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Abstract: This paper considers the problem of stability analysis for a class of pro-
duction networks of autonomous work systems with delays in the capacity changes.
The system under consideration does not share information between work systems
and the work systems adjust capacity with the objective of maintaining a desired
amount of local work in progress (WIP). Attention is focused to derive explicit suffi-
cient delay-dependent stability conditions for the network using properties of matrix
norm. Finally, numerical results are provided to demonstrate the proposed approach.
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1 Introduction

Production networks are emerging as a new type of cooperation between and within
companies, requiring new techniques and methods for their operation and management
[1]. Coordination of resource use is a key challenge in achieving short delivery times and
delivery time reliability. These networks can exhibit unfavourable dynamic behaviour as
individual organizations respond to variations in orders in the absence of sufficient com-
munication and collaboration, leading to recommendations that supply chains should be
globally rather than locally controlled and that information sharing should be extensive
[2, 3]. However, the dynamic and structural complexity of these emerging networks in-
hibits collection of the information necessary for centralized planning and control, and
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Figure 1.1: Production network consisting of a group of autonomous work systems.
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decentralized coordination must be provided by logistic processes with autonomous ca-
pabilities [4].

A production network with several autonomous work systems is depicted in Figure
1.1. The behaviour of such a network is affected by external and internal order flows,
planning, internal disturbances, and the control laws used locally in the work systems to
adjust resources for processing orders [5]. In prior work, sharing of capacity information
between work systems has been modelled [6] along with the benefits of alternative control
laws and reducing delay in capacity changes [7, 8]. Several authors have described both
linear and nonlinear dynamical models for control of variables such as inventory levels
and work in progress (WIP), including the use of pipeline flow concepts to represent
lead times and production delays [9, 10]. Delivery reliability and delivery time have
established themselves as equivalent buying criteria alongside product quality and price
(see [1, 11]). High delivery reliability and short delivery times for companies demand high
schedule reliability and short throughput times in production. In order to manufacture
economically under such conditions, it is necessary to minimize WIP levels in production
and utilize operational resources in the best possible way.

Production Planning and Control (PPC) has become more challenging as manufac-
turing companies adapt to a fast changing market [12-14]. Current PPC methods often
do not deal with unplanned orders and other types of turbulence in a satisfactory manner
[15]. Assumptions such as infinite capacity and fixed lead time are often made, leading
to a static view of the production system may not be valid because WIP affects lead time
and performance, while capacity is finite and varies both according to plan and due to
unplanned disturbances such as equipment breakdowns, worker illness, market changes
etc. Understanding the dynamic nature of production systems requires new approaches
for the design of PPC based on company’s logistics [16]. The controllers implicitly in-
teract to adjust capacity to eliminate backlog as the system maintains its planned WIP
level [15]. A discrete closed-loop PPC model was developed and analyzed by Duffie and
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Falu [17] in which two discrete controllers, one for backlog and one for WIP, with differ-
ent periods between adjustments of work input and capacity, respectively, were selected
and evaluated using transfer function analysis and time-response simulation. A second
architecture for continuous WIP control and discrete backlog control, with delay capacity
adjustment, was developed and analyzed by Ratering and Duffie for cases of high and
low WIP [18].

On the other hand, delay differential systems are assuming an increasingly important
role in many disciplines like economics, mathematics, science, and engineering. For
instance, in economic systems, delays appear in a natural way since decisions and effects
are separated by some time interval. The delay effects problem on the stability of systems
is a problem of recurring interest since the delay presence may induce complex and
undesired behaviors (oscillation, instability, bad performance) for the schemes [19-23].
Over the past few decades, discrete-time systems with time-delay have received little
attention compared with its continuous-time counterpart [24-27]. The stability of time-
delay systems is a fundamental problem because of its importance in the analysis of such
systems. With regard to the stability analysis issue, Verriest and Ivanov in [28] studied
the sufficient conditions for the asymptotic stability of the discrete-time state delayed
systems by using an algebraic matrix inequality approach. The basic method for stability
analysis is the direct Lyapunov method, and by this method, strong results have been
obtained. But finding Lyapunov functions for nonautonomous delay difference systems
is usually a difficult task. In contrast, many methods different from Lyapunov functions
have been successfully applied to establish stability results for difference equations with
delay, for example, [29-31]. Recently, in [32] a computational method was presented
using Haar wavelets to determine the piecewise constant feedback controls for a finite-
time linear optimal control problem of a time-varying state-delayed system.

