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Abstract: The relationship between the electrocatalytic properties of an electrode and its 

ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling 

microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used 

as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, 

Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the 

electrodes were determined. The electrode surfaces were then investigated with an STM. A 

clear relationship between the catalytic activity of an electrode toward the OER and its 

tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in 

electrocatalytic testing may increase the efficiency of the optimization of electrochemical 

processes. 

Keywords: scanning tunneling microscope; oxygen evolution reaction;  

metallic glasses of Ni alloys 

 

1. Introduction  

The search for the best catalyst in an electrochemical reaction is a time consuming and expensive 

process. A quick test for excluding unfitted materials, and for narrowing the list of promising catalysts 

to be selected for further electrochemical investigations, is the wish of all electrochemical researchers. 

Most electrochemical reactions begin with the adsorption of an ion to an active site of the uppermost 

surface of the catalyst, followed by an electron transfer between the adsorbed ion and the surface site 

of the catalyst. The transfer of electrons to or from the active site is, for many electrochemical 

reactions, the rate determining step. Finding an easy method of determining, roughly, a surface site’s 
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ability to transfer electrons may therefore introduce a procedure for the selection of materials for 

further electrochemical investigations. The aim of this study was to find a relationship between the 

electrocatalytic properties of a catalyst and its ability to transfer electrons between two phases. In order 

to find such a relation, different nickel alloys were used as catalysts for the oxygen evolution reaction 

(OER) in alkaline water electrolysis. The catalytic properties of the alloys toward the OER were 

studied by electrochemical methods and then compared with the alloy’s surface’s ability to donate and 

accept electrons. This property was investigated by the means of a scanning tunneling microscope 

(STM). A quantity called the charge ratio (rc), obtained from I (U) curves given in the scanning 

tunneling spectroscope (STS) scans, was introduced. The quantity was used for the comparison of the 

shape of the curves within different samples.  

The results of this work indicate that there exists a relationship between the electrocatalytic 

properties of the tested electrodes and their ability for tunneling electrons in the STM. An investigation 

of the tunneling properties of an electrocatalyst may therefore give an indication of the efficiency 

toward a given electrochemical reaction. The use of the STM in electrocatalyst testing may aid in the 

search for the optimal catalyst in many electrochemical processes.  

2. Theory 

The underlying physical basis of STM is electron tunneling. A detailed description of the tunneling 

current between the tip and the sample surface is given elsewhere [1],
 
and an approximation for the 

total tunneling current, under the limit of low temperature and weak tip-sample interaction, can be  

written as:  
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where Io = (2e/h) (e.s.); e.s. stands for an appropriate energy scale, nT and nS are the number of 

(dimensionless) local density of states at the given energy, for the tip and the sample, respectively,  

U is the applied bias voltage, E is the energy measured with respect to the Fermi level of the  

sample, and T (E, eU) is the tunneling transmission probability. 

According to the quantum mechanical Wentzel, Kramer, Brillouin (WKB) approximation [2], the 

tunneling transmission probability for a one-dimensional trapezoidal barrier is given as: 
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Here Φ is the tunneling barrier potential, which as an approximation, is set to be the average of the 

working function of the tip and the sample, in units of e.s., s is the distance between the sample and the 

tip (in Å), and e.s. is one eV.  

In ordinary STS measurements, the tip is placed over a point of interest on the sample surface, and 

the distance between the tip and the surface is fixed by momentarily interrupting the feedback 

controller. By scanning the applied voltage at a constant rate over a desired interval, while 

simultaneously measuring the tunneling current, a detailed dependence of the tunneling current on the 

applied voltage can be found. The recorded tunneling current corresponds to the electronic tunneling 
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properties of the specific site on the surface, and provides information on the density of surface states 

and on the distribution of the applied field [3-5]. For STS investigations, the bias voltage, at which the 

feedback loops are interrupted, determined the distance between the tip and the sample. Hipps [6] 

gives a description of the similarity between an electron transfer in an electrochemical reaction and the 

tunneling process in the STS in his chapter about Orbital Mediated Tunneling Spectroscopy (OMTS) 

in the Handbook of Applied Solid State Spectroscopy.  

