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Abstract— This paper considers the problem of stability
analysis with an H∞ performance for a class of production net-
works of autonomous work systems with delays in the capacity
changes. The system under consideration shares information
between work systems and the work systems adjust capacity
with the objective of maintaining a desired amount of local
work in progress. An appropriate Lyapunov function is utilized
to establish some delay-range-dependent conditions in terms
of linear matrix inequalities for the stability analysis of the
network.

I. I NTRODUCTION

Production networks are emerging as a new type of
cooperation between and within companies, requiring new
techniques and methods for their operation and management
[1]. However, the dynamic and structural complexity of these
emerging networks inhibits collection of the information nec-
essary for centralized planning and control, and decentralized
coordination must be provided by logistic processes with
autonomous capabilities [2]. The behaviour of a production
network is affected by external and internal order flows,
planning, internal disturbances, and the control laws used
locally in the work systems to adjust resources for processing
orders [3]. In prior work, sharing of capacity information
between work systems has been modelled in [4] along with
the benefits of alternative control laws and reducing delay
in capacity changes [5]-[6]. Several authors have described
both linear and nonlinear dynamical models for control of
variables such as inventory levels and work in progress
(WIP); see for instance [7]. Understanding the dynamic
nature of production systems requires new approaches for
the design of Production Planning and Control (PPC) based
on company’s logistics. The controllers implicitly interact to
adjust capacity to eliminate backlog as the system maintains
its planned WIP level; see [8]-[10]. A discrete closed-loop
PPC model was developed and analyzed by Duffie and Falu
[11] in which two discrete controllers, one for backlog and
one for WIP, with different periods between adjustments
of work input and capacity, respectively, were selected and
evaluated using transfer function analysis and time-response
simulation.

In this paper, we contribute to the problem of stability
analysis with anH∞ performance for a class of production
networks of autonomous work systems with delays in the
capacity changes. The system under consideration shares
information between work systems and the work systems
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adjust capacity with the objective of maintaining a desired
amount of WIP. The contribution of this paper is three-
fold: first, this paper extends previous works on the stability
analysis problem of a production network of autonomous
work systems with a time-varying delay within the capacity
changes and derives some new theoretical results; second,
this paper shows how the stability analysis problem can
be reduced to a convex problem with additional degrees of
freedom; third, by using a Lyapunov function, we establish
new required sufficient conditions in terms of delay-range-
dependent linear matrix inequalities (LMIs) under which the
network satisfies both asymptotic stability and a prescribed
level gain. Finally, numerical results are given to illustrate
the usefulness of the proposed methodology.

II. DYNAMIC MODEL

Assume that there areN work systems in a production
network and that vectori(nT ) is the rate at which orders are
input to theN work systems from sources external to the
production network, which is constant over timenT ≤ t <
(n+1)T wheren = 1,2, · · · andT is a time period between
capacity adjustments. The total orders that have been inputto
the work systems up to time(k+1)T then can be represented
as the vector [5]

wi((n+1)T ) = wi(nT )+T (i(nT )+P(nT )T ca(nT )) (1)

where vectorca(nT ) is the rate at which orders are output
from the N work systems during timenT ≤ t < (n+ 1)T
(the actual capacity of each work system) andP(nT ) is a
matrix in which each elementpi j(nT ) represents the actual
fraction of the orders flowing out of work systemi that flow
into work systemj during timenT ≤ t < (n+1)T . P(nT ) is
assumed to be constant duing this period. The total number
of orders that have been output by the work systems up to
time nT ≤ t < (n+1)T can be represented by the vector

wo((n+1)T ) = wo(nT )+T ca(nT ) (2)

while the rate at which orders are output from the network
during timenT ≤ t < (n+1)T is

o(nT ) = Po(nT )ca(nT ) (3)

wherePo(nT ) is a matrix in which non-zero elementpo(nT )ii

represents the fraction of orders flowing out of work system
i that flow out of the network during timenT ≤ t < (n+1)T .
po(nT )i j is assumed to be constant duing this period, and

poii(nT )+
N

∑
j=1

poi j(nT ) = 1 (4)



