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Abstract— This paper considers the problem of stability —adjust capacity with the objective of maintaining a desired
analysis with anHe., performance for a class of production net-  amount of WIP. The contribution of this paper is three-
works of autonomous work systems with delays in the capacity |- first, this paper extends previous works on the stibili

changes. The system under consideration shares information Vi bl f ducti " K of aut
between work systems and the work systems adjust capacity analysis problem Or a production Network or autonomous

with the objective of maintaining a desired amount of local WOrk systems with a time-varying delay within the capacity
work in progress. An appropriate Lyapunov function is utilized  changes and derives some new theoretical results; second,

to establish some delay-range-dependent conditions in terms this paper shows how the stability analysis problem can
of linear matrix inequalities for the stability analysis of the be reduced to a convex problem with additional degrees of
network. . . . -
freedom; third, by using a Lyapunov function, we establish
I, INTRODUCTION new requireq sufficien.t qonditiop; in terms of delay—.range-
) ] dependent linear matrix inequalities (LMIs) under whick th
Production networks are emerging as a new type Qfetwork satisfies both asymptotic stability and a presdribe
cooperation between and within companies, requiring nejye| gain. Finally, numerical results are given to illase

techniques and methods for their operation and managemegrt sefulness of the proposed methodology.
[1]. However, the dynamic and structural complexity of #nes

emerging networks inhibits collection of the informatiogca Il. DYNAMIC MODEL

essary for centralized planning and control, and decénéhl  Assume that there arll work systems in a production
coordination must be provided by logistic processes withetwork and that vectdfnT) is the rate at which orders are
autonomous capabilities [2]. The behaviour of a productiomput to theN work systems from sources external to the
network is affected by external and internal order flowsproduction network, which is constant over tim& <t <
planning, internal disturbances, and the control laws us€@+ 1)T wheren=1,2,--- andT is a time period between
locally in the work systems to adjust resources for proogssi capacity adjustments. The total orders that have been toput
orders [3]. In prior work, sharing of capacity informationthe work systems up to timg-+ 1)T then can be represented
between work systems has been modelled in [4] along withs the vector [5]

the benefits of alternative control laws and reducing delay . T

in capacity changes [5]-[6]. Several authors have desgribe Wi((N+1)T) =wi(nT) +T(i(nT) +P(nT) ca(nT)) (1)

both linear and nonlinear dynamical models for control ofyhere vectorc,(nT) is the rate at which orders are output
variables such as inventory levels and work in progresfom the N work systems during timeT <t < (n+1)T
(WIP); see for instance [7]. Understanding the dynamigthe actual capacity of each work system) aP@hT) is a
nature of production systems requires new approaches f@fatrix in which each elemergij(nT) represents the actual
the design of Production Planning and Control (PPC) basgghction of the orders flowing out of work systeinthat flow

on company’s logistics. The controllers implicitly intetdo  jnto work systemj during timenT <t < (N+1)T. P(nT) is
adjust capacity to eliminate backlog as the system maitaiassumed to be constant duing this period. The total number
its planned WIP level; see [8]-[10]. A discrete closed-loopf orders that have been output by the work systems up to

PPC model was developed and analyzed by Duffie and Fajge nT <t < (n+1)T can be represented by the vector
[11] in which two discrete controllers, one for backlog and

one for WIP, with different periods between adjustments Wo((N+1)T) =Wo(NT) + Tca(nT) 2
of work input and capacity, respectively, were selected anghije the rate at which orders are output from the network
evaluated using transfer function analysis and time-neS0 qyring timenT <t < (n+1)T is
simulation. N
In this paper, we contribute to the problem of stability o(nT) = Po(nT)ca(nT) 3)

analysis with arH, performance for a clas_s of prOdu‘?tiO”wherePo(nT) is a matrix in which non-zero elemeps(nT);
networks of autonomous work systems with delays in thg,presents the fraction of orders flowing out of work system
capacity changes. The system under consideration shajggat fiow out of the network during timeT <t < (n+1)T.
information between work systems and the work systerr}:ﬁ,o(n-l-)ij is assumed to be constant duing this period, and
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The WIP in the work systems is I1l. STABILITY ANALYSIS WITH Heo PERFORMANCE

Wi pa(NT) = Wi (NT) — Wo(NT) -+ Wg(nT) 5 In this section, by assuming that the con.tr.ol gédin
is known, some delay-range-dependent conditions for the

where wq(nT) represents local work disturbance, such agipility of the network respect to the delay parameter are
rush order, that affect the work system. Consider a ”et""oﬂ‘roposed using Lyapunov method.

