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Abstract: A mixed H2/H‘ output-feedback control design methodology for vibration
reduction of base-isolated building structures modelled in the form of second-order linear
systems is presented. Sufficient conditions for the design of a desired control are given in terms
of linear matrix inequalities. A controller that guarantees asymptotic stability and a mixed H2/
H‘ performance for the closed-loop system of the structure is developed, based on a Lyapunov
function. The performance of the controller is evaluated by means of simulations in MATLAB/
Simulink.
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1 INTRODUCTION

The protection of civil engineering structures has

always been a major concern especially when these

structures are built in places prone to hazardous

weather conditions (e.g. hurricanes, tsunamis),

zones of intense seismic activity, or when the

structure is subjected to heavy loadings (e.g. heavy

traffic on a bridge). If a structure is not well

protected against these phenomena, they can suffer

severe damage and, as a consequence, produce

personal injury or death, as during the earthquakes

in Mexico City (1985), Kobe (1995), northwestern

Turkey (1999), those that struck southern Asia in

2004 followed by the tsunamis, or more recently in

China (2008).

In order to make structures more resistant to these

phenomena, passive and active dampers have been

proposed. Passive dampers alleviate the energy

dissipation of the main structure by absorbing part

of the input energy, without the need of external

power sources. However, once installed, they are not

adaptable to changing loading conditions [1]. Active

dampers, on the other hand, can respond to

variations in the loading conditions and structural

dynamics but require large power sources and

additional hardware such as sensors and digital

signal processors (DSPs) to operate. Active dampers

can also inject energy to the structure and may

destabilize it in a bounded-input bounded-output

sense [2]. Semi-active devices provide an effective

solution to overcome the disadvantages of passive

and active dampers [3]. They have been shown to

perform significantly better than passive devices,

and as well as active devices, without requiring large

power sources, thus allowing for battery operation

[4]. The main characteristic of semi-active devices is

the rapid adaptability of their dynamic properties in

real time but without injecting any energy into the

system. Among diverse semi-active devices, mag-

netorheological (MR) fluid dampers are the most

attractive and useful ones. MR dampers can generate

a high yield strength, have low production costs,

require low power, and have a fast response and

small size. However, they are characterized by a

complex non-linear dynamics (typically hysteresis)

which makes mathematical treatment challenging,

especially in the modelling and identification of the

hysteretic dynamics and the development of control

laws for its implementation through MR dampers for

vibration mitigation purposes. Recently, semi-active

H‘ control of a vehicle suspension with an MR

damper was studied [5]. More recently, in reference
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[6], a computational algorithm was presented for the

modelling and identification of MR dampers by

using wavelet systems to handle the non-linear

terms. By taking into account the Haar wavelets,

the properties of an integral operational matrix and

product operational matrix were introduced and

then utilized to estimate the MR damper parameters

by considering only algebraic equations instead of

the differential equations of the dynamical system.

On the other hand, second-order systems capture

the dynamic behaviour of many natural phenomena,

and have found applications in many fields, such as

vibration and structural analysis, spacecraft control,

electrical networks, and robotics control, and hence

have attracted considerable attention (see, for

instance, references [7] to [10]). In the literature,

some seminal works have been reported on the

design of linear quadratic regulator (LQR) control

[11–13], sliding mode control [14], H2 control [15],

H‘ control [16, 17], guaranteed-cost control [18, 19],

and multiobjective control [20–24] for second-order

vibration systems.

In recent years, considerable attention has been

paid to systematic applications of semi-active linear

control algorithms for vibration control of building

structures subject to natural hazards, e.g. earth-

quakes and strong winds; see, for instance, reference

[25] and the references therein. A number of control

techniques have been developed for vibration con-

trol of structures equipped with MR dampers. The

clipped optimal control approach [26] was one of the

first controllers developed for this class of systems.

