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Abstract—In this note, the problem of ∞H  filtering for a class of nonlinear neutral systems 

with delayed states and outputs is investigated. By introducing a descriptor technique, using 

Lyapunov-Krasovskii functional and a suitable change of variables, new required sufficient 

conditions are established in terms of delay-dependent linear matrix inequalities (LMIs) for the 

existence of the desired ∞H  filters. The explicit expression of the filters is derived to satisfy 

both asymptotic stability and a prescribed level of disturbance attenuation for all admissible 

known nonlinear functions. A numerically example is provided to show the proposed design 

approach.  
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I. INTRODUCTION 

Delay (or memory) systems represent a class of infinite-dimensional systems [1, 2] largely used to 

describe propagation and transport phenomena or population dynamics [3, 4]. Delay differential 

systems are assuming an increasingly important role in many disciplines like economic, mathematics, 

science, and engineering. For instance, in economic systems, delays appear in a natural way since 

decisions and effects are separated by some time interval. The presence of a delay in a system may be 

the result of some essential simplification of the corresponding process model. The delay effects 

problem on the (closed-loop) stability of (linear) systems including delays in the state and/or input is a 

problem of recurring interest since the delay presence may induce complex behaviors (oscillation, 

instability, bad performances) for the (closed-loop) schemes [2, 5].  

Neutral delay systems constitute a more general class than those of the retarded type. It is important to 

point out that the highest order derivative of a retarded differential equation does not contain any 

delayed variables. When such a term does appear, then we have a differential equation of neutral type. 

Stability of these systems proves to be a more complex issue because the system involves the 

derivative of the delayed state. Especially, in the past few decades increased attention has been devoted 

to the problem of robust delay-independent stability or delay-dependent stability and stabilization via 

different approaches for linear neutral systems with delayed state and/or input and parameter 

uncertainties (see for instance [2, 6, 7]). Among the past results on neutral delay systems, the LMI 

approach is an efficient method to solve many control problems such as stability analysis and 

stabilization [8-13], ∞H  control problems [14-20] and guaranteed-cost (observer-based) control design 

[21-25]. 

On the other hand, the state estimation problem has been one of the fundamental issues in the control 

area and there have been many works following those of Kalman filter or 2H  optimal estimators (in the 

stochastic framework) and Luenberger filter (in the deterministic framework) [26]. Nevertheless there 
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has been an increasing interest in the robust ∞H  filtering, which is concerned with the design of an 

estimator ensuring that the 2L -induced gain from the noise signal to the estimation error is less than a 

prescribed level, in the past years [27-31]. Compared with the conventional Kalman filtering, the ∞H  

filter technique has several advantages. First, the noise sources in the ∞H  filtering setting are arbitrary 

signals with bounded energy or average power, and no exact statistics are required to be known [32]. 

Second, the ∞H  filter has been shown to be much more robust to parameter uncertainty in a control 

system. These advantages render the ∞H  filtering approach very appropriate to some practical 

applications. When parameter uncertainty arises in a system model, the robust ∞H  filtering problem 

has been studied, and a great number of results on this topic have been reported (see the references [33, 

34]). In the case when parameter uncertainty and time delays appear simultaneously in a system model, 

the robust ∞H  filtering problem was dealt with in [35] via LMI approach, respectively. The 

corresponding results for uncertain discrete delay systems can be found in [36]. However, it is noted 

that the ∞H  filtering of nonlinear neutral systems has not been been fully investigated in the past and 

remains to be important and challenging. This motivates the present study. 

In this paper, we are concerned to develop a new delay-dependent stability criterion for ∞H  filtering 

problem of nonlinear neutral systems with known nonlinear functions which satisfy the Lipschitz 

conditions. The main merit of the proposed method is the fact that it provides a convex problem with 

additional degree of freedom which lead to less conservative results. Our analysis is based on the 

Hamiltonian-Jacoby-Isaac (HJI) method. By introducing a descriptor technique, using Lyapunov-

Krasovskii functional and a suitable change of variables, we establish new required sufficient 

conditions in terms of delay-dependent LMIs under which the desired ∞H  filters exist, and derive the 

explicit expression of these filters to satisfy both asymptotic stability and ∞H  performance. A desired 

filter can be constructed through a convex optimization problem, which can be solved by using 
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standard numerical algorithms. Finally, a numerical example is given to illustrate the proposed design 

method. 

