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Abstract

The purpose of this thesis was to develop a control system for the Gantry-Tau Parallel Kinematic
Machine, based in the motion behaviour of the robot, verification stages of the model and testing
with an actual prototype.

The Gantry-Tau is a parallel robot where its structure offers additional characteristics not found
in other models like high dexterity, large workspace and high reconfiguration. Still, the robot is
undergoing through design at different levels.

The model-based control system was made in Matlab/Simulink and includes the kinematics of the
Gantry-Tau. Also, the system was verified using SimulationX for allowing a quick progress through
the project. The tests were made using an extended version of the mentioned Matlab/Simulink
program loaded into the Gantry-Tau prototype. This extension includes standard programming
levels in robotics like path planning and a controller for the system.

The results in this thesis permit the development of other characteristics of the Gantry-Tau, and
to be used as an example for the modelling and study of other parallel kinematic machines.
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Introduction

High performance robots represent a great challenge in engineering, especially when the design
must meet specific work parameters. The field of mechatronics is evolving to find better robotic
solutions and overcome the difficulties the industry poses every day. Examples are the development
of different architectures for robots, in order to search for appropriate solutions depending on the
application.

Serial robots is the preferred architecture to be used in the industry because of their large workspace
and easy programming, but once the application characteristics demand bigger sizes of these ma-
chines, then the drawbacks start to appear and the development costs increases considerably. For
serial robots, the main drawbacks are elasticity/flexibility issues, low speed, big actuators and mo-
tors, and small payload/robot weight ratio. At this stage the parallel robots take advantage of the
above mentioned, explaining why these days the industry is very interested on new developments
of parallel machines.

One of the machines that apply into the area of parallel robots is the Gantry-Tau Parallel Kine-
matic Machine. Developed by ABB, aims for a low cost robot able to develop high speed, very
high stiffness and high payload/robot weight ratio. Though, the main drawback is related to the
complexity of its structure, the task results of this project represent how the development of a new
Model-Based control increases the performance when the physical system has been considered.

Using nowadays procedures for robots kinematics modelling, the set-up of the system equations
will contribute to obtain the system behaviour. Then, using simulation programs like SimulationX
and Matlab/Simulink, we apply advanced control techniques at an early stage. This allows a better
comprehension of how the system reacts for different conditions, without the necessity of testing the
preliminary structures on the real system. As the University of Agder (UiA) has its own prototype
of the Gantry-Tau machine, the objectives of this project are expanded up to the implementation
stage.

However, the main tasks are focused for a specific robot, the UiA Gantry-Tau, meaning that the
work presented here also contributes to ease the understanding and design of advanced controller
structures when applied in robotics, especially with complex parallel robots.

In this thesis, it is presented the basics for the modelling of the Gantry-Tau, mainly revisiting differ-
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ent parts already developed in past works, with the difference of the implementation of verification
and optimization by means of software.

Chapter 1 gives a brief literature review of parallel robots and the Gantry-Tau.

Chapter 2 introduces to the kinematics of the Gantry-Tau, explaining in a simple way the motion
behaviour of such complex system. Additionally, some simulations are demonstrated along the
sections of this chapter, with the objective of the verification of the model.

Chapter 3 explains the modelling of a flexible path planner for the robot, which is important to
make control investigations and verify the accuracy of the control model.

The model-based control system is explained in Chapter 4, where is demonstrated by means of
several simulations and the outputs obtained from the tests with Gantry-Tau prototype.

The project is summarized in Chapter 5, offering a conclusion of the scope of the project, suggesting
improvements and the recommended future directions of the Gantry-Tau.
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Chapter 1

The Gantry-Tau

Robots are mechanical machines with elements constituted mainly by mechanisms, actuators, links
connected by kinematic joints, etc., that feature a movable construction under some structure of
control. Their appearance varies from model to model and many definitions try to describe precisely
if certain machine could be considered as a robot.

According to a scientific interpretation, the robot is seen as a machine that, independently of
its exterior, is able to modify the environment in which it operates. This is accomplished by
carrying out actions that are conditioned by certain rules of behaviour in the machine as well as
by the information the robot acquires regarding its environment and operation. In fact, robotics is
commonly defined as the science studying the intelligent connection between perception and action.

A robotic system consists of manipulator, a wrist, an end-effector, actuators, sensors, controllers,
processors, and software. One of the main components of the robots architectures described pre-
viously is the link, which is any rigid body that make up a robot. Another main component is the
joint, being the connection between two links that offers relative motion.

Robots are commonly divided by architecture and the application they develop. From movies,
we know robots as humanoids with high autonomy but yet limited mobility. Also, we have seen
robots in the industry as a big arm-like shape with a hand conditioned to the application. The last
mentioned it is known as serial robot, defined as a system of rigid bodies in which each member
is connected to two others, except for the first and last members that are connected to only one
other member [8].

There is also another architecture known as a parallel robots, in which a member called a mobile
platform is connected to a reference element by at least two links that can be elementary or complex
[2].

This thesis centres its work in the Gantry-Tau, which is a parallel robot with a 3-2-1 link config-
uration. This robot was developed by ABB to overcome the problems that serial robots have like
flexibility issues, low speed and low payload/robot weight ratio. The Gantry-Tau takes advantage
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of it parallel structure to increase the stiffness and reduce its mass. Also, this allows for a better
distribution of loads through the links.

