
Modeling, Identification and Control, Vol. 30, No. 1, 2009, pp. 27–37, ISSN 1890–1328

Robust H∞ Filter Design for Uncertain Linear
Systems Over Network with Network-Induced

Delays and Output Quantization

Hamid Reza Karimi

Faculty of Technology and Science, University of Agder, N-4898 Grimstad, Norway. E-mail: hamid.r.karimi@uia.no

Abstract

This paper investigates a convex optimization approach to the problem of robust H∞ filtering for uncertain
linear systems connected over a common digital communication network. We consider the case where
quantizers are static and the parameter uncertainties are norm bounded. Firstly, we propose a new model
to investigate the effect of both the output quantization levels and the network conditions. Secondly,
by introducing a descriptor technique, using Lyapunov-Krasovskii functional and a suitable change of
variables, new required sufficient conditions are established in terms of delay-dependent linear matrix
inequalities (LMIs) for the existence of the desired network-based quantized filters with simultaneous
consideration of network induced delays and measurement quantization. The explicit expression of the
filters is derived to satisfy both asymptotic stability and a prescribed level of disturbance attenuation for
all admissible norm bounded uncertainties.
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1 Introduction

Networked control systems (NCS) in which control and
communication issues are combined together, and all
the delays and limitations of the communication chan-
nels between sensors, actuators, and controllers are
taken into account has become an enabling technology
for many military, commercial and industrial applica-
tions. In practice, due to the finite switching speed
of amplifiers or finite speed of information process-
ing, time delays including delays in the state or in the
derivative of the state are often encountered in hard-
ware implementation, which may be a source of oscil-
lation, divergence, and instability in system Gao and
Chen (2007); Gao et al. (2007); Gao and Wang (2003);
Karimi and Gao (2009a); Karimi and Gao (2009b);
Karimi and Gao (2008); Karimi et al. (2008); Karimi
and Maass (2009); Lam et al. (2005); Park (1999). The
study of NCSs is an interdisciplinary research area,

combining both network and control theory. That is,
in order to guarantee the stability and performance of
an NCS, analysis and design tools based on both net-
work and control parameters are needed. Modeling,
analysis, and design of NCSs have received increasing
attention in recent years, see Ishii and Francis (2002);
Zhivoglyadov and Middleton (2003). In an NCS, sen-
sor and/or controller data are transmitted through net-
work channels. NCSs can be applied to a wide variety
of engineering systems including manufacturing plants,
aircrafts, automobiles, etc. In this correspondence, an
NCS consists of a plant, sensors, actuators, and a con-
troller, as in a typical control system. However, in an
NCS, the sensor data packets reach the controller, and
controller data packets arrive at the actuators via net-
work channels. In such a setting, the network load
and the limited communication bandwidth can cause
network-induced delays. Recently, the robust H∞ con-
trol problem for a class of networked systems with ran-
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dom communication packet losses has been studied by
Z. Wang and Liu (2007).

However, due to network bandwidth restriction, the
insertion of communication network in the feedback
control loop inevitably leads to communication de-
lays and makes the analysis and design of NCSs com-
plex. Communication delays can deteriorate the per-
formance of NCSs and even can destabilize the systems
when they are not considered in the design of NCSs. So
far, a variety of efforts have been devoted to analyzing
NCSs with communication delays (see, e.g., Branicky
et al. (2000); Gao and Chen (2008); Gao et al. (2008);
Hu and Zhu (2003); Kim et al. (2003); Matveev and
Savkin (2001); Montestruque and Antsaklis (2003),
Nilsson et al. (1998); Wong and Brockett (1999); Yu
et al. (2003); Yue et al. (2004); Yue et al. (2005), Yue
and Han (2006); Zhang et al. (2001) and the refer-
ences therein). Specifically, Branicky et al. (2000) and
Zhang et al. (2001) analyzed the stability of NCSs and
obtained stability regions using a hybrid systems tech-
nique. Kim et al. (2003) presented linear matrix in-
equality (LMI) conditions for obtaining maximum al-
lowable delay bounds, which guarantee the stability
of NCSs. Based on Lyapunov-Razumikhin function
method, Yu et al. (2003) presented conditions on the
admissible bounds of data packet loss and delays for
NCSs in terms of LMIs. Based on stochastic con-
trol theory, optimal controller design of NCSs with
stochastic network delays was investigated in Nilsson
et al. (1998); Matveev and Savkin (2001); Hu and Zhu
(2003). For other control schemes, we refer readers
to the survey Tipsuwan and Chow (2003). To reduce
the network traffic load, Montestruque and Antsaklis
(2003), Montestruque and Antsaklis (2004) proposed
a model-based control scheme for NCSs without/with
delays. Necessary and sufficient conditions for the
exponential stability of discrete-time and continuous-
time NCSs without/with communication delays were
established in both cases of state feedback and output
feedback. However, they did not present any method
for controller design when communication delays are
considered. Moreover, it is in general not an easy
task to design the controller based on their condi-
tions. Mu et al. (2004) proposed an improved model
based control scheme for NCS without/with delays and
presented conditions for exponential stability together
with controller design procedures. Particularly, an im-
pulsive model based control scheme for discrete-time
NCSs without communication delays was discussed.
Recently, the problem of output feedback control for
networked control systems (NCSs) with limited com-
munication capacity was studied by Tian et al. (2008).

