laplace transform, the
masses and the flexibility parameters. For example,

A = (
Mas

2 + (z1 + z2)s + k1 + k2
)
I 6 (21)

B = (z2s + k2)I 6 (22)

where I 6 is a 6 × 6 identity matrix. In addition to
the link masses, springs and dampers, the 6 × 6 sub-
matrices C and D will also contain platform para-
meters, such as the platform weight and inertia. The
Cartesian position vector X and the orientation vector
θ are replaced by a and l by using the Jacobian matrix.

Hence, the 12 unknown parameters ai and li can be
solved by inverting the matrix in (20). If we know the
direct link Jacobian matrix of the PKM, the Cartesian

velocities can be calculated as follows.

d

dt

(
X

θ

)
= JL̇ → sI 6

[
X

θ

]
= sI 6JL (23)

where L = [l1, . . . , l6]T . The final transfer functions
of the PKM from Cartesian forces or moments to
Cartesian positions or orientation can then be derived
from (20), (23).

Xi

Fj

(s) = Xi

li
(s)

li

Fj

(s)
θ i

Mj

(s) = θ i

li
(s)

li

Mj

(s)

(24)

The first resonance frequency calculation algorithm
consists of a few stages.

Stage 1. All constants are found in this stage. Note,
that constants are not ω, Y or Z dependent. MT CP —
the platform mass, Ma—the mass of the total weight
of a link plus masses of the two joint halves, kj —the
joint stiffness, Seci—the section of the link (m2), ε—
Young’s modulus, Jpl—an inertia matrix of the plat-
form and z1, z2-damping ratio.

According to Hooke’s law, the link stiffness are
given below.

k1i = 2εkjSeci

2εSeci + kjLi

; k2i = k1i (25)

where Li is the link length, i = 1, . . . ,6, Seci is an
area of the link section.

Stage 2. In this stage the equations for ai through li
is found from (17), (20).

ai = BA−1li (26)

where A and B were found before, see (21)–(22).
Stage 3. A vector L(s) as a function of the Laplace

operator s is found in this stage. Firstly, forces and
moments in (18) and (19) are divided by MT CP s2 and
IT CP s2 to get the TCP 3-DOF position X and orien-
tation θ vectors.

Ui = (ai − li )(k2 + z2s)

s2MT CP

[H1i H2i H3i]T

Vi = (ai − li )(k2 + z2s)

s2
[H4i H5i H6i]T

(27)

where i = 1, . . . ,6 according to the links, H1i , H2i ,
H3i , H4i , H5i , H6i are elements of a static matrix H,
U is (18) divided by MT CP s2 and V is (19) divided
by IT CP s2. Note, that elements F and M are skipped
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in (27). According to (26) the elements ai are replaced
in (27).

Ui = li
(BA−1 − 1)(k2 + z2s)

s2MT CP

[H1i H2i H3i]T

Vi = li
(BA−1 − 1)(k2 + z2s)

s2
[H4i H5i H6i]T

(28)

Secondly, a vector L(s) = [l1, . . . , l6] is found from
(23). The Jacobian J is the transpose of the static ma-
trix H. A vector L(s) consists of 6 unknown variables
and the solution is a 6 × 6 matrix Ls .

Ls = HT

(
Uh1 Uh2 . . . Uhi

Vh1 Vh2 . . . Vhi

)
(29)

where Uh and Vh are 3 × 6 matrixes.

Uhi = 1

s2MT CP

[Fx Fy Fz]T + Ui (30)

Vhi = Jpl

1

s2
[Mx My Mz]T + Vi (31)

Three elements (Ls11, Ls12, Ls21,) of the matrix Ls

are given below. Other 33 elements are found in a sim-
ilar way.

Ls11 = H11

C3
+ l1(−1 + C1H

∗
11) + C2H

∗∗
11 (32)

Ls12 = H12

C3
+ l2C1H

∗
12 + C2H

∗∗
12 (33)

Ls21 = H11

C3
+ l1C1H

∗
12 + C2H

∗∗
12 (34)

H ∗
11 = H 2

11 + H 2
21 + H 2

31 (35)

H ∗∗
11 = H 2

41

Jpl11
+ H 2

51

Jpl22
+ H 2

61

Jpl33
(36)

H ∗
12 = H11H12 + H21H22 + H31H32 (37)

H ∗∗
12 = H41H42

Jpl11
+ H51H52

Jpl22
+ H61H62

Jpl33
(38)

where C1 and C2 are help variables and are given be-
low.