Figure 1.1: The UiA Gantry-Tau and its main parts.

The Gantry-Tau PKM shown in the last figure is available at the workshop of the University
of Agder (UiA). This model is utilized as a prototype and it’s the only model with a vertical
distribution. It is composed of 6 links that meet at the manipulated platform (end-effector) of the
robot. These links are distributed along three Base actuators.

The UiA Gantry-Tau has a mobility of 5 Degrees of Freedom (DoF) when the telescopic links have
variable length. If these telescopic links use a fixed length, then the robots limits to 3 DoF. The
robot also has an additional redundant telescopic link that adds additional workspace for the robot.

The telescopic links and the base actuators are Prismatic joints, and by definition these are referred
as sliding joints that allow on one degree of freedom.

The remaining joints located at both ends of each link are of the type Universal, which can be
referred as a Cardan or Hooke joint with two degrees of freedom.
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Chapter 2

Kinematics of the Gantry-Tau

The development of a model-Based control structure for the Gantry-Tau parallel kinematic ma-
chine (PKM) requires following the basic stages for modelling a robot. These stages are the robot’s
kinematics, dynamics and control. According to [3], kinematics in robotics analyses the geometric
motion of manipulators, where the kinematic descriptions are utilized to set-up the equations for
dynamics and control. Therefore, a good kinematic model is important to have an early under-
standing of the Gantry-Tau’s motion behaviour due to the complex links/joints configuration.

This chapter deals with a comprehensive modelling for the Gantry-Tau, similar to those used
in previous investigations of the same model (which will be mentioned gradually). Though, the
objective is to extend this formulation to verification phases by means of simulation software. The
main program of the robot will be created in Matlab/Simulink and later verified using SimulationX.
The latter uses a multi-body modelling system, capable of providing reliable kinematic and dynamic
results.

2.1 Calculation of the Gantry-Tau’s Degrees of Freedom

Since the Gantry-Tau has a complex structure, it is essential to clarify the mobility of the machine
before starting the kinematic formulation, as it might not be obvious at a first look.

The Gantry-Tau is a parallel robot (also PKM) with a spatial-base structure, therefore, the use of
classical formulas for the calculation of the Degrees of Freedom (DoF) or mobility may give wrong
results for the actual case [4].

We introduce the Chebychev-Grübler-Kutzbach formula, for the evaluation of mobility on a spatial
machine with parallel kinematic chains [11],

l = d (n− g − 1) +
g∑
i=1

fi (2.1)
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where:
l is the DoF of the kinematic chain,
d is the DoF of each unconstrained individual body (6 for the spatial case, 3 for the planar case),
n is the number of rigid bodies or links in the chain,
g is the number of joints, and
fi is the number of DoF allowed by the ith joint.

The last equation can be further simplified by assuming initially two known bodies on the machine
(base and platform), L as the number of parallel legs, and the mobility of the ith leg fli . Now,
Equation 2.1 can be rewritten as follows:

l = 6
[
2 +

L∑
i=1

(fli − 1) −
L∑
i=1

fli − 1
]

+
g∑
i=1

fi

= 6 − 6L+
g∑
i=1

fi (2.2)

Equation 2.2 can be used to calculate the mobility of the Gantry-Tau. For this, we make use of the
links and joints representation in Figure 2.1, where the number of parallel legs L is equal to 6, and
the total number of DoF for the 17 joints (variable g) is equal to 29; each one of the 5 prismatic
joints (3 base actuators and 2 telescopic links) offers 1 DoF, each one of the 6 base joints offers 2
DoF, and each one of the 6 platform joints offers 3 DoF.

Thus, the mobility of the Gantry-Tau will be l = 6 − 6(6) + [(5 × 1) + (6 × 2) + (6 × 3] = 5 DoF.
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Figure 2.1: The links and joints of the Gantry-Tau PKM.

An important comment to say about the mobility of the Gantry-Tau, is when the telescopic links
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L22 and L33 use a fixed length, then by means of Equation 2.2 we easily find 3 DoF for this
configuration.

2.2 Inverse Kinematics

Defining the Gantry-Tau motion behaviour can be accomplished by using two approaches; the
Forward Kinematics (FK) and Inverse Kinematics (IK). According to [7], the forward kinematics
address the problem of determining the position of the end-effector based on its actuated joint
coordinates, while the inverse kinematics establishes the values for the joints coordinates based on
the end-effector configuration.

The IK is the best approach to use for several reasons. One of them is an easier and straightforward
computation for the case of parallel robots [4]. Likewise, another reason is seen at practice, where
the robot’s operator or programmer inputs working coordinates (path and trajectories) for the end-
effector’s tool. Theoretically speaking, parallel robots with many DoF have a complex structure;
the direct approach (FK) comprises many unknown variables to find [5].

The procedure to establish the IK for the Gantry-Tau PKM is firstly based on a simplified model,
which aims to quickly understand the kinematic behaviour of the robot. Later, when a minimum
number of kinematic parameters are found, the formulation is reformed to the general case, meaning
that, the consideration of all significant machine offsets and geometric profiles must be taken into
account.