In this paper, we contribute to the further develop-
ment of a convex optimization approach to the problem
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Figure 1: A typical network-based filter

of robust H∞ filtering for uncertain linear systems con-
nected over a common digital communication network.
The network can be considered as depicted in Fig. 1.
Here, we consider the case where quantizers are static
and the parameter uncertainties are norm bounded.
Firstly, we propose a new model to investigate the ef-
fect of both the output quantization levels and the net-
work conditions. Secondly, by introducing a descriptor
technique, using Lyapunov-Krasovskii functional and
a suitable change of variables, new required sufficient
conditions are established in terms of delay-dependent
linear matrix inequalities (LMIs) for the existence of
the desired network-based quantized filters with simul-
taneous consideration of network induced delays and
measurement quantization. The explicit expression of
the filters is derived to satisfy both asymptotic stabil-
ity and a prescribed level of disturbance attenuation
for all admissible norm bounded uncertainties.

The rest of this paper is organized as follows. Section
2 is the problem formulation and related preliminaries.
In section 3, we investigate the robust H∞ performance
analysis of the filtering error system. The robust H∞
filter design problem with normbounded uncertainties
is addressed in Section 4 and the result is obtained
based on the notion of asymptotic stability and LMIs.
A numerical example is provided to illustrate the ef-
fectiveness of the approach presented in this paper in
Section 4. And, we conclude the paper in Section 5.

The notations used throughout the paper are fairly
standard. In and 0n represent, respectively, n by n
identity matrix and n by n zero matrix; the superscript
T stands for matrix transposition; <n denotes the n-
dimensional Euclidean space; <n×m is the set of all real
m by n matrices. The matrices Î and Ĩ are defined,
respectively, as Î := [I, 0] and Ĩ := [0, I]. ‖.‖ refers
to the Euclidean vector norm or the induced matrix
2-norm and diag {· · · } represents a block diagonal ma-
trix. λmin(A) and λmax(A) denote, respectively, the
smallest and largest eigenvalue of the square matrix
A. The operator sym {A} denotes A + AT and [.] is
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the operation of round. The notation P > 0 means
that P is real symmetric and positive definite and the
symbol ∗ denotes the elements below the main diago-
nal of a symmetric block matrix. In addition, L2[0,∞]
is the space of square-integrable vector functions over
[0,∞]. Matrices, if the dimensions are not explicitly
stated, are assumed to have compatible dimensions for
algebraic operations.

2 System description

Consider the following continuous-time system with
time-varying structured uncertainties:

ẋ(t) = (A+ ∆A(t))x(t) + (B + ∆B(t))w(t), (1)
y(t) = Cx(t), (2)
z(t) = Gx(t) (3)

where x(t) ∈ <n is the state vector, y(t) ∈ <m is
the measured output, considered as the control input;
w(t) ∈ <l and z(t) ∈ <r are the disturbance and the
signal to be estimated, respectively. The coefficient
matrices A,B,C,G are real matrices with appropriate
dimensions. The time-varying structured uncertainties
∆A(t) and ∆B(t) are said to be admissible if the fol-
lowing form holds[

∆A(t) ∆B(t)
]

= M1F (t)
[
La Lb

]
(4)

where La, Lb are constant matrices with appropriate
dimensions; and F (t) is an unknown, real, and pos-
sibly time-varying matrix with Lebesgue measurable
elements, and its Euclidean norm satisfies

‖F (t)‖ ≤ 1, ∀t (5)

We are interested in investigating the stability prop-
erty of systems when the observer undergoes quanti-
zation and delays. This kind of problem arises in sce-
narios in which a finite bandwidth channel lies in the
feedback loop and introduces a delay.

In this paper, a quantizer means a piecewise constant
function q : <p → Q, where Q is a finite subset of <l.
This leads to a partition of <l into a finite number of
quantization regions of the form

{
z ∈ <l : q(z) = i

}
,

i ∈ Q where z ∈ <l is the variable to be quantized.
When z does not belong to the union of quantization
regions of finite size, the quantizer saturates. More
precisely, it is assumed that there exist positive real
numbers M and ∆ such that the following two condi-
tions hold:

|q(z)− z| ≤ ∆, if |z| ≤M (6)
|q(z)| ≥M −∆, if |z| > M (7)

We will refer to M and ∆ as the range of q(z) and
the quantization error, respectively. Condition 1 in (6)
gives a bound on the quantization error when the quan-
tizer does not saturate. Condition 2 in (7) provides a
way to detect the possibility of saturation. We also
assume that q(z) = 0 for z in some neighbourhood of
the origin, i.e., the origin lies in the interior of the set
{z : q(z) = 0}, Liberzon (2003); Tian et al. (2008).