A typical example of an I(U) curve from an STS scan is illustrated in Figure 1. There are several 

notable features in an I(U) curve produced by an STS scan. The Fermi level of the sample is defined as 

the zero bias voltage. At a positive bias voltage, the rise in tunneling current normally indicates the 

bias potential where the Fermi level of the metallic tip matches energetically with the conduction band 

edge of the surface site of the sample. At a negative bias voltage, the rise in tunneling current occurs 

when the Fermi level of the tip matches the valence band edge of the surface sites. For some surface 

sites, there is a region around zero bias voltage where the junction capacitance is small, and hence the 

charging energy is big, and no apparent charge transport occurs. This situation is called the Coulomb 

blockage phenomena [7], and is seen in the I(U) curve as a flat region around the zero bias voltage, 

where no tunneling current takes place. Coulomb blockage phenomena are mainly observed on 

surfaces with semi-conductive properties. For a doped semiconductor, the Fermi level is moved away 

from the middle of the band gap. For an n-type conductor, there exist electron levels that are close to 

the conduction band, but with lower energies. The rise in the tunneling current will therefore have 

started at a negative bias voltage that was close to the zero bias voltage. For a p-type conductor, there 

are empty energy levels close to the valence band that lead to a rise in the tunneling current at positive 

bias voltages that are close to the zero bias voltage. For net n- or p-type doped semiconductors, the 

Coulomb blockage gap will be displaced, compared to the zero bias voltage. In an STS-scan, the size 

of the Coulomb blockage phenomena, and the position of the Fermi level, depends on whether the 

surface is a net n- or p-type semiconductor. For a pure metallic surface, there is no Coulomb blockage, 

and the Fermi level is placed at the uppermost top of the valence band. 

Figure 1. An example of an I(U) curve in STS. The absolute value of the tunneling current 

is used. The marked areas A1 and A2 are proportional with the charge amount transferred 

from sample to tip and from tip to sample, respectively. Scan rate: 0.002 s/V. 

 

A1 A2 
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2.1. The Charge Ratio  

The shape of an I(U) curve depends on the mutual ability for a sample and a tip to accept and 

donate electrons. Due to the exponential dependence between the gap distance and the tunneling 

current (Equation 1), small differences in the distance involve large changes in the tunneling current. 

A direct comparison of the tunneling current in the I(U) scans performed on the surfaces of different 

samples will therefore involve large uncertainty. The normalized differential conductance 

(dI/dU)/(I/U) for metals and narrow-band gap semiconductors is often used for the study of electronic 

properties like the LDOS of the surface of a sample. However, according to Bando et al. [8], this 

method fails both at the ends of surface energy gaps and in the limit where |U| << Φ.  

In order to compare the shape of the I(U) curves, with respect to the total ability of accepting or 

donating electrons, a quantity called the charge ratio is introduced. The charge ratio, rc, is based on the 

assumption that with a constant scan rate for the ramping voltage, the areas between the I(U) curve and 

the U axis are proportional to the total charge transfer between the tip and the sample. This is 

analogous to the calculation of charge transfer of an I(t) graph in electrochemical investigations. A 

feasible way to compare the I(U) curves for different samples will therefore be via the comparison of 

the charges transferred between the tip and the samples. The unit, rc, is defined as the ratio between the 

amount of charge tunneling from the occupied states of the sample surface to the tip (U < 0), qoccupied, 

and the amount of charge tunneling from the tip to the unoccupied states of the sample surface (U > 0), 

qunoccupied (Equation 3). With a constant scan rate, the amount of charge is proportional with the size of 

the area between the curve and the potential axis. Thus, the amount of charge is easy to calculate by 

integration. Figure 1 gives an illustration of these areas. 

2

1

A

A

q

q
r

unoccupied

occupied

c   (3)  

Here rc is the charge ratio, A1 and A2 are the areas under the I(U), qoccupied is the total charge transfer 

from sample to tip when the bias voltage is scanned from −U to 0, and qunoccupied is the total charge 

transfer from tip to sample when the bias voltage is scanned from 0 to U. 