The Gantry-Tau PKM as shown in Figures 1.1 and 2.1 has two possible configurations; 3 DoF when
the telescopic links of arms 2 and 3 (L22 and L33 respectively) use fixed lengths, and 5 DoF when
the mentioned telescopic links use variable lengths. Also, the robot has an additional redundant
telescopic link as arm 1 (L1); allowing a larger dexterity and workspace.

2.2.1 Gantry-Tau with 3 DoF (simplified case)

To get a first understanding of the IK of the Gantry-Tau, the use of a simplified model reduces the
geometric complexity of the structure. For this case, simple expressions can be obtained with less
dependency of unknown variables.

Figure 2.3 shows the simplified model, with the use of 3 links (L1, L2 and L3) sharing the same
joint with position (Xp, Yp, Zp) on the manipulated platform.

The platform joint where the links meet together is not realistic, but is mainly used as an auxiliary
joint to avoid the offsets at this stage and understand the motion situation of the robot. The global
coordinate system (XG, YG, ZG) is placed at the right-end of the base actuator 3 with positive
directions as shown by its coordinate arrows. Variables q1, q2 and q3 represent the position of
the base actuators 1, 2 and 3, respectively in the X direction. The Tool Centre Point (TCP) is
displaced an yoffset distance from the platform joint.
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Before proceeding, an important remark to say is about the machine’s 8 possible solutions for a
same end-effector configuration (see Figure 2.2). The multiple solutions is due to the geometric
description of the structure and the wide track for displacement of the base actuators.

#1 #2

#3 #4

#5 #6

#7 #8

Figure 2.2: Possible solutions for a same end-effector configuration (the ghost lines represent where
the link position was before).

To start solving the IK and obtaining analytical relations adapted to the possible solutions of each
base actuator, the length equations for links L1, L2 and L3 can be obtained by inspection of Figure
2.3, thus:
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(L1)2 = (Xp −X1)2 + (Yp − Y1)2 + (Zp − Z1)2 (2.3)

(L2)2 = (Xp −X2)2 + (Yp − Y2)2 + (Zp − Z2)2 (2.4)

(L3)2 = (Xp −X3)2 + (Yp − Y3)2 + (Zp − Z3)2 (2.5)

z

x

y

L1

L2

L3

TCP

zb

xb

yb

Base 
actuator 2

Base 
actuator 1

Base 
actuator 3

TCP

Base 
actuator 2

Base 
actuator 1

Base 
actuator 3

q4

L3

q5

A
B

C
D

E

F

F
B

A

E

D

C

q6

 𝑋𝑝 ,𝑌𝑝 ,𝑍𝑝  

 𝑥𝑒3 ,𝑦𝑒3 , 𝑧𝑒3  

(𝑋1 ,𝑌1 ,𝑍1) 

 𝑥𝑒3 ,𝑦𝑒3 , 𝑧𝑒3  

𝑳𝟏 

𝑳𝟐 

𝑳𝟑 

𝑿𝑮 

𝒁𝑮 

𝒒𝟏 

𝒒𝟐 

𝒒𝟑 

𝛽 

 

𝑅 

𝑳𝟑𝑿𝒁
 

𝛽 

𝑅𝑝  

 𝑥3, 𝑧3  

𝑿 

𝒁 

𝑦𝑜𝑓𝑓𝑠𝑒𝑡  

 𝑥𝑒2 ,𝑦𝑒2 , 𝑧𝑒2  

𝑧𝑠2 

𝒒𝟏 

𝒒𝟐 

𝒒𝟑 

Base 
actuator 2

Base 
actuator 1

Base 
actuator 3

TCP

𝐵𝑝  

𝐶𝑝  

𝐷𝑝  

𝐸𝑝  

𝐹𝑝  

𝐴𝑝  

𝐵𝑏  
𝐶𝑏  

𝐷𝑏  
𝐸𝑏  

𝐹𝑏  

𝐴𝑏  

𝒒𝟏 

𝒒𝟐 

𝒒𝟑 

𝑳𝟐𝟏
 

𝑳𝟐𝟐
 

𝑳𝟑𝟐
 

𝑳𝟑𝟑
 

𝑳𝟑𝟏
 

𝑳𝟏 

𝑳𝟐𝟐
,𝑳𝟑𝟑

 
Prismatic 

joints

Base joints

𝑳𝟐𝟏
 𝑳𝟐𝟐

 

𝑳𝟑𝟐
 

𝑳𝟑𝟑
 

𝑳𝟑𝟏
 

𝑳𝟏 

𝛽 

𝑅𝑝after a rotation 𝛽 

𝑿 

𝒁 

𝒀 

 𝑋𝑝 ,𝑍𝑝  

 𝑥𝑝 , 𝑧𝑝  

𝑿 

𝒁 

𝒀 

𝒁 

𝑦𝑝 − 𝑦𝑒3 

𝐴𝑏  𝐵𝑏  

𝐶𝑏  𝐷𝑏  
𝐸𝑏  

𝐹𝑏  

𝑿 

𝒁 

𝛼 

𝐴𝑝 ,𝐵𝑝  

𝐶𝑝 ,𝐸𝑝  

𝐷𝑝 ,𝐹𝑝  

𝐶𝑏 ,𝐷𝑏 ,𝐸𝑏  

𝑳𝟑𝒎𝑿𝒁 

𝐸𝑝𝑜𝑓𝑓𝑠𝑒𝑡
,𝐹𝑃𝑜𝑓𝑓𝑠𝑒𝑡

 𝐴𝑝𝑜𝑓𝑓𝑠𝑒𝑡
,𝐵𝑃𝑜𝑓𝑓𝑠𝑒𝑡

 

