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Abstract—This paper establishes an exponential H∞ synchro-
nization method for a class of uncertain master and slave neural
networks (MSNNs) with mixed time delays, where the mixed
delays comprise different neutral, discrete, and distributed time
delays. The polytopic and the norm-bounded uncertainties are
separately taken into consideration. An appropriate discretized
Lyapunov–Krasovskii functional and some free-weighting ma-
trices are utilized to establish some delay-dependent sufficient
conditions for designing delayed state-feedback control as a syn-
chronization law in terms of linear matrix inequalities under less
restrictive conditions. The controller guarantees the exponential
H∞ synchronization of the two coupled MSNNs regardless of
their initial states. Detailed comparisons with existing results are
made, and numerical simulations are carried out to demonstrate
the effectiveness of the established synchronization laws.

Index Terms—H∞ performance, linear matrix inequality
(LMI), neural networks (NNs), synchronization, time delay,
uncertainties.

I. INTRODUCTION

IN the last few years, synchronization in neural networks
(NNs) has received a great deal of interest among scientists

from various fields [1]–[5]. To better understand the dynamical
behaviors of different kinds of complex networks, an important
and interesting phenomenon to investigate is the synchrony of
all dynamical nodes. In fact, synchronization is a basic motion
in nature that has been studied for a long time, ever since the
discovery of Christian Huygens in 1665 on the synchronization
of two pendulum clocks. The results of chaos synchronization
are utilized in biology, chemistry, secret communication and
cryptography, nonlinear oscillation synchronization, and some
other nonlinear fields. The first idea of synchronizing two iden-
tical chaotic systems with different initial conditions was intro-
duced by Pecora and Carroll [6], and the method was realized
in electronic circuits. The methods for synchronization of the
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chaotic systems have widely been studied in recent years, and
many different methods have theoretically and experimentally
been applied to synchronize chaotic systems, such as feedback
control [7]–[12], adaptive control [13]–[17], backstepping [18],
and sliding-mode control [19], [20]. Recently, the theory of in-
cremental input-to-state stability to the problem of synchroniza-
tion in a complex dynamical network of identical nodes, using
chaotic nodes as a typical platform, has been studied in [21].

On the other hand, in practice, due to the finite switching
speed of amplifiers or the finite speed of information process-
ing, time delays, including delays in the state or in the derivative
of the state, are often encountered in hardware implementation
[22]–[26], which may be a source of oscillation, divergence,
and instability in NNs. Another type of time delays, namely,
distributed time delays, have begun to receive research attention
[27], [28]. The main reason is that, since an NN usually has
a spatial nature due to the presence of an amount of parallel
pathways of a variety of axon sizes and lengths, continuously
distributed delays should be introduced in modeling of the NNs
over a certain duration of time such that the distant past has
less influence compared to the recent behavior of the state
[27]. Therefore, the stability problems of NNs with mixed time
delays have gained great research interest [29]–[35]. Recently,
both delay-independent and delay-dependent sufficient condi-
tions have been proposed to verify the asymptotical or expo-
nential stability of delayed NNs (see, for instance, [36]–[46]
and references therein). Furthermore, many results have been
reported on the stability analysis issue for various NNs with
distributed time delays, such as recurrent NNs [47], [48],
bidirectional associative memory networks [49], Hopfield NNs
[50], and cellular NNs [51]. It is noted that both discrete and
distributed time delays have recently been considered in [27],
[28], [33], and [38]. It can be realized that, in [4], [9], and
[52]–[56], several sufficient conditions in terms of linear matrix
inequalities (LMIs) were presented to solve the synchronization
and estimation problems of NNs with time delays. Huang et al.
[56] studied the exponential synchronization problem for a
class of chaotic Lur’e systems by using delayed feedback con-
trol by employing an integral inequality and introducing several
slack variables to reduce the conservatism of the developed syn-
chronization criterion. In [54], the problem of synchronization
for stochastic discrete-time drive–response networks with time-
varying delay was investigated by employing the Lyapunov
functional method combined with the stochastic analysis, as
well as the feedback control technique. The advantage of this
approach was that a less conservative condition, which depends
on the lower and upper bounds of the time-varying delay, was
obtained. Furthermore, from the published results, it appears
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that general results pertaining to exponential synchronization
of master–slave systems with mixed neutral, discrete, and dis-
tributed delays and an H∞ performance criteria are few and
restricted, despite its practical importance, mainly due to the
mathematical difficulties in dealing with such mixed delays.
Hence, it is our intention in this paper to tackle such an
important yet challenging problem.

In this paper, we contribute to the further development of an
exponential H∞ synchronization method for a class of uncer-
tain master and slave neural networks (MSNNs) with mixed
time delays, where the mixed delays comprise different neutral,
discrete, and distributed time delays. Both the polytopic and
the norm-bounded uncertainties are separately taken into con-
sideration. An appropriate discretized Lyapunov–Krasovskii
functional (DLKF) is constructed to establish some delay-
dependent sufficient conditions for designing delayed state-
feedback control as a synchronization law in terms of LMIs
under less restrictive conditions by introducing some free-
weighting matrices. Then, the controller is developed based on
the available information of the size of the discrete and distrib-
uted delays to guarantee that the controlled slave system can
exponentially synchronize with the master system regardless of
their initial states. It is shown that the decay coefficient can
easily be calculated by solving the derived delay-dependent
conditions. All the developed results are expressed in terms of
convex optimization over LMIs and tested on a representative
example to demonstrate the feasibility and applicability of the
proposed approach.

The notations used throughout this paper are fairly standard.
In and 0n represent the n × n identity matrix and the n × n
zero matrix, respectively; the superscript “T ” stands for matrix
transposition; �n denotes the n-dimensional Euclidean space;
and �n×m is the set of all real m × n matrices. The vector vi

denotes the unit column vector having a “1” element on its ith
row and zeros elsewhere. ‖ · ‖ refers to the Euclidean vector
norm or the induced matrix 2-norm, and diag{· · ·} represents
a block diagonal matrix. λmin(A) and λmax(A) denote the
smallest and the largest eigenvalue of the square matrix A,
respectively. The operator sym{A} denotes A + AT . The nota-
tion P > 0 means that P is real symmetric and positive definite,
and the symbol ∗ denotes the elements below the main diagonal
of a symmetric block matrix. In addition, L2[0,∞) is the space
of square-integrable vector functions over [0,∞). Matrices, if
the dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

II. PROBLEM DESCRIPTION

In this paper, the problem of characterizing the delay-
dependent coupling technique for the synchronization of a class
of MSNNs with mixed time delays is considered. More specif-
ically, consider the master neural network, which is described
as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = −Ax(t)+W1f (x(t))+W2g (x(t−τ1))

+ W3ẋ(t−τ2)+W4

t∫
t−τ3

h (x(s)) ds+o

x(t) = φ(t), t ∈ [−τ , 0]

zx(t) = C1x(t)+C2x(t−τ1)+C3

t∫
t−τ3

h(x(s))ds

(1a-c)

with x(t) = [x1(t), x2(t), . . . , xn(t)]n ∈ �n, where xi(t) are
the master system’s state vector associated with the ith neuron,
and zx(t) ∈ �s is the controlled output of the master network.
f(x(t))=[f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T, g(x(t − τ1))=
[ g1 (x1(t − τ1)), g2(x2(t − τ1)), . . . , gn (xn (t − τ1))]T , and
h(x(t)) = [h1(x1(t)), h2(x2(t)), . . . , hn(xn(t))]T denote the
activation functions, A = diag{ai} > 0, the vector o =
[o1, o2, . . . , on]T is the constant external input, and the con-
stant scalars τi ≥ 0, for i = 1, 2, 3, denote the known neutral,
discrete, and distributed time delays, respectively, with τ :=
max{τ1, τ2, τ3}. If all τi = 0, the network (1) has no time
delay. The time-varying vector-valued initial function φ(t) is
a continuously differentiable functional.