An optimal controller is designed to estimate the

force that mitigates the vibrations in the structure,

and the control signal takes only two values accord-

ing to an algorithm, in which the MR damper

dynamics are ignored. Control techniques based on

Lyapunov’s stability theory have been proposed and

successfully tested in structures such as buildings,

bridges, and car suspension systems [27–32]. The

general control objective is achieved through the

choice of control inputs that make the Lyapunov

function derivative as negative as possible and

consequently obtain the maximum energy dissipa-

tion. Other control methods have also been pro-

posed such as bang-bang control [27, 33, 34], sliding

mode control [31, 35, 36], backstepping control [37,

38], and intelligent control such as fuzzy logic

control [39] and neuro fuzzy control [40]. More

recently [41], a neural network backstepping con-

troller for a class of semi-active vehicle suspension

systems equipped with MR dampers was presented.

However, how to analyse and synthesize dynamic

vibrational structures is a challenging problem of

recurring interest because a building structure with

MR dampers is a non-linear time-varying system,

not a linear time-invariant one. This motivates the

present study.

In this paper, the problem of vibration reduction

in a base-isolated building structure is dealt with by

using mixed H2/H‘ output-feedback control. Suffi-

cient conditions are established such that the

resulting closed-loop system is asymptotically stable

and satisfies a prescribed mixed H2/H‘ performance.

The proposed method provides a convex problem

such that the control gain can be found from the

linear matrix inequality (LMI) formulations based on

a Lyapunov function. Finally, simulation results are

given to illustrate the usefulness of the proposed

control methodology.

The rest of this paper is organized as follows.

Section 2 describes the system under consideration,

and the problem formulation and definitions are

stated in section 3. Section 4 includes the main

results of the paper, that is, sufficient conditions for

mixed H2/H‘ output-feedback control design meth-

odology. Section 5 provides numerical results, and

Section 6 concludes the paper.

Notation

The superscript ‘T’ stands for matrix transposition;

Rn denotes the n-dimensional Euclidean space;

Rn6m is the set of all real m by n matrices. ||.||

refers to the Euclidean vector norm or the induced

matrix 2-norm. The L‘ signal norm ||v(t)||‘ meas-

ures the maximum amplitude of the components

vi of a signal vector v over time t, i.e. ||v(t)||‘ :5

supt maxi |vi(t)|. Also, col{...} and diag{...} represent,

respectively, a column vector and a block diagonal

matrix, and the operator sym(A) represents A + AT.

The notation P . 0 means that P is real symmetric

and positive definite; the symbol * denotes the

elements below the main diagonal of a symmetric

block matrix and smax[.] denotes the largest singular

value of [.]. In addition, L2[0, ‘) is adopted for the

space of all functions f : R R R which are Lebesque

integrable in the square over [0, ‘), with the standard

norm ||.||2.

2 SYSTEM DESCRIPTION

Consider a seismically excited base-isolated struc-

ture as shown in Fig. 1. The system dynamics can be

divided into two subsystems, namely, the main

structure (Sr) and the base (Sc) [14]
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Sr: M €XX tð ÞzC _XX tð ÞzK X tð Þ