Considering the size of the charge ratio, one can conclude that if rc > 1, the amount of electrons 

transferred from the sample surface to the tip is larger than the amount of electrons the sample surface 

may accept from the tip. The sample would therefore have more electrons in the conduction band, and 

less electron holes in the valence band, compared to the tip. Whilst for rc < 1, the sample surface would 

have, in this case, a larger capacity to accept electrons from the tip, than to transfer electrons from the 

sample surface to the tip. The sample would have more electron holes in the valence band and less 

electrons in the conduction band compared to the tip. When the measured site is dominated by 

positively charged ions, it is reasonable to expect a higher ability to accept electrons from, rather than 

donate to, the tip, thus making rc < 1. A negatively charge cluster will, of similar reason, give rise to  

rc > 1. If the I(U) scans are performed by the same tip, differences in rc indicate differences in the 

electronic properties of the surface sites.  
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2.2. A Theoretical Explanation of the Charge Ratio 

For a theoretical description of the charge ratio, the expression for the tunneling current given in 

Equation 1 is used. If the bias voltage is scanned in the region [−U, U], the area can be calculated by 

A1 = 




0

)(

eU

duUI  and A2 = 
eU

duUI

0

)( . In order to calculate these integrals, expressions, for both the 

number of local densities of states (LDOS) at the given energy for the tip and the sample and for the 

tunneling transmission probability, have to be found. As an approximation, the tunneling potential 

barrier height, Φ, is considered constant, and the approximation for the tunneling matrix given in 

Equation 2 is used. The feedback interruption keeps the gap distance constant during the STS scans. 

The Fermi level of the sample is used as the zero level. As an approximation, the Fermi function at 

room temperature for both the tip and the sample is set to be unity, and the electrons are considered to 

be in ground state. The Equation 1 can be rewritten as: 
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The tunneling current can be calculated by as: 
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The charge ratio is found to be: 
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According to Onipko et al. [9], the LDOS at a flat metal surface is nearly constant at different 

places on the surface. With the approximation that the LDOS for the sample and tip are constant in the 

bias potential region, the charge ratio rc will be equal to 1, and the scanning curve will be symmetric 

around the Fermi energy. With the first approximation, the rc = 1 for electrons tunneling between two 

metal surfaces seems to be correct; the approximation corresponds with the statement of Magnov et al. 

[3] that the I(U) curve for a metal surface is symmetric around the Fermi level. 

Unlike a flat metal surface, where the LDOS is set to be a constant value, the real shape of the STM 

tip is never known. It is, however, far from being ideally flat. Therefore, the approximation of a 

constant value for the LDOS of the tip is obviously not applicable. According to Bockris and  

Khan [10], an LDOS having an energy E (filled or not) is given per unit volume by Equation 7. 
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Using this expression in Equation 1, the tunneling current can be written as:  
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Here D is a constant, including π, me, and ħ.  

Jurczyszyn and Stankiewicz [11] calculated the electronic structure of the sample surface by using 

the self-consistent, local consistent atomic orbital (LCAO) method. The LCAO Hamiltonian contains 

two contributions—the one-electron part, Ĥ
oe

, and the many-body part, Ĥ
mb

. They calculated the 

electronic structure by using the wave functions of the independent atoms that form the considered 

system. The many-body contributions were included by introducing the Hartree and exchange-

correlation potentials for each orbital.  

According to Onipko et al. [9], the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO) are associated with the π electron states of molecules. It is 

assumed that oxide and hydroxide layers on metal surfaces react in the same way. Onipko showed, by 

calculations, that the molecular π electronic subsystem played a major role in formation of the tunnel 

current between the sample surface and the STM tip. For different types of oxides, Kar et al. [12] have 

worked out a model for the DOS, where they used the approximation of semicircular bands to ease the 

calculations of the DOS, as indicated by the sketch in Figure 2. 

