
Design of a Heave Compensation
System with a Redundant Hydraulic

Manipulator

by

Magnus Berthelsen Kjelland

May 25, 2011

Supervisors:
Morten Ottestad

Geir Hovland
Michael Rygaard Hansen

This Master’s Thesis is carried out as a part of the education at the
University of Agder and is therefore approved as a part of this education.
However, this does not imply that the University answers for the methods

that are used or the conclusions that are drawn.

Department of Engineering
Faculty of Technology and Science

Preface
This report is the documentation of a master thesis concerning heave compensation in an offshore environ-
ment.
The Agder University is financing all expenses as sensors, hydraulic, electrical components and control sys-
tems.
The report contains a literature survey over ides of ways to design and control heave compensating equipment.
The kinematic models of the Stewart platform and a hydraulic manipulator arm is studies and simulated.
The hydraulic manipulator’s dynamic is simulated with the control system in a heave compensating motion
and it’s also tested through a real experiment.

A thanks to Eivind for his help with both mechanic and hydraulics in the machine workshop.

The work in this report was done during the spring of 2011.

Abstract
Waves cause problems when operating in big sea because of their constant movement. Many operations, as
moving cargo from ship to ship or from ship to a fixed platform, demands stable working conditions, and
this is often difficult to achieve when the waves becomes too big.

The use of active heave compensation can greatly reduce this disturbance. To overcome the movement of
the waves, different applications can be applied. The 6 degrees of freedom Stewart platform can be used to
compensate, as it can compensate for all motions, translative and orientational. It can also be used as a test
platform to create artificial waves/movements which can be used to test/develope new heave compensating
equipment.

By solving the kinematics for both the Stewart platform and the hydraulic manipulator, creating a dynamic
model for the manipulator using simulation software, the machines are analyzed.

They are modeled and simulated in different software as SimulationX and MATLAB/Simulink. A model of
a hydraulic manipulator is created to compensate wave motion when we place the manipulator on top of the
Stewart platform. The manipulators has a redundant configuration and the properties of this is explore in
regards to heave compensation.

A physical experiments shows that the end effector of the hydraulic manipulator follows a straight line as if
it heave compensating.

In order to detect changes in position and orientations, an Inertial Measurement Unit is designed. This can
detect fast angles changes in roll and pitch due to sensor fusion using an accelerometer and a gyroscope. A
solution for removing position drifting by introducing a Spring-Damper-System is also presented. Further
research concerning wave prediction may increase the accuracy of measuring position using the accelerometer.

By creating these models and test them in real life, we will have a great tool for further research concerning
heave compensation. Our new simulation of compensation indicates that many different applications for
wave compensation can be developed and tested using the Stewart platform, which gives a real life testing
environment. By having this complete heave compensation laboratory many new ideas and product can be
created.

Contents

1 Introduction 7

2 Stewart Platform 9
2.1 Mechanical Installation . 10
2.2 Electrical Installation . 11
2.3 Inverse Kinematics . 12
2.4 Verification of the Kinematics . 14
2.5 Control System . 15

3 Hydraulic Manipulator 16
3.1 Background . 16
3.2 Mechanical . 16
3.3 Hydraulics . 19
3.4 Kinematics . 21

3.4.1 Redundancy . 23

4 Inertial Measurement Unit 25
4.1 Background . 25
4.2 Movements of the Stewart Platform . 25
4.3 1. Order Complementary Filter . 27
4.4 Testing the IMU . 29

5 Electrical and Control System 31
5.1 Electrical . 31
5.2 Control System . 33
5.3 Kinematic Control . 35
5.4 Real-Time Control System . 37

6 Modeling and Simulation 38
6.1 Dynamics - SimulationX . 38
6.2 Kinematics - Matlab/Simulink . 42

7 Experiments 45
7.1 Test Bench . 46
7.2 Without Redundancy . 46
7.3 With Redundancy . 47

8 Conclusion 51
8.1 Further Work . 51

Bibliography 52

List of Figures 53

Appendix 54

4

A MATLAB/Simulink 55
A.1 Position and plot of joints of Stewart Platform . 55
A.2 Structure and plot of joints of Stewart Platform . 58
A.3 Animation of joints of Stewart Platform . 63
A.4 Kinematics, Jacobian Non Redundant Manipulator . 71
A.5 Kinematics, Jacobian, Pseudo Inverse Redundant Manipulator 73
A.6 Redundant Control based on Condition Algorithm Manipulator 75
A.7 Simulink System of Heave Compensation . 78

B LABVIEW 79
B.1 Hydraulic Manipulator - LabView Diagrams . 79
B.2 Inertial Measurement Unit - LabView Diagrams . 81

C Hydraulic Components - Manipulator 84

D Datasheets 85
D.1 Novo Technik - Position Transducer . 85

1. Introduction

In order to compensate for constant change of position caused by waves many different solutions has been
invented. A ship mounted crane with a controllable winch can keep a payload compensated by turning the
winch back and forth, making the payload standing almost at rest [12] even if big waves are affecting the
ship. This is a approach used in many application today, but it may be problematic if the payload is to be
transported through air and not in water, due to almost non friction in the air compare to the water. This
may cause the payload to swing to the sides if the ship/vessel containing the crane is exposed to roll or pitch.

There has been research in many field of heave compensation. Another application there has been research
on is a compensated helideck by use of the Stewart platform [6]. The general use of Stewart platform can
be used in many application.
An example of application using the Stewart platform is the ’Heave Compensated Walkway’ made by the
Netherland based company Ampelmann. This machine uses the Stewart platform to compensate a walkway
that goes from one vessel to another [2] and is shown in figure 1.1 where the walkway goes from one ship to
another.

Figure 1.1: Ampelmann’s Heave Compensated Walkway [2]

Heave Compensation Laboratory
The Stewart Platform, a 6 degrees of freedom (DOF) platform was bought to Agder University by the Nor-
wegian Center of Offshore Wind Energy (NORCOWE) in cooperation with Christian Mikkelsen Research
(CMR) as a part of a bigger project concerning offshore wind turbines.
The project is split in work packages were each group is studying different aspects of subjects within the
offshore wind energy area. It covers all from design and construction of the turbines as well as installation
and maintenance. This project report as a master thesis is a part of the ’Marine Operations’ were operations
offshore is studied.
In the offshore industry, heave motion created from waves is a problem in offshore handling, drilling and
sub-sea operations. Research and knowledge in the heave compensating field of technology is huge benefit

7

for the industry dealing with there problems.
With the Stewart platform at the university, many different experiments can be done. Testing heave com-
pensation with either manipulator arms or compensating winches are examples of opportunities that comes
with the stewart platform.
While testing different heave compensating equipments, the machines are often placed on top of the platform,
which gives a good testing environment for simulation wave motion. But i can also be turned around, such
as the compensating equipment are mounts on solid ground, while the payload is picked up/placed down on
a moving platform.
Ideally there could be used two Stewart platforms, each having different position and velocities to give the
ultimate test environment for heave compensating equipments.

Project Description
A crane with an end effector can be controlled to compensate for the motion crated by the waves if the
position reference to a fixed point is known. If such a crane is to be designed, a good test environment will
give a huge advantage. In this project such an environment will be created having a Stewart platform works
as a wave generator while a hydraulic manipulator will try compensate this motion.

Figure 1.2: Heave Compensation Environment [13]

The the mechanical and kinematic aspect of the Stewart platform will be analyzed where the focus will be
on the inverse kinematic. An animated model is created to verify the kinematic model.
A redundant hydraulic manipulator will be modeled and simulated, where both the dynamic and kinematics
for the redundant and non-redundant configuration. There will also be a physical experiment where the
kinematics is tested.
This will show how the pseudo inverse Jabobian solve the problem with the redundancy.
To be able to detect motion and rotation, an inertial measurement unit is analyzed. Problems concerning
position drift in introduced and a solution for the problem is proposed. Sensor fusion, combining angle
measurement from both an accelerometer and gyroscope is introduced.

8

2. Stewart Platform

The Stewart Platform 2.1 was shipped from the Netherlands during the autumn of 2010, and arrives at
Agder University shortly after.
Since the platform was shipped separately from the control system, some work on the platform was necessary
to complete before the it could be used.

Figure 2.1: The Stewart Platform in the machine workshop at Agder University

This machine can move its top platform in 6 degrees of freedom, so all possible motion can be archived with
this machine. This motion is moving it translative and rotational in all X-Y-Z axes as in figure 2.2.

9

Figure 2.2: The Six Degrees of Freedom[10]

2.1 Mechanical Installation
The maximum payload of the platform is 1500kg and it is capable of moving this at a high acceleration.
This demands that the platform is firmly connected to the fundament.

Figure 2.3: Connection between the Stewart Platform and the Foundation

10

2.2 Electrical Installation
The platform was complete with control system and electrical control cabinet. The only remaining job before
the platform could be operated was to connect the power and signal cables from each leg of the platform to
the control cabinet, and from the cabinet to the control system / PC, figure 2.4.

Figure 2.4: Power and Signal Cable to each Servo Motor

Emergency and Safety Stop
The Stewart platform is a big machine with quick movements and can cause damage to humans or equip-
ment. Because of this safety aspect, emergency stop functions are included as a part of the control system.
It consists of one emergency stop switch and one soft stop switch. By pushing the emergency stop switch,
the entire machine loses its power from the control cabinet, making it stop instantly. While moving the
machine in full speed, this function shouldn’t be used except when there is a chance for human or major
equipment damage.
If the machine is in motion and it need to be stopped quickly, but not instantly, the soft stop switch can be
used. This switch makes the machine slow down and move to its neutral position.
In figure 2.5 the circuits of the stop functions are showed. The emergency stop has a closed loop from and
to the control cabinet, and will execute the emergency stop if the signal in this wire is broken. The soft stop
need a power supply signal of 24 volts that need to go into the control cabinet. If it loses the 24 volt signal,
the soft stop function is executed.

Normally Closed

Stewart Platform
Control Cabinet

Emergency
Stop

Normally Closed

+24 volt

Soft Stop

Figure 2.5: Emergency and Soft stop circuits

11

2.3 Inverse Kinematics

The inverse kinematics problem is solved by giving each joint of the Stewart platform a coordinate point in
space. The base joints are stationary while the top joint are a function of the translation variables X,Y and
Z and the rotational variables roll, pitch and yaw of the platform.
To begin calculating the kinematics it is necessary to find each the position of each joint on both the base
and the platform. The length of each of the six legs is based on the base and platform and can be found
using pythagoras sentence.

Base and Platform

The base and the platform has the same configuration of the position of the joints, but they differs in size,
were the base is much larger than the platform. This is to get good control of the rotation of the platform
(pitch yaw) rather than bigger workspace in form of (surge sway).
The position of the joints P and B [1..6] are shown in 2.6.

Figure 2.6: Position of the base and platform joints

The radius of the circle defines the distance from the center of the platform to joints and is equal for each
joint. Every joint pair is located 120 degrees from each other to split them evenly over the circle [11],[7].
There is also an offset angle θ separates the two legs from each other.

12

Each point as a X and a Y coordinate. With the points lying on the circle it’s easy to find its coordinates:

P1(X,Y) = (R · cos(0o + θ), R · sin(0o + θ)) (2.1)
P2(X,Y) = (R · cos(120o − θ), R · sin(120o − θ)) (2.2)
P3(X,Y) = (R · cos(120o + θ), R · sin(120o + θ)) (2.3)
P4(X,Y) = (R · cos(240o − θ), R · sin(240o − θ)) (2.4)
P5(X,Y) = (R · cos(240o + θ), R · sin(240o + θ)) (2.5)
P6(X,Y) = (R · cos(0o − θ), R · sin(0o − θ)) (2.6)

(2.7)

Figure 2.7 shows the position of both the platform and base joints created in MATLAB.