~ c1, 0, � � � ,0|fflfflfflffl{zfflfflfflffl}
n{1

2
4

3
5T

_yy tð Þz k1, 0, � � � ,0|fflfflfflffl{zfflfflfflffl}
n{1

2
4

3
5T

y tð Þ ð1aÞ

Sc: m €yy tð Þzc _yy tð Þzk y tð Þzfbf tð Þ~fg tð Þzf tð Þ ð1bÞ

fbf tð Þ~c1 _yy tð Þ{ _xx1 tð Þð Þzk1 y tð Þ{x1 tð Þð Þ ð1cÞ

fg tð Þ~{c _dd tð Þ{k d tð ÞzW _yy tð Þ, _dd tð Þ
� �

ð1dÞ

W _yy tð Þ, _dd tð Þ
� �

~{sgn _yy tð Þ{ _dd tð Þ
� �

| mmax{Dm e
{v _yy tð Þ{ _dd tð Þj j� �

Q ð1eÞ

where X 5 [x1, x2, …, xn]T [Rn is the horizontal ab-

solute floor displacement vector, y(t) [R is the

horizontal absolute base displacement, d(t) and

ḋ(t) are the seismic excitation displacement and

velocity, and f(t) is the active control force applied to

the base level. Equation (1c) accounts for the

dynamic coupling between the base and the main

structure. Equation (1d) describes the forces intro-

duced by the seismic excitation and the base

isolation. Equation (1e) describes the dynamics of a

frictional base isolator, where mmax is the friction

coefficient for high sliding velocity, Dm is the

difference between mmax and the friction coefficient

for low sliding velocity, n is a constant, and Q is the

force normal to the friction surface. Parameters m, c,

and k are the mass, damping coefficient, and

stiffness of the base, while matrices M, C, and K

are those of the main structure as follows

M~diag m1, m2, � � � , mnf g ð1fÞ

C~

c1zc2 {c2 � � � 0 0

{c2 c2zc3 � � � 0 0

..

. ..
.

P
..
. ..

.

0 0 � � � {cn cn

2
66664

3
77775 ð1gÞ

K~

k1zk2 {k2 � � � 0 0

{k2 k2zk3 � � � 0 0

..

. ..
.

P
..
. ..

.

0 0 � � � {kn kn

2
66664

3
77775 ð1hÞ

Due to the base isolation, the movement of the

main structure (Sr) is very close to one of a rigid

body. Thus, it is reasonable to assume that the inter-

story motion of the main structure will be much

smaller than the absolute motion of the base.

Consequently, the following simplified equation of

motion of the first floor is obtained

m1€xx1 tð Þzc1 _xx1 tð Þzkx1 tð Þ~c1 _yy tð Þzk1y tð Þ ð1iÞ

In this work, it is assumed that only state variables of

the base and the first-floor system are measurable,

and the unknown seismic excitation d(t) and ḋ(t) are

bounded and thus the unknown force fg(t) in

equation (1d) is bounded.

The following propositions about the intrinsic

stability of the structure will be used in formulating

the control law [14].

Proposition 1

The unforced main structure subsystem, i.e. equa-

tion (1a) with the null coupling term

c1, 0, . . . , 0½ �T _yyz k1, 0, . . . , 0½ �Ty:0, t¢0 ð1jÞ

is globally exponentially stable for any bounded

initial conditions.

Proposition 2

If the coordinates (y, ẏ) of the base and the coupl-

ing term [c1, 0, …, 0]Tẏ + [k1, 0, …, 0]Ty are uniformly

Fig. 1 Schematic of a base-isolated structure
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bounded, then the main structure subsystem is stable

and the coordinates (x, ẋ) of the main structure are

uniformly bounded for all t > 0 and any bounded

initial conditions.

2.1 Real-time hybrid testing system

The experimental testing of the control performance

in civil engineering structures is an important issue

in structural control. It is well known that testing

vibration reduction systems at large-scale structures

such as buildings or bridges is rather prohibitive

because of the dimensions, the power required to do

so, and the costs that such tests imply. This is why

experiments are usually run at small or mid-scale

laboratory specimens. Experiments can be per-

formed in one of three ways: shaking table tests,

quasi-static tests, and pseudo-dynamic or hybrid

tests [42].

One significant advantage of hybrid simulation is

that it removes a large source of epistemic un-

certainty compared to pure numerical simulations

by replacing structural element models that are not

well understood with physical specimens on the

laboratory test floor [43]. There are two main

drawbacks with the hybrid test method. First, the

method relies on the assumption that the mass of

the structure is concentrated at discrete points.