Figure 2. Schematic drawing of the semicircular band used in the calculation of the sample 

DOS showing the band gap ∆ around the Fermi level, EF. 
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According to Kar et al. [12], a detailed shape of the bands is not as important in the energy range 

close to the band gap; the bandwidth of both the valence and the conduction band is much larger than 

the gap. The following relations can be used with Fermi energy as the zero of the energy for the 

sample DOS: 
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With these approximations for the LDOS of the sample and the expression for the LDOS of the tip 

given by Bockris and Khan [10], the equation for the tunneling current will then be given in Equations 

12, 13 and 14. 
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Equation 14 can explain the Coulomb blockage gap around zero bias voltage in the I(U) curves 

observed for semiconductors. According to this approximation, the gap will correspond to the energy 

gap between the LUMO and the HOMO of the molecules, or the oxides, on the sample surfaces.  

The rc may then be calculated by the expression: 
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 (15)  

To describe the STM tip more exactly, the cluster-Bethe-lattice method can be used. In this 

approach, the topmost part of the tip is represented by a pyramidal cluster of five atoms, with a single 

atom located at the apex of the pyramid, and four atoms forming its base. The atoms of the base are 

joined to Bethe-lattices, which simulate the influence of the rest of the tip. The LDOS of the STM tip 

will be a mixture of states, with s, p, and d type symmetry. According to Hofer and Redinger [13], the 

best agreements between experiments and simulations were achieved by setting the electronic structure 

of the tip as a mixture of states with s and dz2 type symmetry.  

Jurczyszyn and Stankiewicz [11]
 
found that the size of the tunneling current between the tip and the 

sample does not solely depend on the energy and shape of the orbital directly involved in the tunneling 

process. The size was also modified by the destructive or constructive interferences of inter-atomic 

orbitals (especially s-pz interferences). In the surfaces of different Ni-alloys, the alloying elements, 

oxides, and hydroxides may interfere with the atomic orbitals of the Ni-atoms, resulting in a 

modification of the tunneling current.  

A simulation for the charge ratio, where the LDOS for both the sample and the tip are expressed by 

solving the Schrödinger equation, where the wave functions are expressed by a summation of the 

atomic orbitals for both the samples and the tip, may be done. By using either a Hartree-Fock or a 

Density Functional calculation, an expression for the wave functions may be found for both the tip and 

the sample surface. For further reading about the theory of STM, the work of Blanco et al. [14]  

is recommended.  
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3. Experimental 

The nickel alloys used in these investigations were the metallic glasses Ni78Si8B14, Ni70Mo20Si5B5, 

Ni58Co20Si10B12, and Ni25Co50Si15B10. All four alloys were delivered by Vakuumschmelze GmbH, 

Hanau, Germany. The materials were produced by rapid quenching, from the melt, on a spinning 

casting wheel, with a cooling rate higher than 10
6
 K/s [15]. They were delivered as ribbons with a 

width of ca. 10 mm and a thickness of 20–50 μm. The EDS investigations were performed with a FEI 

Quanta 200 FEG-EDEM. 

Images of the surfaces were found by scanning tunneling microscope (STM) and the electronic 

properties of the surfaces were studied by scanning tunneling spectroscopy (STS). The STM and STS 

measurements were conducted ex situ with a Jeol JSPM-4210 at atmospheric pressure and room 

temperature and 80% Pt-Ir tips, which were sharpened by anodic etching in KCN solution. The 

specimens were mounted on the STM-holder with Ag-paste. The polarity of the bias voltage was 

defined in the conventional way, i.e., for negative sample bias voltage, electrons tunnel from the 

sample to the STM tip. In the STS, the I(U) data were collected in the spectroscopy mode with the 

feedback loop turned off. The I(U) data represented an average of 128 consecutive voltage sweeps of ± 

2.0 V collected at five sites situated at a 30 × 30 nm
2
 topographic image. All repeated at three 

randomly chosen regions on the surfaces. The charge ratios were calculated and used as tools in the 

comparison of the shapes of the I(U) curves. All the STM investigations were performed in ambient 

atmosphere and the hydroxide film was not removed.  