Figure 2.7: Position of the base and platform joints from MATLAB, Green = Base, Red = Platform and
Blue = Origin(0,0)

A good tool for solving kinematics is the Denavit-Hartenberg Parameters technique [9],[13] which uses a
rotational and translational matrix to do transformation from the global to the local coordinate system.
The rotational matrix:

Rotational =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.8)

The translational matrix:

Translation =

 1 0 X
0 1 Z
0 0 1

 (2.9)

By multiplying in the series can we can build up the kinematics: Transformation Matrix=RotZ*TransZ*TransX*RotX.
To get from the origin, which is the center of the base platform the following series of transformation is fol-
lowed in figure 2.8

13

−1 −0.5 0 0.5 1

−1

0

1
0

0.5

1

1.5

2

x
y

z

Orgin
xy

z

yaw

roll

pitch

py

px

Figure 2.8: Use of Denavit-Hartenberg Parameters to solve the Kinematics:X->Y->Yaw->Z->Roll->Pitch-
>Px->Py

Actuating Legs

To find the length of the actuating legs Ln, where n is the leg number, a simple calculation is performed:

Ln =
√

(Px −Bx)2 + (Py −By)2 + (Pz −Bz)2 (2.10)

Where : n = [1 . . . 6] (2.11)

The angle of the legs can be described by:

ϕn = tan−1(Py −By
Px−Bx

) (2.12)

ψn = cos−1(Pz −Bz
Ln

) (2.13)

(2.14)

2.4 Verification of the Kinematics

In figure 2.9 the kinematics for the Stewart platform is verified. A structural animation is created using
MATLAB. In this figure the position and orientation of the Stewart platform change, making the platform
move.
Only one of the position or orientation variables are change at a time. The default values of the variables
are Z=1,X=0,Y=0,Yaw=90o,Pitch=0o and Roll=0o.

14

Default Y=1

X=1 Yaw=120°

Roll=30° Pitch=30°

Figure 2.9: Verification of the Kinematics for the Stewart Platform

2.5 Control System
There are six servo drives connected to each servo motor. The control system gives each leg a position
reference and at the same time controls the acceleration and velocity. The servo drives then moves the leg
to the desired position. Each servomotor sends a feedback signal of its position to the drive.

Motion Control
The Stewart platform delivered by Rexroth comes complete with electrical cabinets and control system. The
control system runs on PC with real-time Linux and if only connected to the Electrical cabinet by a fiber
optical loop going through the six servo drives.
The control system lets the operator choose different ways of controlling the platform. There are two main
modes: "Automatic" which controls the platform over Ethernet from a remote pc. Flight simulators can
be used on this remote machine and all flight information is sent through Ethernet to the motion control
system.
The other mode i "Manual" and lets the operator control the platform either by controlling each leg, or by
the degrees of freedom of the platform.
In manual mode, recordings of a movement can also be played and give the platform a pre-defined trajectory.

15

3. Hydraulic Manipulator

3.1 Background
The hydraulic manipulator arm has been used in many bachelor projects at Agder University.[14] The me-
chanical and hydraulic has been done, but there were some issues with the electrical cabling that had to be
fixed before the machine could be operated.
Some new pressure sensors for the hydraulic oil pressure was also mounted on the machine, and new cables
had to be connected the control system.

3.2 Mechanical
The manipulator arm is made by three bars connected with three joints. Two rotational and one translative.
Each joint is actuated by a hydraulic cylinder. The joints itself is assumed to have low friction.
The tool point position of this manipulator is redundant only if the X and Y position and not the angle of
rotation is used[4]:

3 Bars · 3 dof − 3 Joints · 2 dof −Angle of rotation for toolpoint = 2 (3.1)

θ 1

θ 2

L 1

L 2 ΔL

+
X

Y

Tool Point /
End Effector

Figure 3.1: Hydraulic Manipulator Arm

L1 and L2 is the length of the two first bars. Since the last actuated bar works as a elongation of L2, it’s
denoted as ∆ L. Making the total length of the bar L2 + ∆L
The two angles θ1 and θ2 is the angle between each bar compared to where it is connected. As θ2 is the
angle between the bar L1 and L2.

16

Rotation Joint to Translation Cylinder

Since the relationship between the angular velocity and the hydraulic cylinder’s velocity isn’t linear, a
mathematical function is needed on order to move the angles θ1 and θ2 at the correct velocity based on the
cylinder speed.

Figure 3.2: Rotation to translation

In order to find this relationship the "Cosine Sentence" is used. This sentence describe the lengths and angles
of a triangle.

Figure 3.3: Figure for describing the Cosine Sentence

Derivation of the length "c" with respect to the angle γ the relationship is found.

c2 = a2 + b2 − 2 · a · b · cos(γ) (3.2)

c = ±
√
a2 + b2 − 2 · a · b · cos(γ) (3.3)

δc

δγ
= ± a · b · sin(γ)√

(a2 − 2 · cos(γ) · a · b+ b2)
(3.4)

17

First Cylinder - θ1

Figure 3.4: θ1 - Angular to Translative Velocity

Since all the interfacing joint are lying on the same horizontal and rotational angle, it can be describes as a
perfect triangle. The lengths a and b is measured directly from the machine.

Second Cylinder - θ2

Figure 3.5: θ2 - Angular to Translative Velocity

Here the lower interface point of the hydraulic actuator doesn’t lie on the reference angle of θ2. This causes
the offset angle α to be used. The lengths a and b is measured directly from the machine.

18

3.3 Hydraulics

Servo Valves

The servo valve can electrically be controlled to let hydraulic fluid pas through it by adjusting the area of
orifices inside the valve. Because of this the amount fluid passing through the valve can be described by the
orifice equation. This equation uses a constant Kv which describes relationship between the opening of the
spool inside the valve and the flow that passes through.
The value Kv can be obtained by connecting the valve in the following circuit:

Tank

Psupply=70 bar

35 bar 35 bar

Figure 3.6: Hydraulic Circuit - No Load Flow

By supplying the valve 70 Bar and having the valve at full opening the No load Flow can be acquired. Kv

can then be found by:

Kv = QNL√
Ps
2

(3.5)

With Kv known, the equation describing the relationship between fluid flow and opening signal can be set
up:

Q = Kv · u ·
√
P2 − P1 (3.6)

Hydraulic Cylinders

There are 3 hydraulic cylinders on the manipulator. Two are connected to a revolute joint while the last one
i connected to a prismatic joint 3.7.

19

x

z

1. Bar

2. Bar

3.Bar

1. Actuator

2. Actuator

3. Actuator

Figure 3.7: Picture of Manipulator and its cylinders

Dynamic

The dynamical properties of the manipulator and its components are described by [3].
The following equations describe the properties of the cylinders

A1=Piston Area A2=Rod Area

m=Mass

f=Force

a=Acceleration[m/s2]

v=Velocity[m/s]

Q=Flow

Figure 3.8: Cylinder Dynamic

Force:

F = m · a = P1 ·A1 − P2 ·A2 (3.7)
F = P1 ·A1 − P2 ·A1 ∗ ϕ (3.8)
F = A1(P1 − ϕ · P2) (3.9)

Where : ϕ = A1

A2
(3.10)

Velocity:

20

v1 = Q

A1
(3.11)

v2 = Q

A1 · ϕ
(3.12)

(3.13)

Hydraulic Circuit
The hydraulic of the manipulator is connected such as the ’rod side’ of the cylinders is directly connected
to the pressure side, while the ’piston side’ is connected to the servo valve.
Since the area of the ’piston side’ is larger than the area of the ’rod side’, more force is created on the ’piston
side’ with the same pressure on both sides. Making the cylinder attract when directing oil flow from the
hydraulic pressure unit.
To retract the cylinder, the oil from the ’piston side’ is led to the tank though the servo valve. And since
there always is oil pressure on the ’piston side’ the cylinder will retract.

The configuration of the hydraulic components is connected as in figure 3.9.

Tank

ServoValve
MOOG

Servo
Valve
Rexroth

Servo
Valve

MOOG

Fixed-Displacement
Pump

Cylinder, Theta 2Cylinder, Theta 1 Cylinder, Delta L

Figure 3.9: Hydraulic Circuit

3.4 Kinematics
Without Redundancy
If only the two angles θ1 and θ2 are used and the displacement ∆L is fixed, making the manipulator arm not
redundant. This make it easier to find the forward/inverse kinematics and inverse Jabobian for the system.
The forward kinematics can be describes as: "The forward kinematics problem is concerned with the rela-
tionship between the individual joints of the robot manipulator and the position and orientation of the tool

21

or end effector" [15]. The forward kinematics equations will solve the end effector coordinate as a function
of the joint variables.
Inverse kinematics will do the opposite. Instead of solving the end effector, it will give a solution for the
joint position or orientation as a function of the position or orientation of the end effector.

Forward Kinematics

The DH parameters technique is used to find the forward kinematics. The coordinates for the tip of the
manipulator, X and Y:

X = (L2 + ∆) · cos(θ1 + θ2) + L1 · cos(θ1) (3.14)
Y = (L2 + ∆) · sin(θ1 + θ2) + L1 · sin(θ1) (3.15)

Inverse Kinematics

If the tip point of the manipulator is to be controlled, the inverse kinematics needs to be found. The result
will be two equations where the two angles will be a function of the tip coordinate[15].

θ1 = f(X,Y) (3.16)
θ2 = f(X,Y) (3.17)

By knowing the coordinates the distance to the tip can be found by using Pythagoras. When this distance
is known the angle θ2 can be found 3.18.
Now there are only one unknown, θ1, that must be solved 3.19.

θ2 = −cos−1(X
2 + Y 2 − L2

1 − L2
2

2 ∗ L1 ∗ L2) (3.18)

θ1 = tan−1((A · Y −B ·X)
(A ·X +B · Y)) (3.19)

where : A = L1 + L2 · cos(θ2) (3.20)
B = L2 · sin(θ2) (3.21)

Jabobian Matrix

The inverse Jabobian will tell us what velocity of the two joints we need in order to move the tip at a given
velocity 3.29. The Jabobian is a n(number of links) by m(numbers of degrees of freedom of the end effector)
matrix that links the relationship for the velocity of the end effector and the joint velocities [15]
The matrix 3.22 is square for non-redundant manipulators and non-square if the manipulator is redundant.

J =

 δX
δθ1

δX
δθ2

δY
δθ1

δY
δθ2

 (3.22)

For the hydraulics manipulator in a non-redundant configuration the velocity relationship is a square matrix.
While the Jabobian matrix gives a solution of the end effector position velocity, the inverse Jabobian matrix
will give a solution of the joint velocity as a function of the end effector velocity. This can be used if the end
effector need to follow a line with a certain velocity reference, and it’s the inverse Jabobian that is used in
3.23. Since the Jabobian matrix is square, it can easily be inverted.

[
θ̇1
θ̇2

]
= J−1 ·

[
Ẋ
Ẏ

]
(3.23)

22

To find the jacobain, the MATLAB function ’Jabobian()’ solve is automatically.

J−1 =
[
−L2 · sin(t1 + t2)− L1 · sin(t1), −L2 · sin(t1 + t2)
L2 · cos(t1 + t2) + L1 · cos(t1), L2 · cos(t1 + t2)

]
(3.24)

θ 1

θ 2

X

Y

Vy= 1m/s

Figure 3.10: Moving the tool point based on the inverse Jabobian

If in figure 3.10, the desired velocity is 1 meter per second in Y direction the inverse Jabobian will give the
angular velocity of each joint in order to move the tool point at the desired speed.
Substituting the velocity reference for the tool point into 3.29 and initial values for θ1 = 30o, θ2 = −60o, L1 =
1 and L2 = 1, the angular velocity of each joint is found:[

θ̇1
θ̇2

]
= J−1 ·

[
0
1

]
=
[

0.5500
0.9526

]
(3.25)

Note that the inverse Jabobian is a function of both the tool point velocity and the actual rotation of each
joint, θ1 and θ2. Since the inverse Jabobian is a function of θ and as the manipulator is moving, a new
angular velocity for θ1 and θ2 must constantly be calculated [9].

3.4.1 Redundancy
Forward Kinematics

The end points of the tip of the manipulator X and Y is described by a function of the three actuated joins.

X = L2 ∗ cos(θ1 + θ2) + ∆1 ∗ cos(θ1 + θ2) + L1 ∗ cos(θ1) (3.26)
Y = L2 ∗ sin(θ1 + θ2) + ∆1 ∗ sin(θ1 + θ2) + L1 ∗ sin(θ1) (3.27)

Inverse Kinematics

The inverse kinematics gives the two angles and the displacement based on the tip of the manipulator.
Inverse of the forward kinematics.
To solve the redundant inverse kinematics there has to exists three equations for the angle and displacements,
since there are three unknowns.