Second, the loading is applied over a greatly

expanded time scale so that time-dependent non-

linear behaviour is not correctly reproduced in the

physical component. In hybrid testing, the displace-

ments are imposed on an extended time scale which

typically ranges from 100 to 1000 times the actual

earthquake duration to allow for the use of larger

actuators without high hydraulic flow requirements,

careful observation of the response of the structure

during the test, and the ability to pause and resume

the experiment. In particular, the method cannot be

applied to the testing of highly rate-sensitive

components such as visco-elastic dampers and

certain active or semi-active structural control

devices [44].

Figure 2 shows the experimental environment

where the system (1) can be tested. Experiments

are executed in a real-time hybrid testing (RTHT)

configuration available at the Smart Structures

Laboratory, University of Illinois at Urbana-Cham-

paign, Illinois, USA. It consists of a computer that

both simulates the structure to be controlled and

generates the commanding signals (displacements

and control signals); a small-scale MR damper that is

driven by a hydraulic actuator which in turn is

controlled by a servo-hydraulic controller; and DSP,

A/D, and D/A hardware for signal processing.

Sensors available include a linear variable displace-

ment transformer (LVDT) for displacement mea-

surements and a load cell to measure the MR

damper force. In Fig. 2, xcmd is the commanded

displacement, fmr is the MR damper force measured

by the load cell, xmeas is the displacement measured

by the LVDT, and i is the control current sent to the

hydraulic actuator. A fully detailed description of

this RTHT implementation can be found in refer-

ence [45].

Remark 1

In traditional structural control systems, coaxial

wires are normally used to provide communication

links between sensors, actuators, and controllers.

With the rapid emergence of wireless communica-

tion and embedding computing technologies, there

has been an increasing interest in the use of wireless

Fig. 2 A schematic of the RTHT system
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networks for structural vibration control. The adop-

tion of wireless sensing technologies can remedy the

high installation cost of commercial cable-based

data acquisition systems. When replacing wired

communication channels with wireless ones for

feedback structural control, issues such as coordin-

ation of sensing and control units, communication

range, time delay, and the random packet losses in

the sensor-to-controller and controller-to-actuator

need to be examined. These issues in the wireless

communication usually cause degradation of the

real-time performance of a control system. Recently,

the robust H‘ control problem for a class of

networked systems with random communication

packet losses has been studied in reference [46].

3 PROBLEM FORMULATION

In order to design a mixed H2/H‘ output-feedback

control, the actively controlled base-isolated build-

ing system in equation (1) is described by the

equations of the form

M̂M €XX aug tð ÞzĈC _XX aug tð ÞzK̂K X aug tð Þ
~Bf f tð ÞzBg f g tð Þ 2að Þ

Z tð Þ~C1 X aug tð ÞzC2
_XX aug tð ÞzD1 f tð Þ 2bð Þ

Y tð Þ~C3 X aug tð ÞzC4
_XX aug tð Þ 2cð Þ

8>>>><
>>>>:

with

M̂M~diag m1, mf g, ĈC~
c1 {c1

{c1 c1zc

" #

K̂K~
k1 {k1

{k1 k1zk

" #
, Bf ~Bg~

0

1

" #

where Xaug(t) 5 [x1, y]T is the state vector, f(t) is the

control input, fg(t) [ L2[0, ‘) is the external distur-

bance (seismic excitation), Z(t) [Rs is the controlled

outputs, and Y(t) [Rl is the measured outputs. The

matrices C1, C2, C3, C4, and D1 have compatible

dimensions and are defined in section 5. In the

system (2), taking j(t) :5 col(Xaug(t), Ẋaug(t)) yields an

augmented system model, i.e. a first-order linear

system

_jj tð Þ~�AA j tð Þz�BBf f tð Þz�BBg f g tð Þ 3að Þ
Z tð Þ~~CC j tð ÞzD1 f tð Þ 3bð Þ
Y tð Þ~�CC j tð Þ 3cð Þ

8><
>:

where

�AA~
0 I

{M̂M{1K̂K {M̂M{1ĈC

" #
, �BBf~

0

M̂M{1Bf

" #

�BBg~
0

M̂M{1Bg

" #
, �CC :~ C3, C4½ �, ~CC :~ C1, C2½ �

Definition 1

1. The H2 performance measure of the system (3) is

defined as

J2~

ð‘
0

jT tð ÞS1 j tð Þzf T tð ÞS2 f tð Þ
h i

dt

where fg(t) ; 0 and constant matrices S1, S2 . 0

are given.