The electrochemical experiments were performed using a Gamry CMS 100 potentiostat. Cyclic 

voltammograms between hydrogen and oxygen evolution were made in a 1 M KOH  

electrolyte-solution at 25 °C. The KOH solution was made from a Dilute-it analytical concentrate, 

delivered from J.T. Baker, and distilled water. In order to remove oxygen, N2 was purged through the 

cell and the measurements were made under an Nitrogen atmosphere without bubbling. A three 

electrode setup was used. A double-walled glass cell with a water bath (Haake K Fisons) provided 

thermostatic control of the electrolyte. The counter electrode was composed of Ni-plates with large 

surfaces. All the electrodes were treated in an ultrasonic bath of ethanol for 15 min. and rinsed in 

distilled water. The electrodes were mounted in a metal clip and the area exposed to the electrolyte 

was measured. A saturated calomel electrode was used as the reference electrode. Cyclic 

voltammograms were run between −0.8 and 0.8 VSCE. The scan rate used was 5 mV/s. The potential 

scans were repeated until steady I = f(U) contours were attained (3–4 cycles).  

The steady state current density at the overpotential of 0.6 V was found after 150 min. of 

polarization. The overpotential values were obtained by the relation o

OHO
EE 

/2

 , where E is the 

applied potential and o

OHO

E
/2

is the theoretical equilibrium Nernst potential in 1 M KOH at 25 
○
C 

( OHO
E

/2

 = 0.157 VSCE). According to Nikolov et al. [16], the Tafel slopes at high current density can 

be affected by the factors encountered in studying gas evolution on porous electrodes: blockage of the 

electrochemically active sites by gas bubbles, thus reducing the surface area available for an 

electrochemical reaction. The Tafel slopes at high current density will therefore not be further 

discussed in this study. The Tafel slopes at low current density were calculated by linear 
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approximation in the direction of decreasing potential in order to reduce the effect of the oxidation of 

Ni on the surface. 

4. Results 

4.1. Electrochemical Results 

EDS analyses were performed on the surfaces where B was not detected due to the small weight of 

the atom. The results are listed in Table 1. Taking into account the lack of B in the measured content 

of the different species of the alloys, the measurements were in agreement with the nominal contents.  

Table 1. EDS analysis of the different metallic glasses with Ni. 

Sample Atom % Ni Atom % Si Atom % Mo Atom % Co 

Ni78Si8B14  90 ± 2 10 ± 2   

Ni70Mo20Si5B5  74 6 20  

Ni58Co20Si10B12  65 11  24 

Ni25Co50Si15B10  30 18  52 

 

The cyclic voltammograms are shown in Figure 3, the polarization curves in Figure 4, and the Tafel 

curves in Figure 5. Both the peak positions and the areas for the Ni(OH)2/NiOOH redox reaction 

changed with the elemental contents of the alloys investigated. The voltammograms for 

Ni58Co20Si10B12 and Ni25Co50Si15B10 exhibited broad anodic peaks corresponding to the oxidation of 

Co(II)/Co(III), α-Ni(II)/Ni(III), β-Ni(II)/Ni(III), and Co(III)/Co(IV) [16]. Both anodic peaks had a 

cathodic shift compared to that of Ni78Si8B14. Ni78Si8B14 and Ni70Mo20Si5B5 both had one anodic peak 

corresponding to Ni(II)/Ni(III) at 0.350 and 0.320 Vsce, respectively. The sharp rise in the current 

density, due to the OER, starts approximately between 0.4 and 0.45 Vsce for all four alloys.  

Figure 3. Cyclic voltammogram curves for four different Ni-containing metallic glasses in 

1 M KOH at 25 
○
C in N2 atmosphere. Scan rate: 5.0 mV/s. 
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Figure 4. Polarization curves for four different Ni-containing metallic glasses in 1 M KOH 

at 25 
○
C in N2 atmosphere at an overpotential of 0.6 V toward the OER.  
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Figure 5. Tafel curves for Ni containing metallic glasses in 1 M KOH at 25 
○
C in the N2 

atmosphere. The inserted CV-Figure reveals that the Tafel slopes at high potentials change 

with the alloys.  
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Table 2. Electrochemical data of the OER for the different metallic glasses with Ni.  