In this paper, we contribute to the problem of stability analysis for a class of pro-
duction networks of autonomous work systems with delays in the capacity changes. The
system under consideration does not share information between work systems and the
work systems adjust capacity with the objective of maintaining a desired amount of WIP.
Attention is focused to derive explicit sufficient delay-dependent stability conditions for
the network using properties of matrix norm. Finally, numerical results are provided to
demonstrate the proposed approach.

2 Model of Autonomous Work Systems

A linear discrete-time dynamic approach for modeling the flow of orders into, out of,
and between work systems was chosen because it promotes straightforward calculation
of fundamental dynamic properties such as characteristic times and damping. Assume
that there are N work systems in a production network, as shown in Figure 1.1, and that
vector ¢(nT) is the rate at which orders are input to the N work systems from sources
external to the production network, which is constant over time nT < t < (n + 1)T,
where n = 1,2,---, and T is a time period between capacity adjustments (for example,
1 shop-calendar day [scd]). The total orders that have been input to the work systems
up to time (k + 1)T then can be represented as the vector [5]

wi((n+ DT) = w;(nT) + T(i(nT) + R (nT)c,(nT)), (2.1)

where vector ¢,(nT) is the rate at which orders are output from the N work systems
during time nT < t < (n + 1)T (the actual capacity of each work system) and R is a
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matrix in which element approximates the fraction of the flow out of work system j that
flows into work system k.

The total number of orders that have been output by the work systems up to time
nT <t < (n+ 1)T can be represented by the vector

wo((n+ 1)T) = wo(nT) + Tcq(nT) (2.2)
while the rate at which orders are output from the network during time nT < t < (n+1)T
is

o(nT) = Ro(nT)cq(nT), (2.3)
where R,(nT) is a diagonal matrix in which non-zero diagonal elements represent the

fraction of orders flowing out of work systems that flow out of the network during time
nT <t < (n+1)T. Ry(nT) is assumed to be constant during this period, and

N
Ro,(nT)+ Y R, (nT)=1, (2.4)
j=1,j#i
R(nT) and R,(nT) represent the structure of order flow in the network. The WIP in the

work systems is
wipe(NT) = w;(nT) — wo(nT) + wa(nT), (2.5)

where wq(nT) represents local work disturbance, such as rush order, that affects the
work system. Furthermore, the actual capacity of each work system depends on three
components as follows:

ca(NT) = c,(nT) + e ((n — d)T') — ca(nT), (2.6)

where cq(nT') represents local capacity disturbances such as equipment failures, c¢,(nT’)
denotes planned capacities of the work systems and ¢, (nT) represents local capacity
adjustments to maintain the WIP in each work system in the vicinity of the planned
levels wip,(nT') using gain k. and is described in the form of

em (nT) = ke(wipe (nT) — wipy(nT)). (2.7)

It is assumed that a delay dT exists in the capacity changes ¢,,(nT) for logistic reasons
such as operator work rules. In this network, the work systems do not share information
regarding the expected physical flow of orders between them. A capacity plan is required
for each work system. For constants R(nT') and R,(nT), the transfer functions relating
wipe(z) and ¢, (2) to the inputs i(2), wq(2), wip,y(2), cp(2) and cq(z) are:

wipa(2) = (1 — 27 YT + k(I — RT)z= @)1 (T2 i(2) + (1 — 27 Hwa(2)
+keT(I — RTY 2= Dwip,(2) — T(I — RT)27 ey (2) + T(I — RT) 2 eq(2)) (2.8)
and
ca(2) = (1 = 27T + kT(I — RT) 2= @)=Lk T2~ @HD4(2) + ke(1 — 27 1) 2 %wy(2)
—ke(1 — 272" wip,(2) — (1 — 27 V)ep(2) — (1 — 27 Hea(2)). (2.9)

Our purpose is to investigate the stability of the network (2.1)—(2.7) with respect to the
delay parameter and the controller gain which is characterize by the roots of

det((1— 271 — Az~{@Hy = (2.10)
with A = —k.T(I — RT).
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3 Stability Analysis

In this section, sufficient conditions for the stability of the network (2.1)—(2.7) with
respect to the delay parameter and the controller gain are proposed using characteristic
equation.

The characteristic equation (2.10) can be represented in the form of

det(A+ 124 — 124t =0 (3.1)
and (3.1) is corresponding to the characteristic equation of the following system
Ty = Tp-1 + ATy —q—1. (3.2)

Levitskaya in [30] established that (3.2) is asymptotically stable if and only if any eigen-
value of the matrix A lies inside the oval of the complex plane bounded by a curve

I‘:{zEC:z:2isin(2dsj_1)6w,|<P|Sg}. (3.3)

Remark 3.1 Let \; be eigenvalues of the matrix A = —k.T(I — RT). The equation
(3.2) is asymptotically stable if and only if

Al < 2 sin
|Ai] < sm2

m). (3.4)

Theorem 3.1 If the system (3.2) is asymptotically stable, then all eigenvalues of A
lie inside the unit disk.