In addition, in this paper, we will use quantized mea-
surements of the form

qµ(z) := µq

(
z

µ

)
=


µM∆, z

µ > (M + 0.5)∆
−µM∆, z

µ < −(M + 0.5)∆

µ∆
[
z
µ

]
,
∣∣∣ zµ ∣∣∣ ≤ (M + 0.5)∆

(8)

where µ > 0 and the range of this quantizer is µM and
the quantization error is µ∆, Tian et al. (2008).

The problem considered here is to estimate the signal
z(t) in (1) by a network-based quantized filter, shown
in Fig. 1, of a general structure described by

ẋf (t) = Afxf (t) +Bfµ1kq1

(
y(ikh)
µ1k

)
(9)

zf (t) = Cfxf (t), t ∈ [ikh+ ηsfk , ik+1h+ ηsfk+1) (10)

where xf (t) is the filter state vector, µ1kq1

(
y(ikh)
µ1k

)
is

the quantized plant output with ikh as the sampling in-
stant of the sensor and h as the sampling period, zf (t)
is the filter output, and Af , Bf , Cf are appropriately
dimensioned filter matrices to be designed. ηsfk denotes
the transmission delay from sensor to the filter. When
considering the network conditions from the filter to
the plant output, the quantized output signal can be
expressed as

µ2kq2

(
zf (jkh)
µ2k

)
(11)

Define η1(t) = t− ikh− η1m for t ∈ [ikh+ ηsfk , ik+1h+
ηsfk+1) and η2(t) = t − jkh − η2m for t ∈ [jkh +
ηfok , jk+1h + ηfok+1) with a natural assumption on the
network induced delays as follows

η1m ≤ ηsfk ≤ η1M (12)

η2m ≤ ηfok ≤ η2M (13)

where constants ηim and ηiM , i = 1, 2, denote the min-
imum and maximum delays, respectively. ηfok denotes
the transmission delay from the filter to the plant out-
put. Then, from (12)-(13) we have

0 ≤ ηi(t) ≤ η̄i (14)
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where η̄i := ηiM − ηim. It is assumed that the val-
ues in both sets {i1, i2, i3, · · · } and {j1, j2, j3, · · · } are
ordered as follows ik+1 > ik and jk+1 > jk , which
means that there is no wrong packet sequences in the
network. Therefore, the following conditions are satis-
fied, respectively,

(ik+1 − ik)h+ ηsfk < η1M (15)

(jk+1 − jk)h+ ηfok < η2M (16)

Furthermore, it is worth noting that there are n − 1
continuous packets dropped or lost if ik+1−ik = n(n ≥
2), Yue and Han (2006).

Replacing ikh and jkh in the quantized plant and
filter outputs with t− η1m − η1(t) and t− η2m − η2(t),
respectively, in (9) and (10), we obtain

ẋf (t) = Afxf (t) +Bfµ1kq1

(
Cx(t− η1m − η1(t))

µ1k

)

= Afxf (t) +BfCx(t− η1m − η1(t)) +Bfδ1(t) (17)

and, for t ∈ [jkh+ ηfok , jk+1h+ ηfok+1) ,

µ2kq2

(
zf (jkh)
µ2k

)
= Cfxf (t− η2m − η2(t)) + δ2(t)

(18)

where

δ1(t) = µ1kq1

(
Cx(t− η1m − η1(t))

µ1k

)

−Cx(t− η1m − η1(t)) (19)

and

δ2(t) = µ2kq2

(
Cx(t− η2m − η2(t))

µ2k

)

−Cx(t− η2m − η2(t)) (20)

By connecting the plant (1)-(3) and the filter (9)-(10)
and from the Leibniz-Newton formula, i.e.