Now, given the master signal x(t) = x(t, φ(t)), we are to
design a feasible coupling technique to realize the synchroniza-
tion between two identical neural networks with different initial
conditions. The slave neural network is described as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẏ(t)= −Ay(t)+ W1f(y(t))+ W2g (y(t−τ1))

+W3ẏ(t−τ2)+ W4

t∫
t−τ3

h(y(s)) ds+ Ew(t)+ u(t)+ o

y(t)= ϕ(t), t ∈ [−τ , 0]

zy(t)= C1y(t)+ C2y(t−τ1)+ C3

t∫
t−τ3

h(y(s)) ds

(2a-c)

with y(t) = [y1(t), y2(t), . . . , yn(t)]n ∈ �n, where yi(t) are
the slave system’s state vector associated with the ith neuron;
u(t) ∈ �n is a coupled term, which is considered as the control
input; w(t) ∈ �q is the disturbance; zy(t) ∈ �s is the con-
trolled output of the slave network; and ϕ(t) is a continuously
differentiable functional.

Remark 1: The models (1) and (2) can describe a large
amount of well-known dynamical systems with time delays,
such as the delayed logistic model, the chaotic models with
time delays, the artificial neural network model with discrete
and distributed time delays, and the predator–prey model with
distributed delays. In real application, these coupled systems
can be regarded as interacting dynamical elements in the entire
system, such as physical particles, biological neurons, ecolog-
ical populations, and even automatic machines and robots. A
feasible coupling design for successful synchronization leads
us to fully command the intrinsic mechanism regulating the
evolution of real systems, to fabricate emulate systems, and
even to remotely control the machines and nodes in networks
with large scales [6], [17], [20], [24], [53].

One can define a difference operator ∇ : C([−τ , 0],�n) →
�n such that

∇xt = x(t) − W3 x(t − τ2). (3)

Definition 1 [22]: The difference operator ∇ is said to be
stable if the zero solution of the homogeneous difference equa-
tion ∇xt = 0, t ≥ 0, x0 = Ψ ∈ {Φ ∈ C([−τ , 0]) : ∇Φ = 0},
is uniformly asymptotically stable.

The stability of the difference operator ∇ is necessary for the
stability of the MSNNs (1) and (2).

Assumption 1: It follows from [22] that a delay-independent
sufficient condition for the asymptotic stability of the MSNNs
(1) and (2) is that all the eigenvalues of the matrix W3 are inside
the unit circle, i.e., λmax(W3) < 1.
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Definition 2 [56]: The MSNNs (1) and (2) are globally
exponentially synchronized if there exist scalars α > 0 and
M ≥ 1 such that

|e(t)| ≤ Me−αt
[
‖ζ‖ + ‖ζ̇‖

]
where ζ(t) ∈ C([−τ , 0];�n) is an initial condition, and e(t) =
x(t) − y(t) is the synchronization error such that α and M
are called the exponential decay rate and the decay coefficient,
respectively.

Let ê(t) = eαte(t). The error dynamics between the MSNNs
(1) and (2), namely, the synchronization error network, can be
expressed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂e(t)= −(A−αI)ê(t)+ W1ψ̂1(ê(t))
+W2e

ατ1 ψ̂2(ê(t−τ1))−αeατ2W3ê(t−τ2)

+ eατ2W3
˙̂e(t−τ2)+ W4

t∫
t−τ3

eα(t−s)ψ̂3(ê(s)) ds

−Eŵ(t)−û(t)
ê(t)= φe(t;α), t ∈ [−τ , 0]

ẑe(t)= C1ê(t)+ C2e
ατ1 ê(t−τ1)+ C3

t∫
t−τ3

eα(t−s)ψ̂3(ê(s)) ds

(4a-c)

where û(t) = eαtu(t), ŵ(t) = eαtw(t), ẑe(t) = ẑx(t) −
ẑy(t)=eαt(zx(t)−zy(t)), ψ̂1(ê(t))=[ψ̂11(ê1(t)), ψ̂12(ê2(t)),
. . . , ψ̂1n(ên(t))]T , ψ̂2(ê(t−τ1))=[ψ̂21(ê1(t−τ1)), ψ̂22(ê2(t −
τ1)), . . . , ψ̂2n(ên(t − τ1))]T , and ψ̂3(ê(t)) = [ψ̂31(ê1(t)),
ψ̂32(ê2(t)), . . . , ψ̂3n(ên(t))]T with ψ̂1i(êi(t))=eαt(fi(xi(t))−
fi(yi(t))), ψ̂2i(êi(t))=eαt(gi(xi(t))−gi(yi(t))), ψ̂3i(êi(t))=
eαt(hi(xi(t)) − hi(yi(t))), and φe(t;α) = eαt(φ(t) − ϕ(t)).

In this paper, we make the following assumption for the
neuron activation functions in (1) and (2), which is more
general than the descriptions on the conventional sigmoid acti-
vation functions, as well as the recently popular Lipschitz-type
activation functions.

Assumption 2 [27]: The nonlinear functions fi(s), gi(s),
and hi(s), respectively, for any i = 1, . . . , n, satisfy

f−
i ≤ fi(s1) − fi(s2)

s1 − s2
≤ f+

i

g−i ≤ gi(s1) − gi(s2)
s1 − s2

≤ g+
i

h−
i ≤ hi(s1) − hi(s2)

s1 − s2
≤ h+

i

where f−
i , f+

i , g−i , g+
i , h−

i , and h+
i are some constants.

Remark 2: According to Assumption 2, one can easily check
that, for any i = 1, . . . , n, the functions ψ̂1i(êi(t)), ψ̂2i(êi(t)),
and ψ̂3i(êi(t)), respectively, satisfy

f−
i ≤ ψ̂1i (êi(t))

êi(t)
≤ f+

i

g−i ≤ ψ̂2i (êi(t))
êi(t)

≤ g+
i

h−
i ≤ ψ̂3i (êi(t))

êi(t)
≤ h+

i .

The problem to be addressed in this paper is formulated as fol-
lows: Given the delayed MSNNs (1) and (2) with a prescribed

level of disturbance attenuation γ > 0, find a driving signal û(t)
of the form

û(t) = K1ê(t) + K2ê(t − τ1) + K3

t∫
t−τ3

ê(s)ds (5)

where the matrices {Ki}3
i=1 are the control gains to be deter-

mined such that
1) the synchronization error network (4) is globally expo-

nentially stable;
2) under zero initial conditions and for all nonzero w(t) ∈

L2[0,∞], the H∞ performance measure, i.e., J∞ =∫∞
0 [ẑT

e (t)ẑe(t) − γ2ŵT (t)ŵ(t)]dt, satisfies J∞ < 0 (or
the induced L2-norm of the operator form ŵ(t) to the
controlled outputs ẑe(t) is less than γ).

In this case, the MSNNs (1) and (2) are said to be asymptoti-
cally stable with an H∞ performance measure.

Remark 3: The delay-dependent coupling (5) utilizes the
available information of the size of the discrete and distributed
delays. However, in many real applications, if the information
of the size of the delays is not available for feedback, a
memoryless coupling, i.e., û(t) = K1ê(t), will be designed to
synchronize the master and slave systems. Recently, in [52],
global synchronization has been given for an array of coupled
delayed NNs with a linear diffusive hybrid coupling, containing
constant discrete and distributed delay coupling. In comparison,
our model extends the model structure in [52] to MSNNs with
a hybrid coupling, containing constant, neutral, discrete, and
distributed delay coupling.

III. MAIN RESULTS

In this section, we present our new sufficient conditions for
the solvability of the problem of the delayed state-feedback
control design using the Lyapunov method and an LMI
approach.