Sample Tafel slope mV/dec Current density at η = 0.6V mA/cm
2 

Ni78Si8B14 41 42.8 

Ni70Mo20Si5B5 72 11.0 

Ni58Co20Si10B12 52 56.1 

Ni25Co50Si15B10 45 67.4 

4.2. Scanning Tunneling Spectroscopy Results 

The surfaces of the alloys were investigated after the electrochemical tests were performed. Due to 

previous studies by Knutsen et al. [18,19], the alloying elements Si, B, Co, and Mo are expected to 

give changes in the electronic properties, both of the Ni atoms in the bulk, and also in the oxidized 

surface. The air-formed oxide layer on the surface of the alloys is expected to be NiO or Ni(OH)2. At 

the potential where the OER starts, the hydroxide is oxidized to NiOOH. An earlier investigation of 

the oxide/hydroxide layer on Ni78Si8B14 confirmed this assumption [18]. Examples of the surface 

regions used for the STS investigations are shown in the topographic images of Figure 6. Examples of 

the I(U) characteristics for the alloys are given in Figures 7–10. The surfaces were found to be 

inhomogeneous with respect to the tunneling ability, and there sites that were found, which had 

different I(U) curves for all the alloys.  

The STM images showed that even though the outermost surface of all the alloys consists of 

NiOOH, the structure of the surfaces was different. The image of Ni78Si8B14 revealed a surface with 

regular lines separated by a distance of approximately 20–25 nm, whilst the surface of Ni70Mo20Si5B5 

was irregular and rougher, with several sites on the surface with either higher or lower concentrations 

of acceptors. The surface consists of clusters with a size of ca. 10 nm. Comparing the images of the 

alloys containing Co indicated that an increase in the content of Co gave a change in the uppermost 

surface. The image of Ni25Co50Si15B10 revealed an irregular, rough surface with larger clusters of ca. 

20–25 nm, consisting of smaller clusters at a size of ca. 10 nm. 

The STS investigations of the four alloys showed that the surfaces were inhomogeneous and there 

were sites with different tunneling properties on all the surfaces. All the surfaces revealed I(U) curves 

with different symmetry, both at different sites in the same alloy, and at sites on different alloys. For 

the surface of Ni70Mo20Si5B5, some of the sites had a higher tunneling current, in both directions, than 

other sites. There were no Coulomb blockage gaps and the curves were symmetric around the zero bias 

voltage. For the surface of Ni78Co20Si10B12, the I(U) curves indicated a Coulomb blockage gap around 

the zero bias voltage, and the I(U) curves were displaced compared to zero. Two distinctively different 

symmetry forms of the I(U) curves were found. All the I(U) curves found on the surface of 

Ni25Co50Si15B10 had been similarly shaped at positively biased voltages, whilst there were differences 

at negatively biased voltages. The I(U) curves revealed a Coulomb blockage gap, and the curves were 

displaced compared to the zero bias voltage, Type I in negative direction, and Type II in the positive 

direction. Also for the Ni78Si8B14 there were found two different kinds of I(U) characteristics—one 

which was symmetric around the zero bias voltage and with no Coulomb blockage gap, and one 

asymmetric with an Coulomb blockage gap. The charge ratio was calculated from the different I(U) 
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characteristics and listed in Table 3. The sites where the I(U) scans were performed are expected to be 

clusters dominated by either Ni
2+

( rc < 1) or O
2-

( rc > 1).  

Figure 6. STM images of (a) Ni78Si8B14, (b) Ni70Mo20Si5B5, (c) Ni58Co20Si10B12, 

and (d) Ni25Co50Si15B10 after the OER. The images are obtained with a Pt-Ir tip at a bias 

voltage of 1.0 V and sample current 1.0 of nA in ambient air with atmospheric pressure.  

(a)  (b)  

(c)  (d)  
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Figure 7. I(U) curves obtained from STS scans performed on the surface of Ni78Si8B14. 

The absolute value of the tunneling current is used. 

 

 

Figure 8. I(U) curves obtained from STS scans performed on the surface of 

Ni70Mo20Si5B5. The absolute value of the tunneling current is used. 
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Figure 9. I(U) curves obtained from STS scans performed on the surface of 

Ni58Co20Si10B12. The absolute value of the tunneling current is used. 