X(t− η1m − η1(t)) = X(t− η1m)

−
∫ t−η1m

t−η1m−η1(t)

Ẋ(s) ds (21)

we obtain the filtering error system as

Ẋ(t) = (Ā+ ∆Ā(t))X(t) + B̄1X(t− η1m)

−B̄1

∫ t−η1m

t−η1m−η1(t)

Ẋ(s) ds+ B̄2δ1(t)

+(B̄3 + ∆B̄(t))w(t) (22)

and

e(t) = z(t)− µ2kq2

(
zf (jkh)
µ2k

)
= C̄1X(t) + C̄2X(t− η2m − η2(t))− δ2(t)

= C̄1X(t) + C̄2X(t− η2m)

−C̄2

∫ t−η2m

t−η2m−η2(t)

Ẋ(s) ds− δ2(t) (23)

where

Ā =
[
A 0
0 Af

]
,∆Ā(t) =

[
∆A(t) 0

0 0

]
,

B̄1 =
[

0 0
BfC 0

]
, B̄2 =

[
0
Bf

]
, B̄3 =

[
B
0

]
,

∆B̄3 =
[
∆B(t)

0

]
, C̄1 =

[
G 0

]
, C̄2 =

[
0 −Cf

]
Finally, the problem of robust H∞ filtering for uncer-
tain linear systems with both the output quantization
levels and the network conditions can be expressed as
below.

Problem: Given system (1)-(3), design the filter (9)-
(10) such that the filtering error system (22)-(23) from
w(t) to e(t) is asymptotically stable with a prescribed
H∞ performance γ, that is ‖e(t)‖22 < γ2 ‖w(t)‖22 un-
der zero initial conditions for all admissible uncertain
parameters.

Remark 1. It can be easily seen that the model un-
der consideration in this paper is different from existing
results in Yue and Han (2006) and Yue et al. (2006) in
the following perspective: in comparison with our case
that the filtering error system in (22) also considers the
network conditions from the filter to the plant output,
i.e. the quantized controlled output signal in (11), the
references Yue and Han (2006); Yue et al. (2006) do
not center on this case, i.e., the results in Yue and Han
(2006) and Yue et al. (2006) can not be directly applied
to the system (22)-(23).

3 H∞ performance analysis

In this section, we first investigate the problem of
H∞ performance analysis for nominal system (1)-(3)
with no uncertainties and exactly known filter matri-
ces. Specifically, we will be concerned with the condi-
tions under which the filtering error system with finite
delay components is asymptotically stable from w(t)
to e(t) with an H∞ performance γ. The following the-
orem shows that the H∞ performance of the filtering
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error system can be guaranteed if one can find certain
matrices so that some LMIs are satisfied.

Theorem 1. Given the positive constants γ,∆i and
the matrices Af , Bf , Cf , if there exist positive-definite
matrices P1, R1, R2, S1, S2, Q1, Q2, Z1, Z2, T1, T2 and
matrices H,U,Ni,j(i = 1, 2, · · · , 4; j = 1, 2, · · · , 10) of
appropriate dimensions such that the following LMIs
hold

Π η1mχ1 η2mχ2 η1Mχ3 η2Mχ4

∗ −η1mT1 0 0 0
∗ ∗ −η2mT2 0 0
∗ ∗ ∗ −η1MQ1 0
∗ ∗ ∗ ∗ −η2MQ2

 < 0

(24)

[
H U
∗ Z1

]
≥ 0 (25)