𝐶𝑝𝑜𝑓𝑓𝑠𝑒𝑡
,𝐷𝑃𝑜𝑓𝑓𝑠𝑒𝑡

 

−𝟏𝟐𝟎° 

+𝟏𝟐𝟎° 

TCP

𝐴𝑝  𝐶𝑝  

𝐷𝑝  

𝐸𝑝  

𝐹𝑝  

𝐹𝑏  

𝐷𝑏  
𝐸𝑏  

𝑳𝟑𝟐
 

𝑳𝟑𝟑
 

𝑳𝟑𝟏
 

𝑳𝒂𝒖𝒙 
 𝑋𝑇𝐶𝑃 ,𝑌𝑇𝐶𝑃 ,𝑍𝑇𝐶𝑃  

𝑳𝒂𝒖𝒙𝑿𝒁
 

𝐵𝑝 ,𝐶𝑝  

𝐷𝑝 ,𝐹𝑝  

𝐸𝑝 ,𝐴𝑝  

𝐷𝑏 ,𝐸𝑏 ,𝐹𝑏  

𝐴𝑏  

𝐵𝑏 ,𝐶𝑏  

TCP

𝑳𝟐𝟏
,𝑳𝟐𝟐

 

𝑳𝟑𝟏
,𝑳𝟑𝟑

 

𝑳𝟏 

 𝑋𝑇𝐶𝑃 ,𝑍𝑇𝐶𝑃  
𝑳𝟑𝟐

 

TCP
 𝑥𝑇𝐶𝑃 , 𝑧𝑇𝐶𝑃  

𝑀𝑝  

𝒀 

Platform joints

𝒀𝑮 

(𝑋2 ,𝑌2,𝑍2) 

(𝑋3 ,𝑌3,𝑍3) 

𝛽 

𝑿 

𝒁 

𝑳𝟏 

 𝑥𝑝 , 𝑧𝑝  

𝒀 
𝑳𝟐 

𝑳𝟑 

 𝑥3 , 𝑧3  

 𝑥1 , 𝑧1  

 𝑥2 , 𝑧2  

𝑿 

𝒁 

𝒀 

𝑿 

𝒀 

𝒁 

 𝑋𝑇𝐶𝑃 ,𝑌𝑇𝐶𝑃 ,𝑍𝑇𝐶𝑃  

𝑿𝑮 

𝒁𝑮 

𝒀𝑮 

𝛽 

𝑿 

𝒁 

𝒀 

𝑳𝒂𝒖𝒙𝑿𝒁
 

𝐵𝑝 ,𝐶𝑝  

𝐷𝑝 ,𝐹𝑝  

𝐸𝑝 ,𝐴𝑝  

𝐷𝑏 ,𝐸𝑏 ,𝐹𝑏  

TCP

𝑳𝟑𝟏
,𝑳𝟑𝟑

 

 𝑋𝑇𝐶𝑃 ,𝑍𝑇𝐶𝑃  
𝑳𝟑𝟐

 
𝑀𝑝  

𝑳𝟓 

𝑳𝟒 

𝑳𝟒 

120° 

Figure 2.3: Simplified model of the Gantry-Tau.

Since X1 = q1, X2 = q2 and X3 = q3, we find expressions of each variable assigned to the base
actuators and their possible solutions (denoted by the ± notation),

q1 = Xp ±
√

(L1)2 − (Yp − Y1)2 − (Zp − Z1)2 (2.6)

q2 = Xp ±
√

(L2)2 − (Yp − Y2)2 − (Zp − Z2)2 (2.7)

q3 = Xp ±
√

(L3)2 − (Yp − Y3)2 − (Zp − Z3)2 (2.8)

where a + sign is used for a left-hand solution of the actuator, and the − sign for a right-hand
solution. Also, the lengths L1, L2 and L3 have fixed values, the same occurs with the joints’
coordinate values (Y1, Z1), (Y2, Z2) and (Y3, Z3); since the base actuators only vary position in the
X direction. The Equations 2.6, 2.7 and 2.8 will give the displacement for each actuator based on
the auxiliary joint position (Xp, Yp, Zp), and later on the TCP assigned coordinate.

The last equations do not provide the rotation of the manipulated platform around the Y axis for
this simplified case. By looking at the XZ plane of the Gantry-Tau (see Figure 2.4) we introduce
β as the angle formed between L3XZ (vertical projection of link L3) and the Z axis of base joint 3.
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Figure 2.4: The simplified Gantry-Tau as seen in the XZ plane.

From the last figure we determine the geometric expression of β as

cos(β) = Zp − Z3
L3XZ

(2.9)

where L3XZ is the projection of link L3 on the XZ plane (see also Figure 2.5),

L3XZ =
√

(L3)2 − (Yp − Y3)2 (2.10)
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Figure 2.5: Projection of link L3 on the XZ plane.

