
  

  

Abstract— In this paper, the problem of robust multi-
objective control design with an ∞H  constrain is studied for a 
class of linear two-time scale systems. The design is based on a 
new modelling approach under the assumption of norm-
boundedness of the fast dynamics. In this method, a portion of 
the fast dynamics is treated as a norm-bounded perturbation in 
the design by its maximum possible gain. In this view, the 
problem of robust multi-objective control design is performed 
only for the certain dynamics of the two-time scale system, 
whose order is less than that of the original system. One 
illustrative example is used to demonstrate the validity of the 
proposed approach. 

I. INTRODUCTION 
Control of two-time scale systems has been intensively 
studied for the past three decades and a popular approach 
adopted to handle these systems is based on the so-called 
reduced technique; see, e.g. [1]-[2]. The composite design 
based on separate designs for slow and fast subsystems has 
been systematically reviewed in [3]-[4]. The stability 
problem (ε-bound problem) in two-time scale systems 
differs from conventional linear systems, which can be 
designed as: characterizing an upper bound 0ε of the positive 
perturbing scalar ε such that the stability of a reduced-order 
system would guarantee the stability of the original full-
order system for all ),0( 0εε ∈ . Researchers have tried 
various ways to find either the stability bound 0ε  or a less 
conservative lower bound for 0ε , see for instance the 
references [5]-[8]. Although numerous ways have been 
presented to compute the bound ∗ε , unfortunately, only 
some of the conservative bounds of ε  were achieved. 
Recently, the authors in [5] proposed the robust stability 
analysis and stability bound improvement of ε  in the two-
time scale systems by using linear fractional transformations 
and structured singular values (μ) approach. In [9], a 
computational method based on Haar wavelets to the 
problem of optimal control of linear singularly perturbed 
systems is studied.  
The research on two-time Scale systems in the ∞H  sense is 
of great practical importance, particularly in the last few 
years; see, e.g. [10]-[12]. The ∞H optimal control of two-
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time scale linear systems, under either perfect state 
measurements or imperfect state measurements, for both 
finite and infinite horizons has been investigated in [13] and 
[14] via a differential game theoretic approach. Shi and 
Dragan in [11] also studied the design of a composite linear 
controller based on the slow and fast dynamics, such that 
both stability and a prescribed ∞H  performance for the full-
order system are achieved and in this line, they could solve 
the problem of robust control for the above system with 
time-varying norm-bounded parameter uncertainty. The 
authors in [15] proposed how to perform order-reduction of 
a balanced system using theory of singular perturbations that 
can produce very good accuracy at high frequencies 
particularly for systems that have lightly damped highly 
oscillatory modes. Recently, the robust stability and 
disturbance attenuation for a class of uncertain two-time 
scale systems has been investigated in [6]. In [5], the 
problem of ∞H  control for linear two-time scale systems is 
investigated. The authors’ attention is focused on the robust 
regulation of the system based on a new modelling approach 
under the assumption of norm-boundedness of the fast 
dynamics. In the proposed approach, the fast dynamics are 
treated as a norm-bounded disturbance (dynamic 
uncertainty). Also, the proposed strategy is applied to a 
single-link flexible arm in [16]. The authors in [17] proposed 
the problem of designing a robust ∞H  output feedback 
controller using a linear matrix inequality (LMI) approach 
for a class of singularly perturbed systems described by a 
Takagi–Sugeno fuzzy model. More recently, the problem of 

∞H control of discrete-time singularly perturbed systems 
was studied in [18]. A new sufficient condition, which 
ensures the existence of state feedback controllers such that 
the resulting closed-loop system is asymptotically stable 
while satisfying a prescribed ∞Η  norm bound, is obtained. 
This condition is in terms of an LMI, which is independent 
of the singular perturbation parameter. Moreover, robustness 
and reliability of decentralized stochastic singularly-
perturbed computer controlled systems with multiple time-
varying delays was studied in [19]. A robust passive stability 
criteria was derived in [20] for uncertain singularly markov 
jump systems with time delays.  
The contribution of this paper is three-fold: first, this paper 
extends the previous work [21] on multi-objective control 
synthesis for robust regulation with an ∞H  constrain (RR