with χi = [NT
i,1, N

T
i,2, · · · , NT

i,10, 0]T (i =
1, 2, · · · , 4), Π = ΠT = [Πi,j ]i,j=1,2,··· ,11,

Ñi = N1,i + N2,i + N3,i + N4,i , P =
[
P1 0
P3 P2

]
and Π1,1 = sym

{
PT
[

0 I
Ā −I

]}
+ η̄1H +

diag
{
R1 + S1,

∑2
i=1 ηiMQi + η̄iZi + ηimTi

}
+

sym
{
Ñ1Î

}
, Π1,2 = PT

[
0
B̄1

]
− N1,1 + ÎÑT

2 ,

Π1,3 = U−PT
[

0
B̄1

]
−N1,1+ÎÑT

3 , Π1,4 = −N3,1+ÎÑT
4 ,

Π1,5 = −N2,1 + ÎÑT
5 , Π1,6 = −N4,1 + ÎÑT

6 ,

Π1,7 = ÎÑT
7 , Π1,8 = PT

[
0
B̄2

]
+ ÎÑT

8 ,

Π1,9 = ÎÑT
9 , Π1,10 = PT

[
0
B̄3

]
+ ÎÑT

10,

Π1,11 =
[
C̄1 0

]T , Π2,2 = −R1 − R2 − sym {N1,2},
Π2,3 = − ∆2

1
M2

1µ
2
1k
ÎTCTCÎ − NT

1,3, Π2,4 =

−N1,2 − NT
1,4,Π2,6 = −N4,2 − NT

1,6,Π2,7 = −NT
1,7,

Π2,8 = −NT
1,8, Π2,9 = −NT

1,9, Π2,10 = −NT
1,10,

Π3,3 = −η̄−1
1 Z1+ ∆2

1
M2

1µ
2
1k
ÎTCTCÎ,Π3,4 = −N3,3, Π3,5 =

−N2,3, Π3,6 = −N4,3, Π4,4 = −R2 − sym {N3,4},
Π4,5 = −N2,4 − NT

3,5,Π4,6 = −N4,4 − NT
3,6, Π4,7 =

−NT
3,7, Π4,8 = −NT

3,8, Π4,9 = −NT
3,9, Π4,10 = −NT

3,10,

Π5,5 = S2−S1−sym {N2,5}+ ∆2
2

M2
2µ

2
2k
ĨTCTf Cf Ĩ, Π5,6 =

−N4,5 −NT
2,6, Π5,7 = −NT

2,7 −
∆2

2
M2

2µ
2
2k
ĨTCTf Cf Ĩ,Π5,8 =

−NT
2,8, Π5,9 = −NT

2,9, Π5,10 = −NT
2,10, Π5,11 = C̄T2 ,

Π6,6 = −S2 − sym {N4,6}, Π6,7 = −NT
4,7,

Π6,8 = −NT
4,8, Π6,9 = −NT

4,9, Π6,10 = −NT
4,10,

Π7,7 = −η̄−1
2 Z2 + ∆2

2
M2

2µ
2
2k
ĨTCTf Cf Ĩ, Π7,11 = −C̄T2 ,

Π8,8 = Π9,9 = −I , Π9,11 = −I, Π10,10 = −γ2I,

Π11,11 = −I and other elements Πi,j for j ≥ i are
equal to zero. Then, system (22)-(23) is asymptotically
stable with the H∞ performance level γ > 0.

Proof. Firstly, we represent (22) in an equivalent
descriptor model form as

Ẋ(t) = ξ(t),
0 = −ξ(t) + ĀX(t) + B̄1X(t− η1m)
−B̄1

∫ t−η1m

t−η1m−η1(t)
Ẋ(s) ds+ B̄2δ1(t) + B̄3w(t)

(26)

Define the Lyapunov-Krasovskii functional

V (t) =
5∑
i=1

Vi(t) (27)

where

V1(t) = X(t)TP1X(t) :=
[
X(t)T ξ(t)T

]
TP

[
X(t)
ξ(t)

]
,

V2(t) =
∫ t

t−η1m

X(s)TR1X(s) ds

+
∫ t−η1m

t−η1M

X(s)TR2X(s) ds

V3(t) =
∫ t

t−η2m

X(s)TS1X(s) ds

+
∫ t−η2m

t−η2M

X(s)TS2X(s) ds

V4(t) =
∫ 0

−η1M

∫ t

t+θ

ξ(s)TQ1ξ(s) ds dθ

+
∫ −η1m

−η1M

∫ t

t+θ

ξ(s)TZ1ξ(s) ds dθ

+
∫ 0

−η1m

∫ t

t+θ

ξ(s)TT1ξ(s) ds dθ

V5(t) =
∫ 0

−η2M

∫ t

t+θ

ξ(s)TQ2ξ(s) ds dθ

+
∫ −η2m

−η2M

∫ t

t+θ

ξ(s)TZ2ξ(s) ds dθ

+
∫ 0

−η2m

∫ t

t+θ

ξ(s)TT2ξ(s) ds dθ

with T = diag {I, 0}. Differentiating V1(t) in t we ob-
tain

V̇1(t) = 2X(t)TP1Ẋ(t) = 2
[
X(t)T ξ(t)T

]
PT
[
Ẋ(t)

0

]
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= 2
[
X(t)T ξ(t)T

]
PT
{[

0 I
Ā −I

] [
X(t)
ξ(t)

]

+
[

0
B̄1

]
X(t− η1m)−

[
0
B̄1

] ∫ t−η1m

t−η1m−η1(t)

ξ(s) ds

+
[

0
B̄2

]
δ1(t) +

[
0
B̄3

]
w(t)} (28)

By Lemma 1 (in Appendix) and from (25), it is clear
that

−2
[
X(t)T ξ(t)T

]
PT
[

0
B̄1

] ∫ t−η1m

t−η1m−η1(t)

ξ(s) ds

≤
∫ t−η1m

t−η1m−η1(t)

X(t)
ξ(t)
ξ(s)

T H U − PT
[

0
B̄1

]
∗ Z1

X(t)
ξ(t)
ξ(s)

 ds

≤
∫ t−η1m

t−η1M

ξ(s)TZ1ξ(s) ds+ η̄1

[
X(t)
ξ(t)

]T
H

[
X(t)
ξ(t)

]

+2
[
X(t)
ξ(t)

]T
(U − PT

[
0
B̄1

]
)
∫ t−η1m

t−η1m−η1(t)

ξ(s) ds (29)

Differentiating other Lyapunov terms in (27) give

V̇2(t) + V̇3(t) = X(t)T (R1 + S1)X(t)−X(t− η1m)T

×(R1 −R2)X(t− η1m)−X(t− η2M )TS2X(t− η2M )