Then, substituting the Equation 2.10 in 2.9, we obtain the β angle,

β = arccos

 Zp − Z3√
(L3)2 − (Yp − Y3)2

 (2.11)

where all parameters in the expression are known.

Now, we need to make use of the β angle to compute the orientation of the manipulated platform;
providing the redundant rotation around the Y axis. Then, is necessary the consideration of a
new point Rp given by the radius R of the manipulated platform, as shown in Figure 2.6. Using
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transformation matrices or Homogeneous Transformations as described in [9], we can easily find
the new location of Rp = [0, 0, R, 1]T in global coordinates from the local frame of the platform,
also providing the orientation of the manipulated platform.
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Figure 2.6: Relation of the β angle to find the orientation of the platform given by the point Rp.

Initially, and following the definition used in the same reference, we define the rotation matrix in
the Y plane given by

RotY,β =


cos(β) 0 sin(β) 0

0 1 0 0
− sin(β) 0 cos(β) 0

0 0 0 1

 (2.12)

Let T be the general transformation matrix of the platform joint (Xp, Yp, Zp)

T =


cos(β) 0 sin(β) Xp

0 1 0 Yp

− sin(β) 0 cos(β) Zp

0 0 0 1

 (2.13)

Then, we find the new position of Rp after a rotation β. As a result we have

R′p = TRp

=


cos(β) 0 sin(β) Xp

0 1 0 Yp

− sin(β) 0 cos(β) Zp

0 0 0 1




0
0
R

1

 (2.14)
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For example, if β = 90◦, we obtain the following position for R′p

R′p =


R+Xp

Yp

Zp

1

 (2.15)

Now it’s time to consider the TCP location in space. By looking again at Figure 2.6, a distance
yoffset exists between the platform joint and the TCP. It is important to remember that, the TCP
is an user-specific coordinate for the IK case.

The TCP coordinate with the inclusion of yoffset is as follows:
XTCP

YTCP

ZTCP

 =


Xp

Yp + yoffset

Zp

 (2.16)

2.2.2 Gantry-Tau with 3 DoF (general case)

Once understood the basic kinematic relations in the previous section, the general case for the
3 DoF configuration is very similar to solve. The addition of more links connected to the ma-
nipulated platform and existing offsets require more attention to find the relations; though, some
additional considerations ease the approach. Also, in this case it is essential to use the Homogeneous
Transformations to easily find the position in space of each joint on the platform.
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Figure 2.7: The Gantry-Tau for the 3 DoF general case with notations.
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Before starting the kinematic formulation, it is necessary to add notation to the different parts of
the robot. The links, passive joints, active joints (actuators), Tool Centre Point (TCP), the global
coordinate system, etc., are named as shown in Figure 2.7.

The links of arm 2 (L21 and L22) are parallel at all times and have the same length, thus it’s enough
by defining the length equation for one of them. Something similar occurs with the links of arm 3,
sharing only the same length and forming a triangular linkage; that later on, defines the rotation
angle β of the platform. Then, we have the following length equations for L1, L21and L31 ,

(L1)2 = (XAp −XAb
)2 + (YAp − YAb

)2 + (ZAp − ZAb
)2 (2.17)

(L21)2 = (XBp −XBb
)2 + (YBp − YBb

)2 + (ZBp − ZBb
)2 (2.18)

(L31)2 = (XDp −XDb
)2 + (YDp − YDb

)2 + (ZDp − ZDb
)2 (2.19)

Since XAb
= q1 , XBb

= q2 and XDb
= q3 , we find expressions of each variable assigned to the base

actuators,

q1 = XAp ±
√

(L1)2 − (YAp − YAb
)2 − (ZAp − ZAb

)2 (2.20)

q2 = XBp ±
√

(L21)2 − (YBp − YBb
)2 − (ZBp − ZBb

)2 (2.21)

q3 = XDp ±
√

(L31)2 − (YDp − YDb
)2 − (ZDp − ZDb

)2 (2.22)

where the + sign is used for a left-hand solution of the actuator, and the − sign for a right-hand
solution (refer to previous section and Figure 2.2). Also, the lengths L1, L21 and L31 have fixed
values, the same occurs with the joints’ Y and Z coordinate values of the base actuators; since they
only vary position along the X direction. Though, it is not yet possible to find their position values
because the platform joints XAp , XBp and XDp have offsets with respect to the TCP coordinates.
For this, we must find the β angle obtained from an auxiliary link Laux, constructed from the
triangular linkage formed between the platform and links of arm 3; more specifically constructed
from base joint Db intersecting in a vertical projection of platform joints Dp and Ep. This line can
be seen in Figure 2.8.
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Figure 2.8: Auxiliary line Laux, in this case seen at the XZ plane.
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Now, we can make further geometrical relations with the auxiliary line Laux, the triangular linkage
of arm 3 and the manipulated platform. As shown in Figure 2.9, an intersection pointMp is formed
by Laux and a projection line between the platform joints Dp and Ep. Also, we have additional
lengths L4 and L5 that will serve good in finding a relation for β.
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Figure 2.9: Further geometrical relations between platform and linkage of arm 3.