C1 = −Maz2s
3 + (Mak2 + z1z2)s

2 + (z1k2 + k1z2)s + k1k2

MT CP (Mas4 + (z1 + z2)s3 + (k1 + k2)s2)
(39)

C2 = C1MT CP C3 = s2MT CP (40)

According to (34),

− H12

C3
= l2C1H

∗
12 + C2H

∗∗
12 (41)

− HT
1i

C3
= S ∗ li ⇒ L(s) = −S−1HT

1i

C3
(42)

where S is a 6 × 6 matrix and li , H1i are 6 × 1 vec-
tors. The elements of S matrix are the elements of Ls

matrix without H1i

C3
and divided by li . S is found from

all 36 elements of Ls . li is a function of the Laplace
transform. H1i is a vector with elements equal to the
elements of the first row of the static matrix H.

Stage 4. The Cartesian TCP position vector as a
function of the Laplace operator s is found in this stage
and an equation is given below.

X(s) = (H−1)T L(s) (43)

where L(s) = [l1, l2, . . . , l6].
Stage 5. The first resonance frequency is found in

this stage as the first maximum of the amplitude re-
sponse γk for the given workspace cell k.

γk = |X(jω)| (44)

The Laplace operator s in (44) is replaced by jω,
where j is the complex unity and ω is a frequency.
The first resonance frequency is found by a search al-
gorithm using the amplitude response.

A flowchart of the first resonance frequency calcu-
lation algorithm is shown in Fig. 11.

The YZ functional dependency is used to find the
elements of matrix S, see (42). The elements of the
matrix S consist of two parts ω dependent C1,C2, see
(41) and (42), and YZ dependent elements of the sta-
tic matrix H. The number of calculations are reduced
because the differences between the elements S12 and
S21 are ω dependent elements C1 and C2. YZ depen-
dent parts are found once for the elements S12 and S21

and ω dependent parts are taken into account after that.
When all YZ dependent parts of the matrix S are

found, the ω dependency is taken into account. Note,
that elements C1,C2 of the matrix S have constant
parts as coefficients before the Laplace transform s.
The matrix S is recalculated for the different frequen-
cies ω without recalculating the YZ dependent part of
the equations. In conclusion, there are two functional
dependencies in the first resonance frequency calcu-
lation algorithm. Both of them are found separately.



Meccanica (2011) 46: 113–129 123

Fig. 11 The flowchart of the first resonance frequency calculation algorithm

Fig. 12 Example of frequency response curves for the fixed-length version of the Gantry-Tau

Firstly, YZ dependent elements of the S matrix are
found. Secondly, ω dependent elements of matrix S
can be found, because YZ dependent elements are in-
dependent of ω.

Figure 12 shows two examples of the frequency
response curves that are generated by the methods
presented in this section. The solid curve shows the
amplitude response from a Cartesian force in the
X-direction to Cartesian position in the X-direction
at X = 1.0, Y = 0.0 and Z = 0.5. The dotted curve
shows the same response at X = 1.0, Y = 0.8 and
Z = 0.5. The first resonance frequency occurs at 322
rad/sec or 51.2 Hz and 525 rad/sec or 83.6 Hz, respec-
tively, for the two selected locations. The minimum,
maximum and average first resonance frequency of

Table 1 Resonance frequencies of the 3-DOF Gantry-Tau in
the entire workspace and the best 70% workspace

Min Max Avg

Entire workspace 47.54 102.85 60.61

Best 70 percent workspace 53.84 102.85 64.43

the Gantry-Tau in the entire workspace and the best
70% of the workspace are given in Table 1.

A map of the first resonance frequency as a func-
tion of the Y and Z coordinates for the Gantry-Tau is
shown in Fig. 13. The frequency response data gen-
erated by the new method presented in this section
have been verified against calculations from a FE soft-
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Fig. 13 First resonance frequency as function of the Y and Z coordinates at X = 1.0

Table 2 First resonance frequency computation time for three
different methods

Method Time

Finite Element Method 5600

Method in [14] 12

Functional Dependency 1

ware package (Strand7). For a set of 10 locations in
the workspace of the Gantry-Tau, the method in this
section generates the same results as the FE package
and the method is also significantly faster. The maps
in Fig. 13 can be generated approximately in the same
time as it takes to set up and calculate one resonance
frequency in a FE package.

Table 2 shows the computational requirements for
the three different approaches on the triangular ver-
sion of the 3-DOF Gantry-Tau PKM. The first res-
onance frequency calculation covers 70% of the en-
tire workspace of the PKM. The method based on the
functional dependency is 5600 times faster than the
Finite Element Method. The computational time has
been normalised to 1 for the third approach.

6 3-DOF Gantry-Tau design optimisation

The Gantry-Tau design optimisation problem based on
the complex search method ([28], [29] and [7]) is ex-

pressed as follows.

min: F = fqual(par) + fcf (par) + fg(par) (45)

Subject to: QL
4 (par) ≤ Q4 ≤ QU

4 (par)

QL
3 (par) ≤ Q3 ≤ QU

3 (par)

LL
3 (par) ≤ L3 ≤ LU

3 (par)

LL
2 (par) ≤ L2 ≤ LU

2 (par)

LL
1 (par) ≤ L1 ≤ LU

1 (par)

QL
1 (par) ≤ Q1 ≤ ISdth

QL
2 (par) ≤ Q2 ≤ IShth

0 ≤ fqual ≤ 1

0 ≤ fcf ≤ 1

0 ≤ fg ≤ 1

where par is a vector of the optimisation variables pre-
sented in Sect. 2.