The WIP in the work systems is

wipa(nT ) = wi(nT )−wo(nT )+wd(nT ) (5)

where wd(nT ) represents local work disturbance, such as
rush order, that affect the work system. Consider a network
in which information is shared between work systems and
in which capacity plans are supplied in advance by a source
external to the network. Furthermore, the actual capacity of
each work system is as follows:

ca(nT ) = Q(nT )cm(nT )− cd(nT ) (6)

where cd(nT ) represents local capacity disturbances such
as equipment failures,Q(nT ) = (I −P(nT ))−1 indicates the
information coupling between the work systems andQ(nT ),
a matrix in which each elementq(nT )i j represents the
expected fraction of the orders flowing out of work systemi
that flow into work systemj. In addition,cm(nT ) represents
local capacity adjustments to maintain the WIP in each work
system in the vicinity of the planned levelswipp(nT ) using
straightforward proportionalitykc and is described in the
form of

cm(nT ) = i
′
(nT )∆C((n−d(n))T ) (7)

where i
′
(nT ) is expected input rates from sources external

to the network and

∆C(nT ) = kc(wipa(nT )−wipp(nT )) (8)

It is assumed that a time-varying delay exists in the capacity
changescm(nT ) for logistic reasons such as operator work
rules and satisfies

0< d1 ≤ d(n)≤ d2 (9)

and the planned capacity and WIP are also assumed to be
known and delay free in advance.

Eqs. (1)-(8) can be combined to obtain a discrete-time
model for the system:

Xi((n+1)T ) = Xi(nT )+BXi((n−d(n))T )+CW (nT ) (10)

o(nT ) = DXi((n−d(n))T )+EW (nT ) (11)

whereXi(nT ) =
[

wi(nT )T wo(nT )T
]T

, and

B =

[

T kcPT Q −T kcPT Q
T Q −T Q

]

C =

[

T I T PT Q −T PT T kcPT Q −T kcPT Q
0 T Q −T I T kcQ −T kcQ

]

D =
[

kcPoQ −kcPoQ
]

, E =
[

0 kcPoQ −Po kcPoQ −kcPoQ
]

.
The stability analysis problem with anH∞ performance to

be addressed in this paper can be formulated such that
1) The system (10)-(11) is asymptotically stable when

W (nT ) = 0 .
2) Under the zero-initial condition and for any nonzero

W (nT ) with a prescribed scalarγ > 0, the outputo(nT )
satisfies the followingH∞ performance measure

‖o(nT )‖2 ≤ γ ‖W (nT )‖2 (12)

III. STABILITY ANALYSIS WITH H∞ PERFORMANCE

In this section, by assuming that the control gainkc

is known, some delay-range-dependent conditions for the
stability of the network respect to the delay parameter are
proposed using Lyapunov method.

Theorem 3.1: For given positive scalarsd1,d2,γ , the
system (10)-(11) is asymptotically stable and satisfies theH∞
performance boundγ by the control gainkc , if there exist
a matrix Y and some positive-definite matricesS1,S2,S3,Z
such that the following LMIs are feasible,

Γ :=





Γ11 −Y +S1B S1C
∗ Γ22 Γ23

∗ ∗ Γ33



< 0 (13)

[

S1 Y
∗ Z

]

≥ 0 (14)

with d12 := d2− d1 and Γ11 = Y +Y T + S3(1+ d12)+ d2S1,
Γ22 = −S3 + BT S1B + DT D, Γ23 = BT (d2Z + S1)C + DT E,
Γ33 =−γ2I +CT (S1+d2Z)C+ET E. The symbol∗ denotes
the elements below the main diagonal of a symmetric block
matrix.
Proof: Consider the Lyapunov function candidate in the
following form