∞H C) for linear two-time scale systems; second, based on a 
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new modelling approach, a dynamical model for the system 
under consideration is presented such that a portion of the 
dynamics may be treated as a norm-bounded dynamic 
uncertainty; third, a robust multi-objective ∞H  control is 
designed only for the certain dynamics of the two-time scale 
system, whose order is less than that of the original system. 
Clearly, it means that the proposed approach deals with only 
those two-time scale systems where the fast subsystem is 
norm-bounded. Although, this might be considered as a 
restriction on systems under consideration, it covers many 
control systems, for instance mechanical systems having two 
types, i.e., slow and fast, behaviours. In this view, the 
synthesis is performed only for certain dynamics of the 
system [5]. In this view, the problem of robust multi-
objective ∞H  control design is performed only for the 
certain dynamics of the two-time scale system, whose order 
is less than that of the original system. It should be noted 
that this scheme is significantly different from the 
conventional approaches of order reduction for linear two-
time scale systems. The controller synthesis problem 
addressed in this paper is to design (if possible) an 
admissible controller that solves the problem of RR ∞H C 
based on the internal model principle. Two examples are 
provided to illustrate the efficiency of the proposed 
approach. 

 
 
Fig. 1. Setup for the RRGBU. 

 
II. MULTI-OBJECTIVE  CONTROL 

In this section, the results of [21] concerning multi-objective 
∞H  suboptimal control with the controller constrained to 

achieve robust closed-loop regulation is reviewed. 
Throughout this section, the finite-dimensional linear time-
invariant system  
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is represented by 
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where yuT  is the transfer function mapping input u  to output 
y . 

Let Δ  denote the map from z  to v  and ΔP  be as shown in 
Figure 1. Assume that the 2L  norm of Δ  is bounded by 
some positive number. The problem of Robust Regulation in 

the presence of Gain-Bounded Uncertainty (RRGBU) may 
be stated as follows: Given a real number 0>vγ , design a 
controller such that for all gain-bounded Δ  with 1−

∞
<Δ vγ ,  

i. The controller internally stabilizes ΔP , 
ii. The regulated output )(te  converges to zero as ∞→t , 

iii. The convergence property holds for all plants in some 
neighbourhood of ΔP  in the sense of the graph topology. 

It is shown in [21] that the RRGBU problem is equivalent to 
a certain multi-objective problem that will be discussed in 
the context of Figure 2. The multi-objective problem is to 
design a single controller that solves both the robust 
regulation problem (from 0≡rw  to 1Ζ  with  0≡v ) and the 

∞H  suboptimal control problem (from v  to Ζ with 0≡rw  ).  
 
Definition 1. The multi-objective problem is to design a 
controller  K  for a given real number 0>γ  such that 
1) K  internally stabilizes P . 
2) 0)(1 =ΤΖ krw jω  for Nk ,,1…= . 
3) property 2) holds for all plants in some neighbourhood of 
P  in the graph topology, and 
4) γ<Τ

∞Ζv . 
 
Objectives 1) through 3) in Definition 1 constitute the 
standard problem of robust regulation as defined previously. 
Objective 4) is the usual ∞Η  norm requirement. This multi-
objective problem will be called the problem of robust 
regulation with an ∞Η constraint (RR ∞Η C). 
 

 
Fig. 2. Setup for the RR ∞Η C. 

Note that our proposed design technique is based on state 
feedback. By the Internal Model Principle [22], any 
controller that solves the output regulation problem, 
internally incorporates a model of the dynamical system 
generates the reference trajectories. 
 
Theorem 1. [21] Let Κ  be any finite-dimensional linear 
time-invariant controller. Then Κ  solves the RRGBU 
problem for P  if and only if Κ solves the RR ∞Η C  
problem for P . 
 
Definition 2 (Internal model matrices). A

~  and B~  are 
internal model matrices associated with the robust regulation 
problem determined by Nωω ,,1 …  if these matrices satisfy 
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a) },,{)
~

( 1 NjjAspec ωω ±±= … , 
b) every eigenvalue of A

~  has multiplicity l . 
c) A

~  is diagonalizable, and 
d) )~,

~
( BA  is controllable. 