 

 

Figure 10. I(U) curves obtained from STS scans performed on the surface of 

Ni25Co50Si15B10. The absolute value of the tunneling current is used. 

 

Table 3. Charge ratio for Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10 

calculated from the STS curves in Figures 7–10. 

Alloy Charge ratio, Clusters with  

Ni
2+

and/or Co
2+

,Co
3+

,Mo
4+

,Mo
6+

,H
+ 

Charge ratio, Clusters with 

O
2-

 

Ni78Si8B14   0.81 ± 0.05
 

1.22 ± 0.05 

Ni70Mo20Si5B5  0.91 ± 0.07
 

1.04 ± 0.04 

Ni58Co20Si10B12  0.61 ± 0.09
 

1.11 ± 0.01 

Ni25Co50Si15B10  0.45 ± 0.12
 

1.17 ± 0.15 
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5. Discussion and Conclusions 

The aim of this work was to find a relationship between the electrocatalytic properties of an 

electrode and its ability to tunnel electrons in an STM. The OER, in an alkaline electrolyte, was used 

as an indicative reaction for the electrocatalytic properties of different Ni alloys. The electrochemical 

tests all emphasized that the alloying elements had an influence on the electrocatalytic properties 

toward the OER. The electronic properties of the alloys depend both on the atomic type and on the 

amount of the alloying elements. According to the CVs (Figure 3) for all the alloys, the oxygen 

production started at potentials above the oxidation potentials for Ni
2+

/Ni
3+

, and in alkaline electrolyte, 

the uppermost surfaces of all the alloys will mainly be NiOOH. The surface sites will therefore be of 

either the negatively charged ion O
2-

 or the positively charged ions Ni
3+

and H
+
, in addition to traces of 

Ni
2+

, Co
2+

, Co
3+

, Mo
2+

, and Mo
4+

, depending on the alloys. Positively and negatively charged defects 

in the hydroxide structure may also exist.  

According to Bockris and Khan [10]
 
the first step in the OER, in alkaline electrolyte, will always be 

an adsorption of OH
-
, followed by the transfer of an electron from the adsorbate to the active site. This 

adsorption occurs on positively charged sites, and both the electronic properties and the amount of 

such sites play important roles in the electrocatalytic reaction. The Tafel slopes found for low 

overpotential (Table 2) indicated that the alloy containing Mo had a different rate determining step 

from the other alloys. According to several researchers [17,20-23], a Tafel slope at 40 mV/dec 

corresponds with a rate determining step that includes a transfer of electrons from adsorbed OH
-
 and 

O
-
 to the active sites. In contrast, a Tafel slope of 60–70 mV/dec, has a rate determining step that 

corresponds with other reactions and the number of active sites. By using the steady state current 

density, at an overpotential of 0.6 V, as an indication of the catalytic activity of the alloys (Figure 4 

and Table 2), the alloys containing Co are found to be the most active toward the OER. That 

corresponds with the findings of Kreysa and Håkansson [15]. 

The STS investigations revealed the dependence of the tunneling current on the ramping bias 

voltage and that the alloying elements played a significant role in determining the size of the tunneling 

current. When using the same tip, the same bias voltage, at the interruption of the feedback controller, 

and the same scan rate for all the I(U) scans, differences, both in the size and the shape of the curves, 

can be retraced to differences in the surface investigated, and hence to differences in the charge ratio. 

Positively charged sites are supposed to result in rc < 1, and negatively charged, in rc > 1. Comparing 

the curves giving rise to rc > 1 gives the opportunity compare the electron transferring ability to O
2- 

for 

the alloys. The largest value for rc was found for Ni78Si8B14, indicating that both Mo and Co reduced 

the ability for clusters with O
2-

 to donate electrons to the tip.  

