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MUTUAL INDUCTANCE FOR AN EXPLICITLY FINITE
NUMBER OF TURNS

J. T. Conway

University of Agder
9 Lilletuns Vei, Grimstad 4879, Norway

Abstract—Non coaxial mutual inductance calculations, based on a
Bessel function formulation, are presented for coils modelled by an
explicitly finite number of circular turns. The mutual inductance of
two such turns can be expressed as an integral of a product of three
Bessel functions and an exponential factor, and it is shown that the
exponential factors can be analytically summed as a simple geometric
progression, or other related sums. This allows the mutual inductance
of two thin solenoids to be expressed as an integral of a single analytical
expression. Sample numerical results are given for some representative
cases and the approach to the limit where the turns are considered to
be smeared out over the solenoid windings is explored.

1. INTRODUCTION

The formula encountered most frequently for calculating the mutual
inductance M21 of two coaxial circular loops of radii R1 and R2 which
lie in the parallel planes z = z1 and z = z2 is the elliptic integral
formula:

M21 = µ0

√
R1R2

k

[(
2− k2

)
K (k)− 2E (k)

]
(1)

where

k =

√
4R2R1

(R2 + R1)
2 + (z2 − z1)

2 . (2)

In Equations (1) and (2), µ0 is the permeability of free space and z is
the axial coordinate of a cylindrical coordinate system (r, φ, z). These
formulas are frequently used to calculate the mutual inductance of two
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complete coils, each with a finite number of turns, by summing over
all the loop pairings between the coils. A primary disadvantage of
Equations (1) and (2) is that they are restricted to the coaxial case.

It has long been known that the mutual inductance can also be
expressed as an equivalent integral involving Bessel functions:

M21 = µ0πR1R2

∞∫

0

J1 (sR1) J1 (sR2) exp (−s |z2 − z1|) ds. (3)

Havelock [1] used Equation (3) to obtain series solutions for coaxial
coils but historically Equation (3) has been mostly ignored. The
problem has been that the integral in Equation (3) is highly
oscillatory and it is only fairly recently that computer packages such
as Mathematica [2] have appeared which can evaluate (3) to high
accuracy. Even today, evaluation of (3) is much slower than evaluation
of (1) and (2). Numerical experimentation with Mathematica [2]
indicated that numerical evaluation of Equation (3) requires a factor
of approximately 103 more cpu time to evaluate to high accuracy
(30 significant figures) than Equations (1) and (2). This estimate is
somewhat fluid and is changing with algorithm development.

It is to be noted that the geometric parameters in (3) are separated
out as individual factors, and this allows (3) to be analytically
integrated radially and axially to give formulas for the mutual
inductance of complete coils, in the approximation where the finite
number of turns for each coil are considered to be smeared out over
the windings of the coils. A typical pair of non coaxial coils is shown
schematically in Figure 2. The coils are considered to consist of a
discrete number of turns, with in general different turn spacings in the
radial and axial directions. The coils have inner radii R

(1)
in and R

(2)
in ,

outer radii R
(1)
out and R

(2)
out, and axial lengths L1 and L2. The individual

turns lie in the planes z = zi and z = zj and the coil axes are separated
by a perpendicular distance p. Thick coils can be considered to consist
of either of axial stacks of annular ring coils or radial stacks of thin
solenoids.

Equation (3) has been extended [3] to the non coaxial case shown
in Figure 1 using Neumann’s addition theorem for Bessel functions [4]:

J0

(
s
√

R2
2 + p2 − 2pR2 cosφ

)

= J0 (sp)J0 (sR2) + 2
∞∑

n=1

Jn (sp) Jn (sR2) cos (nφ) (4)
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Figure 1. Circular loops of radii
R1 and R2 lying in parallel planes
z = z1 and z = z2 and separated
by a perpendicular distance p.

Figure 2. Two thick solenoids
constructed of discrete turns.

to give the simple generalization:

M21 = µ0πR1R2

∞∫

0

J0 (sp) J1 (sR1) J1 (sR2) exp (−s |z2 − z1|) ds. (5)

Equation (5) can be obtained more directly than in [3] using Graf’s
generalization of Neumann’s theorem [4, 5]. For two coplanar loops
with z2 = z1, Equation (5) reduces to

M21 = µ0πR1R2

∞∫

0

J0 (sp) J1 (sR1) J1 (sR2) ds (6)

and this integral can be evaluated in closed form in terms of Legendre
functions using the results given by Gervois and Navelet [6]. Using the
addition theorem (4), Equation (5) can be expressed in the form