Remark 1. Matrices A
~  and B~  satisfying a)-d) of Definition 

2 can be realized in many different ways. According to [21], 
the following realization is given here. 
With every frequency kω  to be regulated against, associate 

system matrices kA
~  and kB~  are as follows.  If 0=kω , 

choose integrator dynamics 
ll

k
ll

k RIBRA ×× ∈=∈= ~,0
~ .                    (3) 

If 0≠kω , choose harmonic oscillator dynamics 
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It is straightforward to verify that A~  and B~  as constructed 
do, in fact, satisfy requirements a)-d) of Definition 2. 
We make the following standard assumptions on P . 
A1) IC =2  and 021 =D . 
A2) ),( 2BA is stabilizable. 
A3) ),,( 11 BAC has no uncontrollable/unobservable modes on 
the imaginary axis 
A4) 0112 =CDT  and IDDT =1212 . 
Theorem 2. [21] Let the plant P  of Fig. 3 satisfy the 
standard assumptions A1)-A4).  Then the following are 
equivalent. 
i) There exists an admissible controller for P  that solves the 
robust regulation problem from rw  to 1Ζ  at the frequencies 

Nωω ,,1 … while also making γ<Τ
∞Ζv  (the RR ∞Η C 

problem). 
ii) There exists an admissible controller for P  that renders 

γ<Τ
∞Ζv , and 

NkBBBB k
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2 …=ΤΤ>ΤΤ ∗∗γ            (6) 

where 1)(]0[ −−ΔΤ AIjI klk ω  and 

XBBBBAA TT )( 2211
2 −+Δ −γ , and X  is the positive semi-

definite, stabilizing solution to 
.0)( 112211

2 =+−++ − CCXBBBBXAXXA TTTT γ           (7) 
Moreover, if either (hence both) of these conditions hold, 
then a controller K  that solves the RR ∞Η C problem for 
P  is given by  
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Here L  is the unique solution to ]0[~~
lIBLAAL =− . the 

intemal model matrices A~  and B~  satisfy a)-d) of Definition 
2, and W  is a positive-definite matrix that satisfies the 
Lyapunov inequality 

.0)(
~~

2211
2 <−++ − TTTT LBBBBLAWWA γ           (9) 

 
III. MAIN RESULTS 

The system under consideration, with slow and fast 
dynamics is described in the standard two-time Scale form 
by 

η=+++= )0(,111211 srrfss xwbubxaxax               (10a) 

ξε =+++= )0(,222221 frrfsf xwbubxaxax         (10b) 

fs xFxCy +=                                                             (10c) 

where nnRa ×∈11 , mnRa ×∈12 , nmRa ×∈21 , mmRa ×∈22 , knRb ×∈1 , 
kmRb ×∈2 , nrRC ×∈ , mrRF ×∈ , sn

r Rb ×∈1  and sm
r Rb ×∈2  are 

the certain matrixes and nT
nssss Rxxxx ∈= ],...,,[ 21

, 
mT

mffff Rxxxx ∈= ],...,,[ 21
, rRty ∈)( and kRtu ∈)(  represent 

the state vectors of the slow and fast dynamics and measured 
output and control input, respectively, and s

r Rtw ∈)(  is an 
exogenous input. Also, η  and ξ  are, respectively, the 
initial states of )(txs  and )(tx f . The singularly perturbed 
parameter ε  is nonnegative and always represents the 
response time of the fast dynamics. 
In this paper, our objective is to view a portion of the fast 
dynamics as norm-bounded uncertainty. Therefore, we call 
them as unmodeled dynamics. Although the unmodeled term 
refers to a subsystem whose dynamics are not known, it is 
used here to emphasize that the complete characteristics of 
this subsystem will not be utilized in the synthesis. If this is 
feasible, then the synthesis has to satisfy the design 
specifications only for the “known dynamics”, hereafter 
referred to as the plant nominal dynamics. The unmodeled 
dynamics, on the other hand, may be considered as a 
subsystem that is connected to the plant nominal dynamics. 
In this section, our objective is to apply the above concept to 
a linear two-time Scale system. The extension to a nonlinear 
two-time scale system should in principle be feasible and is 
a topic for future work. 
 