Notations. The superscript ''T  stands for matrix transposition; nℜ  denotes the n-dimensional Euclidean 

space; mn×ℜ  is the set of all real m  by n  matrices. .  refers to the Euclidean vector norm or the 

induced matrix 2-norm. }{Lcol  and )(Asym  represent, respectively, a column vector and the matrix 

TAA + . )(min Aλ  and )(max Aλ  denote, respectively, the smallest and largest eigenvalue of the square 

matrix A . The notation 0>P  means that P  is real symmetric and positive definite; the symbol ∗  

denotes the elements below the main diagonal of a symmetric block matrix. In addition, ),0[2 ∞L  is the 

space of square-integrable vector functions over ),0[ ∞ . Matrices, if the dimensions are not explicitly 

stated, are assumed to have compatible dimensions for algebraic operations. 

 

II. PROBLEM DESCRIPTION 

We consider a class of nonlinear neutral systems with delayed states and outputs represented by 
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where ntx ℜ∈)( , ),0[)( 2 ∞∈ sLtw , ztz ℜ∈)(  and pty ℜ∈)(  are corresponded to state vector, disturbance 

input, estimated output and measured output. The time-varying function )(tϕ  is continuous vector 

valued initial function and the parameters )(th  and )(td  are time-varying delays satisfying 
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Assumption 1:  

1) The nonlinear function nnf ℜ→ℜ:  is continuous and satisfies 0)0( =f  and the Lipschitz 

condition, i.e., )()()( 00100 yxUyfxf −≤−  for all nyx ℜ∈00 ,  and 1U  is a known matrix. 

2) The nonlinear function png ℜ→ℜ×ℜ:  is continuous and satisfies the Lipschitz condition, i.e., 

)(),(),( 00200 yxUytgxtg −≤−  for all nyx ℜ∈00 ,  and 2U  is a known matrix. 

In this paper, the author’s attention will be focused on the design of an −n th order delay-dependent 

∞H  filter with the following state-space equations 
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where the state-space matrices GFFFFF ,,,,, 4321  and 1G  of the appropriate dimensions are the filter 

design objectives to be determined. In the absence of )(tw , it is required that 

∞→→− tastxtx 0)(ˆ)( 2  

where ntx ℜ∈)(ˆ  and )(ˆ tz  are the estimation of )(tx  and of )(tz , respectively, and )(ˆ)()( txtxte −=  is 

the estimation error. Then, the error dynamics between (1) and (2) can be expressed by 
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where ))()(())((:))(( tetxftxfte −−=φ  and ))()(,())(,(:))(,( tetxtgtxtgtet −−=ψ . Now, we obtain the 

following state-space model, namely filtering error system: 
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By Assumption 1, it is easy to see 
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Therefore, from the Leibniz-Newton formula, i.e., ∫
−

=−−
t

ht
dssxhtxtx )()()( & , the filtering error system 

(4) can be represented in a descriptor model form as 
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Definition 1: 

1. The delay-dependent ∞H  filter of the type (2) is said to achieve asymptotic stability in the 

Lyapunov sense for 0)( =tw  if the augmented system (4) is asymptotically stable for all 

admissible nonlinear functions ))(( txf  and ))(,( txtg . 
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2. The delay-dependent ∞H  filter of the type (2) is said to guarantee robust disturbance attenuation if 

under zero initial condition 

γ≤
−

≠ 2

2

0 )(
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2
tw

tztz

w
                                                           (8) 

    holds for all bounded energy disturbances and a prescribed positive value γ .                                                      

The filtering problem we address here is as follows: Given a prescribed level of disturbance 

attenuation 0>γ , find the delay-dependent ∞H   filter (2) in the sense of Definition 1.  

Before ending this section, we recall a well-known lemma, which will be used in the proof our main 

results. 

Lemma 1 ([7]): For any arbitrary column vectors )(,)( tbta , matrices )(tΦ , H ,U and W  the following 

inequality holds: 
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III. ∞H  FILTER DESIGN 

In this section, both the asymptotic stability and ∞H  performance of the filtering error system is 

investigated such a sufficient stability condition is derived for the existence of the filter (2). The 

approach employed here is to develop a criterion for the existence of such filter based on the LMI 

approach combined with the Lyapunov method. In the literature, extensions of the quadratic Lyapunov 

functions to the quadratic Lyapunov-Krasovskii functionals have been proposed for time-delayed 

systems (see for instance the references [2, 6, 7, 23, 25] and the references therein).  