Theorem 1: Let hi = τi/N , i = 1, 2, be given for any posi-
tive integer N . Under Assumptions 1 and 2, a state feedback
controller given in (5) exists such that the controlled slave
system (2) exponentially synchronizes with the master system
(1) with the H∞ performance level γ > 0 and an exponential
decay rate α > 0, if there exist some scalars δ, σi, ρi, and
λi (i = 1, 2, . . . , N), matrices P2, L1, L2, L3, Qi, Si, Hi,
Ri,j = RT

i,j , and Ti,j = TT
i,j (i, j = 0, 1, . . . , N), and positive-

definite matrices P1, Z1, Z2, U1, U2, U1, and U2 satisfying the
following LMIs:

Σ :=
[

P1 Q̃
∗ R̃ + S̃

]
> 0 (6a)[

U1 −U1

∗ Sd

]
> 0 (6b)[

U2 −U2

∗ Hd

]
> 0 (6c)

Π :=

⎡
⎢⎢⎢⎣

Ξ̂e Ds Os Da Oa

∗ −Sd − Rds 0 0 0
∗ ∗ −Hd − Tds 0 0
∗ ∗ ∗ −3U1 0
∗ ∗ ∗ ∗ −3U2

⎤
⎥⎥⎥⎦ < 0

(6d)
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where R̃ = [Ri−1,j−1]i,j=1,2,...,N+1, Rds = h1[Ri−1,j−1 −
Ri,j ]i,j=1,2,...,N , and Tds = h2[Ti−1,j−1 − Ti,j ]i,j=1,2,...,N .
Ξ̂e, Σ11, Σ15, and Σ55 are expressed in the equations shown at
the bottom of the page, and

Ds = h1

⎡
⎢⎢⎢⎢⎢⎢⎣

2Qa
1 + Rs

0,1 2Qa
2 + Rs

0,2 · · · 2Qa
N + Rs

0,N

Qs
1 Qs

2 · · · Qs
N

−Rs
N,1 −Rs

N,2 · · · −Rs
N,N

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Da = h1

⎡
⎢⎢⎢⎢⎢⎢⎣

Ra
0,1 Ra

0,2 · · · Ra
0,N

Qa
1 Qa

2 · · · Qa
N

−Ra
N,0 −Ra

N,1 · · · −Ra
N,N−1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Os = h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T s
0,1 T s

0,2 · · · T s
0,N

0 0 · · · 0
0 0 · · · 0

T s
N,1 T s

N,2 · · · T s
N,N

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Oa = h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T a
0,1 T a

0,2 · · · T a
0,N

0 0 · · · 0
0 0 · · · 0

T a
N,0 T a

N,1 · · · T a
N,N−1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Sd = diag{S0 − S1, S1 − S2, . . . , SN−1 − SN}, Hd =
diag{H0−H1,H1−H2, . . . , HN−1−HN}, Q̃=[Q0, Q1, . . . ,

QN ], S̃ = 1/h1 diag{S0, S1, . . . , SN}, Qs
p = (Qp + Qp−1)/2,

Qa
p = (Qp − Qp−1)/2, Rs

p,q = (Rp,q + Rp,q−1)/2, Ra
p,q =

(Rp,q − Rp,q−1)/2, T s
p,q = (Tp,q + Tp,q−1)/2, T a

p,q = (Tp,q −
Tp,q−1)/2, F+=diag{f+

1 , f+
2 , . . . , f+

N}, G+ =diag{g+
1 , g+

2 , . . . ,

g+
N}, H+ = diag{h+

1 , h+
2 , . . . , h+

N}, F− = diag{f−
1 , f−

2 , . . . ,
f−

N}, G−=diag{g−1 , g−2 , . . . , g−N}, H−=diag{h−
1 , h−

2 , . . . , h−
N},

Λ1 =diag{σ1, σ2, . . . , σN}, Λ2 =diag{ρ1, ρ2, . . . , ρN}, and
Λ3 = diag{λ1, λ2, . . . , λN}. The decay coefficient can be
calculated by

M =

√
max{Δ1,Δ2}

λmin(Σ)

with Δ1=λmax(P1)+τ1λmax(Qp)N
p=0+τ1λmax(G+TZ1G

+)+
τ1 λmax(Sp)N

p=0 + τ2
1 λmax(Rp,p)N

p=0 + τ2 λmax (Hp)N
p=0 +

τ2
2 λmax(Tp,p)N

p=0+(1/2)τ3
3 (λmax(H+T Z2H

+)+ λmax(U2)),
and Δ2 = τ2λmax(U1). Moreover, the controller gains in (5)
can be designed as Ki = (PT

2 )−1Li (i = 1, 2, 3).
Proof: To prove the theorem, choose a Lyapunov–

Krasovskii functional (LKF) candidate as

V (t) =
6∑

i=1

Vi(t) (7)

where

V1(t)= ê(t)T P1ê(t) + 2ê(t)T

0∫
−τ1

Q(ξ)ê(t + ξ) dξ (8a)

V2(t)=

t∫
t−τ1

ψ̂2(ê(s))
T Z1ψ̂2(ê(s)) ds+

t∫
t−τ2

˙̂e(s)TU1
˙̂e(s)ds

(8b)

V3(t)=

0∫
−τ1

ê(t + ξ)T S(ξ)ê(t + ξ) dξ

+

0∫
−τ1

0∫
−τ1

ê(t + s)T R(s, ξ)ê(t + ξ) ds dξ (8c)

V4(t)=

0∫
−τ2

ê(t + ξ)T H(ξ)ê(t + ξ) dξ

+

0∫
−τ2

0∫
−τ2

ê(t + s)T T (s, ξ)ê(t + ξ) ds dξ (8d)

Ξ̂e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σ11

[
−L2 − QN + eατ1CT

1 C2

−δL2

] [
−αPT

2 W3e
ατ2

−αδPT
2 W3e

ατ2

] [
PT

2 W3e
ατ2

δPT
2 W3e

ατ2

] [
−L3

−δL3

]
Σ15

∗ −SN + e2ατ1CT
2 C2 0 0 0 0

∗ ∗ −HN 0 0 0
∗ ∗ ∗ −U1 0 0
∗ ∗ ∗ ∗ −U2 0
∗ ∗ ∗ ∗ ∗ Σ55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Σ11 = sym

([
−P T

2 (A−αI)−L1 P1−P T
2

−δP T
2 (A−αI)−δL1 −δP T

2

])
+ diag

{
sym(Q0) + S0 + H0 + τ2

3 U2 − F+Λ1F
−− G+Λ2G

−− H+Λ3H
−, U1

}
Σ15 =

[ [
P T

2 W1+
1
2 (F++F−)Λ1

δP T
2 W1

] [
1
2 (G++G−)Λ2

0

] [
1
2 (H++H−)Λ3

0

] [
P T

2 W4+CT
1 C3

δP T
2 W4

] [
P T

2 W2eατ1

δP T
2 W2eατ1

] [
−P T

2 E

−δP T
2 E

]
0 0 0 0 0 0

]

Σ55 = diag
{
−Λ1, Z1 − Λ2, τ

2
3 Z2 − Λ3,−e−2ατ3Z2 + CT

3 C3,−Z1,−γ2I
}
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V5(t)=

t∫
t−τ3

⎡
⎣ t∫

s

ψ̂3 (ê(θ))T dθ

⎤
⎦Z2

⎡
⎣ t∫

s

ψ̂3 (ê(θ)) dθ

⎤
⎦ ds

+

τ3∫
0

t∫
t−s

(θ−t+s)ψ̂3(ê(θ))
TZ2ψ̂3(ê(θ)) dθ ds (8e)

V6(t)=

t∫
t−τ3

⎡
⎣ t∫

s

ê(θ)T dθ

⎤
⎦U2

⎡
⎣ t∫

s

ê(θ) dθ

⎤
⎦ ds

+

τ3∫
0

t∫
t−s

(θ − t + s)ê(θ)T U2ê(θ) dθ ds (8f)

where Q(ξ), R(s, ξ) = R(s, ξ)T , S(ξ) = S(ξ)T , T (s, ξ) =
T (s, ξ)T , and H(ξ) = H(ξ)T are continuous matrix functions.