2. The H‘ performance (or L2-gain) measure of the

system (3) is defined as

J‘~

ð‘
0

Z T tð Þ Z tð Þ{c2f T
g tð Þ f g tð Þ

h i
dt

where the positive scalar c is given.

3. The mixed H2/H‘ performance measure of the

system (3) is defined as

min J0j J‘v0 and J2¡ J0ð Þ

or the so-called problem of minimizing an upper

bound of J2, i.e. J0 . 0, under the constraint J‘ , 0.

Remark 2

The minimization of J2 will result in the reduction of

the structural response and control effort while the

accomplishment of J‘ , 0 will maintain the struc-

tural response within the quadratic-type perfor-

mance under a prescribed c-level L2-gain in the

presence of external disturbances. Although the

robust H‘ design is mainly related to robust stability

and frequency domain performance specifications,

it does not seriously address the transient behaviour

which is also important in the control. Therefore,

based on mixed H2/H‘ optimization, a controller is

designed which explicitly trades between nominal

performance and robust stability. To date, several

approaches have been proposed to solve the mixed

H2/H‘ control problem; a Nash game-theoretic

approach was proposed to solve the mixed H2/H‘

control problem of deterministic linear systems

Vibration control of base-isolated structures 813
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through a set of cross-coupled Riccati equations

[47]. This method has been generalized to non-linear

[48], output feedback control [49], and stochastic

systems [50–52]. The problem of controller design to

be addressed in this paper is formulated as follows:

given the second-order linear system (3) with a

prescribed level of disturbance attenuation c . 0,

find a mixed H2/H‘ output-feedback control f(t) of

the form

f tð Þ~Kf Y tð Þ ð4Þ

where the matrix Kf is the control gain to be

determined such that the following conditions are

met.

1. The resulting closed-loop system (3) and (4) is

asymptotically stable.

2. Under fg(t) ; 0, the H2 performance measure

satisfies J2 ( J0, where the positive scalar J0 is

said to be a guaranteed cost.

3. Under zero initial conditions and for all non-zero

fg(t) [ L2[0, ‘), the upper bound of the H2 perfor-

mance measure, i.e. J0, satisfies J‘ , 0 (or the

induced L2-norm of the operator from fg(t) to the

controlled outputs Z(t) is less than c).

In this case, the second-order linear system (3) is

said to be asymptotically stable with a mixed H2/H‘

performance measure.

Remark 3

Note that the H‘ norm of the transfer function

H(s) 5 (~CC + D1Kf
�CC)(sI 2 �AA 2 �BBfKf

�CC)21�BBg from the dis-

turbance input fg(t) to the controlled outputs Z(t)

satisfies the constraint

H sð Þk k‘~supf g [L2
Z tð Þk k2

.
f g tð Þ
��� ���

2
¡c

where H sð Þk k‘ 5 supv [Rsmax[H(jv)]. Therefore, mini-

mizing the H‘ norm corresponds to minimizing the

peak of the largest singular value.

Remark 4

In practice, it may be more desirable to directly

influence the minimization of the maximum abso-

lute values of control inputs, the response overshoot,

or other time domain properties of the system

response (namely the L‘-gain) rather than the

energy where the disturbance input is also of finite

L‘-norm. In this case, the aim is to satisfy the

following induced-L‘ norm condition

H sð Þk k‘{ind :~ supf g [L2

Z tð Þk k‘

f g tð Þ
��� ���

‘

¡c

In such cases an induced-L‘ norm is obtained which

is often referred to as an L1 problem due to the fact

that the induced-L‘ norm for a linear system is just the

L1-norm of its impulse response and an upper bound

on the L1-norm of the transfer function. Therefore, the

name L1-optimal control is used for the filed of L‘-

gain-based disturbance attenuation [53].