Jabobian

To find the relationship between the velocity of the tip of the manipulator and the velocities of each joint,
the Jabobian matrix J is found.

23

[
Ẋ
Ẏ

]
= J ·

 θ̇1
θ̇2
∆̇1

 (3.28)

It consists of the derivative of X and Y depending on the derivative of each joint. Note that in 3.29 the
Jabobian matrix is not square. This is a result of the redundancy of the manipulator

J =

 δX
δθ1

δX
δθ2

δX
δ∆1

δY
δθ1

δY
δθ2

δY
δ∆1

 (3.29)

Rather than finding the velocities on the tip of the manipulator based on knowing the velocities in the joints,
the inverse Jabobian matrix will do the opposite. It will tell us what joint velocities we need in order to
make the tip move at a desired velocity.
Because of the redundancy of the manipulator, the Jabobian matrix 3.29 isn’t square and thus not directly
invertible, and the Inverse Jabobian cannot easily be found.

Pseudo-inverse Jabobian

A way to solve the inverse 2x3 matrix to use the Moore–Penrose pseudo inverse Method [5] such as θ̇1
θ̇2
∆̇1

 = J† ·
[
Ẋ
Ẏ

]
(3.30)

Where J† is the pseudo inverse of J. The pseudo inverse method can be used even if the matrix isn’t square
or not in full row rank. It is not an exact solution to inverse Jabobian, but it will try to give the best solution
to equation 3.28
The pseudo inverse Jabobian can be found by:

J† = JT · (J · JT)−1 (3.31)

Damped Least Square Jabobian

Another option is to use the DLS method [5]. This method finds the values of θ̇1, θ̇2, ∆̇1 that minimize the
function:

||J ·

 θ̇1
θ̇2
∆̇1

− [Ẋ
Ẏ

]
||2 + λ2 · ||

 θ̇1
θ̇2
∆̇1

 ||2 (3.32)

Where λ is non-zero damping constant.
This equation can be rewritten to be:

 θ̇1
θ̇2
∆̇1

 = JT (J · JT + λ2 · I)−1 ·
[
Ẋ
Ẏ

]
(3.33)

24

4. Inertial Measurement Unit

4.1 Background
In order to measure movement of ships, oil rigs or offshore wind turbines, either a reference data from a solid
point or a Inertial Measurement Unit (IMU) is used. Often, no solid reference point is available, so the IMU
is a device much used for the purpose of finding position and angle.
The IMU is used in various applications as ROV, UAV, Heave compensation equipment, ship motion moni-
toring and ocean wave measurement.

4.2 Movements of the Stewart Platform
Since the Stewart platform is a 6 degrees of freedom platform it is able to move in all directions and all
orentations. These motions are the same as the motion of what a ship would experience while out on the
ocean. While the gravity reference together with an angular velocity sensor will tell us the pitch (φ) and
roll(θ) angle of the ship, it’s more difficult to measure heave motion. By using accelerometers to measure
heave motion, equation 4.1 shows the error sources while measuring heave motion.

ẍ = a− g cosφ · cos θ − b− n (4.1)

Here the ẍ is the actual acceleration of the ship, b is a constant or slowly changing bias and n is the
white Gaussian noise. a is the acceleration measured from the accelerometer mounted vertical from the ship
horizontal line.
Since the position is the double integral of the acceleration, much of the high frequency noise is reduced in
this process, but due to the bias, the signal will experience drift. This drift can be reduced if a second order
high pass filter is introduced [1].
Another approach which further may reduce the effect of this drift is to introduce a center point that the
heave motion moves around. In this point the position is zero. To compensate for the drift the position of
the ship is introduced to a spring-damper system shown in figure 4.1. A frequency of 0.16 Hz, bias of -0.03
m/s2, white Gaussian noise of N(0,0.2), spring coefficient at 0.3 N/m and a damping coefficient at 1 Ns/m
is set as parameters.

Velocity Position

White Noise

Wave Acceleration

To Workspace

simout

Sum2

Sum

Spring

0.3

Scope

Integrator5

1
s

Integrator4

1
s

Integrator3

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

1
s

Damper

1

Bias

-0.03

Figure 4.1: Spring-Damper Compensating System

25

By simulation the acceleration and analyzing the results shown in figure 4.2, it’s clear that the spring-damper
system reduces the drifting problem, but it introduces phase shift for the estimated position.

Figure 4.2: Ship Position, Integrated from Acceleration

ADIS 16350 High Precision, Tri-Axis Inertial Sensor
A way to measure both movements and rotation is to use a inertial sensor that consists of both a tri-axis
accelerometer and a tri-axis gyroscope.
The ADIS 16350 has these properties and is ideal to use as an IMU.
This sensor communicated using the serial peripheral bus SPI and can deliver data from the sensor at a high
frequency. The properties of the sensors are:

• ±10g′s

• ±300/150/75degreessec

• 14-bit resolution

26

4.3 1. Order Complementary Filter

Accelerometer

gravity

z
x

θ

IMU

Figure 4.3: IMU-Measurement of angle using Accelerometer

Using the vector of the earth’s gravity shown in figure 4.3, [17],[16] and [8] the accelerometer can determine
the stationary angle of the sensor reference to the earth’s gravity field as described in equation 4.2. This
gives an accurate measurement, but gives some noise and are not very good at measuring angular velocity.

θaccelerometer = arctan −Z
X

(4.2)

Gyroscope

IMU

gravity

θ

Figure 4.4: IMU-Measurement of angle using gyroscope

On the other hand, the gyroscope gives a very fast and accurate measurement of the angular velocity, but if
it’s used to find the stationary angle, integration of the signal is needed 4.4. This causes the signal to drift
because of there will always be a small bias signal that it integrated towards infinity. So seen separately

27

each sensor has its positive and negative sides.

θgyroscope =
∫
θ̇ · dt (4.3)

Sensor Fusion

gravity

z
x

θ

IMU

θ

1
s

+ θ

Accelerometer

Gyroscope

Figure 4.5: IMU-Complementary Filter

However, using the positive prosperities of both sensors, they can be combined, making it good on angular
velocity as well as giving the stationary angle. To do this, the 1. order complementary filter is used 4.4.
This algorithm first integrates the angle measured from the gyroscope, since the gyroscope only measures
angular velocity. Then the two angles from the accelerometer4.2 and gyroscope 4.3 are added together with
a weighting factor ω. The sum of the weighting factor must be equal to 1 since if more or less would influence
the angle making it larger or smaller than the actual angle. Program for the 1. order complementary filter
is shown in appendix B.8.

θcomplemntaryfilter = ω · θaccelerometer + (1− ω) · θgyroscope (4.4)

28

4.4 Testing the IMU

To verify that the measurement of the angle is correct a small test bench was setup. It consists of the IMU
connected to an encoder. This gives a very accurate reference signal that can be used to verify the signal
from the sensor. On the rotational axis there is attached a rod, increasing the inertia of the rotating element.
The program controlling the inertial sensor is shown in appendix B.7.

Figure 4.6: Test Bench for Inertial Measurement Unit

When using the test bench, the rod is turned so i stand 90 degrees from the pointing downwards. Then it’s
dropped and will swing back and forth until it’s in stable downwards position. By recording the signal from
both the encoder and the estimated angle, the sensor can be benchmarked to see how fast it can observe the
changing angle.
In figure 4.7 the recorded values are plotted against each other from a 90 degrees fall. The results show that
the estimated angle follows the reference encoder angle very good. It is also shown in the plot that the angle
settles at approximate 4.7 degrees, only 2.5 degrees error from the encoder angle.

Figure 4.7: IMU-Experiment, 90 degrees fall

29

Another test was done, testing an impact to see the reaction of hit. The data was recorded and is displayed
in figure 4.8. As shown in the plot, the estimated angle is not as quick as the encoder.

Figure 4.8: IMU-Experiment, Impact Hit from 90 degrees

30

5. Electrical and Control System

5.1 Electrical

Current Supply Circuit

In order to control the hydraulic servo valves, a voltage to current transformer is used. The maximum output
current of the National Instruments Analog Output module is limited, and could not be used as a controller
directly.
This circuit was designed and created by a bachelor project group in 2010 [14]. It consists of an operational
amplifier and resistors in the following circuit:

Servo Valve
Coil

Resistor

Op-Amp

Ground

Analog
Output
+-10V

Control Cabinet Machine

Figure 5.1: OPMAMP Circuit

The circuit is controlled by a ± 10 V input signal and gives ± 100 mA output current. To test the linearity
and offset of this circuit a digital multi meter was connected in substitute of the servo valve and the current
passing through the multi meter was recorded and plotted in 5.2.

31

Figure 5.2: Output Current vs. Input Voltage

End stop

There are mounted four end stops on the manipulator. This is to protect the structure and cylinders when
the manipulator reaches out of its limits. The end stops are connected as digital inputs and prevents the
control signal to move the cylinders if the end stop is reached. It’s only possible to move the cylinders back
again and away from the end stop.

Encoders

To measure the angle of the two manipulator arms, two encoders are mounted on the supporting axels of
each arm. The encoder measures the relative angle on the axel on where they are mounted
The encoders are capable of measuring 7200 steps each rotation [14]. This gives the encoders a resolution
of:

360 deg
7200 = 0.05 deg (5.1)

Pressure Sensor

The pressure sensor can measure hydraulic oil pressure in a range from 0 to 400 bars. The output signal is
from 0 to 10 volts making 0 bar = 0 volts and 400 bars = 10 volts.

Distance Sensor

To measure the distance of the prismatic joint (appendix D.1), a linear potentiometer is connected to both
ends of the joint. The sensors will give a voltage signal linear to the displacement of the prismatic joint
described by the simplified equation 5.2 based on the calculation in [14].

Displacementmeter = V oltageanaloginputpotentiometer · 0.0739 (5.2)

32

5.2 Control System
Feed Forward with compensation
The control system gives a control command to the servo vales based on a desired position or velocity of each
of the joints on the manipulator. In the P or PI regulator, the exist an error that is the desired set point
minus the actual point. This error is then amplified and sent as a control signal to the desired actuator.
Because this error is moving toward zero, no command signal will be sent when it finally reaches zero. This
causes a problem when controlling the velocity of the actuator. Since the servo valves doesn’t give any flow
then the control signal is zero it will force the actuator to stop when the control system has zero error on
the velocity.

VelocityPosition

Velocity Gain

PI

Position Gain

P

Integrator

1
s

Hydraulic Actuator

u yPlant

Position Setpoint

1

Figure 5.3: Regulator with P and PI Gain

To compensate for this, a feed forward signal is used. This signal will not be affected by the actual velocity
of the actuator. When combining the two signals the feed forward signal will make the actuator move, while
the PI regulated signal will make small adjustment to make the actuator move at the desired velocity.

VelocityPosition

Velocity Gain

PI

Position Gain

P

Integrator

1
s

Hydraulic Actuator

u yPlant

P

Position Setpoint

1

Figure 5.4: Regulator with P, PI and Feed Forward Gain

33

Model Based Control
This way to control uses the theoretical properties of the hydraulic components while measuring real live
data in order to know the status of the machine.
It is used to calculate the servo valves opening signal (u) based on what flow we wants to pass through it
(Q). The orifice equation states that the flow passing through the valve is dependent of the pressure on
both sides (P1 and P2), the control signal and the characteristics of the valve (Kv). By measuring these two
pressures and knowing what flow we want, the control signal can be calculated.

Q = Kv · u ·
√
P2 − P1 (5.3)

u = Q

Kv ·
√
P2 − P1

(5.4)

Since the flow Q is directly connected to the velocity (v) and area (A) of the cylinders Q can be substituted,
making it:

u = v ·A
Kv ·

√
P2 − P1

(5.5)

The velocity v is can also be substituted with the angular velocity (δγ) of the joints θ1 and θ2:

u =
± a·b·sin(γ)√

(a2−2·cos(γ)·a·b+b2)
· δγ ·A

Kv ·
√
P2 − P1

(5.6)

The total regulator will have the model based control signal as an input just before the signal is sent to the
actuator. By having a good model based regulator and a good reference position, the output of each of the
P and PI gain should lay close to zero. This model is not implemented in the physical experimentation.