Derivatives of Vi(t), i = 1, . . . , 5, are given, respectively, by

V̇1(t)= 2˙̂e(t)T

⎡
⎣P1ê(t) +

0∫
−τ1

Q(ξ)ê(t + ξ) dξ

⎤
⎦

+ 2ê(t)T

0∫
−τ1

Q(ξ) ˙̂e(t + ξ) dξ

= 2˙̂e(t)T

⎡
⎣P1ê(t) +

0∫
−τ1

Q(ξ)ê(t + ξ) dξ

⎤
⎦

+ 2ê(t)T

0∫
−τ1

Q(ξ) ˙̂e(t + ξ) dξ (9a)

V̇2(t)= ψ̂2(ê(t))
TZ1ψ̂2 (ê(t))+ ˙̂e(t)T U1

˙̂e(t)−ψ̂2(ê(t−τ1))
T

× Z1ψ̂2 (ê(t − τ1)) − ˙̂e(t − τ2)T U1
˙̂e(t − τ2) (9b)

V̇3(t)= 2

0∫
−τ1

˙̂e(t + ξ)T S(ξ)ê(t + ξ) dξ

+ 2

0∫
−τ1

0∫
−τ1

˙̂e(t + s)T R(s, ξ)ê(t + ξ) ds dξ (9c)

V̇4(t)= 2

0∫
−τ2

˙̂e(t + ξ)T H(ξ)ê(t + ξ) dξ

+ 2

0∫
−τ2

0∫
−τ2

˙̂e(t + s)T T (s, ξ)ê(t + ξ) ds dξ (9d)

V̇5(t)= −

⎡
⎣ t∫

t−τ3

ψ̂3 (ê(θ))T dθ

⎤
⎦Z2

⎡
⎣ t∫

t−τ3

ψ̂3 (ê(θ)) dθ

⎤
⎦

+ 2

t∫
t−τ3

(θ − t + τ3)ψ̂3 (ê(t))T Z2ψ̂3 (ê(θ)) dθ

+

τ3∫
0

sψ̂3 (ê(t))T Z2ψ̂3 (ê(t)) ds

−
t∫

t−τ3

τ3∫
t−θ

ψ̂3 (ê(s))T Z2ψ̂3 (ê(s)) dsdθ

≤
t∫

t−τ3

(θ − t + τ3)
[
ψ̂3 (ê(t))T Z2ψ̂3 (ê(t))

+ ψ̂3 (ê(θ))T Z2ψ̂3 (ê(θ))
]
dθ

−

⎡
⎣ t∫

t−τ3

ψ̂3 (ê(θ))T dθ

⎤
⎦Z2

⎡
⎣ t∫

t−τ3

ψ̂3 (ê(θ)) dθ

⎤
⎦

+

τ3∫
0

sψ̂3 (ê(t))T Z2ψ̂3 (ê(t)) ds

−
t∫

t−τ3

(θ − t + τ3)ψ̂3 (ê(θ))T Z2ψ̂3 (ê(θ)) dθ

= τ2
3 ψ̂3 (ê(t))T Z2ψ̂3 (ê(t))

−

⎡
⎣ t∫

t−τ3

ψ̂3 (ê(θ))T dθ

⎤
⎦Z2

⎡
⎣ t∫

t−τ3

ψ̂3 (ê(θ)) dθ

⎤
⎦

≤ τ2
3 ψ̂3 (ê(t))T Z2ψ̂3 (ê(t))

− e−2ατ3

⎡
⎣ t∫

t−τ3

eα(t−θ)ψ̂3 (ê(θ))T dθ

⎤
⎦Z2

×

⎡
⎣ t∫

t−τ3

eα(t−θ)ψ̂3 (ê(θ)) dθ

⎤
⎦ (9e)

and similarly

V̇6(t) ≤ τ2
3 ê(t)T U2ê(t) −

⎡
⎣ t∫

t−τ3

ê(θ)T dθ

⎤
⎦U2

⎡
⎣ t∫

t−τ3

ê(θ) dθ

⎤
⎦ .

(9f)
According to Remark 2, we have

−
(
ψ̂1i (êi(t))−f+

i êi(t)
)T(

ψ̂1i (êi(t))−f−
i êi(t)

)
≥0 (10a)

−
(
ψ̂2i (êi(t − τ1)) − g+

i êi(t − τ1)
)T

×
(
ψ̂2i (êi(t − τ1)) − g−i êi(t − τ1)

)
≥0 (10b)

−
(
ψ̂3i (êi(t))−h+

i êi(t)
)T(

ψ̂3i (êi(t))−h−
i êi(t)

)
≥0 (10c)

which are, respectively, equivalent to

↔
ψ1(t)

T Δfi

↔
ψ1(t) ≥ 0 (11a)

↔
ψ2(t − τ1)T Δgi

↔
ψ2(t − τ1) ≥ 0 (11b)

↔
ψ3(t)

T Δhi

↔
ψ3(t) ≥ 0 (11c)

where
↔
ψi(t) := [ê(t)T , ψ̂i(ê(t))T ]T , and

Δfi
:=
[
−f+

i f−
i viv

T
i

f+
i

+f−
i

2 viv
T
i

∗ −viv
T
i

]

Δgi
:=
[
−g+

i g−i viv
T
i

g+
i

+g−
i

2 viv
T
i

∗ −viv
T
i

]

Δhi
:=
[
−h+

i h−
i viv

T
i

h+
i

+h−
i

2 viv
T
i

∗ −viv
T
i

]
.
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Moreover, from (4) and (5), the following equation holds for
any matrices P2 and P3 with appropriate dimensions:

2
(
ê(t)T PT

2 + ˙̂e(t)T PT
3

)
×

⎛
⎝− ˙̂e(t)−(A+K1−αI)ê(t)−K2ê(t−τ1)+W1ψ̂1 (ê(t))

+ W2e
ατ1 ψ̂2 (ê(t − τ1)) − αW3e

ατ2 ê(t − τ2)

+ W3e
ατ2 ˙̂e(t − τ2) − K3

t∫
t−τ3

ê(s)ds

+ W4

t∫
t−τ3

eα(t−s)ψ̂3 (ê(s)) ds − Eŵ(t)

⎞
⎠ = 0. (12)

Using the obtained derivative terms in (9) and adding the left-
hand sides of (11) and (12) into, we obtain the following result
for V̇ (t):

V̇ (t) ≤χT (t)Ξχ(t) + 2˙̂e(t)T

0∫
−τ1

Q(ξ)ê(t + ξ)dξ

− 2˙̂e(t)T

0∫
−τ3

PT
3 K3ê(t + ξ)dξ

− 2ê(t − τ1)T

0∫
−τ1

R(−τ1, ξ)ê(t + ξ)dξ

− 2ê(t − τ2)T

0∫
−τ2

T (−τ2, ξ)ê(t + ξ)dξ

− ˙̂e(t − τ2)T U1
˙̂e(t − τ2) −

0∫
−τ1

0∫
−τ1

ê(t + s)T

×
(

∂

∂s
R(s, ξ) +

∂

∂ξ
R(s, ξ)

)
ê(t + ξ)dsdξ

−
0∫

−τ1

ê(t + ξ)T Ṡ(ξ)ê(t + ξ)dξ

+ 2ê(t)T

0∫
−τ1

(
R(0, ξ) − Q̇(ξ)

)
ê(t + ξ)dξ

− 2ê(t)T

0∫
−τ3

PT
2 K3ê(t + ξ)dξ

+ 2ê(t)T

0∫
−τ2

T (0, ξ)ê(t + ξ)dξ

−
0∫

−τ2

ê(t + ξ)T Ḣ(ξ)ê(t + ξ)dξ

−

⎡
⎣ t∫

t−τ3

ê(θ)T dθ

⎤
⎦U2

⎡
⎣ t∫

t−τ3

ê(θ) dθ

⎤
⎦

−
0∫

−τ2

0∫
−τ2

ê(t + s)T

(
∂

∂s
T (s, ξ) +

∂

∂ξ
T (s, ξ)

)

× ê(t + ξ)dsdξ + ψ̂2 (ê(t))T Z1ψ̂2 (ê(t))
− ψ̂2 (ê(t − τ1))