in which information is shared between work systems and Theorem 3.1: For given positive scalarsh,d,,y , the

in which capacity plans are supplied in advance by a sourggstem (10)-(11) is asymptotically stable and satisfiesthe
external to the network. Furthermore, the actual capadity Qerformance boung by the control gairk , if there exist

each work system is as follows: a matrixY and some positive-definite matric&s, S, s, Z
ca(nT) = Q(NT)cm(nT) — cg(nT) (6) such that the following LMIs are feasible,

where c4(nT) represents local capacity disturbances such M1 -Y+SB SC

as equipment failure®Q(nT) = (I — P(nT))~! indicates the Fi=] * 22 23| <0 (13)

information coupling between the work systems &(@T), * * 33

a matrix in which each elemeny(nT);j represents the

expected fraction of the orders flowing out of work system [Sl Y} >0 (14)

that flow into work systenj. In addition,cy(nT) represents * Z]~

local capacity adjustments to maintain the WIP in each worii, Goi=dp—di and i1 =Y +YT +Sy(1+dip) + Sy,

system in the vicinity of the planned levelpy(nT) using M2 = —S+BTSB+DTD, My =BT (dhZ+S)C+DTE,

straightforward proportionalityk. and is described in the M35 = —}2l +CT (S, +d,Z)C+ETE. The symbol« denotes

form of the elements below the main diagonal of a symmetric block
Cm(nT) =i (NT)AC((n—d(n)T) (7)  matrix.
M . . Proof: Consider the Lyapunov function candidate in the
wherei (nT) is expected input rates from sources eXtem%IIowing form
to the network and 4
AC(NT) = k(Wi pa(nT) — Wi pp(nT)) ®) V(nT) = _Zl\/i(nT) (15)
It is assumed that a time-varying delay exists in the capacit .
L where
changesc(nT) for logistic reasons such as operator work
rules and satisfies Vi(nT) = X (nT)T S X (nT) (16)
O<di <d(n) <d; 9) -1k _ _
. VLT)=5 5 XIT)-X((G-yT)T
and the planned capacity and WIP are also assumed to be s——dy j=KTs+1
known and delay free in advance.
Egs. (1)-(8) can be combined to obtain a discrete-time xSX(JT)=X((j—1)T)] a7
model for the system:
n-1
Xi((N+1)T) =X (nT) +BX((n—d(n))T)+CW(nT) (10) Va(nT) = 5 X(iT)TSX(jT) (18)
j=n—d(n)
o(nT) = DX ((n—d(n))T) +EW(nT) (11)
T —di+1 n—-1
WhereXi(nT) = [Wi(nT)T WO(I"IT)T] , and V4(nT) — % z X|(|T)T53X|(|T) (19)
B chPTQ —chPTQ j=—do+2l=n+]-1
N { TQ -TQ } After some manipulations of\V;(nT) = Vi((n+ 1)T) —
. F.I TPTQ —TPT TkP'Q —chPTQ} V;(nT), the following result can be obtained
|0 T —TI T -T 4
° <Q <Q AV(nT) = ZAVi(nT) < X(nT)"F1x(nT) (20)
? = [kePoQ —choQ]j E = =
0 I<(:POQ _PO kCPOQ _kCPOQ . — [%(nT T W(nT T
The stability analysis problem with at,, performance to wherex(nT): [X(n ) (nT) ] and
be addressed in this paper can be formulated such that Fy SC
1) The system (10)-(11) is asymptotically stable when M= BT (dZ+S1)C
W(nT)=0. x+  CT(SBT +d:Z)C
2) Under the zero-initial condition and for any nonzerqujith
W(nT) with a prescribed scalar> 0, the outpub(nT) K(nT) := [X(T)T  X((n—d(n)T)T]
satisfies the followindH. performance measure - Y488
S L —Y +
lo(nT)l, < VW (rT)]|, (12) M= [ ) —Sg,+BTSlB]



Furthermore, in the case @/ (nT) =0, it follows from (20) flows are unidirectional. Then, the internal flow of orders is

that approximated using the following matrix [3],

AV(NT) < F(MT)TFLR(0T) < —Amin(—F1) [R(T)? (21 0 10§/341 235341 0 0

(nT) < X(nT) " T1X(NT) < —Amin(—T2) [X(nT)|7 (21) 0 A A 189401 204401

On the other hand, considering the Lyapunov function (15), P= |0 0 0 100236 129236

one gets 0 0 0 0 268295
Amin(SL) % (nT)[? <V (nT) 0 0 0 0 0

Consider the sampling tim& = 1 scd. According to The-
n orem 3.1, for the asymptotic stability of the network under

2 2
<alX(nm)"+a(l+diz+2dz) 5 (XTI (22)  considerationHe performance levelsy, underd; = 1, the

J=n-d; controller gaink; = 0.1scd~! and different values of the
wherea = max{Amax(S1), Amax(%2), Amax(S3) ) }. Define upper bounds of the delagl, are shown in Table |.
M T T TABLE |
v = %[o(nT) o(nT) — VZW(nT) W(nT)] (23) OPTIMAL He PERFORMANCE LEVELSY W.R.T. ds.
n=|
whereM is a positive integer scalar. Now, noting the zero H=2 [ %=3] &=4] &=5
initial condition and (20), one has Theorem 3.1| 0.385| 0.475| 0.730| 0.785
M
v = za[o(nT)To(nT) — Y"W(nT)"W(nT) AV (nT)]
n= V. CONCLUSION
o The problem of stability analysis with &fk, performance
-V(M+1)T) < Z’x(nT)Trx(nT) for a class of production networks of autonomous work
n= systems with delays in the capacity changes was investi-

with I defined in (13). Now, it follows from the inequality 9ated in this paper. The system under consideration shares

above thaf” < 0 , which together with (22) ensure that (12)information between work systems and the work systems
holds under the zero initial condition. adjust capacity with the objective of maintaining a desired

amount of local work in progress. In terms of linear matrix
inequalities some delay-range-dependent stability dimmdi
L 5 were derived for the network.
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Fig. 1. Omni-directional order-flow structure example.