−X(t− η1M )TR2X(t− η1M )

−X(t− η2m)T (S1 − S2)X(t− η2m) (30)

and, using Jensen’s Inequality in Lemma 2 (in Ap-
pendix), one gets

V̇4(t) = ξ(t)T (η1MQ1 + η̄1Z1 + η1mT1)ξ(t)

−
∫ t

t−η1M

ξ(s)TQ1ξ(s) ds−
∫ t−η1m

t−η1M

ξ(s)TZ1ξ(s) ds

−
∫ t

t−η1m

ξ(s)TT1ξ(s) ds

≤ ξ(t)T (η1MQ1 + η̄1Z1 + η1mT1)ξ(t)

−
∫ t

t−η1M

ξ(s)TQ1ξ(s) ds−
∫ t−η1m

t−η1m−η1(t)

ξ(s)TZ1ξ(s) ds

−
∫ t

t−η1m

ξ(s)TT1ξ(s) ds

≤ ξ(t)T (η1MQ1 + η̄1Z1 + η1mT1)ξ(t)

−
∫ t

t−η1M

ξ(s)TQ1ξ(s) ds

−η̄−1
1 (
∫ t−η1m

t−η1m−η1(t)

ξ(s)T ds)Z1(
∫ t−η1m

t−η1m−η1(t)

ξ(s) ds)

−
∫ t

t−η1m

ξ(s)TT1ξ(s) ds (31)

and, similarly,

V̇5(t) ≤ ξ(t)T (η2MQ2 + η̄2Z2 + η2mT2)ξ(t)

−
∫ t

t−η2M

ξ(s)TQ2ξ(s) ds

−η̄−1
2 (
∫ t−η2m

t−η2m−η2(t)

ξ(s)T ds)Z2(
∫ t−η2m

t−η2m−η2(t)

ξ(s) ds)

−
∫ t

t−η2m

ξ(s)TT2ξ(s) ds (32)

Moreover, from the Leibniz-Newton formula, the fol-
lowing equations hold for any matrices {Ni}10

i=1 with
appropriate dimensions:

2ν(t)TT1(X(t)−X(t− η1m)−
∫ t

t−η1m

ξ(s) ds) = 0

(33)

2ν(t)TT2(X(t)−X(t− η2m)−
∫ t

t−η2m

ξ(s) ds) = 0

(34)

2ν(t)TT3(X(t)−X(t− η1M )−
∫ t

t−η1M

ξ(s) ds) = 0

(35)
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2ν(t)TT4(X(t)−X(t− η2M )−
∫ t

t−η2M

ξ(s) ds) = 0

(36)

where ν(t) := col {X(t), ξ(t), X(t− η1m) ,∫ t−η1m

t−η1m−η1(t)
ξ(s) ds,X(t− η1M ), X(t− η2m),

X(t− η2M ),
∫ t−η2m

t−η2m−η2(t)
ξ(s) ds, δ1(t), δ2(t), w(t)

}
is

an augmented state vector. According to the property
of the quantizers qi(.) and using the Leibniz-Newton
formula, we readily obtain

0 ≤ −δ1(t)T δ1(t)

+
∆2

1

M2
1µ

2
1k

x(t− η1m − η1(t))TCTCx(t− η1m − η1(t))

= −δ1(t)T δ1(t) +
∆2

1

M2
1µ

2
1k

(x(t− η1m)

−
∫ t−η1m

t−η1m−η1(t)

ẋ(s) ds)TCTC(x(t− η1m)

−
∫ t−η1m

t−η1m−η1(t)

ẋ(s) ds) (37)

and, similarly,

0 ≤ −δ2(t)T δ2(t) +
∆2

2

M2
2µ

2
2k

(x(t− η2m)

−
∫ t−η2m

t−η2m−η2(t)

ẋ(s) ds)TCTC(x(t− η2m)

−
∫ t−η2m

t−η2m−η2(t)

ẋ(s) ds) (38)

Now, to establish the H∞ performance measure for the
system (1)-(3), assume zero initial condition, then we
have V (t) |t=0 = 0. Consider the index J∞ in the form
J∞ =

∫∞
0

[e(t)T e(t)− γ2w(t)Tw(t)] dt , then along the
solution of (1) for any nonzero w(t) the following equa-
tion holds

J∞ ≤
∫ ∞

0

[e(t)T e(t)− γ2w(t)Tw(t)] dt

−V (t) |t=0 + V (t)|t=∞

=
∫ ∞

0

[e(t)T e(t)− γ2w(t)Tw(t) + V̇ (t)] dt (39)

From (19), (28)-(32) and adding the left and right sides
of equations (33)-(36) and (37)-(38), respectively, into
V̇ (t), we get