The quality objective function fqual(par) in (45)

has (m2

m2 ) unit description and includes workspace, col-
lisions between the platform and support frame, instal-
lation space, user’s specifications. The second objec-

tive function fcf (par) has (m2

m2 ) units and consists of
a sum of both areas where first resonance frequency is
lower than required and where the collisions between
the links are detected. The constraint handling func-
tion fg(par) has (m

m ) units and keeps the optimisation
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constraints inside of the limits and penalise any infea-
sible constraints. All objective sub-functions are de-
fined in a range [0;1] and expressed as follows.

fqual(par) = IS

AR(par) − AU(par)
(46)

fg(par) =
∑r

i=1 gi (par)
r

(47)

fcf (par) = Af (par) + Ac(par)
2UWaUWb

(48)

Af (par)

=
{∑NUM

i=1
δ2
i

2UWaUWb
, if γmin > γi(par)

0, if γmin ≤ γi(par)

}
(49)

Ac(par)

=
{∑NUM

i=1
δ2
i

2UWaUWb
, if LCi < L∗

C

0, if LCi > L∗
C

}
(50)

where AR(par) is the maximum workspace, AU(par)
is the unreachable area caused by the collisions be-
tween the platform and support frame, IS is the in-
stallation space and depends on the optimisation para-
meter Q4. For the positive Q4 IS = Q2(Q1 + Q4),
for the negative—IS = Q2Q1. γi(par) is the first
resonance frequency found for the current workspace
cell i. Ac(par) is the link collision function and equals
1 if collisions are detected or 0 if there are no colli-
sions for the current workspace cell, δ is the workspace
integration parameter, where the minimum workspace
cell equals δ2, NUM is the number of the workspace
cells. The dynamics function Af (par) in (49) is a
sum of the workspace cells, when the minimum re-
quired first resonance frequency is greater than a cur-
rent frequency at the given cell. The dynamics ob-
jective is also extended by the ratio between the area
where the resonance frequency is lower than required
and the user’s specified workspace. The sum of the
workspace cells equals zero, when the required fre-
quency is less than the current for these cells. The
installation space depends on the support frame di-
mensions. The workspace and unreachable area are
the functions of five support frame parameters, indi-
vidual link lengths and platform kinematics. The col-
lisions are detected if the distance between the links
LCi is less or equal to L∗

C . The quality function is min-
imised while minimising the ratio between the instal-
lation space and workspace. The constraints handling

method is given below.

gi = 0, if ParL
i ≤ Parcur

i ≤ ParU
i (51)

gi =
(

ParL
i − Parcur

i

P arL
i

)2

, if Parcur
i < ParL

i

(52)

gi =
(

Parcur
i − ParU

i

ParU
i

)2

, if Parcur
i > ParU

i

(53)

where Parcur
i is a current value of the constraint i,

ParU
i is the upper limit and ParL

i is the lower limit
of the constraint i.

The user’s specifications included into design opti-
misation are the minimum first resonance frequency
level γmin, minimum distance between two robot’s
links L∗

C , maximum installation space in the X, Y , Z

directions ISlth, ISdth and IShth, minimum platform
radius Rplmin, minimum platform length Lplmin, joint
angles JA, length from the connection point to the
centre of the joint Lb , lengths of the tool Ltool and
pins on the platform Lpin, Young’s modulus ε, mass
of the TCP MT CP , mass of the joints Mj , joint stiff-
ness kj , user’s specified workspace in the Y direction
UWa and in the Z direction UWb, workspace integra-
tion step δ. The user’s specifications and requirements
used in the design optimisation are given in Table 3.

Increasing the first resonance frequency is the main
task for the dynamics optimisation. There are some
possibilities to increase the resonance frequency. The
first possibility is reducing the link lengths while sup-
port frame variables Q1,Q2 are fixed. The second

Table 3 User’s specifications and requirements used in the de-
sign optimisation

Parameter Value Parameter Value

L∗
C 0.1 m γmin 50 Hz

ISlth 2.2 m ISdth 0.65 m

IShth 1.2 m ε 70 × 109 N/m2

UWa 0.65 m UWb 0.65 m

Rpmin 0.07 m Lpmin 0.15 m

kj 50 N/µm ka 232 N/µm

MT CP 5 kg Lb 0.03 m

Ma 1 kg Lpin 28 × 10−3 m

Ltool 1 × 10−3 m – –
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possibility is increasing the variables Q1,Q2 while the
link lengths are fixed. The third possibility to increase
the stiffness is by shifting the Y position of the actua-
tors T2 and 3. In this paper the Y position of actuator
T2 is variable while the actuator T3 position is fixed.
The fourth possibility is to change the distances be-
tween the points A and B or E, C and D on the plat-
form as well as the platform length. The last way to in-
crease the stiffness in the Y direction is to increase Q1

while other parameters are fixed. Note, that the sup-
port frame parameter Q1 defines the Y coordinate of
the actuator T1.