4 MAIN RESULTS

In this section, sufficient conditions for the solva-

bility of the H‘ control design problem are proposed

using the Lyapunov method and an LMI approach.

First, equation (3a) is represented in an equivalent

descriptor model form as

_jj tð Þ~g tð Þ
0~{g tð Þz �AAz�BBf Kf

�CC
� �

j tð Þz�BBgf g tð Þ

(
ð5Þ

Define the Lyapunov–Krasovskii functional

V tð Þ~j tð ÞTP1j tð Þ :~ j tð ÞT g tð ÞT
� �

T P
j tð Þ
g tð Þ

	 

ð6Þ

with T 5 diag{I, 0} and

P~
P1 0

P3 P2

	 


when P1 5 PT
1 . 0. Differentiating V(t) along the

system trajectory becomes

_VV tð Þ~2j tð ÞTP1
_jj tð Þ~2 j tð ÞT g tð ÞT

� �
PT

_jj tð Þ

0

" #
~2 j tð ÞT g tð ÞT
� �

|PT
g tð Þ

{g tð Þz �AAz�BBf Kf
�CC

� �
j tð Þz�BBg f g tð Þ

" #

~2 j tð ÞT g tð ÞT
� �

|PT
0 I

�AAz�BBf Kf
�CC {I

" #
j tð Þ

g tð Þ

" #
z

0

�BBg

" #
f g tð Þ

 !

ð7Þ

On the other hand, under zero initial conditions the

H‘ performance measure can be rewritten as
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J‘¡

ð‘
0

Z tð ÞTZ tð Þ{c2f g tð ÞTf g tð Þ
h i

dt{V tð Þjt~0

zV tð Þjt~‘

~

ð‘
0

Z tð ÞTZ tð Þ{c2f g tð ÞTf g tð Þz _VV tð Þ
h i

dt ð8Þ

Substituting the term of

Z tð Þ~~CCj tð ÞzD1 f tð Þ~ ~CCzD1Kf
�CC

� �
j tð Þ ð9Þ

in equation (8) results in the inequality

J‘¡

ð‘
0

q sð ÞTP1q sð Þ ds

where

q tð Þ :~ col jc tð Þ, g tð Þ, f g tð Þ
n o

and the matrix P1 is given by

Now, if P1 , 0 then J‘ , 0, which means that the L2-

gain from the disturbance fg(t) to the controlled

output Z(t) is less than c. By applying the Schur

complement on the first element of the matrix P1,

one obtains P1 , 0 which is equivalent to

It is also easy to see that the inequality above implies

sym PT
2

� �
v0. Hence, the matrices P and P2 are non-

singular. Then, according to the structure of the

matrix P, the matrix X :5 P21 has the form

X~
X1 0

X3 X2

	 

ð12Þ

where Xi~P{1
i i~1, 2ð Þ and X3 5 2X2P3X1. Let f 5

diag{XT, I, X1}. Premultiplying f and postmultiplying

fT to the inequality (11) and considering �CCX1 5 X̂X1
�CC

according to Lemma 1 (in the Appendix), obtains

P1 :~
sym PT 0 I

�AAz�BBf Kf
�CC {I

	 
� �
z

~CCzD1Kf
�CC

� �T ~CCzD1Kf
�CC

� �
0

0 0

" #
PT

0

�BBg

	 

� {c2I

2
64

3
75 ð10Þ

sym PT 0 I
�AAz�BBf Kf

�CC {I

	 
� �
PT

0

�BBg

	 

~CCzD1Kf

�CC
� �T

0

" #

� {c2I 0

� � {I

2
66664

3
77775v0 ð11Þ

sym
X3 X2

�AAX1z�BBf Kf X̂X1
�CC{X3 {X2

	 
� �
0

�BBg

	 

~CCX1zD1Kf X̂X1

�CC
� �T

0

2
4

3
5

� {c2I 0

� � {I

2
666664

3
777775v0

ð13Þ
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Obviously, the matrix inequality (13) includes multi-

plication of control gain and the decision variable X̂X1.