Proof 1t is sufficient to consider the stability ovals (3.3) and to remark that
2sin(r/2(2d+1)) <lfor k>1. O

In the sequel, we will obtain the necessary and sufficient condition in terms of the
eigenvalues location of the matrix A for the asymptotic stability of the equation (3.2).

Lemma 3.1 [29] If Zle Al < 1, then the linear system x, = Zle Aip_; is
asymptotically stable.

Theorem 3.2 If
|A+I|| +d|lA|* <1, (3.5)

then (3.2) is asymptotically stable.
Proof The equation (3.2) is rewritten as

Tp = (A + I)xn—l - A(xn—l - xn—d—l)

d
=(A+DNzp1—A Z(Inﬂ — Tp—i—1)
i=1
d
= (A + I).Infl —A Z AIn,i,dfl. (36)
i=1
According to Lemma 3.1, from (3.6) we conclude (3.5). O
Now, we introduce an additional stability condition for (3.2) depending on whether
the delay d is odd or even.
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Theorem 3.3 If
1T+ (=1)?A|| +d|Af 2+ ||A]) < 1, (3.7)
then (3.2) is asymptotically stable.
Proof 1f d is even the equation (3.2) is rewritten as

Ty = (A + I)xn—l - A(xn—l - xn—d—l)

d
= (A4 Drp1— A (-1 2Ly i1 + Azp i) (3.8)
i=1
and if d is odd we have

Tp = (I - A)xn—l + A(xn—l - xn—d—l)

d
=(I = Azp 1+ A (~1)FT(2Lwy i1 + Azp i), (3.9)
i=1
Similar to the proof of Theorem 3.2, the inequality (3.7) is concluded. O

4 Numerical Results

Consider the case of a supplier of components to the automotive industry and for which
production data documents orders are flowing between five work systems over a 162-day
period. These work systems and the order-flow structure over this period is illustrated in
Figure 4.1. In this network, all order flows are unidirectional; therefore, the fundamental
dynamic properties of capacity adjustment in the individual work systems are indepen-
dent. Then, the internal flow of orders is approximated using the following matrix [5],

0 106/341 235/341 0 0

0 0 0 188/401 204,401
R= 10 0 0 100/236 129/236

0 0 0 0 268/295

0 0 0 0 0

in which element R;; is the total number of orders that went from work system 7 to work
system j divided by the total number of orders that left work system 3.

Consider the sampling time 7" = 1 scd. It is clear that the condition in Lemma 3.1
cannot be applied. Applying all of the Theorems derived, the conditions of maximum
controller gain for the asymptotic stability of the network are shown in Table 4.1. The
result from Table 4.1 guarantees the asymptotic stability of system under consideration.

5 Conclusion

The problem of stability analysis for a class of production networks of autonomous work
systems with delays in the capacity changes was investigated in this paper. The system
under consideration does not share information between work systems and the work
systems adjust capacity with the objective of maintaining a desired amount of local work
in progress (WIP). In terms of properties of matrix norm some explicit sufficient delay-
dependent stability conditions were derived for the network. Finally, numerical results
were provided to demonstrate the proposed approach.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10(1) (2010) 55-63 61

Theorem 3.1 | Theorem 3.2 | Theorem 3.3
d=1 1.0000 0.8500 0.8650
d=2 0.6180 0.6250 0.6850
d=3 0.4450 0.4750 0.4875
d=4 0.3473 0.3845 0.3950
Table 4.1: Controller gain k. w.r.t. d.
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Figure 4.1: A production network consisting of five work systems.
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Appendix
II]| is any matrix norm which satisfies the following conditions:
(i) ||A4]| > 0, and ||A]| = 0 if and only if A =0,
(ii) for each c € R, ||cA| = || ||A]],
(i) |4+ Bl < [lAl + Bl
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(iV) [|AB] < ||A]l .|| B]| for all m x m matrices A, B.

In addition, matrix norm should be concordant with the vector norm |||, that is,

Az, < [lA]- =]l

for all x € R™ and any m X m matrix A. For real m x m matrix A, we define, as usual,

m m
4l = e 55 oo and 4] = max 5% fo]
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