We choose a Lyapunov-Krasovskii functional candidate for the nonlinear neutral system (1) as 

)()()()( 321 tVtVtVtV ++=                                                            (9) 
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In the following, we state our main results in terms of LMIs on the delay-dependent ∞H  filter design 

for the nonlinear neutral system (1) based on Lyapunov stability theory. 
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with ]0,[: IJ =  and ],0[:ˆ IJ = , then there exists a delay-dependent ∞H  filter of the type (2) which 

achieve the asymptotic stability and ∞H  performance, simultaneously, in the sense of Definition 1. 

Moreover, the state-space matrices of the filter are given by 
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Construct a HJI function in the form of 
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where derivative of )(tV  is evaluated along the trajectory of the filtering error system (4). It is well 

known that a sufficient condition for achieving robust disturbance attenuation is that the inequality 

0)](),([ <twtXJ for every ),0[)( 2 ∞∈ sLtw results in a function )(tV , which is strictly radially unbounded 

(see for instance the reference [37]). 

From (13)–(16) we obtain 
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Using Assumption 1, we have 

)()())(())((0 11 txUUtxtxftxf TTT +−≤                                                    (19a) 

))(())(()))((()))(((0 11 thtxUUthtxthtxfthtxf TTT −−+−−−≤                              (19b) 
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)()())(())((0 11 teUUtetete TTT +−≤ φφ                                                (19c) 

))(())(()))((()))(((0 11 thteUUthtethtethte TTT −−+−−−≤ φφ                             (19d) 

and 

)()())(,())(,(0 22 teUUtetettet TTT +−≤ ψψ                                                (19e) 

Moreover, from the Leibniz-Newton formula, the following equation holds for any matrix M  with an 

appropriate dimension 

0))())(()(()(2
)(

=−−− ∫
−

t
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where },,,{: 921 MMMcolM L=  and 

)}()),(,())),((()),(())),((()),(()),(()),((),({:)( twtetthtxtxthtxftxftdtthtXtcolt ψφφηηϑ −−−−= . 

By adding the right- and the left- hand sides of (19) and (20), respectively, to (17) and using the 

inequality (18), it follows that 

∫

∫

−

−

−

−

−

++−

−+Π≤

t

tht

TTTTT

tht

ht

TTT

dsQsMtQQsMt

dssQstMMQhttwtXJ

)(
4

1
44

)(

4
1

41

))()(())()((

)()()()()()](),([
1

ηϑηϑ

ηηϑϑ

                        (21) 

where the matrix Π  is given by 
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 Thus, if the inequality  

01
41 <+Π − TMMQh                                                         (22) 

holds, it follows from 0)](),([ 0)( ≤≡twtwtXJ  that 0)( ≤tV
dt
d  or )0()( VtV ≤ . Then, from (9), it can be 
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where )()(: 1max11max1 QhP λλσ += and ))(5.0)((: 43max
2
12max12 QQhQd ++= λλσ . Then, we have:  

2
22

2
21

2
21min )()( ησϕσϕλ +≤≤ tVP . 

Therefore, we conclude that the filtering error system (4) is asymptotically stable. Notice that the 

matrix inequality (22) includes multiplication of filter matrices and Lyapunov matrices which are 

unknown and occur in nonlinear fashion. Hence, the inequality (22) cannot be considered an LMI 

problem. In the literature, more attention has been paid to the problems having this nature, which called 

bilinear matrix inequality (BMI) problems [38]. In the following, it is shown that, by considering 

23 PP ε=  where 

⎥
⎦

⎤
⎢
⎣

⎡
=

2222

1211
2 PP

PP
P ,                                                         (23) 

and introducing change of variables   

[ ] [ ]GFFFFFPWWWWWW T
432122654321 :=                              (24) 

the matrix inequality (22) is converted into LMI (11a) and can be solved via convex optimization 

algorithms. It is also easy to see that the inequality (22) implies 011 <Π . Hence by Proposition 4.2 in 

the reference [15], the matrix P  is nonsingular. Then, according to the structure of the matrix P  in 