VelocityPosition

Velocity Gain

PI

Position Gain

P

yModel

Integrator

1
s

Hydraulic Actuator

u yPlant

Feed Forward Gain

P

Position Setpoint

1

Figure 5.5: Regulator with Model Based Gain

34

5.3 Kinematic Control
Non Redundant
The kinematic control for the non-redundant manipulator is based on the inverse kinematic control. By
having a set point for the tool point in the XY-plane the angles for the two joints are found. The velocity
reference for each of the two joint can be calculated as an error of the angle set point versus the actual angle
of the joint, figure 5.6.

To hydraulic Regulator

1

X

Y

t1

t2

theta1_SetPoint

theta2_SetPoint

Inverse_Kinematic Y

4

 X

3

theta 2

2

theta 1

1

Figure 5.6: Kinematic Control - Inverse Kinematics

By including the inverse Jabobian also velocity reference for the tool point can be used. This control will
result in a velocity reference of each hydraulic actuator to give the correct tool point velocity, figure 5.7.

To hydraulic Regulator

1

dX

dY

t1

t2

dtheta1

dtheta2

Inverse_Jacobiandelta Y

4

deltaX

3

theta 2

2

theta 1

1

Figure 5.7: Kinematic Control - Inverse Jabobian

Redundant Manipulator
There are different ways of creating a control system for the redundant manipulator. In this report, two
main solutions are presented.
The first uses a condition based equation to control the redundant actuator. This condition is based on
the limits of each joint. The control goes through an algorithm which checks if the joint are within its
limitations. If they are, the displacement of the redundant joint is minimized. If not, then the redundant
joint is changed to make the two joints go within its limits (appendix A.6).
This procedure is gives a good solution for the redundant manipulator problem, but it will demand more
capacity from the control system because there is more program code that has to be processed.
This control has the control topology seen in figure 5.8.

35

To hydraulic Regulator

1

X

Y

t1

t2

d1

theta1_SetPoint

theta2_SetPoint

delta1_SetPoint

ConditionBasedControl

delta 1

5

delta Y

4

deltaX

3

theta 2

2

theta 1

1

Figure 5.8: Kinematic Control - Condition Based

Pseudo Inverse Control
The other solution for the redundant control problem is the Pseudo Inverse Jabobian solution 3.30 and the
Damped Least Square method 3.33, (appendix A.5).
These two methods are very similar based on the control topology as seen in figure 5.9.

To hydraulic Regulator

1t1

t2

d1

X

Y

ForwardKinematics

dX

dY

t1

t2

d1

dtheta1

dtheta2

ddelta1

PseudoInverseControl

delta 1

5

Y Setpoint

4

X Setpoint

3

theta 2

2

theta 1

1

Figure 5.9: Kinematic Control - Pseudo Inverse Jabobian

When using the pseudo inverse Jabobian the tool tip position must be calculated from the joint angles and
displacement. This is done in the ’forward kinematics’ block in the control topology 5.9.

36

5.4 Real-Time Control System
The control system used to control the manipulator is a CompactRIO delivered by National Instruments.
It consists of a chassis which has an can store a controller and 4 input, output modules. The controller is a
real-time module NI cRIO-9022 with a built in FPGA controller. 1 analog input NI 9201, 1 analog output
NI 9263 and 2 digital input/output NI 9401 modules is installed in the chassis.
This make is a complete control system able to control the whole manipulator and also having an input for
the inertial measurement unit. The connection of the control system is described in figure 5.10

Real-time Controller Input / Output Modules

Operator Interface

Ethernet Link

Analog Input

Pressure Sensor Potentiometer

Analog Output

Digital I/O

Encoder Limit Switch

Serial Peripheral Interface SPI

Servo Valve

Figure 5.10: Complete Control System

The design of the control system was done using LabView. It’s also delivered by National Instruments, and
is used to create a graphical interface and control for the cRIO and FPGA (appendix B.1 and B.2). The
human machine interface created to control the hydraulic manipulator is shown in appendix B.5 and B.4.

37

6. Modeling and Simulation

6.1 Dynamics - SimulationX
Hydro-Mechanical
SimulationX is a good software to model and simulate dynamical systems. It has a huge library of mechan-
ical, electrical hydraulics, etc. items and has the possibility of running 3D animations.
In this report, the hydro-dynamics of the manipulator arm is simulated.
The model is based on an old bachelor project involving the same manipulator [14]. The dimensions used in
this model are the same as in the old one, but a new control system is implemented using inverse kinematics
to make the tool point of the arm following a path.

3 solid elements are representing each bar of the manipulator. Attached to each solid element is a joint
attached. The hydraulic actuators are connected to each bar using a ’force interface point’. This lets the
actuators to be connected at the middle of a bar instead of at the ends.

Revolute Joint:θ1 Revolute Joint:θ2 Prismatic Joint:1

Hydraulic Actuator

Added Volume

Pressure source & Tank

Hydraulic Valve

Pressure source & Tank
Pressure source & Tank

Hydraulic Valve

Added Volume

Hydraulic ActuatorHydraulic Actuator

First Bar Second Bar

Third Bar

Tool Point of Second Bar

Figure 6.1: SimulationX - Hydro-Mechanical Mechanism

Each hydraulic actuator is connected to a proportional directional valve. The last actuator is for simplicity

38

connected directly to a pressure source. This is because the redundancy isn’t modeled in SimulationX, only
in Matlab/Simulink.
A pressure supply @ 70 bars is again connected to the P side of the actuator as well as a tank is connected
to the T side.
In figure 6.2 the complete manipulators is displayed as a 3D animation.

x

z

1. Bar

2. Bar

3.Bar

1. Actuator

2. Actuator

3. Actuator

Figure 6.2: SimulationX - 3D Animation

Control System

Valve Control Signal

Angle Setpoint

Figure 6.3: SimulationX - Control System

39

The proportional directional valve regulator has the same configuration described in figure 5.4. It used a set
point for the angles θ1 and θ2 which generate a velocity reference if there is an angle error.
The limitation block is used to limit the velocity reference in order to make angular velocity following the
reference. If this is not included, this reference would be too high for the manipulator to follow.

The inverse kinematics is included as decried in equations 3.18,3.19,3.20 and 3.21.

Simulation Results - SimulationX

In the simulation, the manipulator is controlled to move the tool point of the second bar in a sinusoid path
in the Z axis. In the X axis the tool point is held at stable point. As seen in the figure 6.4 the manipulator
tires to follow the Z set point of 1.1 ± 0.3meters at a frequency of 0.1 Hz while the X set point lies at a
constant 0.2 meters.
At the beginning of the plot the manipulator moves from it’s initial stating point towards the moving Z
path.

y - X
x[1] - Tip2bar

-
m

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20

s

y - Y
x[3] - Tip2bar

-
m

0.8

0.9

1

1.1

1.2

1.3

1.4

0 2 4 6 8 10 12 14 16 18 20

s

Set Point X

Set Point Z
Actual Z

Actual X

Figure 6.4: SimulationX Results - Tool Point Set Point vs. Actual Values [m]

The pressure in the piston side in the actuators is shown in the figure 6.5. The simulation is the same as in
6.4.
Since the pressure supply is directly connected to the rod side will lay at 70 bars. Only the simulation time
of 2-20 seconds is included display the stabile pressure.

40

Figure 6.5: SimulationX Results - Oil Pressure [bar]

Since there isn’t any heavy load at the tip of the manipulator the oil pressure won’t increase much before
the cylinders start moving. The biggest force to overcome will be the constant 70 bars pressure at the rod side.

The hydraulic oil flow is an important variable in moving the manipulator. The oil flow is plotted in
figure 6.6 and are showing the oil flow to and from the two chambers of each of the two controlled cylinders.

QA - diffCylinder1
QB - diffCylinder1

-6

-4

-2

0

2

4

6

8
l/min

0 2 4 6 8 10 12 14 16 18 20

s

QA - diffCylinder2
QB - diffCylinder2

-8

-6

-4

-2

0

2

4

6
l/min

0 2 4 6 8 10 12 14 16 18 20

s

Figure 6.6: SimulationX Results - Oil Flow [liter/min]

41

In order to move the tool point as simulated, the hydraulic power unit that delivers oil to the system must
be able to at least give 4+6=10 liter pr minute.

6.2 Kinematics - Matlab/Simulink

To verify the kinematics a model of the hydraulic manipulator is created in Matlab/Simulink. Here the
different controls are tested and plotted.

Tool Point Control

Redundancy

The condition based kinematics described in figure 5.8 is modeled and simulated. There are several con-
straints included while simulating. These constraints limits the angle of the joints and are the same as on
the physical manipulator A.6.
θ1min = 60o, θ1max = 120o, θ2min = −120o, θ2max = −60o,∆1min = 0.05meterand∆1max = 0.35meter

Figure 6.7: Redundant Control - Condition Based

Redundancy - Pseudo-Inverse Jabobian

The Pseudo-Inverse Jabobian solution is first tested without any constraints. This means that the two
rotational joints can move in 360o and the translative joint can move from ±∞. The simulation is done by
trying to move the tool point in a circle and is shown in figure 6.8. As the figure shows, the manipulator
reaches it’s set point without any problems.

42

Figure 6.8: Pseudo-Inverse Jabobian, no Constraints

When including the constraints, the pseudo inverse Jabobian hits some problems. It shown in figure 6.9

Figure 6.9: Pseudo-Inverse Jabobian, with Constraints

To get a better view of the circle the tool point is trying to follow, figure 6.10 shows a zoomed view of the
tool point. The end effector can reach its set points.

43

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

X

Y

Figure 6.10: Pseudo-Inverse Jabobian, with Constraints(Zoomed)

44

7. Experiments

Testing and experiments is a good way to test if both the regulator / control system and dynamic of the
system. The hydraulic manipulator is a complete working machine and only needs a hydraulic power unit,
shown in figure 7.1, to be able to operate.

Figure 7.1: Transportable Hydraulic Power Unit

The experiments done with the manipulator consists of various testing each manipulator as well as the com-
plete tool point control, both with and without redundancy.

45

7.1 Test Bench
The manipulator was mounted on the Stewart platform to give it a stable fundament. It is much energy in
the manipulator when it’s moving and is can cause fatal accidents if it should fall while moving.

Figure 7.2: Test Bench with the Manipulator on top of the Stewart Platform

7.2 Without Redundancy
Since the dynamic and kinematic is less complex when working without redundancy this part of the testing
in done before introducing the redundancy.
An experiment on the manipulator is to have the tool point move in a square. This is done by giving set
points on each of the squares four corners.

Set Point

Actual Position

Figure 7.3: Experiment Plot of the Set Point vs. the Actual Position in a square motion

46

In figure 7.3 the blue line represents the set point of the tool point while the green line represents the actual
position of the tool point.
The actual value follows the blue square, but it’s some error. This is could be a result of bad tuning of the
regulators controlling the hydraulic servo valves as the P and PI regulator gains.
In figure 7.4 the actual encoder values are recorded under the same experiment as in 7.3. The values are
imported in the simulation in Matlab/Simulink such as the movement of the manipulator can be shown.

Set Point
Actual Position

Figure 7.4: Experimental data showing movements of the Manipulator

7.3 With Redundancy
The testing of the manipulator with the last redundant joint is similar to the one without redundancy. In this
test the redundant problem was solved by using the pseudo inverse Jabobian. In figure 7.5 the manipulators
tool point had to follow a circular set point curve.

Set Point

Actual Position

Figure 7.5: Experiment Plot of the Set Point vs. the Actual Position in a circular motion

47

In figure 7.6 the angle are imported to the simulation, same as in 7.4.

Set Point
Actual Position

Figure 7.6: Experimental data showing movements of the Manipulator

I may look like the last joint doesn’t seem to move, but in figure 7.7 all of the actuators are moving. Even
though it looks like the third actuator hits its limits.

Figure 7.7: Encoder and Linear Potentiometer

48

Straight Line
The second part of the testing was done with the redundant configuration. The set point moves now in a
straight line. First in the Y direction, Up/Down. Than it moves in X direction Left/Right. In figure 7.8 the
angle are imported to the simulation, same as in 7.4.

Set Point
Actual Position

Figure 7.8: Experiment Plot of the Set Point vs. the Actual Position in a straight line motion

Set Point
Actual Position

Figure 7.9: Experimental data showing movements of the Manipulator

49

The next test is the X direction, figure 7.10.