T Z1ψ̂2 (ê(t − τ1))
+τ2

3 ψ̂3(ê(t))
T Z2ψ̂3 (ê(t))+2

(̂
e(t)T PT

2 + ˙̂e(t)T PT
3

)
×

⎛
⎝W1ψ̂1(ê(t))+W2e

ατ1 ψ̂2(ê(t−τ1))+W3e
ατ2 ˙̂e(t−τ2)

+ W4

t∫
t−τ3

eα(t−s)ψ̂3 (ê(s)) ds − Eŵ(t)

⎞
⎠

− e−2ατ3

⎡
⎣ t∫

t−τ3

eα(t−θ)ψ̂3 (ê(θ))T dθ

⎤
⎦Z2

×

⎡
⎣ t∫

t−τ3

eα(t−θ)ψ̂3 (ê(θ))dθ

⎤
⎦+

n∑
i=1

σi

↔
ψ1 (t)T Δfi

↔
ψ1(t)

+
n∑

i=1

ρi

↔
ψ2(t)

TΔgi

↔
ψ2(t) +

n∑
i=1

λi

↔
ψ3(t)

T Δhi

↔
ψ3(t)

(13)

where χ(t) := col{ê(t), ˙̂e(t), ê(t − τ1), ê(t − τ2)}, and

Ξ=

⎡
⎢⎣Σ̂11

[
−PT

2 K2−Q(−τ1)
−PT

3 K2

] [
−αeατ2PT

2 W3

−αeατ2PT
3 W3

]
∗ −S(−τ1) 0
∗ ∗ −H(−τ2)

⎤
⎥⎦ (14)

with

Σ̂11 = sym

(
PT

[
0 I

−(A + K1 − αI) −I

])
+ diag

{
sym (Q(0)) + S(0) + H(0) + τ2

3 U2, U1

}
where P =

[
P1 0
P2 P3

]
.

According to the discretization technique in [23] and [24],
the delay intervals [−τ1, 0] and [−τ2, 0], respectively, are di-
vided into N segments [θp, θp−1] and [θ̂p, θ̂p−1], p = 1, . . . , N ,
of equal length (or uniform mesh case), i.e., hi =τi/N , i=1, 2,
where θp = −ph1 and θ̂p = −ph2. For instance, this scheme
divides the square [−τ1, 0]×[−τ1, 0] into N×N small squares
[θp, θp−1] × [θq, θq−1], and each small square is further divided
into two triangles. It is easily seen using [24, Lemma 7.7] that,
although the LKF candidate for the nonuniform mesh case is
no more complicated than the uniform mesh case, it is not the
case for the LKF derivative condition. In addition, a uniform
mesh is not possible for the incommensurate delay case and is
not practical in the case of commensurate delays with a small
common factor. In the sequel, Q(·), S(·), H(·), R(·, ·), and
T (·, ·) are chosen to be piecewise linear. i.e., Q(θp + κh1) =
(1 − κ)Qp + κQp−1, S(θp + κh1) = (1 − κ)Sp + κSp−1, and
H(θ̂p + κh2) = (1 − κ)Hp + κHp−1, where

R(θp + κh1, θq + βh1)

=
{

(1 − κ)Rpq + βRp−1,q−1 + (κ − β)Rp−1,q, κ ≥ β
(1 − β)Rpq + κRp−1,q−1 + (β − κ)Rp,q−1, κ < β

T (θ̂p + κh2, θ̂q + βh2)

=
{

(1 − κ)Tpq + βTp−1,q−1 + (κ − β)Tp−1,q, κ ≥ β
(1 − β)Tpq + κTp−1,q−1 + (β − κ)Tp,q−1, κ < β
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with Ṡ(ξ) = h−1
1 (Sp−1 − Sp), Q̇(ξ) = h−1

1 (Qp−1 − Qp),
Ḣ(ξ) = h−1

2 (Hp−1 − Hp), (∂/∂ξ)R(ξ, θ) + (∂/∂θ)R(ξ, θ) =
h−1

1 (Rp−1,q−1−Rp,q), and (∂/∂ξ)T (ξ, θ)+(∂/∂θ)T (ξ, θ) =
h−1

2 (Tp−1,q−1 − Tp,q). Thus, one obtains

2˙̂e(t)T

0∫
−τ1

Q(ξ)ê(t + ξ)dξ

= 2˙̂e(t)T
N∑

p=1

h1

1∫
0

[
Qs

p+(1−2κ) Qa
p

)]
ê(t+θp+κh1)dκ

(15a)

2ê(t − τ1)T

0∫
−τ1

R(−τ1, ξ)ê(t + ξ)dξ

= 2ê(t − τ1)T
N∑

p=1

h1

1∫
0

[
Rs

N,p + (1 − 2κ)Ra
N,p−1

]
× ê(t + θp + κh1)dκ (15b)

2ê(t − τ2)T

0∫
−τ2

T (−τ2, ξ)ê(t + ξ)dξ

= 2ê(t − τ2)T
N∑

p=1

h2

1∫
0

[
T s

N,p + (1 − 2κ)T a
N,p−1

]
× ê(t + θ̂p + κh2)dκ (15c)

0∫
−τ1

ê(t + ξ)T Ṡ(ξ)ê(t + ξ)dξ

=
N∑

p=1

1∫
0

ê(t+θp+κh1)T (Sp−1−Sp)ê(t+θp+κh1)dκ

(15d)
0∫

−τ2

ê(t + ξ)T Ḣ(ξ)ê(t + ξ)dξ

=
N∑

p=1

1∫
0

ê(t+θ̂p+κh2)T(Hp−1−Hp)ê(t+θ̂p+κh2)dκ

(15e)
0∫

−τ1

0∫
−τ1

ê(t + s)T

(
∂

∂s
R(s, ξ) +

∂

∂ξ
R(s, ξ)

)
ê(t + ξ)dsdξ

= h1

N∑
q=1

N∑
p=1

1∫
0

ê(t + θp + βh1)T (Rp−1,q−1 − Rp,q)

× ê(t + θp + κh1)dκdβ (15f)
0∫

−τ2

0∫
−τ2

ê(t + s)T

(
∂

∂s
T (s, ξ) +

∂

∂ξ
T (s, ξ)

)
ê(t + ξ)dsdξ

= h2

N∑
q=1

N∑
p=1

1∫
0

ê(t + θ̂p + βh2)T (Tp−1,q−1 − Tp,q)

× ê(t + θ̂p + κh2)dκdβ (15g)

2ê(t)T

0∫
−τ1

(
−Q̇(ξ) + R(0, ξ)

)
ê(t + ξ)dξ

= 2h1ê(t)T
N∑

p=1

1∫
0

(
2Qa

p + Rs
0,p + (1 − 2κ)Ra

0,p

)
× ê(t + θp + κh1)dκ (15h)

2ê(t)T

0∫
−τ2

T (0, ξ)ê(t + ξ)dξ

= 2h2ê(t)T
N∑

p=1

1∫
0

(
T s

0,p+(1−2κ)T a
0,p

)
ê(t+θ̂p+κh2)dκ.