3.1 A New Modelling Approach  
Suppose the fast dynamics are stable. We will show that a 
portion of the fast dynamics may be treated as a norm-
bounded uncertainty and the remaining part can be 
augmented to the slow dynamics. In this view, (10) will 
read: 
Nominal system:    

     rrXXvX wBuBvAXAXE +++=                  (11a) 
           vDXCy 212 +=                                     (11b) 

Uncertain system:     
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such that 
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From comparison between (10) and (11), we find 
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In which T
mii vvvv ),...,,( 1+=  is the vector of fast dynamics, 

which is to be treated as a norm-bounded uncertainty and 
TT

v
T
s xxX ),(=  (which T

iv vvvx ),...,,( 121 −=  for 1>i ) is the 
vector of certain dynamics, where i is the index of the first 
state of the uncertain dynamics. The value of this index will 
be determined in Remark 2 and the vectors η  and ξ  are the 
initial states. Therefore, the slow and fast vectors with 
dimension mn +  are partitioned into two parts. One part 
represents the plant nominal dynamics with dimension 

1−+ in , while the remaining part represents the uncertain 
dynamics with dimension 1+− im . 

 
Fig. 3. General Block Diagram of Overall Closed Loop 
System 
 
The above representation is shown schematically in Figure 
3. The nominal plant has two inputs )( uv  and two outputs 

)( yΖ . The first input represents the disturbances to be 
rejected (exogenous input). The second input is the control 
input that is used for feedback design. The controlled output 
Ζ  represents a penalty variable as well as a cost of the 
control input needed to achieve the prescribed goal. The 
second output is the measurement output that is made on the 
system. This is used to generate the control input, which in 
turn is the tool we have to minimize the effect of the 
exogenous input on the controlled output. A constraint that 
is imposed is that the mapping from the measurement to the 
control input should be such that the closed loop system is 
internally stable. The effect of the exogenous input on the 
controlled output after closing the loop is measured in terms 
of their energies and the worst-case disturbance of the 
closed-loop ∞Η  norm which is simply the 2L  induced norm. 

Suppose the objective is to only stabilize the system, i.e., the 
system has no exogenous input. By virtue of the small gain 
theorem, if the nominal plant is stable, the overall system 
would remain stable if the product of the 2L  gains of the 
nominal plant and unmodeled dynamics is less than one. It is 
clear that in the case of an unstable nominal plant, one has to 
first stabilize the system by designing the control law based 
on the measured output and then apply the small gain 
theorem to ensure stability. Consequently, only the dominant 
part of the states in the model (11a) will be considered for 
the propose of synthesis. In the following, we make the 
following standard assumptions on the nominal system 
(11a)-(11b). 
A5) Regarding to the nominal system, we assume that 

)( 2CBA XX  and )( 1CAA XvX  are stabilizable-
detectable and stabilizable-detectable, respectively, and rank 
of matrix 12D  is k  and rank of matrix 21D  is r . 
A6) The structured dynamic uncertainty )(sΔ  is assumed to 
be internally asymptotically stable whose ∞Η  norm is less 
than or equal to 1γ , i.e., 1)( γ≤Δ

∞
s . In the frequency-

domain one has: 
[ ]vvXv BAAIss 1)()( −−=Δ ε                    (12) 

where )(sΔ  denotes the open-loop transfer function from 
)(tZ  to )(tv  in (6). 

In this paper according to [5], the structure of the ∞H  
controller is determined for the nominal system (11a)-(11b)  
such that the sufficient condition of small gain theorem is 
satisfied, i.e., 

1<Δ⋅
∞∞ZvT                          (13) 

where 22
2

sup vZT
Lv

Zv
∈

∞
= . 

Remark 2. The following procedure illustrates the steps to 
be taken for finding the minimum value for i, i.e. the index 
of state after which the next states are to be considered as 
uncertainty. The procedure is as follows:  
Step 1. Set i =1. 
Step 2. Construct Equations (11a)-(11e). 
Step 3. Find the upper bound of 1γ  and 2γ , i.e., 1)( γ≤Δ

∞
s  

and 2γ≤
∞ZvT . 

Step 4. Check if 1. 21 <γγ       
           ∗ If yes, go to step 5. 
           ∗  If no, set i = i+1 and go to step 2. 
Step 5. Construct the controller from the information 
obtained above in the next subsection. 
Since the above procedure begins with i =1, it will always 
result in the minimum value for i. 
 