Set Point

Actual Position

Figure 7.10: Experiment Plot of the Set Point vs. the Actual Position in a straight line motion

Set Point
Actual Position

Figure 7.11: Experimental data showing movements of the Manipulator

50

8. Conclusion

This report shows the design of the control system for a heave compensated manipulator. With the control
system the manipulator is able to follow a path with some errors. The manipulator was mounted on top of
the Stewart platform, but the manipulator was not tested together with the Stewart platform due to lack of
time.
The kinematics for both the Stewart platform and the hydraulic manipulator was successfully included in
both the simulation, and only for the manipulator, in a real experiment. The redundancy was solved in
different ways, but some problems were experienced when constrains were introduced when dealing with the
pseudo-inverse Jabobian matrix as shown in the simulation and the extermination.
A model based controller for the hydraulic manipulator was proposed, but not included in any simulation
or experiments.
In the simulation of the dynamics the desired set point for both position and velocity was reach with sat-
isfying results for the hydraulic manipulator, but when experimenting in real life it didn’t work that good.
Especially the 2. actuator experienced some problem in the middle of the experimental period, but suddenly
the problem disappeared. Perhaps errors with the controller unit for the servo valves were present.
Even though much time was used to fine tune the P and PI gains for the regulator, more works could be
done in this area to improve the machine further.
The estimation for the roll and pitch angle, using the Inertial Measurement Unit was also a success. The
sensor fusion using the 1. order complementary filter worked great. It gave a good result and even when
doing the drop test it quickly corrected the error from the fall.
The wave measurement simulation gave good result when introducing the Spring-Damper system. Instead
of having the position drifting away, it follow the correct reference with some error. Although the simulation
gave a better result when introducing the Spring-Damper system, this way of measurement should not be
used as the only one. There were too much error.

8.1 Further Work
Further work on this project includes research due to the model based controller. Since this was not applied
to the project, the regulation of the position and velocities for the manipulator could be greatly improved
by including this in the control system. The pressure sensors installed on the machine could be used for this
purpose.
Due to irregularities in the unit that delivers current for the servo valves, the performance of the servo valve
could be increased by introducing a new servo controller, like an industrial controller.
More research concerning solutions for the redundant problem should also be done in further work, as this
is a very interesting field for robot kinematics and may offers benefits for heave compensating equipment.
Real wave data and data of the position of vessels operating in the North Sea may create a wave specter that
can be used to generate realistic waves using the Stewart platform. This wave specter will give an accurate
impression of what kind of environment the North Sea has to offer.

51

Bibliography

[1] Yang Wenlin ; Wei Sufen ; Zhang Zhuying ; Zhang Aiqun. Numerical simulation and testing analysis
of adaptive heave motion measurements. 2009.

[2] Ampelmann. Web page, http://www.ampelmann.nl/.

[3] Michael Rygaard Hansen. Torben Ole Andersen. Hydraulic Components and Systems. 2009.

[4] S. Bandyopadhyay. A novel characterisation of spatial manipulators based on their degrees-of-freedom.
2009.

[5] Samuel R. Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped
least squares methods. Technical report, Department of Mathematics University of California, San
Diego, 2009.

[6] J. ; Saltaren R. ; Ferre M. ; Aracil R. Campos, A. ; Quintero. An active helideck testbed for floating
structures based on a stewart-gough platform. 2008.

[7] S.E. Salcudean D. Li. Modeling, simulation and control of a hydraulic stewart platform.

[8] Michael ; Torres Javier ; Barton John ; O’Flynn Brendan ; O’Mathuna Cian Girardin, Yoan ; Walsh.
Accounting for sensor drift in miniature, wireless inertial measurement and positioning systems: An
extended kalman filtering approach. 2010.

[9] Geir Hovland. Mas 407, robot-dynamics. 2008. Lecture notes.

[10] http://img443.imageshack.us/img443/7374/6dof.gif.

[11] Anindito Santoso Indrawanto. Design and control of the stewart platform robot. 2009.

[12] Berstrand Haessig Oliver Sawodny Klaus Schneider Jörg Neypert, Tobias Mahl. A heave compensation
approach for offshore cranes. 2008.

[13] Magnus B. Kjelland. Mini project - heave compensation. 2010.

[14] Brettvik Majken Aziz Soma Lørum Amund, Larssen Christian. Hydraulisk aktuert maipulator med 2d
toolpoint kontroll. Technical report, Agder University, 2010.

[15] M. Vidyasagar Mark Spong, Seth Hutchinson. Robot Modeling and Control. John Wiley and Sons, Inc,
2006.

[16] T.A. ; Ravani B. Parsa, K. ; Lasky. Design and implementation of a mechatronic, all-accelerometer
inertial measurement unit. 2007.

[17] B. ; Silvestre C. ; Oliveira P. ; Batista P. Vasconcelos, J.F. ; Cardeira. Discrete-time complementary
filters for attitude and position estimation: Design, analysis and experimental validation. 2011.

52

List of Figures

1.1 Ampelmann’s Heave Compensated Walkway [2] . 7
1.2 Heave Compensation Environment [13] . 8

2.1 The Stewart Platform in the machine workshop at Agder University 9
2.2 The Six Degrees of Freedom[10] . 10
2.3 Connection between the Stewart Platform and the Foundation 10
2.4 Power and Signal Cable to each Servo Motor . 11
2.5 Emergency and Soft stop circuits . 11
2.6 Position of the base and platform joints . 12
2.7 Position of the base and platform joints from MATLAB, Green = Base, Red = Platform and

Blue = Origin(0,0) . 13
2.8 Use of Denavit-Hartenberg Parameters to solve the Kinematics:X->Y->Yaw->Z->Roll->Pitch-

>Px->Py . 14
2.9 Verification of the Kinematics for the Stewart Platform . 15

3.1 Hydraulic Manipulator Arm . 16
3.2 Rotation to translation . 17
3.3 Figure for describing the Cosine Sentence . 17
3.4 θ1 - Angular to Translative Velocity . 18
3.5 θ2 - Angular to Translative Velocity . 18
3.6 Hydraulic Circuit - No Load Flow . 19
3.7 Picture of Manipulator and its cylinders . 20
3.8 Cylinder Dynamic . 20
3.9 Hydraulic Circuit . 21
3.10 Moving the tool point based on the inverse Jabobian . 23

4.1 Spring-Damper Compensating System . 25
4.2 Ship Position, Integrated from Acceleration . 26
4.3 IMU-Measurement of angle using Accelerometer . 27
4.4 IMU-Measurement of angle using gyroscope . 27
4.5 IMU-Complementary Filter . 28
4.6 Test Bench for Inertial Measurement Unit . 29
4.7 IMU-Experiment, 90 degrees fall . 29
4.8 IMU-Experiment, Impact Hit from 90 degrees . 30

5.1 OPMAMP Circuit . 31
5.2 Output Current vs. Input Voltage . 32
5.3 Regulator with P and PI Gain . 33
5.4 Regulator with P, PI and Feed Forward Gain . 33
5.5 Regulator with Model Based Gain . 34
5.6 Kinematic Control - Inverse Kinematics . 35
5.7 Kinematic Control - Inverse Jabobian . 35
5.8 Kinematic Control - Condition Based . 36
5.9 Kinematic Control - Pseudo Inverse Jabobian . 36
5.10 Complete Control System . 37

53

6.1 SimulationX - Hydro-Mechanical Mechanism . 38
6.2 SimulationX - 3D Animation . 39
6.3 SimulationX - Control System . 39
6.4 SimulationX Results - Tool Point Set Point vs. Actual Values [m] 40
6.5 SimulationX Results - Oil Pressure [bar] . 41
6.6 SimulationX Results - Oil Flow [liter/min] . 41
6.7 Redundant Control - Condition Based . 42
6.8 Pseudo-Inverse Jabobian, no Constraints . 43
6.9 Pseudo-Inverse Jabobian, with Constraints . 43
6.10 Pseudo-Inverse Jabobian, with Constraints(Zoomed) . 44

7.1 Transportable Hydraulic Power Unit . 45
7.2 Test Bench with the Manipulator on top of the Stewart Platform 46
7.3 Experiment Plot of the Set Point vs. the Actual Position in a square motion 46
7.4 Experimental data showing movements of the Manipulator 47
7.5 Experiment Plot of the Set Point vs. the Actual Position in a circular motion 47
7.6 Experimental data showing movements of the Manipulator 48
7.7 Encoder and Linear Potentiometer . 48
7.8 Experiment Plot of the Set Point vs. the Actual Position in a straight line motion 49
7.9 Experimental data showing movements of the Manipulator . 49
7.10 Experiment Plot of the Set Point vs. the Actual Position in a straight line motion 50
7.11 Experimental data showing movements of the Manipulator . 50

A.1 Simulink System of Heave Compensation . 78
A.2 Animated Model of Heave Compensation System . 78

B.1 Main Program for Controlling the Hydraulic Manipulator . 79
B.2 FPGA program for Controlling the Hydraulic Manipulator . 79
B.3 FPGA program for Counting the Steps for the Encoders . 80
B.4 Control Interface for the Hydraulic Manipulator . 80
B.5 Regulator Interface for the Hydraulic Manipulator . 81
B.6 Pseudo-Inverse Jacobian in Formula Node . 81
B.7 Program for Estimating angles from the IMU . 81
B.8 1.Order Complementary Filter . 82
B.9 Degrees to Radians - Radians to Degrees . 82
B.10 Read measurements from ADIS16350 by use of SPI . 82
B.11 Setup Program for controlling the registers of the ADIS16350 83

54

A. MATLAB/Simulink

A.1 Position and plot of joints of Stewart Platform

55

close all;

clc;

X=0;

Y=0;

Z=1;

yaw=90*pi/180;

roll=0*pi/180;

pitch=0;

%syms X Y Z yaw roll pitch

Px1=X+(3140116564492417*cos(roll)*cos(yaw))/72057594037927936+(4486462071114449*cos

(pitch)*sin(yaw))/9007199254740992+(4486462071114449*cos(yaw)*sin(pitch)*sin(roll))

/9007199254740992;

Py1=Y-(4486462071114449*cos(pitch)*cos(yaw))/9007199254740992+(3140116564492417*cos

(roll)*sin(yaw))/72057594037927936+(4486462071114449*sin(pitch)*sin(roll)*sin(yaw))

/9007199254740992;

Pz1=Z+(3140116564492417*sin(roll))/72057594037927936-(4486462071114449*cos(roll)*sin

(pitch))/9007199254740992;

Px2=X+(8163294823962471*cos(roll)*cos(yaw))/18014398509481984-(7613213784381523*cos

(pitch)*sin(yaw))/36028797018963968-(7613213784381523*cos(yaw)*sin(pitch)*sin(roll))

/36028797018963968;

Py2=Y+(7613213784381523*cos(pitch)*cos(yaw))/36028797018963968+(8163294823962471*cos

(roll)*sin(yaw))/18014398509481984-(7613213784381523*sin(pitch)*sin(roll)*sin(yaw))

/36028797018963968;

Pz2=Z+(8163294823962471*sin(roll))/18014398509481984+(7613213784381523*cos(roll)*sin

(pitch))/36028797018963968;

Px3=X+(7378265682839367*cos(roll)*cos(yaw))/18014398509481984-(645789656254767*cos

(pitch)*sin(yaw))/2251799813685248-(645789656254767*cos(yaw)*sin(pitch)*sin(roll))

/2251799813685248;

Py3=Y+(645789656254767*cos(pitch)*cos(yaw))/2251799813685248+(7378265682839367*cos

(roll)*sin(yaw))/18014398509481984-(645789656254767*sin(pitch)*sin(roll)*sin(yaw))

/2251799813685248;

Pz3=Z+(7378265682839367*sin(roll))/18014398509481984+(645789656254767*cos(roll)*sin

(pitch))/2251799813685248;

Px4=X-(7378265682839367*cos(roll)*cos(yaw))/18014398509481984-(645789656254767*cos

(pitch)*sin(yaw))/2251799813685248-(645789656254767*cos(yaw)*sin(pitch)*sin(roll))

/2251799813685248;