(10), the matrix 2P (or 22P ) is also nonsingular. This completes the proof. ■ 

Remark 1: It is worth noting that in the case when ntx ℜ∈)( , stw ℜ∈)( , ztz ℜ∈)(  and pty ℜ∈)( , the 

number of the variables to be determined in the LMIs (11) is 5)52217(5.0 ++++ zpnn . It is also 

observed that the LMIs (11) are linear in the set of matrices 91611221211 ,,,,,,,,,,, MMWWUHGPPP LL , 
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411 ,,, QQP L  and the scalars ε , 2γ . This implies that the scalar 2γ  can be included as one of the 

optimization variables in LMIs (11) to obtain the minimum disturbance attenuation level. Then, the 

optimal solution to the delay-dependent ∞H  filtering can be found by solving the following convex 

optimization problem 

.:)11( 2γλ

λ

=withtosubject

Min
                                                    (25) 

 

IV. EXAMPLE 

In this section, we will verify the proposed methodology by giving an illustrative example. We solved 

LMIs (13) by using Matlab LMI Control Toolbox [39], which implements state-of-the-art interior-point 

algorithms and is significantly faster than classical convex optimization algorithms [40]. The example 

is given below.  

Consider the system (1) with the following matrices 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

23.0
5.01

A ; ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

6.01.0
1.05.0

1A ; ⎥
⎦

⎤
⎢
⎣

⎡
=

1.00
2.01.0

2A ; ⎥
⎦

⎤
⎢
⎣

⎡
=

1.0
1.0

1B ; 221 IEE == ;  

[ ]111 =C ; [ ]1.01.02 =C ; )1)(1)((5.0))(,())(( −−+== txtxtxtgtxf . 

The delays )1()1()()( tt eetdth −− +−==  are time varying and satisfy 1)()(0 ≤=≤ tdth  and 

5.0)()( ≤= tdth && . For simulation purpose, a uniformly distributed random signal, shown in Figure 1, 

with minimum and maximum -1 and 1, respectively, as the disturbance is imposed on the system. With 

the above parameters, the filtering error system (4) exhibits the chaotic behaviours such the state 

trajectories of the system with initial condition )0,0()0( =x  is depicted in Figure 2. 

By solving the LMIs (11) in Theorem 1 with the disturbance attenuation 2.0=γ  we get the following 

state-space matrices of the delay-dependent ∞H  filter (2): 



 

 

 
 

 

16

⎥
⎦

⎤
⎢
⎣

⎡
=

4.9106-1.0575
1.17702.8807-

F , ⎥
⎦

⎤
⎢
⎣

⎡
=

0.7907-0.2297
0.25570.3991-

1F , ⎥
⎦

⎤
⎢
⎣

⎡
=

0.1002-0.0209
0.1410-0.0835-

2F , ⎥
⎦

⎤
⎢
⎣

⎡
=

2.70970.3693-
0.4885-1.5747

3F , 

⎥
⎦

⎤
⎢
⎣

⎡
=

2.03230.2770-
0.3664-1.1810

4F , ⎥
⎦

⎤
⎢
⎣

⎡
=

0.0662-
0.0226-

G , [ ]0.46280.54141 =G . 

For initial conditions )1,1()0( −=x , the simulation results are shown in Figures 3 and 4. The trajectories 

of the estimation error are plotted in Figure 3. Finally, to observe the ∞H  performance, curve of the 

function 22 )()(ˆ)( twtztz −  is depicted in Figure 4 which shows that the ∞H  constraint in (8) is 

satisfied as well. 

 

V. CONCLUSION 

The problem of delay-dependent ∞H  filtering was proposed for a class of nonlinear neutral systems 

with delayed states and outputs. New required sufficient conditions were established in terms of delay-

dependent LMIs for the existence of the desired robust ∞H  filters. The explicit expression of the robust 

∞H  filters was derived to satisfy both asymptotic stability and a prescribed level of disturbance 

attenuation for all admissible known nonlinear functions. A numerically example was presented to 

illustrate the effectiveness of the designed filter. 
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Fig. 1. The disturbance signal. 
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Fig. 2. The phase trajectories. 
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Fig. 3. Curves of estimation error signal. 
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