7 Results

The final optimised design variables of the 3-DOF
Gantry-Tau were found using the complex search al-
gorithm and gradient-based function f mincon avail-
able in the Matlab optimisation toolbox. The results
are summarised in Table 4 and compared with original
and worst designs.

The initial population size is 50 randomised de-
signs. The number of evaluations of the objective func-
tion was fixed to 350. However, the number of itera-
tions will be increased when the user’s requirements
are changed. For example, more iterations are needed
when the user specifies more optimisation variables or
increases the requirements such as the first resonance
frequency level and specified workspace dimensions.

Figure 14 shows the convergence trend of the main
objective function F as a sum of 3 sub-objectives
(fqual , fcf and fg) in 400 iterations. Figures 15, 16
and 17 show the sub-objective’s fcf , fqual and fg

convergency trends in 400 iterations respectively. The
quality sub-objective (fqual) depends on kinematic pa-
rameters (link lengths and support frame dimensions).

The results would have been difficult to obtain by a
manual design, as the support frame dimension is dif-
ferent from Q1 = 2Q2 ≈ Q3, Q4 = 0 which have been
typical manual design choices of the Gantry-Tau in the
past. According to Table 4 the objective function was
improved by 24%, sub-objectives fqual and fcf by
21%, and 3% respectively. The gradient-based search
algorithm is not able to reach a feasible result. The op-
timised design was obtained in less than 55 hours on
a Pentium Centrino 2 (CPU 2.2 MHz) computer. Fur-
thermore, the approach proposed in this paper is rela-
tively simple and can be implemented for other PKMs.

Table 4 Comparison of the design optimisation results

Parameter Original Fmincon Worst Best

Q1, m 0.5 0.55 0.54 0.527

Q2, m 1 1.02 0.99 1.024

Q3, m 0.42 0.54 0.48 0.36

Q4, m 0 0.19 0 0.1

L1, m 1 0.94 1.25 1.11

L2, m 1 0.95 0.97 0.97

L3, m 1 0.94 1.21 1.04

F 0.79 0.70 1.58 0.60

fqual , m2

m2 0.76 0.64 0.59 0.60

fcf , m2

m2 0.03 0.06 0.98 0

fg, m
m 0 0 0.01 0

Fig. 14 The convergence trend of the main objective function F as a sum of 3 sub-objectives (fqual , fcf and fg) in 400 iterations
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Fig. 15 The convergence trend of the sub-objective function fcf 400 iterations

Fig. 16 The convergence trend of the sub-objective function fqual in 400 iterations

8 Conclusions

One of the main contributions of this paper is the com-
bination of the evolutionary multi-objective method-
ology based on the complex search algorithm with
geometric descriptions of the Gantry-Tau to optimise
the parallel kinematic structure. The design optimi-

sation scheme includes the kinematic (collisions free
workspace) and elastodynamic (first resonance fre-
quency) properties of the PKM as the objectives. The
optimisation constraints are the support frame lengths,
actuator positions the robot’s arm lengths. The design
optimisation results show that it is possible to opti-
mise the kinematic design of the Gantry-Tau PKM to
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Fig. 17 The convergence trend of the constraints handling function fg in 400 iterations

achieve a collision-free workspace with the first reso-
nance frequency greater than 50 Hz.

The optimisation results demonstrate the impor-
tance of designing PKMs in general and the Gantry-
Tau in particular to meet specific end-user require-
ments. It is therefore important that when the machine
is designed, the locations of typical work-objects are
known. The machine can then be designed for high
performance in these regions. The remaining regions
of the workspace with lower performance can typi-
cally be used for operations which do not require the
machining specifications, such as tool change, dock-
ing or work object transfer operations. Dimensional
synthesis is a part of the design and to obtain the tar-
geted performance at lowest cost, physical design (ma-
terial selection, bearing design, actuator design etc.)
must also be made. The physical design as a part of
the Gantry-Tau design optimisation is one of the fu-
ture research directions.

Multi-objective evolutionary algorithms require a
relatively large number of iterations to produce rea-
sonably good approximations of the optimal set of the
designs. This has motivated the hybridisation of evo-
lutionary algorithms (global search engines) with local
search engines of different types to reduce the compu-
tational time effort.
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