The last extension allows us to make use of simple geometrical relations (right angle triangles,
Pythagoras and cosine theorems) and therefore, ease the approach in finding the β angle.

By looking again at Figure 2.9, we have

cos(β) = ZTCP − ZDb

LauxXZ + L5
(2.23)

We find LauxXZ as the projection on the XZ plane of Laux (see Figure 2.10),

LauxXZ =
√

(Laux)2 − (YTCP − YDb
)2 (2.24)
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Figure 2.10: Projection of the auxiliary link Laux on the XZ plane.

14



and we have Laux =
√

(L31)2 − (L4)2, then

LauxXZ =
√

(L31)2 − (L4)2 − (YTCP − YDb
)2 (2.25)

The length L4 can be easily found from the cosine theorem and by inspection of Figure 2.9,

2L4 =
√

(ZDp)2 + (ZEp)2 − 2ZDpZEp cos(120◦)

L4 = 1
2

√
(ZDp)2 + (ZEp)2 − 2ZDpZEp cos(120◦) (2.26)

And finally we find L5 as

L5 =
√

(ZDp)2 − (L4)2 (2.27)

where at this point we have found all the variables to calculate the appropriate β angle from
Equation 2.23:

β = ± arccos
(
ZTCP − ZDb

LauxXZ + L5

)
(2.28)

where a + sign is used for a right-hand solution of base actuator 3, and the − sign for a left-hand
solution.

Now, we need to make use of the β angle to find the orientation of the manipulated platform and
its joints coordinates in the global frame. The latter will allow the calculation of displacements for
the base actuators.

Before using the homogeneous transformations, it’s necessary to show how the offsets of platform
joints are distributed. In Figure 2.11, we can see how this distribution is made in the platform’s
local frame, and later expressed as column vectors.
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Figure 2.11: Joints distribution on the platform.
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Apoffset =
[
XApoffset

, YApoffset
, ZApoffset

, 1
]T

(2.29)

Bpoffset =
[
XBpoffset

, YBpoffset
, ZBpoffset

, 1
]T

(2.30)

Cpoffset =
[
XCpoffset

, YCpoffset
, ZCpoffset

, 1
]T

(2.31)

Dpoffset =
[
XDpoffset

, YDpoffset
, ZDpoffset

, 1
]T

(2.32)

Epoffset =
[
XEpoffset

, YEpoffset
, ZEpoffset

, 1
]T

(2.33)

Fpoffset =
[
XFpoffset

, YFpoffset
, ZFpoffset

, 1
]T

(2.34)

Initially, we define the rotation matrix around Y given by Equation 2.12. Then we find the position
of the platform joints after a rotation of β; as an example, for platform joint Ap the position will
be:

A′p = RotY,βApoffset

=


cos(β) 0 sin(β) 0

0 1 0 0
− sin(β) 0 cos(β) 0

0 0 0 1




XApoffset

YApoffset

ZApoffset

1

 (2.35)

and the same procedure is made for the other platform joints.

Once obtained the global coordinates for each platform joint, we can calculate displacements for
the base actuators using Equations 2.6, 2.7 and 2.8.

2.2.3 Gantry-Tau with 5 DoF

The Gantry-Tau is an industrial robot thought for many applications, including machining and
milling applications, where the tool must have a mobility of at least 5 DoF. The actual prototype
has the latter mobility and from now on, the modelling of all remaining characteristics of the
Gantry-Tau will be regarding this configuration.

The difference between the 5 DoF configuration with respect to the 3 DoF configuration is two
telescopic links (active prismatic joints) that working together with the base actuators offer a
change of orientation for the tool point around the X and Z axes; α and γ angles respectively.
Still, for every change in the trajectory and orientation of the tool point, a rotation around the Y
axis (β angle) will always exist. This is the key for solving the IK of the Gantry-Tau with 5 DoF.

Beforehand, one might think the 5 DoF configuration as more complex to work out. This is true
depending on the approach to take, but since this configuration has been solved in [5] and [6] in
different ways, this section will revisit only one of them. The author of this thesis considers the
general analytical approach as the most appropriate and optimal for obtaining accurate results.
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Also, the advantage of nowadays software for analytical and symbolic calculation offers an easier
way of finding the needed expressions, using at the same time optimisation techniques for the sake
of reducing computation effort.

Initially, the redundant rotation β must be found. As in the IK for the 3 DoF configuration, this
rotation is related to the platform, the triangular linkage of arm 3, and the displacement of base
actuator 3.

In Figure 2.12 is shown the notation for each part of the Gantry-Tau with 5 DoF. For the 5 DoF
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Figure 2.12: The Gantry-Tau for the 5 DoF configuration with notations.

configuration, the user specifies (XTCP ,YTCP ,ZTCP ,α,γ) as coordinates/orientation for the tool
point, and therefore, a first step is to generate general transformation expressions for the platform
joints.