M21 =µ0R1R2

∞∫

0

π∫

0

cos(φ)J0(sp)J0(sχ(φ)) exp(−s|z2 − z1|)dφds (7)

where
χ (φ) =

√
R2

1 + R2
2 − 2R1R2 cosφ (8)

and the integral with respect to s in Equation (7) can be evaluated in
terms of a Legendre function of the second kind [4, 7] to give

M21 =
µ0R1R2

π

π∫

0

cos(φ)√
pχ(φ)

Q−1/2

(
p2 + χ2(φ) + (z2 − z1)2

2pχ(φ)

)
dφ. (9)
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The Legendre function in (9) can be expressed in terms of a complete
elliptic integral of the first kind [8] to give the alternative expression

M21 =
2µ0R1R2

π

π∫

0

cos (φ)K
(
k̂ (φ)

)
√

(p + χ (φ))2 + (z2 − z1)
2
dφ (10)

where

k̂ (φ) =

√
4pχ (φ)

(p + χ (φ))2 + (z2 − z1)
2 . (11)

The integrals (9) and (10) are more numerically robust alternatives to
Equation (5).

When calculating the mutual inductance of two thick coils
by smearing the turns over the coil windings [9], integration of
Equation (5) gives rise to only one integral of Bessel and Struve
functions. For the discrete case, integration is replaced with
summation over the various combinations of pairs of turns. It
is undesirable to have an integral such as (5) for each turn pair
combination, and fortunately this can be avoided by summing the axial
factors resulting from Equation (5) using the elementary formula

N∑

n=0

xn =
1− xN+1

1− x
(12)

and similar summations derived from this one. This allows the mutual
inductance of two thin cylindrical solenoids to be evaluated as a single
integral not significantly more complex than Equation (5). The mutual
inductance of two thick coils can then obtained by summing over the
various combinations of thin solenoids. With current knowledge, it
does not seem to be possible to sum analytically in the radial direction
in the same manner as in the axial direction.

The work presented here is essentially the non coaxial Bessel
function equivalent of the filamentary method based on elliptic
integrals. The filamentary method has been applied successfully to
non coaxial cases by Akyel, Babic and Mahmoudi [10].

The special functions used in the analysis presented here are given
in Table 1.
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Table 1. Special functions used.

Symbol Special Function

E(β, k) Elliptic integral of the second kind

E(k) Complete elliptic integral of the second kind

F (β, k) Elliptic integral of the first kind

H(x) Heaviside step function

Jν(x) Bessel function of the first kind

K(k) Complete elliptic integral of the first kind

Qµ(ω) Legendre function of the second kind

sgn(x) −1, 0, or +1 for x negative, zero, or positive

δ(x) Dirac delta function

Λ0(β, k) Heuman’s Lambda function

2. FORMULATION

The vector potential of a circuit C1 carrying a current of one amp is
given by

A1 (r) =
µ0

4π

∮

C1

dr1

|r− r1| . (13)

If C1 is a circular turn of radius R1, located in the plane z = z1

of cylindrical coordinates (r, φ, z) and centred on the cylindrical axis,
then Equation (13) becomes

A1 (r) =
µ0R1

2π

π∫

0

cosφ√
R2 + r2 + (z − z1)

2 − 2R1r cosφ
. (14)

Equation (14) can be expressed in terms of complete elliptic integrals
as

A1 (r) =
µ0

2π

√
R1

r

((
2− k̄2

)
K

(
k̄
)− 2E

(
k̄
)

k̄

)
(15)

where

k̄ =

√
4R1r

(R1 + r)2 + z2
(16)

or alternatively as an integral involving a product of Bessel
functions [3]:

A1 (r) =
µ0R1

2

∞∫

0

J1 (sR1) J1 (sr) exp (−s |z − z1|) ds. (17)
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The mutual inductance M21 of the circuit C1 with another circuit C2

is given by

M21 =
∮

C2

A1 (r2) · dr2 (18)

and if C2 is a coaxial circular loop of radius R2, then substitution
of (15)–(16) and Equation (17) into Equation (18) gives Equations (1)
and (3) respectively.