(15i)

Now, from (4) and (13)–(15), one has

ẑe(t)T ẑe(t) − γ2ŵ(t)T ŵ(t) + V̇ (t)

≤ χT
e (t)

(
Ξe + DsŨ1D

sT

+ OsŨ2O
sT

+
1
3

(
DaŨ1D

aT

+ OaŨ2O
aT
))

χe(t)

−
1∫

0

1∫
0

φe(κ;α)T Rdsφe (s;α)] dκ ds

−
1∫

0

1∫
0

φ̂e(κ;α)T Tdsφ̂e(s;α)dκ ds

−
1∫

0

φD(κ;α)T Θ1φD(κ;α)dκ

−
1∫

0

φO(κ;α)T Θ2φO(κ;α)dκ (16)

with χe(t)=col{χ(t), ˙̂e(t−τ2),
∫ t

t−τ3
ê(θ)dθ,ψ̂1(ê(t)),ψ̂2(ê(t)),

ψ̂3 (ê(t)),
∫ t

t−τ3
eα(t−θ) ψ̂3 (ê(θ))dθ, ψ̂2 (ê (t − τ1)), ŵ (t))},

χD(t) := (Ds + (1 − 2κ)Da)T χe(t), χO(t) := (Os + (1 −
2κ)Oa)T χe(t), φD(κ;α) := [χD(t)T , φe(κ;α)T ]T ,
φo(κ;α) := [χo(t)T , φ̂e(κ;α)T ]T , φe(κ;α) = col{ê(t + θ1 +
κh1), ê(t + θ2 + κh1), . . . , ê(t + θN + κh1)}, φ̂e(κ;α) =
col{ê(t + θ̂1 + κh2), ê(t + θ̂2 + κh2), . . . , ê(t + θ̂N + κh2)},
and

Θ1 :=
[

Ũ1 −I
∗ Sd

]
Θ2 :=

[
Ũ2 −I
∗ Hd

]
.

Ξe, Σ̃11, and Σ̃15 are expressed in the equations shown at the
bottom of the next page.

Let ζi = diag{Ũi, I} with Ũi = U
−1
i . Premultiplying ζi

and postmultiplying ζT
i to the LMIs (6b) and (6c), one obtains
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Θi > 0, i = 1, 2. Then, using the Jensen inequality (Lemma 1
in the Appendix) to the forth and fifth terms in (16), we have

1∫
0

φD(κ;α)T Θ1φD(κ;α)dκ

≥ [ χT
e (t) φe(κ;α)T ]

[
DsŨ1D

sT −Ds

∗ Sd

] [
χe(t)

φe(κ;α)

]
1∫

0

φO(κ;α)T Θ2φO(κ;α)dκ

≥ [ χT
e (t) φ̂e(κ;α)T ]

[
OsŨ2O

sT −Os

∗ Hd

] [
χe(t)

φ̂e(κ;α)

]
.

Using the preceding inequalities in (16), we conclude that

ẑe(t)T ẑe(t) − γ2ŵ(t)T ŵ(t) + V̇ (t) ≤ χ̃e(t)T Ξ̃eχ̃e(t) (17)

where χ̃e(t) = [χe(t)T ,
∫ 1

0 φe(κ;α)T dκ,
∫ 1

0 φ̂e(κ;α)T dκ]T ,
and

Ξ̃e =

⎡
⎣Ξe+ 1

3

(
DaŨ1DaT

+OaŨ2OaT
)

−Ds −Os

∗ −Sd−Rds 0

∗ ∗ −Hd−Tds

⎤
⎦ . (18)

On the other hand, for a prescribed γ > 0 and under zero
initial conditions, J∞ can be rewritten as

J∞≤
∞∫

0

[
ẑe(t)T ẑe(t)−γ2ŵ(t)T ŵ(t)

]
dt+ V (t)|t→∞− V (t)|t=0

=

∞∫
0

[
ẑe(t)T ẑe(t) − γ2ŵ(t)T ŵ(t) + V̇ (t)

]
dt (19)

and the condition ẑe(t)T ẑe(t) − γ2ŵ(t)T ŵ(t) + V̇ (t) < 0
means that the condition Ξ̃e < 0 satisfies the H∞ performance
measure, and by applying the Schur complement, one gets⎡
⎢⎢⎢⎣

Ξe Ds Os Da Oa

∗ −Sd − Rds 0 0 0
∗ ∗ −Hd − Tds 0 0
∗ ∗ ∗ −3U1 0
∗ ∗ ∗ ∗ −3U2

⎤
⎥⎥⎥⎦<0. (20)

Then, we choose P3 = δP2, δ ∈ R, where δ is a tuning scalar
parameter (which may be restrictive). Note that the matrix P2

is nonsingular due to the fact that the only matrix that can be

negative definite in the second block on the diagonal of (20)
is −δ sym(P2) + U1. Therefore, considering Li = PT

2 Ki, i =
1, 2, 3, results in the LMI (6d). Moreover, the condition J∞ < 0
for w(t) ≡ 0 implies V̇ (t) < 0. Then, we have V (t) < V (0).
From (7) and (8), one gets

V (0) ≤ Δ1‖ζ‖2 + Δ2‖ζ̇‖2. (21)

Moreover, from [24, Prop. 5.20], it is clear that the LKF condi-
tion V (t) ≥ ε|e(t)|2 is satisfied if the LMI (6a) is satisfied. In
this case, we obtain V (t) ≥ e2αtλmin(Σ)|e(t)|2 with the matrix
Σ in (6a). Therefore, we have

|e(t)|2 ≤ max{Δ1,Δ2}
λmin(Σ)

e−2αt
[
‖ζ‖2 + ‖ζ̇‖2

]
.

That is

|e(t)| ≤
√

max{Δ1,Δ2}
λmin(Σ)

e−αt
[
‖ζ‖ + ‖ζ̇‖

]
which shows that the synchronization error network (4) with (5)
is globally exponentially stable and has the exponential decay
rate α. This completes the proof. �

Remark 4: If we are interested in further simplification in the
LMIs (6), the arbitrary matrices U1 and U2 can be eliminated
from the inequality Ξ̃e < 0 in (18), or equivalently from the
LMI (6d) in Theorem 1, using [24, Prop. B6] to yield the
following matrix inequality:⎡
⎢⎢⎢⎣

Ξe Ds Os Da Oa

∗ −Sd − Rds 0 0 0
∗ ∗ −Hd − Tds 0 0
∗ ∗ ∗ −3Sd 0
∗ ∗ ∗ ∗ −3Hd

⎤
⎥⎥⎥⎦ < 0.

In this case, the LMIs (6b) and (6c) are eliminated from the
conditions in Theorem 1. Therefore, it can be seen that the
results in Theorem 1 are less conservative than those in [24].

The results given in Theorem 1 are derived for the MSNNs
(1) and (2), where the delays τi are available. However, in many
situations, the information on the delays is a priori unknown.
In this case, it is assumed that τi ∈ [0, τ i]. Then, we have
the following corollary (its proof is straightforward and hence
omitted).

Corollary 1: Let hi = τ i/N , i = 1, 2, be given for any posi-
tive integer N . Under Assumptions 1 and 2, a memoryless cou-
pling in the form û(t) = K1ê(t) exists such that the controlled

Ξe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Σ̃11

[
−P T

2 K2−QN+eατ1CT
1 C2

−P T
3 K2

] [
−αP T

2 W3eατ2

−αP T
3 W3eατ2

] [
P T

2 W3eατ2

P T
3 W3eατ2

] [
−P T

2 K3

−P T
3 K3

]
Σ̃15

∗ −SN + e2ατ1CT
2 C2 0 0 0 0

∗ ∗ −HN 0 0 0
∗ ∗ ∗ −U1 0 0
∗ ∗ ∗ ∗ −U2 0
∗ ∗ ∗ ∗ ∗ Σ55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Σ̃11 =Σ̂11 + diag{−F+Λ1F
− − G+Λ2G

− − H+Λ3H
−, 0}

Σ̃15 =

[ [
P T

2 W1+
1
2 (F++F−)Λ1

P T
3 W1

] [
1
2 (G++G−)Λ2

0

] [
1
2 (H++H−)Λ3

0

] [
P T

2 W4+CT
1 C3

P T
3 W4

] [
P T

2 W2eατ1

P T
3 W2eατ1

] [
−P T

2 E

−P T
3 E

]
0 0 0 0 0 0

]
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slave system (2) exponentially synchronizes with the master
system (1) with the H∞ performance level γ > 0 and an expo-
nential decay rate α > 0 for any τi ∈ [0, τ i], if there exist some
scalars δ, σi, ρi, and λi (i = 1, 2, . . . , N), matrices P2, L1,
Qi, Si, Hi, Ri,j = RT

i,j , and Ti,j = TT
i,j (i, j = 0, 1, . . . , N),

and positive-definite matrices P1, Z1, Z2, U1, U2, U1, and U2

satisfying the LMIs (6a)–(6c) and⎡
⎢⎢⎢⎣

Ξe Ds Os Da Oa

∗ −Sd − Rds 0 0 0
∗ ∗ −Hd − Tds 0 0
∗ ∗ ∗ −3U1 0
∗ ∗ ∗ ∗ −3U2

⎤
⎥⎥⎥⎦ < 0

where Ξe, Σ11, Σ15, and Σ55 are expressed in the equations
shown at the bottom of the page. The decay coefficient can be
calculated by