IV. CONTROL DESIGN 
In this section, the RR ∞Η C problem presented in the 
previous section is investigated such that an admissible 
controller is derived for the nominal and uncertain systems 
(11). According to Theorem 2, an admissible controller can 
be designed for nominal system so that the four conditions 
(1)-(4) in Definition 1 are satisfied. Since the output of the 
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nominal system includes all nominal system states and 
disturbance states (uncertain system), the control synthesis is 
done with full information (FI). Therefore, the desired 
controller is given as follows:  

   
⎥
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It is worth noting that the control structure (14) is possibly 
depending on the perturbation parameter ε . Therefore this 
dependency will be disappeared by using the theory of 
composite feedback controls for two-time scale systems. The 
following Theorem can proceed to resolve this problem.  
Theorem 3. [7] Consider the two-time scale system (10) 
with 0)( ≡tu . If the matrices 22a  and 21

1
221211 aaaaa −−=  are 

stable, the following relation holds: 
       },{max

∞∞∞
ΤΤ=Τ rfwfyrswsyryw                   (15) 

with 2
1

22)(:)( basIFsrfwfy
−−=Τ , FbasICsrswsy +−=Τ −1)(:)( , 

21
1

22 aaFCC −−= , rr babb 2
1

221
−−= , rbaFF 2

1
22
−−= , where the 

indexes s  and f  indicate the slow and fast parts of the 
corresponding variables, respectively. 
The above Theorem states that if a composite controller is 
designed for the reduced-order slow subsystem with a 
disturbance attenuation level γ , 

∞
Τ ryw  will not be smaller 

than γ  unless 
∞

Τ rfwfy (for the fast subsystem) is smaller 

than γ . According to Theorem 3, it can be concluded that 
the conditions 2 and 4 (in Definition 1) in the design of the 
admissible controller for the nominal system met the same 
conditions for slow and fast subsystems and main controller 
is obtained based on the theory of composite feedback 
controls for slow and fast subsystems for all ),0[ ∗∈ εε . It is 
desirable to further increase the upper limit of the disturbed 
parameter, i.e. ∗ε . 
 

V. SIMULATION RESULTS 
Consider a single–link flexible manipulator with six modes 
of deflection as the fast dynamics, taken from [16]. The state 
space model in this case is 

    uBxAxE +=                              (16a) 
  xCy =                                     (16b) 
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And y  is the tip position, m  is the arbitrarily large number 
of flexible modes, α  denotes the corresponding pole of the 
rigid dynamics, ),( ii ξω  are the frequency and damping ratio 
of the i th deflection mode, L  is the length of the link, TΙ  is 
the total inertia about the armature and iφ  represents i th 
mode shape.  
 

 
Fig. 4. Response of the tip position. 

 
Fig. 5. Response of the deflection modes of the nominal 
system. 
 

 
Fig. 6. Response of the deflection modes of the uncertain 
system. 
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The link parameters as well as the natural modes and the 
corresponding damping ratios used for design and simulation 
are given in Tables A.1 and A.2 in [5]. Table A.3 in [5] 
gives the pole-zero locations of 14th –order model of the 
single-link flexible manipulator considered in [23]. The 
objective is to design a controller so that the tip position 

)(1 txs  tracks a step input. According to the modelling 
approach presented in Section 3.1, three deflection modes 
are eligible to be considered as uncertainty [16]. Consider  
ε = 0.011, 1=γ  and 2)0(1 =sx  and the initial value of other 
dynamics are zero. We apply the state feedback controller 
(14) to nominal system. Figures 4 and 5 depict the regulation 
of tip position ( )(1 txs ) and other states (deflection modes) of 
the nominal system, also Figure 6 depicts the regulation of 
uncertainty dynamics ( Δ ). Moreover, the controller has 
been depicted in Figure 7. 
 

 
Fig. 7. ∞H controller. 

 

VI. CONCLUSIONS 
The problem of robust multi-objective ∞Η  control design 
for linear two-time scale systems based on a new modeling 
approach under the assumption of norm-boundedness of the 
fast dynamics was studied in this paper. In the proposed 
approach, the fast dynamics are treated as a norm-bounded 
uncertainty and the portion that is treated as a perturbation is 
incorporated in the design by its maximum possible gain. In 
this view, the problem of robust multi-objective ∞Η  control 
design was performed only for the certain dynamics of the 
two-time scale system, whose order is less than that of the 
original system. The controller synthesis problem addressed 
in this paper is to design (if possible) an admissible 
controller that solves the problem of robust regulation with 
an ∞Η  constrain (RR ∞Η C) based on the internal model 
principle. The effectiveness of the approach was presented in 
the simulation results.  
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