For the non coaxial case shown in Figure 3, substitution of
Equation (17) into Equation (18) and exploiting the symmetry
properties of the integrand gives

M21 = µ0R1R2 ×
∞∫

0

π∫

0

J1(sR1) exp(−s|z2−z1|)

cosψJ1

(
s
√

p2+R2
1+2pR2 cosφ′

)
dφ′ds (19)

where r ≡
√

p2 + R2
1 + 2pR2 cosφ′ and ψ ≡ eφ · eφ′ is the angle

between the vector A1(r2) and the line element dr2. The angles
φ, φ′ and ψ ≡ φ′ − φ are shown in Figure 3. The factor
cosψJ1(s

√
p2 + R2

2 − 2pR2 cosφ′) can be expanded as a Fourier series
in φ′ using Graf’s addition theorem [4, 5] to give

cos (ψ)J1

(
s
√

p2 + R2
2 − 2pR2 cosφ′

)

= J1 (sR2) J0 (sp) + 2
∞∑

m=1

Jm+1 (sR2) Jm (sp) cos
(
mφ′

)
, (20)

valid for all ψ. When Equation (20) is substituted into Equation (19),
only the first term survives to give Equation (3). The non coaxial

R1

e

r

p
φ

φ

ψ

ψ
'eφ

R2

'φ

Figure 3. Geometry for Graf’s addition theorem.
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Equation (5) is no more time consuming to evaluate numerically than
the coaxial Equation (3). However, no non coaxial elliptic integral
equivalent of Equations (1) and (2) has yet been found, and filamentary
approaches using elliptic integrals are forced to treat the non coaxial
case by numerical integration of Equation (15) around the secondary
coil. Depending on the accuracy demanded, this reduces the advantage
of an elliptic integral approach, for a single pair of non coaxial loops, to
somewhere between 102 and 10. Romberg integration of Equation (15)
around the circumference of the the secondary loop is employed in [10].

2.1. Application to Finite Solenoids

The geometric parameters occur as separate factors in Equation (3),
which allows axial and radial integrations to give the mutual
inductance of finite solenoids where the discrete turns of the two
solenoids are considered to be smeared out over the cross sections of
the coils. Integration of the Bessel functions presents no difficulties,
but a complication arises from the modulus sign in the exponential,
since either

exp (−s |z2 − z1|) = exp (−sz1) exp (sz2) for [z1 > z2]
or

exp (−s |z2 − z1|) = exp (sz1) exp (−sz2) for [z2 > z1].

Hence inductance cases must be treated differently depending on
whether there is axial overlap or not. When the inductance is
calculated by smearing the turns over the solenoid windings, the three
cases shown schematically in Figure 4 are sufficient. However, when
the discrete nature of the turns is considered, additional sub-cases must
be analyzed.

3. NO OVERLAP CASE

The generic case of no overlap is the simplest to analyze and is shown
schematically in Figure 5. No particular relationship between the turn
pitches L1/(N1 − 1) and L2/(N2 − 1) need be assumed in this case.
The mutual inductance is given by
M21 = µ0πR1R2

×
∞∫

0

J0(sp)J1(sR1)J1(sR2)

(
N1−1∑

n=0

N2−1∑

m=0

exp(−s|zn − zm|)
)

ds (21)

and for this case each of the exponential factors satisfies:
exp (−s |zn − zm|) = exp (−szm) exp (szn) (22)
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Figure 4. Distinct solenoid
overlap cases.

Figure 5. Non coaxial solenoids
with no axial overlap.

where the index m is assumed to run over the turns of the coil with
the largest axial coordinates. It is convenient to measure the axial
coordinate from the top of the stack of turns of Coil 1, as shown in
Figure 5, which gives

zn = − nL1

N1 − 1
(23)

zm = a +
mL2

N2 − 1
(24)

and the double summation in Equation (21) becomes
N1−1∑

n=0

N2−1∑

m=0

exp (−s |zn − zm|)

= exp (−sa)
N1−1∑

n=0

N2−1∑

m=0

exp
(
−s

nL1

N1 − 1

)
exp

(
−s

mL2

N2 − 1

)
. (25)

This summation can be evaluated using Equation (12), which gives the
inductance as

M21 = µ0πR1R2

∞∫

0

J0 (sp) J1 (sR1) J1 (sR2)

× exp (−sa)
1− exp

(
−s N1L1

N1−1

)

1− exp
(
−s L1

N1−1

)
1− exp

(
−s N2L2

N1−1

)

1− exp
(
−s L2

N2−1

)ds. (26)
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Figure 6. A coil with N turns and a non overlapping single turn.