M =

√
max{Δ1,Δ2}

λmin(Σ)

where Δ1=λmax(P1)+τ1λmax(Qp)N
p=0+τ1λmax(G+TZ1G

+)+
τ1 λmax(Sp)N

p=0 + τ2
1 λmax (Rp,p)N

p=0 + τ2 λmax(Hp)N
p=0 +

τ2
2λmax(Tp,p)N

p=0+(1/2)τ3
3 (λmax(H+T Z2H

+)+λmax(U2)),
and Δ2 = τ2λmax(U1). Moreover, the controller gains are
given by K1 = (PT

2 )−1L1.
Remark 5: In Theorem 1, we provide a new exponential

H∞ synchronization scheme for a class of MSNNs with de-
layed feedback control, including discrete and distributed delay
terms, by using a general DLKF. The results are expressed
within the framework of LMIs, which can easily be computed
by the interior-pint method. It is also observed that the LMIs
(6) are linear in the set of scalars δ, σi, ρi, and λi, matrices
P2, L1, L2, L3, Qi, Si, Hi, Ri,j = RT

i,j , Ti,j = TT
i,j , P1, Z1,

Z2, U1, U2, U1, and U2 (i, j = 0, 1, . . . , N), and the scalar γ2

for some given scalars N , α, τ1, τ2, and τ3. Then, the optimal
solution to obtain the minimum disturbance attenuation level,
i.e., γoptimal, can be found by solving the following convex
optimization problem:

Min λ

subject to the LMIs (6) with λ := γ2.

IV. UNCERTAINTY CHARACTERIZATION

In this section, we will discuss the uncertainty characteriza-
tion for the MSNNs (1) and (2) with different neutral, discrete,
and distributed delays.

A. Polytopic Uncertainty

The first class of uncertainty frequently encountered in prac-
tice is the polytopic uncertainty [24]. In this case, the matrices
of the MSNNs (1) and (2) are not exactly known, except that
they are within a compact set Ω, which is denoted by

Ω = [ A W1 W2 W3 W4 E ] .

We assume that

Ω =
q∑

j=1

sjΩj (22)

for some scalars sj , satisfying

0 ≤ sj ≤ 1,

q∑
j=1

sj = 1 (23)

where the q vertices of the polytope are described by

Ωj =
[
A(j) W

(j)
1 W

(j)
2 W

(j)
3 W

(j)
4 E(j)

]
. (24)

To take into account the polytopic uncertainty in the expo-
nential H∞ synchronization problem of the MSNNs (1) and
(2), we derive the following result from applying the same
transformation that was used in deriving Theorem 1.

Theorem 2: Let hi = τi/N , i = 1, 2, be given for any posi-
tive integer N . Under Assumptions 1 and 2, if the uncertainty
set Ω is polytopic with vertices Ωj , j = 1, 2, . . . , q, then the
MSNNs described by (1) and (2) and (22)–(24) are globally
exponentially stable with the H∞ performance level γ > 0 and
an exponential decay rate α > 0, if there exist some scalars δ,
σi, ρi, and λi (i = 1, 2, . . . , N), matrices P2, L1, L2, L3, Qi,
Si, Hi, Ri,j = RT

i,j , and Ti,j = TT
i,j (i, j = 0, 1, . . . , N), and

Ξe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11

[
eατ1CT

1 C2−QN

0

] [
−αP T

2 W3eατ2

−αδP T
2 W3eατ2

] [
P T

2 W3eατ2

δP T
2 W3eατ2

]
0 Σ15

∗ −SN + e2ατ1CT
2 C2 0 0 0 0

∗ ∗ −HN 0 0 0
∗ ∗ ∗ −U1 0 0
∗ ∗ ∗ ∗ −U2 0
∗ ∗ ∗ ∗ ∗ Σ55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σ11 = sym

([
−P T

2 (A−αI)−L1 P1−P T
2

−δP T
2 (A−αI)−δL1 −δP T

2

])
+ diag

{
sym(Q0) + S0 + H0 + τ2

3U2 − F+Λ1F
−− G+Λ2G

−− H+Λ3H
−, U1

}
Σ15 =

[ [
P T

2 W1+
1
2 (F++F−)Λ1

δP T
2 W1

] [
1
2 (G++G−)Λ2

0

] [
1
2 (H++H−)Λ3

0

] [
P T

2 W4+CT
1 C3

δP T
2 W4

] [
P T

2 W2eατ1

δP T
2 W2eατ1

] [
−P T

2 E

−δP T
2 E

]
0 0 0 0 0 0

]

Σ55 = diag
{
−Λ1, Z1 − Λ2, τ

2
3Z2 − Λ3,−e−2ατ3Z2 + CT

3 C3,−Z1,−γ2I
}
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positive-definite matrices P1, Z1, Z2, U1, U2, U1, and U2 such
that the LMIs (6) are satisfied for all

[ A W1 W2 W3 W4 E ]
=
[
A(j) W

(j)
1 W

(j)
2 W

(j)
3 W

(j)
4 E(j)

]
,

j = 1, 2, . . . , q. (25)

Then, the controller gains in (5) are given by Ki =
(PT

2 )−1Li (i = 1, 2, 3).
Proof: It directly follows from the Proof of Theorem 1

and using properties of (22)–(24). �

B. Norm-Bounded Uncertainty

There are also other uncertainties that cannot reasonably
be modeled by a polytopic uncertainty set with a number
of vertices. In such a case, it is assumed that the deviation
of the system parameters of an uncertain system from their
nominal values is norm bounded [24]. This kind of uncertainties
often appears in modeled NNs mainly due to the modeling
error, external disturbance, and parameter fluctuation during
the implementation, and such deviations and perturbations are
usually bounded. To reflect such a reality, consider the MSNNs
(1) and (2) with

A + ΔA(t), Wi + ΔWi(t), E + ΔE(t) (26)

where the time-varying structured uncertainties ΔA(t),
ΔWi(t), and ΔE(t) are said to be admissible if the following
form holds:

[ΔA(t) ΔWi(t) ΔE(t)] = M1Δ(t) [La Lwi
Le] (27)

where La, Lwi
, Le are constant matrices with appropriate

dimensions, and Δ(t) is an unknown, real, and possibly time-
varying matrix with Lebesgue measurable elements, and its
Euclidean norm satisfies

‖Δ(t)‖ ≤ 1 ∀ t. (28)

In this section, we modify Assumption 1 to enable the applica-
tion of the Lyapunov’s method for the stability of the uncertain
MSNNs (1) and (2) with (26)–(28).

Assumption 3: Let the difference operator ∇xt = x(t) −
(W3 + ΔW3(t))x(t − τ2) be delay-independently stable with
respect to all delays, and a sufficient condition is that all the
eigenvalues of the matrix W3 + ΔW3(t) lie inside the unit
circle.

Theorem 3: Let hi = τi/N , i = 1, 2, be given for any pos-
itive integer N . Under Assumptions 2 and 3, the MSNNs
described by (1) and (2) and admissible uncertainties (26)–(28)
are globally exponentially stable with the H∞ performance
level γ > 0 and an exponential decay rate α > 0, if there
exist some scalars μ > 0, δ, σi, ρi, and λi (i = 1, 2, . . . , N),
matrices P2, L1, L2, L3, Qi, Si, Hi, Ri,j = RT

i,j , and Ti,j =
TT

i,j (i, j = 0, 1, . . . , N), and positive-definite matrices P1, Z1,
Z2, U1, U2, U1, and U2 such that the LMIs (6a)–(6c) and the
following LMI are feasible:⎡

⎣Π Γd μΓe

∗ −μI 0
∗ ∗ −μI

⎤
⎦ < 0 (29)

where Γe=[−La,0,0,−αeατ2Lw3 ,e
ατ2Lw3 ,Lw1 ,0,0,Lw4 ,Lw2 ,

Le, 0, · · · , 0︸ ︷︷ ︸
(4N) elements

], and Γd =[MT
1 P2, δMT

1 P2, 0, · · · , 0︸ ︷︷ ︸
(4N+9) elements

]T .