According to [6], the sequence of angles rx−rz−ry is recommended for the calculation of orientation
of the platform joints, which also must be related to the TCP in the global frame. Then, the
coordinates of the platform joints after the mentioned sequence are calculated as in the following
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example for Ap: 
XAp

YAp

ZAp

 = R


XApoffset

YApoffset

ZApoffset

+


XTCP

YTCP

ZTCP

 (2.36)

where R is the rotation matrix calculated as

R = RX,αRZ,γRY,β

=


1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)




cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1




cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (2.37)

Then, we set-up the length equations for links L31 and L32 :

L2
31 = (XDp −XDb

)2 + (YDp − YDb
)2 + (ZDp − ZDb

)2 (2.38)

L2
32 = (XEp −XEb

)2 + (YEp − YEb
)2 + (ZEp − ZEb

)2 (2.39)

where q3 = XDb
= XEb

. When substituting the platform joints coordinates ofDp and Ep (calculated
as in Equation 2.36) into Equations 2.38 and 2.39 respectively, we find two unknown variables; the
displacement of q3 and the rotation around the Y axis (β). Since these equations should give the
same length result, we find the variable q3 from their difference, thus

L2
31 − L2

32 = X2
Dp

−X2
Ep

+ 2q3(XEp −XDp) + U − V (2.40)

then

q3 =
L2

31 − L2
32 −X2

Dp
+X2

Ep
− U + V

2(XEp −XDp) (2.41)

having U = (YDp − YDb
)2 + (ZDp − ZDb

)2 and V = (YEp − YEb
)2 + (ZEp − ZEb

)2. Later, Equation
2.41 can be substituted in Equation 2.38 resulting in

(
XDp −

L2
31 − L2

32 −X2
Dp

+X2
Ep

− U + V

2(XEp −XDp)

)2

+ U − L2
31 = 0 (2.42)

Equation 2.42 is a polynomial of eight order where the only unknown is the redundant rotation
β. Though, β is found in sine and cosine terms, leading to a difficult to solve polynomial. As [6]
suggests, it’s necessary to use the Weierstrass substitution as:

W = tan
(
β

2

)
(2.43)
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and its trigonometric equivalences

sin(β) = 2W
1 +W 2 (2.44)

cos(β) = 1 −W 2

1 +W 2 (2.45)

In Appendix A is shown an analytical way (using Maple) of finding the coefficients of the polynomial
2.42, once the relations 2.44 and 2.45 are substituted. Later, the possible solutions are best found
in a numerical way. Since the polynomial is of eight order, this results in eight solutions. Now is
needed to replace W by the β angle, this is possible by rearranging Equation 2.43 as

β = 2 tan−1(W ) (2.46)

Still, after the replacement of W , the polynomial results in 8 solutions, but this time for β. One
way of finding the appropriate β angle is to keep track of the lengths of links L31 and L32 after
using β as a possible solution.

Once β is found, the calculation of the displacements of the base actuators is made from the IK for
q1, q2 and q3. Then we have

q1 = XAp ±
√

(L1)2 − (YAp − YAb
)2 − (ZAp − ZAb

)2 (2.47)

q2 = XBp ±
√

(L21)2 − (YBp − YBb
)2 − (ZBp − ZBb

)2 (2.48)

q3 = XDp ±
√

(L31)2 − (YDp − YDb
)2 − (ZDp − ZDb

)2 (2.49)

where a + sign is used for a left-hand solution of the actuator, and the − sign for a right-hand
solution.

Finally, the displacement of variables q4 and q5 are found using the length equations for their
respective telescopic links:

q4 =
√

(XCp −XCb
)2 + (YCp − YCb

)2 + (ZCp − ZCb
)2 (2.50)

q5 =
√

(XFp −XFb
)2 + (YFp − YFb

)2 + (ZFp − ZFb
)2 (2.51)

2.2.4 Simulations

Part of this work is to include tests of the model-based system with the actual prototype. Thus, it
is worthy to do stepwise the creation of the robot’s program and verify it by means of simulations.

The main program is initially modelled in Matlab, and later extended to Simulink to be used in
the prototype. Also, a simulation model of the robot is made in SimulationX using its multi-body
system, enabling reliable results and the possibility of easily changing the kinematics approach. In
this case the model in SimulationX uses the IK approach and can be seen in Appendix D.
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The simulations demonstrated in this section are regarding the 5 DoF configuration of the Gantry-
Tau.

Simulation 1:
A Matlab function for the Gantry-Tau was made, having the following input form:

IK_5DOF(X_TCP,Y_TCP,Z_TCP,alpha,gamma,ba1,ba2,ba3)

where X_TCP, Y_TCP and Z_TCP are given in meters, alpha and gamma in radians, and ba1, ba2 and
ba3 represent the solution for the base actuators (0 for a right-hand solution and 1 for a left-hand
solution).

For this test we want the tool point to have the coordinate (1.2, 0.8, 1.0) without any change of
orientation, and all base actuators with a right-hand solution. Then, the input function is:

IK_5DOF(1.2,0.8,1.0,0,0,0,0,0)

generating the plot as shown in Figure 2.13.

Figure 2.13: 3D plot result of the Matlab function (Test 1).

The results of displacements obtained for the five actuators (q1 to q5) and position of the tool point
are the same as in SimulationX, shown in Figure 2.14.
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Figure 2.14: 3D view and results in SimulationX (Test 1).