If one of the coils consists of a single turn and the second coil has N
turns and length L, as shown in Figure 6, then Equation (26) reduces
to

M21 = µ0πR1R2

×
∞∫

0

J0(sp)J1(sR1)J1(sR2) exp(−sa)
1−exp

(
−s NL

N−1

)

1−exp
(
−s L

N−1

)ds. (27)

Evaluation of Equation (26) has essentially the same computational
cost regardless of the number of turns in the coils and is the principal
result presented here. Equation (26) can be compared with the
corresponding formula given in [3] for the case where the turns are
considered to be smeared out over the coil windings:

M21 =
µ0πN1N2R1R2

(d1 − c1) (b1 − a1)

∞∫

0

J0 (sp) J1 (sR1) J1 (sR2) f (s) ds (28)

where

f (s) = +
exp (−s (c1 − b1))− exp (−s (d1 − b1))

s2

+
exp (−s (d1 − a1))− exp (−s (c1 − a1))

s2
(29)

and in this case

a1 = 0 (30)
b1 = L1 (31)
c1 = L1 + a (32)
d1 = L1 + L2 + a. (33)

Table 2 gives values of M21/(N1N2) as N1 and N2 are increased,
calculated with Equation (26). For comparison, the ratio of M21



282 Conway

Table 2. Mutual inductance of two coils with no axial overlap. The
values of the geometric parameters in metres are: R1 = 1, R2 = 2,
p = 0.5, L1 = 2, L2 = 4 and a = 1.

N1 N2 M21/(N1N2) µF/turn2 Discrete/Continuous

2 4 0.1681055355249557 1.428582568227190

4 8 0.1355886265972299 1.152249673407768

8 16 0.1254934023899186 1.066459153304585

10 20 0.1237738380992955 1.051846073712298

100 200 0.1182327677621735 1.004757341814126

200 400 0.1179515824161245 1.002367792400705

400 800 0.1178119519219559 1.001181194414272

800 1600 0.1177423753806299 1.000589923973442

1000 2000 0.1177284791021068 1.000471831602483

104 2× 104 0.1176785049115029 1.000047144471658

105 2× 105 0.1176735119995567 1.000004714060614

106 2× 106 0.1176730127533939 1.000000471402196

109 2× 109 0.1176729573375747 1.000000000471402

1012 2× 1012 0.1176729572821589 1.000000000000471

1015 2× 1015 0.1176729572821035 1.000000000000000

calculated with Equation (26) to that given by Equations (28)–(33) is
also shown. It can be seen from this table that the discrete inductance
and the inductance calculated by smearing out the turns over the
windings tend to each other only logarithmically as the number of
turns is increased. For coils with only a moderate number of turns,
the difference is significant.

4. SOLENOIDS WITH AXIAL OVERLAP

Figure 7 shows the general discrete case with axial overlap. It is more
complicated than the continuous case, which reduces to a few explicit
formulas [3]. An exception is when one coil consists of a single turn.
Then the case can be split into the sum of the two non-overlapping
cases shown in Figure 8. The general overlap case shown in Figure 7
can be regarded as a sum of cases such as that shown in Figure 8. This
is better than simply summing over all combinations of turns, but
ideally we want to do better than this, with full analytical summation
if possible. However, if one of the solenoids has relatively few turns,
this approach has the advantage of simplicity.
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Figure 7. Generic discrete overlap case. If the coils have different
radii the smaller coil may lie partially within the larger.

Figure 8. A coil with N turns
and an overlapping single turn.

Figure 9. Two fully overlapping
coils, each of length L and with N
turns each. The radii of the coils
need not be equal and the smaller
coil may lie within the larger.

4.1. Two Fully Overlapping Coils with the Same Length and
Turn Pitch

A starting point for a more general overlap solution is the pair of fully
overlapping coils shown in Figure 9. The axial exponential factors in
this case can be expressed as:

N−1∑

n=0

N−1∑

m=0

exp(−s|zn−zm|) = N + 2
N−1∑

n=1

(N−n)
(
exp

(
− sL

N− 1

))n

(34)

and this can be evaluated using the elementary summation:

N + 2
N−1∑

n=1

(N − n) xn = N + 2x

(
xN − 1
(1− x)2

+
N

1− x

)
. (35)
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This gives the multiplicative factor arising from the sum of the axial
terms as:

f1(s)=N+2 exp
(
− sL

N−1

)



exp
(
−sNL

N−1

)
−1

(
1−exp

(
− sL

N−1

))2 +
N

1−exp
(
− sL

N−1

)


 . (36)

The corresponding factor for this case in the approximation where the
turns are considered to be delocalized over the coil windings is [3]

f2 (s) = 2
(

L

s
+

exp (−sL)
s2

− 1
s2

)
. (37)

Equations (35) and (37) both contain terms without exponential
decays, which could be evaluated analytically [3]. Sample numerical
results for this case, calculated using Equations (36) and (37), are given
in Table 3.