Then, the controller gains in (5) are given by Ki =
(PT

2 )−1Li (i = 1, 2, 3).
Proof: If the state-space matrices A, W1, . . . ,W4,

and E in (6d) are replaced with A + M1Δ(t)La, W1 +
M1Δ(t)Lw1 , . . . ,W4 + M1Δ(t)Lw4 , and E + M1Δ(t)Le, re-
spectively, then the inequality (6d) is equivalent to the following
condition:

Π + sym
(
ΓT

d Δ(t) Γe

)
< 0. (30)

By Lemma 2 (in the Appendix), a necessary and sufficient
condition for (30) is that there exists a scalar μ > 0 such that

Π + μ−1ΓT
d Γd + μΓT

e Γe < 0. (31)

Then, applying Schur complements, we find that (31) is equiv-
alent to (29). �

Remark 6: It can easily be seen that the results of this paper
are quite different from existing results in [4] in the following
perspectives: 1) The delayed NN structure in [4] considers NNs
with time-varying discrete delays and, in comparison with our
case, does not center on mixed time delays, i.e., the results
in [4] cannot directly be applied to the NNs with different
neutral, discrete, and distributed delays. 2) In [4], the authors
design a control input associated with the state feedback to
synchronize the MSNNs such as the elements of the gain matrix
are determined by checking a certain Hamiltonian matrix if
its eigenvalues lie on the imaginary axis or not. Furthermore,
according to [4, Remark 3], it is not simple to find the analytical
solutions (if they exist) for the condition of the main theorem
in this reference. However, they can numerically be solved
in almost all cases by an eigenvalue-solver MATLAB and a
trial-and-error procedure, but in our case, the control input
depends on the discrete and distributed delays, and the control
gain matrices can be calculated by systematically solving some
LMIs. Therefore, this algorithm is faster than the proposed
algorithm in [4]. 3) In [4], using the inequality bounding
technique [25] employed for all cross terms encountered in
their analysis conditions may produce conservative results in
comparison with the present paper.

Remark 7: The reduced conservatism of Theorems 1–3 ben-
efit from the construction of the new DLKF in (8), introducing
some free-weighting matrices to express the relationship among
the system matrices, utilizing a general form of the activation
functions, and neither the model transformation approach nor
any bounding technique is needed to estimate the inner product
of the involved crossing terms (see, for instance, [4]). It can eas-
ily be seen that the results of this paper are quite different from
most existing results in the literature in the following perspec-
tive: Theoretically, the exponential synchronization problem of
MSNNs with mixed neutral, discrete, and distributed delays is
much more complicated, particularly for the case where the
delays are different. In this paper, the derived sufficient condi-
tions are convex and neutral-delay-dependent, discrete-delay-
dependent, and distributed-delay-dependent, which make the
treatment in this paper more general with less conservativism
in comparison with most existing results in the literature, which
are independent of the neutral or distributed delays (see, for
instance, [4], [32], and [52]).
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Fig. 1. x1−x2 plot.

TABLE I
γoptimal COMPARISON W.R.T. N AND α

V. NUMERICAL RESULTS

Let us consider the MSNNs (1) and (2) with the following
matrices:

A = I2 W1 =
[

1 + π
4 20

0.1 1 + π
4

]

W2 =
[
−1.3

√
2π

4 0.1
0.1 −1.3

√
2π

4

]
W3 =

[
c 0
0 c

]

W4 =
[

2 + π
2 40

0.2 2 + π
2

]
C1 = C2 = C3 = 1

E = [ 1 1 ]T τ1 = 1

τ2 = 0.5 τ3 = 0.2

where 0 ≤ c ≤ 1, and f(xi(t)) = g(xi(t)) = h(xi(t)) =
0.5(|xi(t) + 1| − |xi(t) − 1|) are monotonically increasing
activation functions, which are monotone increasing and
globally Lipschitz continuous.

In the case of W3 = W4 = 0, the chaotic behavior of NN (1)
with the aforementioned parameters has been investigated in
[4], [9], and [52]. The chaotic trajectory of the model, i.e., the
x1−x2 plane, for the delay τ1 = 0.95 with the initial condition
x(s) = [−0.1, 0.3]T ∀ s ∈ [−1, 0] is plotted in Fig. 1.

Assume that c = 0.1. It is required to design a driving signal
û(t) of the form (5) such that the MSNNs (1) and (2) with
the aforementioned parameters are exponentially synchronized
with the H∞ performance measure. To this end, in light of
Theorem 1, the LMIs (6) are solved using the MATLAB LMI
Control Toolbox [58] for different values of the parameter N ,
i.e., N ∈ {1, 2, 3}, and different values of the exponential decay
rate α, i.e., α ∈ {0.5, 1, 1.5}, and corresponding values of the
parameter γoptimal are obtained and shown in Table I. It is
easily seen that, for a fixed value of the exponential decay

TABLE II
CONTROLLER GAINS (WITH α = 0.5) W.R.T. N

Fig. 2. Phase trajectories of the MSNNs and the synchronization errors.

rate α, the parameter γoptimal is decreased as the parameter
N is increased, and for a fixed value of the parameter N , the
parameter γoptimal is increased as the parameter α is increased.
Moreover, the control gains Ki (i = 1, 2, 3) for α = 0.5 are
also calculated and illustrated in Table II. For simulation pur-
poses, an exogenous disturbance input is set as

w(t) =
100

8 + 5t2
, t ≥ 0

which belongs to [0,∞) and is imposed on the system.
Now, by considering N = 3 and initial conditions φ(t) =
[ 0.5 −0.7 ]T and ϕ(t) = [−0.4 0.1 ]T , and applying the
delayed feedback control (5) with the parameters available in
Table II, the phase trajectories of the network and the synchro-
nization errors between the MSNNs are shown in Fig. 2. It
shows that the synchronization errors exponentially converge
to zero. The simulation results imply that the MSNNs under
consideration are globally exponentially synchronized.

VI. CONCLUSION

This paper has presented the exponential H∞ synchroniza-
tion problem for uncertain MSNNs with mixed time delays,
where the mixed delays comprise different neutral, discrete,
and distributed time delays. Both the polytopic and the norm-
bounded uncertainty cases were separately studied. An appro-
priate DLKF and some free-weighting matrices were utilized
to establish some delay-dependent sufficient conditions for
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designing delayed state-feedback control as a synchronization
law by convex optimization over LMIs under less restrictive
conditions. It was shown that the synchronization law guaran-
teed the exponential H∞ synchronization of the two coupled
MSNNs regardless of their initial states. Detailed comparisons
with existing results were made, and numerical simulations
were carried out to demonstrate the effectiveness of the estab-
lished synchronization laws.

APPENDIX

Lemma 1 [25] (Jensen’s inequality): Given a positive-
definite matrix P ∈ �n×n and two scalars b > a ≥ 0 for any
vector x(t) ∈ �n, we have

t−a∫
t−b

xT (ω)Px(ω)dω ≥ 1
b − a

⎛
⎝ t−a∫

t−b

x(ω)dω

⎞
⎠T

P

⎛
⎝ t−a∫

t−b

x(ω)dω

⎞
⎠.

Lemma 2 [57]: Given matrices Y = Y T , D, E, and F of ap-
propriate dimensions with FT F ≤ I , then the matrix inequality
Y + sym(DFE) < 0 holds for all F if and only if there exists
a scalar ε > 0 such that Y + εDDT + ε−1ET E < 0.
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