Py4=Y+(645789656254767*cos(pitch)*cos(yaw))/2251799813685248-(7378265682839367*cos

(roll)*sin(yaw))/18014398509481984-(645789656254767*sin(pitch)*sin(roll)*sin(yaw))

/2251799813685248;

Pz4=Z-(7378265682839367*sin(roll))/18014398509481984+(645789656254767*cos(roll)*sin

(pitch))/2251799813685248;

Px5=X-(8163294823962471*cos(roll)*cos(yaw))/18014398509481984-(7613213784381523*cos

(pitch)*sin(yaw))/36028797018963968-(7613213784381523*cos(yaw)*sin(pitch)*sin(roll))

/36028797018963968;

Py5=Y+(7613213784381523*cos(pitch)*cos(yaw))/36028797018963968-(8163294823962471*cos

(roll)*sin(yaw))/18014398509481984-(7613213784381523*sin(pitch)*sin(roll)*sin(yaw))

/36028797018963968;

Pz5=Z-(8163294823962471*sin(roll))/18014398509481984+(7613213784381523*cos(roll)*sin

(pitch))/36028797018963968;

Px6=X-(3140116564492417*cos(roll)*cos(yaw))/72057594037927936+(4486462071114449*cos

(pitch)*sin(yaw))/9007199254740992+(4486462071114449*cos(yaw)*sin(pitch)*sin(roll))

/9007199254740992;

Py6=Y-(4486462071114449*cos(pitch)*cos(yaw))/9007199254740992-(3140116564492417*cos

(roll)*sin(yaw))/72057594037927936+(4486462071114449*sin(pitch)*sin(roll)*sin(yaw))

/9007199254740992;

Pz6=Z-(3140116564492417*sin(roll))/72057594037927936-(4486462071114449*cos(roll)*sin

(pitch))/9007199254740992;

Bz(1:6)=0;

%Calculated Length of each Leg

L1=sqrt((Px1-Bx(6))^2+(Py1-By(6))^2+(Pz1-Bz(6))^2)

L2=sqrt((Px2-Bx(1))^2+(Py2-By(1))^2+(Pz2-Bz(1))^2)

L3=sqrt((Px3-Bx(2))^2+(Py3-By(2))^2+(Pz3-Bz(2))^2)

L4=sqrt((Px4-Bx(3))^2+(Py4-By(3))^2+(Pz4-Bz(3))^2)

L5=sqrt((Px5-Bx(4))^2+(Py5-By(4))^2+(Pz5-Bz(4))^2)

L6=sqrt((Px6-Bx(5))^2+(Py6-By(5))^2+(Pz6-Bz(5))^2)

%To find the jacobian the syms must be used..

% j=simple(jacobian([L1 L2 L3 L4 L5 L6],[X Y Z yaw roll pitch]))

axis([-1 1 -1 1 0 2])

hold on

%plotting lines between joints of the base

line([Bx(1) Bx(2)],[By(1) By(2)],[Bz(1) Bz(2)]);

line([Bx(2) Bx(3)],[By(2) By(3)],[Bz(2) Bz(3)]);

line([Bx(3) Bx(4)],[By(3) By(4)],[Bz(3) Bz(4)]);

line([Bx(4) Bx(5)],[By(4) By(5)],[Bz(4) Bz(5)]);

line([Bx(5) Bx(6)],[By(5) By(6)],[Bz(5) Bz(6)]);

line([Bx(6) Bx(1)],[By(6) By(1)],[Bz(6) Bz(1)]);

%plotting lines between joints of the platform

line([Px1 Px2],[Py1 Py2],[Pz1 Pz2]);

line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);

line([Px3 Px4],[Py3 Py4],[Pz3 Pz4]);

line([Px4 Px5],[Py4 Py5],[Pz4 Pz5]);

line([Px5 Px6],[Py5 Py6],[Pz5 Pz6]);

line([Px6 Px1],[Py6 Py1],[Pz6 Pz1]);

%plotting Joints of platform

plot3(Px1,Py1,Pz1,'ro');

plot3(Px2,Py2,Pz2,'ro');

plot3(Px3,Py3,Pz3,'ro');

plot3(Px4,Py4,Pz4,'ro');

plot3(Px5,Py5,Pz5,'ro');

plot3(Px6,Py6,Pz6,'ro');

%plotting Joints of base

plot3(Bx(1),By(1),Bz(1),'ro');

plot3(Bx(2),By(2),Bz(2),'ro');

plot3(Bx(3),By(3),Bz(3),'ro');

plot3(Bx(4),By(4),Bz(4),'ro');

plot3(Bx(5),By(5),Bz(5),'ro');

plot3(Bx(6),By(6),Bz(6),'ro');

%plotting LEGS

line([Px1 Bx(6)],[Py1 By(6)],[Pz1 Bz(6)],'color','r');

line([Px2 Bx(1)],[Py2 By(1)],[Pz2 Bz(1)],'color','r');

line([Px3 Bx(2)],[Py3 By(2)],[Pz3 Bz(2)],'color','r');

line([Px4 Bx(3)],[Py4 By(3)],[Pz4 Bz(3)],'color','r');

line([Px5 Bx(4)],[Py5 By(4)],[Pz5 Bz(4)],'color','r');

line([Px6 Bx(5)],[Py6 By(5)],[Pz6 Bz(5)],'color','r');

A.2 Structure and plot of joints of Stewart Platform

58

clear all

close all

clc

%%MAIN SETUP: Two parameters.

%Parameters for the Platform

%Radius of the joints in meters/cm/mm ??

%Offset of the joint in degrees

radiusP=0.5;

offsetP=5;

%Parameters for the Base

%Radius of the joints in meters/cm/mm ??

%Offset of the joint in degrees

radiusB=1;

offsetB=5;

%%Building...

axis([-1.2 1.2 -1 1])

hold on

Px(1)=cosd(0+offsetP)*radiusP

Py(1)=sind(0+offsetP)*radiusP

Px(2)=cosd(120-offsetP)*radiusP

Py(2)=sind(120-offsetP)*radiusP

Px(3)=cosd(120+offsetP)*radiusP

Py(3)=sind(120+offsetP)*radiusP

Px(4)=cosd(240-offsetP)*radiusP

Py(4)=sind(240-offsetP)*radiusP

Px(5)=cosd(240+offsetP)*radiusP

Py(5)=sind(240+offsetP)*radiusP

Px(6)=cosd(0-offsetP)*radiusP

Py(6)=sind(0-offsetP)*radiusP

Bx(1)=cosd(60+offsetB)*radiusB

By(1)=sind(60+offsetB)*radiusB

Bx(2)=cosd(180-offsetB)*radiusB

By(2)=sind(180-offsetB)*radiusB

Bx(3)=cosd(180+offsetB)*radiusB

By(3)=sind(180+offsetB)*radiusB

Bx(4)=cosd(300-offsetB)*radiusB

By(4)=sind(300-offsetB)*radiusB

Bx(5)=cosd(300+offsetB)*radiusB

By(5)=sind(300+offsetB)*radiusB

Bx(6)=cosd(60-offsetB)*radiusB

By(6)=sind(60-offsetB)*radiusB

%%Plotting

%Platform

plot(Px(:),Py(:),'ro')

plot(0,0,'bo')

%Base

plot(Bx(:),By(:),'go')

plot(0,0,'bo')

%% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | X | -90 |

% | | Y | | +90 |

% | yaw | Z | | +-90 |

% | roll | | | pitch |

% | | -0.45 | -0.7794 | |

% |---------------------------------------|

syms X Y Z yaw roll pitch

%%Leg1

TransX0=[1,0,0,X;0,1,0,0;0,0,1,0;0,0,0,1];RotX0=[1,0,0,0;0,0,1,0;0,-1,0,0;0,0,0,1];

TransZ1=[1,0,0,0;0,1,0,0;0,0,1,Y;0,0,0,1];RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(yaw),-sin(yaw),0,0;sin(yaw),cos(yaw),0,0;0,0,1,0;0,0,0,1];

TransZ2=[1,0,0,0;0,1,0,0;0,0,1,Z;0,0,0,1];

RotX2=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ3=[cos(roll),-sin(roll),0,0;sin(roll),cos(roll),0,0;0,0,1,0;0,0,0,1];

RotX3=[1,0,0,0;0,cos(pitch),-sin(pitch),0;0,sin(pitch),cos(pitch),0;0,0,0,1];

TransZ4=[1,0,0,0;0,1,0,0;0,0,1,Px(1);0,0,0,1];TransX4=[1,0,0,Py(1);0,1,0,0;0,0,1,0;

0,0,0,1];

G=TransX0*RotX0*TransZ1*RotX1*RotZ2*TransZ2*RotX2*RotZ3*RotX3*TransZ4*TransX4;

Px1=simple(G(1,4))

Py1=simple(G(2,4))

Pz1=simple(G(3,4))

%% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | X | -90 |

% | | Y | | +90 |

% | yaw | Z | | +-90 |

% | roll | | | pitch |

% | | Px | Py | |

% |---------------------------------------|

%%Leg2

TransX0=[1,0,0,X;0,1,0,0;0,0,1,0;0,0,0,1];RotX0=[1,0,0,0;0,0,1,0;0,-1,0,0;0,0,0,1];

TransZ1=[1,0,0,0;0,1,0,0;0,0,1,Y;0,0,0,1];RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(yaw),-sin(yaw),0,0;sin(yaw),cos(yaw),0,0;0,0,1,0;0,0,0,1];

TransZ2=[1,0,0,0;0,1,0,0;0,0,1,Z;0,0,0,1];

RotX2=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ3=[cos(roll),-sin(roll),0,0;sin(roll),cos(roll),0,0;0,0,1,0;0,0,0,1];

RotX3=[1,0,0,0;0,cos(pitch),-sin(pitch),0;0,sin(pitch),cos(pitch),0;0,0,0,1];

TransZ4=[1,0,0,0;0,1,0,0;0,0,1,Px(2);0,0,0,1];TransX4=[1,0,0,Py(2);0,1,0,0;0,0,1,0;

0,0,0,1];

G=TransX0*RotX0*TransZ1*RotX1*RotZ2*TransZ2*RotX2*RotZ3*RotX3*TransZ4*TransX4;

Px2=simple(G(1,4))

Py2=simple(G(2,4))

Pz2=simple(G(3,4))

%% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | X | -90 |

% | | Y | | +90 |

% | yaw | Z | | +-90 |

% | roll | | | pitch |

% | | Px | Py | |

% |---------------------------------------|

%%Leg3

TransX0=[1,0,0,X;0,1,0,0;0,0,1,0;0,0,0,1];RotX0=[1,0,0,0;0,0,1,0;0,-1,0,0;0,0,0,1];

TransZ1=[1,0,0,0;0,1,0,0;0,0,1,Y;0,0,0,1];RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(yaw),-sin(yaw),0,0;sin(yaw),cos(yaw),0,0;0,0,1,0;0,0,0,1];

TransZ2=[1,0,0,0;0,1,0,0;0,0,1,Z;0,0,0,1];

RotX2=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ3=[cos(roll),-sin(roll),0,0;sin(roll),cos(roll),0,0;0,0,1,0;0,0,0,1];

RotX3=[1,0,0,0;0,cos(pitch),-sin(pitch),0;0,sin(pitch),cos(pitch),0;0,0,0,1];

TransZ4=[1,0,0,0;0,1,0,0;0,0,1,Px(3);0,0,0,1];TransX4=[1,0,0,Py(3);0,1,0,0;0,0,1,0;

0,0,0,1];

G=TransX0*RotX0*TransZ1*RotX1*RotZ2*TransZ2*RotX2*RotZ3*RotX3*TransZ4*TransX4;

Px3=simple(G(1,4))

Py3=simple(G(2,4))

Pz3=simple(G(3,4))

%% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | X | -90 |

% | | Y | | +90 |

% | yaw | Z | | +-90 |

% | roll | | | pitch |

% | | Px | Py | |

% |---------------------------------------|

%%Leg4

TransX0=[1,0,0,X;0,1,0,0;0,0,1,0;0,0,0,1];RotX0=[1,0,0,0;0,0,1,0;0,-1,0,0;0,0,0,1];

TransZ1=[1,0,0,0;0,1,0,0;0,0,1,Y;0,0,0,1];RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(yaw),-sin(yaw),0,0;sin(yaw),cos(yaw),0,0;0,0,1,0;0,0,0,1];