J∞ ≤
∫ ∞

0

ν(t)TΣν(t) dt−
∫ ∞

0

∫ t

t−η1m

(ν(t)Tχ1

+ξ(s)TT1)T−1
1 (ν(t)Tχ1 + ξ(s)TT1)T ds dt

−
∫ ∞

0

∫ t

t−η2m

(ν(t)Tχ2 + ξ(s)TT2)T−1
2 (ν(t)Tχ2

+ξ(s)TT2)T ds dt−
∫ ∞

0

∫ t

t−η1M

(ν(t)Tχ3 + ξ(s)TQ1)Q−1
1

×(ν(t)Tχ3 + ξ(s)TQ1)T ds dt−
∫ ∞

0

∫ t

t−η2M

(ν(t)Tχ4

+ξ(s)TQ2)Q−1
2 (ν(t)Tχ4 + ξ(s)TQ2)T ds dt (40)

where Σ := Π + η1Mχ1T
−1
1 χT1 + η2Mχ2T

−1
2 χT2 +

η1Mχ3Q
−1
1 χT3 + η2Mχ4Q

−1
2 χT4 . Now, if Σ < 0, then

J∞ < 0 which means that the L2-gain from the dis-
turbance w(t) to the filtering error e(t) is less than γ .
By applying Schur complements, we find that Σ < 0 is
equivalent to (24). This completes the proof. /

4 Robust H∞ filter design

In this section we investigate the robust H∞ filter de-
sign problem for system (1)-(3) with the norm bounded
uncertainty parameters defined in (4)-(5).

Theorem 2. Consider system (1)-(3) with the
quantizer given in (8). Given positive constants
ε, γ and ∆i, there exist a network-based quantized
filter in the form of (9)-(10) such that the filter-
ing error system (22)-(23) is asymptotically stable
with an H∞ disturbance attenuation level γ if there
exist the scalar ρ > 0, positive-definite matrices
P1, R1, R2, S1, S2, Q1, Q2, Z1, Z2, T1, T2 and matrices
Cf ,W1,W2, H, U,Ni,j(i = 1, 2, · · · , 4; j = 1, 2, · · · , 10)
of appropriate dimensions and satisfying (25) and the
LMI Π̃ ΓTd ρΓTe

∗ −ρI 0
∗ ∗ −ρI

 < 0 (41)

with

Π̃ :=


Π̂ η1mχ1 η2mχ2 η1Mχ3 η2Mχ4

∗ −η1mT1 0 0 0
∗ ∗ −η2mT2 0 0
∗ ∗ ∗ −η1MQ1 0
∗ ∗ ∗ ∗ −η2MQ2
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Γd =
[
εMT

1 P2 MT
1 P2 · · · 0 0

]
, Γe =[

La 0 · · · 0 Lb 0
]

with Π̂ = Π̂T =

[Π̂i,j ]i,j=1,2,··· ,11, and P2 =
[
P11 P12

P22 P22

]
and

Π̂1,1 := sym{

ε
[
PT11A W1

PT12A W1

]
P1 − εPT2[

PT11A W1

PT12A W1

]
−PT2

}
+η̄1H + diag

{
R1 + S1,

2∑
i=1

ηiMQi + η̄iZi + ηimTi

}
+sym

{
Ñ1Î

}
,

Π̂1,2 = (εÎT + ĨT )
[
W2C 0
W2C 0

]
− N1,1 + ÎT ÑT

2 , Π̂1,3 =

U − (εÎT + ĨT )
[
W2C 0
W2C 0

]
+ ÎT ÑT

3 , Π̂1,8 = (εÎT +

ĨT )
[
W2

W2

]
+ ÎT ÑT

8 , Π̂1,10 = (εÎT + ĨT )
[
PT11B
PT22B

]
+ ÎT ÑT

10

and other elements Π̂i,j are equal to their counterpart
elements in the matrix Π. Moreover, if the above con-
ditions are feasible, desired filter gain matrices in the
form of (9)-(10) are given by Cf and[

Af Bf
]

= (PT22)−1
[
W1 W2

]
(42)

Proof. If the state-space matrices Ā and B̄3 in (24)
are replaced with Ā+M1F (t)La and B̄3 +M1F (t)Lb,
respectively, and by considering P3 = εP2 and intro-
ducing change of variables[

W1 W2

]
= PT22

[
Af Bf

]
(43)

then the inequality (24) is equivalent to the following
condition:

Π̃ + sym
{

ΓTd F (t)Γe
}
< 0 (44)

By Lemma 3 (in Appendix), a necessary and sufficient
condition for (44) is that there exists a scalar ρ such
that

Π̃ + ρ−1ΓTd Γd + ρΓTe Γe < 0 (45)

then, applying Schur complements, we find that (45)
is equivalent to (41). This completes the proof. /

Remark 2. In Theorem 2, the results
are expressed within the framework of LMIs,
which can be easily computed by the interior-
pint method. It is also observed that the LMIs
(25) and (41) are linear in the set of scalar
ρ, matrices P1, R1, R2, S1, S2, Q1, Q2, Z1, Z2, T1, T2,
Cf ,W1,W2, H, U,Ni,j(i = 1, 2, · · · , 4; j = 1, 2, · · · , 10).