Table 3. Mutual inductance for two fully overlapping coils with the
same length and turn pitch. The values of the geometric parameters
in metres are: R1 = 1, R2 = 2, p = 0.5 and L = 2. The smaller coil is
completely within the larger.

N M21/(N2) µF/turn2 Discrete/Continuous

2 0.7491855021351923 0.8464865122913206

4 0.7967893017949642 0.9002728899387401

8 0.8424680854228049 0.9518842387016841

10 0.8512804345168687 0.9618410980221967

100 0.8817748761391568 0.9962960273548573

200 0.8834165496739562 0.9981509144299979

400 0.8842354572439289 0.9990761782142269

800 0.8846444319734841 0.9995382688332389

1000 0.8847261887136125 0.9996306437892550

104 0.8850204077266067 0.9999630747098340

105 0.8850498205758672 0.9999963075742129

106 0.8850527617703432 0.9999996307584535

109 0.8850530882419161 0.9999999996307586

1012 0.8850530885683876 0.9999999999996308

1015 0.8850530885687141 1.000000000000000
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5. TWO COILS OF THE SAME LENGTH AND TURN
PITCH DISPLACED BY A DISTANCE LESS THAN THE
PITCH

This case is shown schematically in Figure 10. For this case the
exponential factor given in Equation (35) generalizes to give

f3 (s) = N exp (−s∆z)

+2 cosh (s∆z)
N−1∑

n=1

(N − n)
(

exp
(
− sL

N − 1

))n

(38)

and on evaluating the summation this becomes

f3 (s) = N exp (−s∆z) + 2 cosh (s∆z) exp
(
− sL

N − 1

)

×

 exp

(
− sNL

N−1

)
− 1

(
1− exp

(
− sL

N−1

)) +
N

1− exp
(
− sL

N−1

)

 . (39)

It is to be noted that this expression diverges as s →∞ for

∆z >
L

N − 1
.

Sample numerical results for this case with N = 5 are given in Table 4.

6. GENERAL CASE OF OVERLAPPING COILS

Two partly overlapping coils with the same turn pitch are shown in
Figure 11. This case can be solved by splitting it as shown in the

Figure 10. Two coils with the
same length and turn pitch, with
a relative axial displacement ∆z.

Figure 11. Two overlapping
coils with the same turn pitch.
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Table 4. Mutual inductance M21 for two coils of length L metres and
N turns each. The coil radii are R1 = 1 m and R2 = 2 m. The coil
axes are displaced by a perpendicular distance p = 0.5m, so that the
smaller coil lies partially inside the larger.

∆z inmetres M21 in µF

0 14.038668800139634

0.1 14.007868189152043

0.2 13.923359801741833

0.3 13.804359620604865

0.4 13.672180125973312

0.5 13.542836246459151

0.6 13.423591793706997

0.7 13.312233681646097

0.8 13.198064449358292

0.9 13.065095029475769

1 12.898304947462684

Figure. If the overlapping turns lie in the same axial planes for both
coils then (36) is to be used for the overlap, otherwise (39) is to be
used.

Pairs of coils with pitches in a fixed ratio can also be solved
by superposition of simpler cases, though in the general case these
superpositions are complicated. For simplicity’s sake it may be
preferable to solve the general case by splitting the coil with the fewest
turns into single turns and superposing cases such as that shown in
Figure 8. If the discreteness of the coils is an issue at all, this must
mean that at least one of the pair has a moderate number of turns. This
solenoid can then be split into single turns at moderate computational
cost.

7. CONCLUSIONS

Two discrete solenoids can be efficiently analyzed with a Bessel
function formalism by summing analytically in the axial direction. This
allows the approach to the continuous limit to be examined in great
detail, as any number of discrete turns has the same computational cost
as only a few turns. A number of cases can be analytically summed,
but for the completely general case it is more convenient to split one
of the solenoids into discrete turns.

The computational advantage of the method presented here
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depends on the number of turns and whether or not the case is non
coaxial. Assuming (conservatively) that the advantage for the elliptic
integral approach over the Bessel function approach is 102 for two
noncoaxial turns, then the break even point is for two coils with 10
turns each. The calculations presented here for non coaxial coils, where
the number of turns is sufficient to approximate the continuous limit to
high accuracy, are totally impossible with the elliptic integral approach.
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