Now, by considering KfX̂X1 5 ~XX1 the matrix inequality

(13) is converted into a convex programming

problem written in terms of LMI as follows

On the other hand, by applying the same Lyapunov

function (6) for the second-order linear system (3),

under fg(t) ; 0, for the index J2 in definition 1 gives

J2¡

ð‘
0

jT tð ÞS1j tð ÞzjT tð ÞCTKT
f S2Kf Cj tð Þz _VV tð Þ

� �
dt

¡

ð‘
0

q̂qT tð ÞP2q̂q tð Þdt ð15Þ

where q̂q(t) :5 col{j(t), g(t)} and the matrix P2 is given

by

P2 :~sym PT
0 I

�AAz�BBf Kf
�CC {I

" # !

z
S1z Kf

�CC
� �T

S2 Kf
�CC

� �
0

0 0

" #

Therefore, the condition P2 , 0 in equation (15)

implies

_VV tð Þ¡{jT tð ÞS1j tð Þ{jT tð ÞCTKT
f S2Kf Cj tð Þ ð16Þ

or equivalently

ð‘
0

_VV tð Þ dt~ lim
t?‘

V tð Þ{V 0ð Þ

¡{

ð‘
0

jT tð ÞS1j tð ÞzjT tð ÞCTKT
f S2Kf Cj tð Þ

� �
dt

ð17Þ

Now, the H2 performance measure for the system (3)

is established as

ð‘
0

jT tð ÞS1j tð ÞzjT tð ÞCTKT
f S2Kf Cj tð Þ

� �
dt

¡V 0ð Þ~J0 ð18Þ

where J0 5 j(0)TP1j(0). Similarly, using the Schur

complement the inequality P2 , 0 yields

Again, by applying the congruence transformation

diag{XT, I} to the matrix inequality above, readily

obtains the following LMI

Finally, the results are summarized as follows.

Theorem 1

Consider the base-isolated building structure (3)

with rank(�CC) 5 p , 2(n + 1). For given a scalar c, there

sym
X3 X2

�AAX1z�BBf
~XX1

�CC{X3 {X2

	 
� �
0

�BBg

	 

~CCX1zD1

~XX1
�CC

� �T

0

" #

� {c2I 0

� � {I

2
66664

3
77775v0 ð14Þ

sym PT 0 I
�AAz�BBf Kf

�CC {I

	 
� �
z

S1 0

0 0

	 

Kf

�CC
� �T

0

" #
S2

� {S2

2
64

3
75v0 ð19Þ

sym
X3 X2

�AAX1z�BBf
~XX1

�CC{X3 {X2

	 
� �
~XX1

�CC
� �T

0

" #
S2

X1S1

0

	 

� {S2 0

� � {S1

2
66664

3
77775v0 ð20Þ
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exists a mixed H2/H‘ output-feedback control in

the form of equation (4) such that the resulting

closed-loop system is robustly asymptotically stable

and satisfies the constraint J2 ( J0 under the con-

straint J‘ , 0, if there exist matrices X2, X3, ~XX1 and

positive-definite matrices X11, X22 satisfying the

LMIs (14) and (20). The desired control gain in

equation (4) is given by

Kf~~XX1X̂X{1
1 from LMIs 14ð Þ and 20ð Þ ð21Þ

where �CC 5 U[ĈC 0]VT and

X1~V
X11 0

0 X22

	 

VT

and X̂X1 5 UĈCX11ĈC21UT with X11 [Rp6p, X22 [
R(2n 2 p + 2)6(2n 2 p + 2), the unitary matrices U [
Rp6p, V [R2(n + 1)62(n + 1), and a diagonal matrix

ĈC [Rp6p with positive diagonal elements in decreas-

ing order. Moreover, an upper bound of the H2

performance measure is obtained by J0~

j 0ð ÞTX{1
1 j 0ð Þ.