TransZ2=[1,0,0,0;0,1,0,0;0,0,1,Z;0,0,0,1];

RotX2=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ3=[cos(roll),-sin(roll),0,0;sin(roll),cos(roll),0,0;0,0,1,0;0,0,0,1];

RotX3=[1,0,0,0;0,cos(pitch),-sin(pitch),0;0,sin(pitch),cos(pitch),0;0,0,0,1];

TransZ4=[1,0,0,0;0,1,0,0;0,0,1,Px(4);0,0,0,1];TransX4=[1,0,0,Py(4);0,1,0,0;0,0,1,0;

0,0,0,1];

G=TransX0*RotX0*TransZ1*RotX1*RotZ2*TransZ2*RotX2*RotZ3*RotX3*TransZ4*TransX4;

Px4=simple(G(1,4))

Py4=simple(G(2,4))

Pz4=simple(G(3,4))

%% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | X | -90 |

% | | Y | | +90 |

% | yaw | Z | | +-90 |

% | roll | | | pitch |

% | | Px | Py | |

% |---------------------------------------|

%%Leg5

TransX0=[1,0,0,X;0,1,0,0;0,0,1,0;0,0,0,1];RotX0=[1,0,0,0;0,0,1,0;0,-1,0,0;0,0,0,1];

TransZ1=[1,0,0,0;0,1,0,0;0,0,1,Y;0,0,0,1];RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(yaw),-sin(yaw),0,0;sin(yaw),cos(yaw),0,0;0,0,1,0;0,0,0,1];

TransZ2=[1,0,0,0;0,1,0,0;0,0,1,Z;0,0,0,1];

RotX2=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ3=[cos(roll),-sin(roll),0,0;sin(roll),cos(roll),0,0;0,0,1,0;0,0,0,1];

RotX3=[1,0,0,0;0,cos(pitch),-sin(pitch),0;0,sin(pitch),cos(pitch),0;0,0,0,1];

TransZ4=[1,0,0,0;0,1,0,0;0,0,1,Px(5);0,0,0,1];TransX4=[1,0,0,Py(5);0,1,0,0;0,0,1,0;

0,0,0,1];

G=TransX0*RotX0*TransZ1*RotX1*RotZ2*TransZ2*RotX2*RotZ3*RotX3*TransZ4*TransX4;

Px5=simple(G(1,4))

Py5=simple(G(2,4))

Pz5=simple(G(3,4))

%% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | X | -90 |

% | | Y | | +90 |

% | yaw | Z | | +-90 |

% | roll | | | pitch |

% | | Px | Py | |

% |---------------------------------------|

%%Leg6

TransX0=[1,0,0,X;0,1,0,0;0,0,1,0;0,0,0,1];RotX0=[1,0,0,0;0,0,1,0;0,-1,0,0;0,0,0,1];

TransZ1=[1,0,0,0;0,1,0,0;0,0,1,Y;0,0,0,1];RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(yaw),-sin(yaw),0,0;sin(yaw),cos(yaw),0,0;0,0,1,0;0,0,0,1];

TransZ2=[1,0,0,0;0,1,0,0;0,0,1,Z;0,0,0,1];

RotX2=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ3=[cos(roll),-sin(roll),0,0;sin(roll),cos(roll),0,0;0,0,1,0;0,0,0,1];

RotX3=[1,0,0,0;0,cos(pitch),-sin(pitch),0;0,sin(pitch),cos(pitch),0;0,0,0,1];

TransZ4=[1,0,0,0;0,1,0,0;0,0,1,Px(6);0,0,0,1];TransX4=[1,0,0,Py(6);0,1,0,0;0,0,1,0;

0,0,0,1];

G=TransX0*RotX0*TransZ1*RotX1*RotZ2*TransZ2*RotX2*RotZ3*RotX3*TransZ4*TransX4;

Px6=simple(G(1,4))

Py6=simple(G(2,4))

Pz6=simple(G(3,4))

A.3 Animation of joints of Stewart Platform

63

close all

clear all

clc

fig=figure;

aviobj = avifile('test.avi');

aviobj.fps = 20;

X=0;Y=0;Z=1;yaw=pi/4;roll=0;pitch=0;

Bx1=0.1;By1=0;Bz1=0;Bx2=-0.1;By2=-0.1;Bz2=0;Bx3=-0.1;By3=0.1;Bz3=0;

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 yaw=yaw-0.1;

end

for n=1:20

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 yaw=yaw+0.1;

end

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 yaw=yaw-0.1;

end

yaw=pi/4;

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 pitch=pitch-0.1;

end

for n=1:20

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 pitch=pitch+0.1;

end

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 pitch=pitch-0.1;

end

pitch=0;

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 roll=roll-0.1;

end

for n=1:20

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 roll=roll+0.1;

end

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 roll=roll-0.1;

end

roll=0;

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 X=X-0.01;

end

for n=1:20

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 X=X+0.01;

end

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 X=X-0.01;

end

X=0;

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 Y=Y-0.01;

end

for n=1:20

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 Y=Y+0.01;

end

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 Y=Y-0.01;

end

Y=0;

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 Z=Z-0.05;

end

for n=1:20

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 Z=Z+0.05;

end

for n=1:10

 Px1 =X - (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)

*sin(roll))/20;Py1 =Y + (cos(pitch)*cos(yaw))/20 - (cos(roll)*sin(yaw))/20 - (sin

(pitch)*sin(roll)*sin(yaw))/20;Pz1 =Z - sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px2 =X

+ (cos(roll)*cos(yaw))/20 - (cos(pitch)*sin(yaw))/20 - (cos(yaw)*sin(pitch)*sin(roll))

/20;Py2 =Y + (cos(pitch)*cos(yaw))/20 + (cos(roll)*sin(yaw))/20 - (sin(pitch)*sin(roll)

*sin(yaw))/20;Pz2 =Z + sin(roll)/20 + (cos(roll)*sin(pitch))/20;Px3 =X + (cos(pitch)

*sin(yaw))/20 + (cos(yaw)*sin(pitch)*sin(roll))/20;Py3 =Y - (cos(pitch)*cos(yaw))/20 +

(sin(pitch)*sin(roll)*sin(yaw))/20;Pz3 =Z - (cos(roll)*sin(pitch))/20;axis([-0.2 0.2

-0.2 0.2 0 1.2]);plot(0.1,0.1);hold on;line([Bx1 Bx2],[By1 By2],[Bz1 Bz2]);line([Bx2

Bx3],[By2 By3],[Bz2 Bz3]);line([Bx1 Bx3],[By1 By3],[Bz1 Bz3]);line([Px1 Px2],[Py1 Py2],

[Pz1 Pz2]);line([Px2 Px3],[Py2 Py3],[Pz2 Pz3]);line([Px1 Px3],[Py1 Py3],[Pz1 Pz3]);line

([Px1 Bx3],[Py1 By3],[Pz1 Bz3],'color','r');line([Px1 Bx2],[Py1 By2],[Pz1

Bz2],'color','r');plot3(Px1,Py1,Pz1,'ro');line([Px3 Bx2],[Py3 By2],[Pz3

Bz2],'color','b');line([Px3 Bx1],[Py3 By1],[Pz3 Bz1],'color','b');plot3(Px3,Py3,

Pz3,'bo');line([Px2 Bx1],[Py2 By1],[Pz2 Bz1],'color','g');line([Px2 Bx3],[Py2 By3],[Pz2

Bz3],'color','g');plot3(Px2,Py2,Pz2,'go');hold off;axis([-0.2 0.2 -0.2 0.2 0 1.2]);

frame = getframe(fig);aviobj = addframe(aviobj,frame);

 Z=Z-0.05;

end

Z=0;

aviobj = close(aviobj)

A.4 Kinematics, Jacobian Non Redundant Manipulator

71

% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | | -90 |

% | t1 | | L1 | |

% | t2 | | L2 | |

% |---------------------------------------|

clear all

% Calcutating G matrix for point P

clc

close all

syms t1 t2 L1 L2 Xdot Ydot

RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(t1),-sin(t1),0,0;sin(t1),cos(t1),0,0;0,0,1,0;0,0,0,1];

TransX2=[1,0,0,L1;0,1,0,0;0,0,1,0;0,0,0,1];

RotZ3=[cos(t2),-sin(t2),0,0;sin(t2),cos(t2),0,0;0,0,1,0;0,0,0,1];

TransX3=[1,0,0,L2;0,1,0,0;0,0,1,0;0,0,0,1];

P1=[0,0]

G1=(RotX1)*(RotZ2*TransX2);

P2=[G1(1,4),G1(3,4)]

G2=(RotX1)*(RotZ2*TransX2)*(RotZ3*TransX3);

P3=[G2(1,4),G2(3,4)]

G3=(RotX1)*(RotZ2*TransX2)*(RotZ3*TransX3);

P4=[G3(1,4),G3(3,4)]

%Forward Kinematics

 X=P4(1);

 Y=P4(2);

 %% JACOBIAN

 J=jacobian([X Y],[t1 t2])

 Jinv=inv(J)

 %Including Xdot and Ydot

 Qd=Jinv*[Xdot;Ydot]

A.5 Kinematics, Jacobian, Pseudo Inverse Redundant Manipula-
tor

73

% DH TABLE

% |---------------------------------------|

% | RotZ | TransZ | TransX | RotX |

% |---------------------------------------|

% | | | | -90 |

% | t1 | | L1 | |

% | t2 | | L2 | |

% | | | d1 | |

% |---------------------------------------|

clear all

% Calcutating G matrix for point P

clc

close all

syms t1 t2 L1 L2 d1 Xdot Ydot

RotX1=[1,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,1];

RotZ2=[cos(t1),-sin(t1),0,0;sin(t1),cos(t1),0,0;0,0,1,0;0,0,0,1];

TransX2=[1,0,0,L1;0,1,0,0;0,0,1,0;0,0,0,1];

RotZ3=[cos(t2),-sin(t2),0,0;sin(t2),cos(t2),0,0;0,0,1,0;0,0,0,1];

TransX3=[1,0,0,L2;0,1,0,0;0,0,1,0;0,0,0,1];

TransX4=[1,0,0,d1;0,1,0,0;0,0,1,0;0,0,0,1];

P1=[0,0]

G1=(RotX1)*(RotZ2*TransX2);

P2=[G1(1,4),G1(3,4)]

G2=(RotX1)*(RotZ2*TransX2)*(RotZ3*TransX3);

P3=[G2(1,4),G2(3,4)]

G3=(RotX1)*(RotZ2*TransX2)*(RotZ3*TransX3)*(TransX4)

P4=[G3(1,4),G3(3,4)]

%% Kinematics

 X=P4(1);

 Y=P4(2);

 %% Jacobian

 J=jacobian([X Y],[t1 t2 d1])

 %psudoinverse J+

 Jp=transpose(J)*inv(J*transpose(J));%

 Qd=Jp*[Xdot;Ydot]

 lamda=1.5;

Jdls=transpose(J)*inv(J*transpose(J)+(lamda^2)*eye(2));%

 Qdls=Jdls*[Xdot;Ydot]

 lamda=0.5;

Jdlsnull=transpose(J)*inv(J*transpose(J)+(lamda^2)*eye(2));%

 Qdlsnull=Jdlsnull*[Xdot;Ydot]

A.6 Redundant Control based on Condition Algorithm Manipu-
lator

75

close all

clear all

clc

L1=1;

L2=1;

J=0.4;

t1=pi/4;

t1min=60*pi/180;

t1max=120*pi/180;

t2min=-120*pi/180;

t2max=-60*pi/180;

t2=-pi/4;

P1 =[0,0];

P2 =[L1*cos(t1), L1*sin(t1)];

P3 =[L1*cos(t1) + L2*cos(t1)*cos(t2) - L2*sin(t1)*sin(t2), L1*sin(t1) + L2*cos(t1)*sin

(t2) + L2*cos(t2)*sin(t1)];

P4 =[J*(cos(t1)*cos(t2) - sin(t1)*sin(t2)) + L1*cos(t1) + L2*cos(t1)*cos(t2) - L2*sin

(t1)*sin(t2), J*(cos(t1)*sin(t2) + cos(t2)*sin(t1)) + L1*sin(t1) + L2*cos(t1)*sin(t2) +