Then, the optimal solution to obtain the minimum dis-
turbance attenuation level, i.e. γ, can be found by
solving the following convex optimization problem

min λ

subject to LMIs (25) and (41) with λ := γ2

Remark 3. The reduced conservatism of Theorems
1 and 2 benefits from the construction of the new Lya-
punov function in (27), using a free weighting matrix
technique, and no bounding technique is needed to es-
timate the inner product of the involved crossing terms
Park (1999). It is also worth noting that, recently, the
so-called ’delay fractioning’ approach has been devel-
oped in Mou et al. (2008) that is shown to lead to
much less conservative results than most existing lit-
erature. Of course, more detailed investigations using
delay fractioning method would be of interest.

5 Numerical results

In this section, one example is provided to illustrate
the effectiveness of the results obtained in the previous
sections.

Consider the system (1)-(3) with the following ma-
trices:

A =
[
−1 0
1 −3

]
, B = diag {0.2, 0.2} ,

C =
[
1 0

]
, G =

[
0.2 0.3

]
,

La =
[

0 0
0.2 0.2

]
, Lb =

[
0 0

0.1 0.1

]
,M1 = I

By applying Theorem 2 to the system under consider-
ation with constants ε = 0.1, η1m = η2m = 0, η1M =
η2M = 1,∆1 = ∆2 = 0.1 and disturbance attenuation
level γ = 1, one can obtain the network-based quan-
tized filter (6) with the following state-space matrices

Af =
[
−0.7856 −0.1322
−0.0295 −0.6554

]
, Bf =

[
0.2161
0.0184

]
Cf =

[
0.1085 0.1655

]
.

For the quantizer parameters ∆1 = ∆2 = 0.1,M1 =
M2 = 5 in (5) with the initial conditions x(0) =[
−1 0.2

]T and xf (0) =
[
0 0

]T , the delays η1(t) =
η2(t) = (1− e−t)/(1 + e−t) and exogenous disturbance
inputs as below, which belongs to [0, ∞],

w(t) =
[

1/(1 + 2t2)
1/(1 + 0.5t0.5)

]
, t ≥ 0

then the filtering error signal e(t) is plotted in Fig. 2
which shows that the controlled output of the filter,
zf (t), tracks the controlled output of the system, z(t),
well.
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Figure 2: Filtering error signal.

6 Conclusion

In this paper we have developed the problem of robust
H∞ filtering for uncertain linear systems connected
over a common digital communication network. We
considered the case where quantizers are static and the
parameter uncertainties are norm bounded. Firstly, we
proposed a new model to investigate the effect of both
the output quantization levels and the network condi-
tions. Secondly, by introducing a descriptor technique,
using Lyapunov-Krasovskii functional and a suitable
change of variables, new required sufficient conditions
were established in terms of delay-dependent linear ma-
trix inequalities (LMIs) for the existence of the desired
network-based quantized filters with simultaneous con-
sideration of network induced delays and measurement
quantization. The explicit expression of the filters was
derived to satisfy both asymptotic stability and a pre-
scribed level of disturbance attenuation for all admis-
sible norm bounded uncertainties. Future work will in-
vestigate filter and control designs for a class of nonlin-
ear systems over network with random communication
packet losses by using the delay fractioning approach.

Appendix

Lemma 1 Han and Yu (2004): For any arbitrary col-
umn vectors a(t), b(t) , matrices Φ(t), H, U and W the
following inequality holds:

−2
∫ t

t−r
a(s)TΦ(s)b(s) ds ≤

∫ t

t−r

[
a(s)
b(s)

]T [
H U − Φ(s)
∗ W

] [
a(s)
b(s)

]
ds

where
[
H U
∗ W

]
≥ 0 .

Lemma 2: Park (1999) (Jensen’s Inequality) Given
a positive-definite matrix P ∈ <n×n and two scalars
b > a ≥ 0 for any vector x(t) ∈ <n , we have∫ t−a

t−b
x(w)TPx(w) dw ≥

1
b− a

(∫ t−a

t−b
x(w) dw

)T
P

(∫ t−a

t−b
x(w) dw

)
Lemma 3 Khargonekar et al. (1990): Given matri-

ces Y = Y T , D,E and F of appropriate dimensions
with FTF ≤ I , then the following matrix inequality

Y + sym {DFE} < 0

holds for all F if and only if there exists a scalar ε > 0
such that

Y + εDDT + ε−1ETE < 0.
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