Remark 5

If rank(�CC) 5 l 5 2(n + 1), the matrix �CC is non-singular,

it is clear that the matrix equation �CCX1 5 X̂X1
�CC is

solvable on X̂X1, i.e. X̂X1 5 �CCX1
�CC21. In this case, the

results of Theorem 1 are true for a full (non-

diagonal) matrix X1, that is

X1~
X11 X12

� X22

	 


and the desired control gain in equation (21) is given

by Kf~~XX1
�CCX{1

1
�CC{1.

Remark 6

Minimizing the upper bound of the H2 performance

measure is stated in the following convex optim-

ization problem

min a

subject to

(i) LMIs (14) and (20)

(ii)
{a j 0ð ÞT
� {X1

	 

v0

5 SIMULATION RESULTS

The controller was implemented using the following

numerical values. the mass and stiffness of the base

are m 5 66105 kg, k 5 1.1846107 N/m, and the base

damping coefficient is 0.1, respectively; the main

structure stiffness varies linearly from the first floor

k1 5 96108 N/m to the top floor k10 5 4.56108 N/m;

the damping coefficient is 0.05 and the passive

actuator has the following values: Q~
P10

i~1 mi,

mmax 5 0.185, Dm 5 0.09, and n 5 2.0.

To design a robust mixed H2/H‘ control law (4),

we solved LMIs (14) and (20) using MATLAB LMI

Control Toolbox [54] in the case of Z(t) 5 [j(t)T,

f(t)T]T, C3 5 [I2, 0262]T, C4 5 [0262, I2]T, S1 5 I, and

S2 5 I, and obtained the minimum value of the para-

meter c in optimal H‘ performance measure as 1.05.

For the initial condition j(0) 5 (0, 0, 0.2, 0, 0.1,

0, 0.1, 0)T and considering the Taft earthquake

records (see Fig. 3) as a disturbance, Figs 4 and 5

show the results of both ‘passive base isolation’ and

‘passive base isolation plus active control’ compared

to that of the system without control; and the

corresponding suboptimal H2 performance measure

of the closed-loop system is J0 5 7.3430. In both

cases, a reduction in absolute displacement and

velocity is achieved with better results when the

active control device is integrated. Finally, Fig. 6

Fig. 3 The Taft earthquake records

Fig. 4 Horizontal absolute base displacement
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shows the active control effort which is within the

limits of practical devices.

6 CONCLUSIONS AND FUTURE WORK

In this paper a mixed H2/H‘ output-feedback

controller for vibration reduction of uncertain

structures modelled in the form of second-order

linear systems was developed. Sufficient conditions

for the design of a desired control were given in

terms of LMIs. A controller which guarantees

asymptotic stability and a mixed H2/H‘ performance

for the closed-loop system of the structure was

developed based on a Lyapunov function. The

performance of the controller was evaluated by

means of simulations in MATLAB/Simulink. Future

work will investigate the mixed H2/H‘ control design

for vibration structures by considering the dynamics

of actuators which insert some non-linear terms into

the model.
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APPENDIX

Lemma 1 [55]

For a given M [Rp6n with rank(M) 5 p , n, assume

that Z [Rn6n is a symmetric matrix; then there exists

a matrix ẐZ [Rp6p such that MZ 5 ẐZM if and only if

Z~V
Z1 0

0 Z2

" #
VT

ẐZ~U M̂M Z1M̂M{1UT

where Z1 [Rp6p, Z2 [R(n 2 p)6(n 2 p), and the singular

value decomposition of the matrix M is represented

as M 5 U[M̂M 0]VT with the unitary matrices U [
Rp6p, V [Rn6n, and a diagonal matrix M̂M [Rp6p with

positive diagonal elements in decreasing order.
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