L2*cos(t2)*sin(t1)];

axis([-0.5 1.5 0 2]);

% hold on;

% plot(P1(1),P1(2),'ro');

% plot(P2(1),P2(2),'ro');

% plot(P3(1),P3(2),'ro');

% plot(P4(1),P4(2),'ro');

% line([P1(1) P2(1)],[P1(2) P2(2)]);

% line([P2(1) P3(1)],[P2(2) P3(2)]);

% line([P3(1) P4(1)],[P3(2) P4(2)]);

% X=f1(t1,t2,J)

% Y=f2(t1,t2,J)

% f3(t1,t2,J)=0

grid on

Y=1.8;

X=1;

for n=1:15

 Y=Y-0.1;

%Y=Y-0.1;

 d=sqrt(X^2+Y^2)

 J=d-1.5

 if J>0.35

 J=0.35;

 end

 if J<0.1

 J=0.1;

 end

t2=-acos((X^2+Y^2-L1^2-(L2+J)^2)/(2*L1*(L2+J)));

if (t2<t2min)

 t2=t2min;

elseif (t2>t2max)

 t2=t2max;

end

A=(L1+(L2+J)*cos(t2));

B=(L2+J)*sin(t2);

s1=(Y-(B/A)*X)/((A+(B^2)/A));

c1=(Y+(A/B)*X)/((B+(A^2)/B));

t1=atan2(s1,c1);

%t1=atan(s1/c1);

if (t1<t1min)

 t1=t1min;

 d1=sqrt((X-1)^2+(Y)^2)

 J=d1-L2;

 t2=-acos((X^2+Y^2-L1^2-(L2+J)^2)/(2*L1*(L2+J)));

elseif (t1>t1max)

 t1=t1max;

 d1=sqrt(X^2+(Y-1)^2)

 J=d1-L2;

 t2=-acos((X^2+Y^2-L1^2-(L2+J)^2)/(2*L1*(L2+J)));

end

hold on

line([0 cos(t1)*L1],[0 sin(t1)*L1])

line([cos(t1)*L1 (L2)*cos(t1 + t2) + L1*cos(t1)],[sin(t1)*L1 ((L2)*sin(t1 + t2)+L1*sin

(t1))])

line([(L2)*cos(t1 + t2) + L1*cos(t1) (L2+J)*cos(t1 + t2) + L1*cos(t1)],[((L2)*sin(t1 +

t2)+L1*sin(t1)) ((L2+J)*sin(t1 + t2)+L1*sin(t1))])

plot(X,Y,'go')

plot(cos(t1)*L1,sin(t1)*L1,'ro')

plot((L2)*cos(t1 + t2) + L1*cos(t1),((L2)*sin(t1 + t2)+L1*sin(t1)),'bo')

hold on

end

grid off

xlabel('X')

ylabel('Y')

A.7 Simulink System of Heave Compensation

VR Sink

theta1.rotation

psi1.rotation

L1.translation

theta2.rotation

psi2.rotation

L2.translation

theta3.rotation

psi3.rotation

L3.translation

theta4.rotation

psi4.rotation

L4.translation

theta5.rotation

psi5.rotation

L5.translation

theta6.rotation

psi6.rotation

L6.translation

Platxyz.translation

yaw.rotation

pitch.rotation

roll.rotation

t1.rotation

t2.rotation

tsylinder2.rotation

LSYL2-200.translation

tsylinder1.rotation

LSYL1-400.translation

VR Signal Expander7

VR

VR Signal Expander4

VR

VR Signal Expander3

VR

VR Signal Expander2

VR

VR Signal Expander1

VR

Subsystem9

In1 Out1

Subsystem8

In1 Out1

Subsystem7

In1 Out1

Subsystem6

In1 Out1

Subsystem5

In1 Out1

Subsystem4

In1 Out1

Subsystem3

In1 Out1

Subsystem21

In1Out1

Subsystem20

In1

In2

Out1

Out2

Subsystem2

In1 Out1

Subsystem19

In1Out1

Subsystem18

In1Out1

Subsystem17

In1Out1

Subsystem16

In1Out1

Subsystem15

In1Out1

Subsystem14

In1Out1

Subsystem13

In1Out1

Subsystem12

In1Out1

Subsystem11

In1 Out1

Subsystem10

In1 Out1

Subsystem1

In1 Out1

Subsystem

In1 Out1

Sine Wave5

Sine Wave4

Sine Wave3

Sine Wave2

Sine Wave1

Sine Wave

Inverse Kinematics for the Manipulator

X

Y

A1

L1

A2

L2

T1

T2

fcn

Gain2

-1

Gain1

-1

Gain

-1

Embedded

MATLAB Function

Z

Y

X

roll

pitch

yaw

theta1

phi1

L1

theta2

phi2

L2

theta3

phi3

L3

theta4

phi4

L4

theta5

phi5

L5

theta6

phi6

L6

fcn

Constant2

1.5

Constant1

1.5

Figure A.1: Simulink System of Heave Compensation

Figure A.2: Animated Model of Heave Compensation System

78

B. LABVIEW

B.1 Hydraulic Manipulator - LabView Diagrams

Figure B.1: Main Program for Controlling the Hydraulic Manipulator

Figure B.2: FPGA program for Controlling the Hydraulic Manipulator

79

Figure B.3: FPGA program for Counting the Steps for the Encoders

Figure B.4: Control Interface for the Hydraulic Manipulator

80

Figure B.5: Regulator Interface for the Hydraulic Manipulator

Figure B.6: Pseudo-Inverse Jacobian in Formula Node

B.2 Inertial Measurement Unit - LabView Diagrams

Figure B.7: Program for Estimating angles from the IMU

81

Figure B.8: 1.Order Complementary Filter

Figure B.9: Degrees to Radians - Radians to Degrees

Figure B.10: Read measurements from ADIS16350 by use of SPI

82

Figure B.11: Setup Program for controlling the registers of the ADIS16350

83

C. Hydraulic Components -
Manipulator

1. Hydraulic Actuator

• Type: LJM - NH30-SD-40/20 X 300-S-(TV)

• Max Pressure: 250 bar

• Piston Diameter: 40 mm

• Rod Diameter: 20 mm

• Stroke: 300 mm

2. Hydraulic Actuator

• Type: Faroil - FA 40/20-100-125/125

• Max Pressure: 250 bar

• Piston Diameter: 40 mm

• Rod Diameter: 20 mm

• Stroke: 100 mm

3. Hydraulic Actuator

• Type: LJM - NH30-S-SD- 40/ 20x 200-S

• Max Pressure: 250 bar

• Piston Diameter: 40 mm

• Rod Diameter: 20 mm

• Stroke: 200 mm

3. Hydraulic Actuator

• Type: LJM - NH30-S-SD- 40/ 20x 200-S

• Max Pressure: 250 bar

• Piston Diameter: 40 mm

• Rod Diameter: 20 mm

• Stroke: 200 mm

84

D. Datasheets

D.1 Novo Technik - Position Transducer

85

Position Transducers
up to 750 mm

LWG Series

The LWG series was designed
for a wide range of demanding
applications in the mechanical,
vehicle, automation and robotics
industries. Outstanding linearity
and accurate measurement are
achieved with a resistance ele-
ment made of conductive plastic
melded to a glass-fiber reinforced
substrate.

The wiper system is mounted on
the actuating rod and coupled
free-of-backlash for a long life and
trouble-free operation.

Special features
• twin-bearing actuating rod
• mountable over backlash-free
pivot heads with a large angle of
free movement (up to ±12.5°)
• outstanding linearity
• resolution better than 0.01 mm
• life (depending on application)
up to 50 million movements
• protection class IP 65
• M12 Connector

Description

Housing aluminum, anodized

Fixings see drawing

Actuator stainless steel, rotatable

Bearings sleeve bearing

Resistance element conductive plastic

Wiper assembly precious metal multi-finger wiper, elastomer damped

Electrical connections 4-pin M12 connector

Environmental Data

Temperature range -30...+100 °C

Vibration 5...2000 Hz
Amax = 0.75 mm
amax = 20 g

Shock 50 g
11 ms

Life 50 x 106 (typical) movem.

Operating speed 5 m/s max.

Protection class IP 65 (DIN 400 50 / IEC 529)

Order designations

Type Art. no.

LWG 75 026103

LWG 100 026104

LWG 150 026106

LWG 225 026109

LWG 300 026112

LWG 360 026114

LWG 450 026118

LWG 500 026120

LWG 600 026124

LWG 750 026130

Other lengths on request

Recommended accessories
Process-controlled indicators
MAP...with display,
Signal conditioner MUP.../MUK…
for standardized output signals

Type designations LWG LWG LWG LWG LWG LWG LWG LWG LWG LWG
75 100 150 225 300 360 450 500 600 750

Electrical Data

Defined electrical range 75 100 150 225 300 360 450 500 600 750 mm

Electrical stroke 76 102 152 228 304 366 457 508 610 762 mm

Nominal resistance 3 3 5 5 5 5 5 5 5 10 kΩ

Resistance tolerance 20 ±%

Independent linearity 0.1 0.1 0.08 0.07 0.06 0.05 0.05 0.05 0.05 0.04 %

Repeatability < 0.01 mm

Recommended operating wiper current ≤ 1 µA

Max. wiper current in case of malfunction 10 mA

Max. permissible applied voltage 42 V

Effective temperature coefficient of the
output-to-applied voltage ratio typical 5 ppm/K

Insulation resistance
(500 VDC, 1 bar, 2 s) ≥ 10 MΩ

Dielectric strength
(50 Hz, 2 s, 1 bar, 500 VAC) ≤ 100 µA

Mechanical Data

Body length (dimension A) 201 227 277 354 430 505 619 684 810 994 ±2 mm

Mechanical stroke (dimension B) 79 105 155 231 307 368 460 510 612 764 ±2 mm

Minimum distance between pivot heads
(dimension C) 247 273 323 400 476 551 665 730 856 1040 mm

Operating force
horizontal 3.6 3.7 4.0 4.5 4.9 5.2 5.7 6 6.6 7.5 N
vertical 7.4 7.6 8.0 8.7 9.3 9.8 10.6 11 11.9 13.2 N

Important
All values given for this series –
including linearity, lifetime, micro-
linearity, resistance to external dis-
turbances and temperature coeffi-
cient in voltage dividing mode –
are quoted for the device operat-
ing with the wiper voltage driving
an operational amplifier working
as a voltage follower where virtu-
ally no load is applied to the wiper
(le ≤ 1 µA).

Novotechnik U.S., Inc.
155 Northboro Road
Southborough, MA 01772

Phone: 508-485-2244
Fax: 508-485-2430
Email: info@novotechnik.com

Subject to changes
© February 2007
Novotechnik U.S., Inc. All rights reserved.

	Titlepage
	Preface
	Abstract
	Table of contents
	Introduction
	Stewart Platform
	Mechanical Installation
	Electrical Installation
	Inverse Kinematics
	Verification of the Kinematics
	Control System

	Hydraulic Manipulator
	Background
	Mechanical
	Hydraulics
	Kinematics
	Redundancy

	Inertial Measurement Unit
	Background
	Movements of the Stewart Platform
	1. Order Complementary Filter
	Testing the IMU

	Electrical and Control System
	Electrical
	Control System
	Kinematic Control
	Real-Time Control System

	Modeling and Simulation
	Dynamics - SimulationX
	Kinematics - Matlab/Simulink

	Experiments
	Test Bench
	Without Redundancy
	With Redundancy

	Conclusion
	Further Work

	Bibliography
	List of Figures
	Appendix
	MATLAB/Simulink
	Position and plot of joints of Stewart Platform
	Structure and plot of joints of Stewart Platform
	ZS30

	Animation of joints of Stewart Platform
	Kinematics, Jacobian Non Redundant Manipulator
	Kinematics, Jacobian, Pseudo Inverse Redundant Manipulator
	Redundant Control based on Condition Algorithm Manipulator
	Simulink System of Heave Compensation

	LABVIEW
	Hydraulic Manipulator - LabView Diagrams
	Inertial Measurement Unit - LabView Diagrams

	Hydraulic Components - Manipulator
	Datasheets
	Novo Technik - Position Transducer