V (nT ) =
4

∑
i=1

Vi(nT ) (15)

where

V1(nT ) = Xi(nT )T S1Xi(nT ) (16)

V2(nT ) =
−1

∑
s=−d2

k

∑
j=k+s+1

[Xi( jT )−Xi(( j−1)T )]T

×S2[Xi( jT )−Xi(( j−1)T )] (17)

V3(nT ) =
n−1

∑
j=n−d(n)

Xi( jT )T S3Xi( jT ) (18)

V4(nT ) =
−d1+1

∑
j=−d2+2

n−1

∑
l=n+ j−1

Xi(lT )
T S3Xi(lT ) (19)

After some manipulations on∆Vi(nT ) = Vi((n + 1)T ) −
Vi(nT ), the following result can be obtained

∆V (nT ) =
4

∑
i=1

∆Vi(nT )≤ χ(nT )T Γ1χ(nT ) (20)

whereχ(nT ) :=
[

χ̂(nT )T W (nT )T
]

and

Γ1 :=





Γ̂1
S1C

BT (d2Z +S1)C
∗ CT (S1BT +d2Z)C





with
χ̂(nT ) :=

[

Xi(nT )T Xi((n−d(n))T )T
]

Γ̂1 :=

[

Γ11 −Y +S1B
∗ −S3+BT S1B

]



Furthermore, in the case ofW (nT ) = 0, it follows from (20)
that

∆V (nT )≤ χ̂(nT )T Γ̂1χ̂(nT )≤−λmin(−Γ̂1) |χ̂(nT )|2 (21)

On the other hand, considering the Lyapunov function (15),
one gets

λmin(S1) |Xi(nT )|2 ≤V (nT )

≤ α |Xi(nT )|2+α(1+d12+2d2)
n

∑
j=n−d2

|Xi( jT )|2 (22)

whereα = max{λmax(s1),λmax(s2),λmax(s3))}. Define

JM =
M

∑
n=0

[o(nT )T o(nT )− γ2W (nT )TW (nT )] (23)

where M is a positive integer scalar. Now, noting the zero
initial condition and (20), one has

JM =
M

∑
n=0

[o(nT )T o(nT )− γ2W (nT )TW (nT )+∆V (nT )]

−V ((M+1)T )≤
∞

∑
n=0

χ(nT )T Γχ(nT )

with Γ defined in (13). Now, it follows from the inequality
above thatΓ < 0 , which together with (22) ensure that (12)
holds under the zero initial condition.⋄

Fig. 1. Omni-directional order-flow structure example.

IV. N UMERICAL RESULTS

Consider the case of a supplier of components to the au-
tomotive industry and for which production data documents
orders flowing between five work systems over a 162-day
period. These work systems and the order-flow structure over
this period is illustrated in Fig. 1. In this network, all order

flows are unidirectional. Then, the internal flow of orders is
approximated using the following matrix [3],

P =













0 106/341 235/341 0 0
0 0 0 188/401 204/401
0 0 0 100/236 129/236
0 0 0 0 268/295
0 0 0 0 0













Consider the sampling timeT = 1 scd. According to The-
orem 3.1, for the asymptotic stability of the network under
consideration,H∞ performance levels,γ, underd1 = 1, the
controller gainkc = 0.1 scd−1 and different values of the
upper bounds of the delay,d2, are shown in Table I.

TABLE I

OPTIMAL H∞ PERFORMANCE LEVELSγ W.R.T. d2.

d2 = 2 d2 = 3 d2 = 4 d2 = 5
Theorem 3.1 0.385 0.475 0.730 0.785

V. CONCLUSION

The problem of stability analysis with anH∞ performance
for a class of production networks of autonomous work
systems with delays in the capacity changes was investi-
gated in this paper. The system under consideration shares
information between work systems and the work systems
adjust capacity with the objective of maintaining a desired
amount of local work in progress. In terms of linear matrix
inequalities some delay-range-dependent stability conditions
were derived for the network.
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