Comparing the curves giving rise to rc < 1 reveals differences in the electron transferring ability at 

positively charge sites, mainly in Ni
3+

. The alloys containing Co, (Ni58Co20Si10B12 and 

Ni25Co50Si15B10) were found to have smaller rc values then Ni78Si8B14. The decrease indicates an 

increase in the ability to accept electrons from the tip. According to Martinez [24] and Nagai [25],
 
Co 

atoms are transferring electrons to the Ni atoms in the alloys. At the overpotential of 0.6 V toward the 

OER, Co atoms are oxidized to Co
3+

 cations. When Co atoms are added to an NiSiB-alloy, an increase 

in the electrocatalytic activity towards the OER, a smaller charge ratio, and a smaller displacement of 

the Coulomb blockage gap are found. For the alloys Ni58Co20Si10B12 and Ni25Co50Si15B10, the Co 
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atoms increase the creation of acceptors in the outermost surface of the produced NiOOH. This may be 

explained by the simultaneous formation NiCo2O4 from Ni and Co, with a change in the cation 

distribution [26]. According to the calculations of Nagai
 
[25], the energy levels of Co 4s are located in 

the same energy region as that of Ni 4s, and there were no creations of mid-gap states. For both alloys, 

there were found Coulomb blockage gaps around zero bias voltage. 

When Mo atoms are added to the NiSiB-alloy, the positively charged sites for the surface give rise 

to an increase in the charge ratio. These findings indicate that the alloying element Mo increase the 

surface’s ability to donate electrons to the tip. In the electrochemical tests, the addition of Mo resulted 

in a shift of the oxidation of Ni(II) to a lower potential and a decrease in the catalytic activity toward 

the OER. For Ni70Mo20Si5B5, the outermost surface may, in addition to Ni
3+

, Ni
2+

, and O
2-

, also 

contain some MoO4
2-

 ions. These ions are selective to adsorptions of cations, leading to a decrease in 

the amount of sites capable of adsorbing OH
-
 ions. The I(U) curves that were found from the alloy 

containing Mo had no Coulomb blockage gaps. The calculations of Nagai and Morisaki [25] showed 

that coupled levels of Mo 4d orbitals are located under the lowest level of Ni 4s, and that Mo 4d 

orbitals start to overlap with Ni 3d (located under the Fermi level), creating mid-gap states of Mo 4d. 

This finding can then explain both the lack of a Coulomb blockage gap and the creation of more LDOS 

under the Fermi level, giving an increase in the tunneling ability of electrons from the sample to the 

tip. The increased LDOS in the d-orbitals at the Fermi level, found by Martinez [24], may be the 

reason for the increased activity toward the HER [27] and a decreased activity toward the OER.  

Using the current density at an overpotential of 0.6 V toward the OER as an indication for the 

electrocatalytic activity of the alloys toward the OER, and the charge ratio as an indication of the 

tunneling ability of the surface, Figure 11 illustrates the correlation between the tunneling ability and 

the electrochemical activity toward the OER. In order to ease the comparison, different axes are used 

for the two sets of results. The curves show that the alloys with the highest electroactivity toward the 

OER have the lowest value for the charge ratio. Ni25Co50Si15B10 had the highest current density at the 

overpotential of 0.6 V. The Tafel slope was found to be 45 mV/dec. This slopes indicated that the 

reaction rate was determined by the electron transfer reaction [17,20,21]. When the rate determining 

step includes an electron transfer, it is reasonable to expect that the easier the sites accept electrons, the 

higher the OER activity is.  

The results show a relationship between the ability of a surface site to tunnel electrons and the 

surface’s catalytic activity toward the OER. This will also indicate that to improve a catalyst for the 

OER with a low charge ratio, an increase in the number of active surface sites should be a priority. The 

use of STS in electrocatalysis testing may be an aid in the search for the optimal catalyst in many 

electrochemical processes. The size of the charge ratio and the Coulomb blockage gap of the I(U) 

curve found from the STS scans performed on the surface sites of an electrode may give an indication 

of the electrocatalytic activity of the electrode. However, the use must be done with care. In order to 

get the best comparison of different electrodes, the best results are found by using the same STM tip in 

all the experiments. 
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Figure 11. A comparison between the charge ratio at positively charged sites and the 

current density, at an overpotential of 0.6 V, within the Ni alloys investigated in this study. 

The scales are different for the two curves, and are here left out for simplicity.  
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