Simulation 2:
Now, an extension of Simulation 1 is made, this time adding only a change of orientation for the
tool point, where gamma=0.2 radians and gamma=0.6 radians. Then, the input function will be:

IK_5DOF(1.2,0.8,1.0,0.2,0.6,0,0,0)

generating the Matlab plot as seen in Figure 2.16.

Figure 2.15: 3D plot result of the Matlab function (Test 2).

Also in this simulation, the Matlab results for the actuators and the tool point are the same as in
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SimulationX, shown in Figure 2.16.

Figure 2.16: 3D view and results in SimulationX (Test 2).

2.3 Inverse Velocity Kinematics

In order to control the tool point at a desired velocity, it is important to establish the relationship
between the velocities of the actuators (active joints) with respect to the velocity of the manipulator.
This is called the inverse velocity kinematic (IVK) problem.

As explained in [1] and [10], the inverse velocity kinematics is a linear representation between the
joint velocity space and the operation joint space. The actuators velocities can be obtained as:

Q̇ = J−1Ẋ (2.52)

where Q̇ is a vector of the actuators velocities, J−1 is an inverse Jacobian matrix, and Ẋ is a vector
of the manipulator’s velocity.

In the case of the Gantry-Tau with 5 DoF, the actuators velocity vector is

Q̇ =



q̇1

q̇2

q̇3

q̇4

q̇5


(2.53)
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the manipulator velocities is

Ẋ =



˙XTCP

˙YTCP
˙ZTCP

α̇

β̇

γ̇


(2.54)

and J−1 is a (5x6) inverse Jacobian matrix, thus



q̇1

q̇2

q̇3

q̇4

q̇5


=



∂q1
∂XT CP

∂q1
∂YT CP

∂q1
∂ZT CP

∂q1
∂α

∂q1
∂β

∂q1
∂γ

∂q2
∂XT CP

∂q2
∂YT CP

∂q2
∂ZT CP

∂q2
∂α

∂q2
∂β

∂q2
∂γ

∂q3
∂XT CP

∂q3
∂YT CP

∂q3
∂ZT CP

∂q3
∂α

∂q3
∂β

∂q3
∂γ

∂q4
∂XT CP

∂q4
∂YT CP

∂q4
∂ZT CP

∂q4
∂α

∂q4
∂β

∂q4
∂γ

∂q5
∂XT CP

∂q5
∂YT CP

∂q5
∂ZT CP

∂q5
∂α

∂q5
∂β

∂q5
∂γ





˙XTCP

˙YTCP
˙ZTCP

α̇

β̇

γ̇


(2.55)

The reason for the calculation of the IVK, is to be able to define linear and angular velocities for
the tool point, when for example a path planner is applied and more importantly to compute the
dynamics of the robot.

The IVK of the Gantry-Tau is obtained by differentiating the Equations 2.47, 2.48, 2.49, 2.50 and
2.51. These differentiations produce too lengthy equations to show here, but instead, a stepwise
program using Maple (Appendix B) was made to obtain analytically the elements of the inverse
Jacobian matrix J−1. This analytical result is later used in the robot’s main program.





Chapter 3

Path Planning

In applications where is needed to have a predefined trajectory for the tool of the robot, it is
necessary to include a program able to define motion, velocity and acceleration with respect of
time. This is called path planning.

Several industrial robots are embedded with programs where an operator can input in several
ways the trajectory for the end effector, and later the robot has to make use of its predefined IK
formulation to find the required actuators position. Also, when developing control systems, it is
worthy to implement a flexible path planner that allows the robot to be tested in several ways and
therefore ease the study of the accuracy of the control system.

This chapter explains the theory of the path planner to use in the model-based simulations and
tests with the prototype.

The path planner used in this work is called Cartesian Path Planning. This one, uses two basic
equations for the interpolation of the path by means of a start and stop point for the end effector’s
tool.

By looking at Figure 3.1, we can see a path that starts from r0 at time t0 with a linear trajectory,
later goes nearby r1 doing a transition curve between the switching times (t1 − t′) and (t1 + t′), and
finally arrives on r2 at time t2 following a linear path. The advantage of this curve representation,
is that allows a smooth transition through the initial and final points.

The theory of the cartesian path planning is demonstrated in [3], but the motion equations are
represented here as follows:

For the first transition (t0 ≤ t ≤ t1 − t′)

r(t) = r1 − t1 − t

t1 − t0
(r1 − r0) (3.1)
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For the second transition (t1 − t′ ≤ t ≤ t1 + t′)

r(t) = r1 − t− t′ − t1
4t′(t1 − t0

(r1 − r0) + t+ t′ − t1
4t′(t2 − t1

(r2 − r1) (3.2)

and for the final transition (t1 + t′ ≤ t ≤ t2)

r(t) = r1 − t1 − t

t2 − t1
(r2 − r1) (3.3)
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Figure 3.1: Cartesian path example.

Since Equations 3.1, 3.2 and 3.3 are used for interpolating the trajectory of the tool point, these do
not work out a change of orientation. Though, Equation 3.1 can be slightly altered to interpolate
a change of orientation.

3.1 Simulation

A cartesian path planning program was made in Matlab following the theory presented in this
chapter. This program is a function of time and the points of the path are established in the
following way:

moveL(1,:) = [X_TCP Y_TCP Z_TCP alpha gamma vel zone]

where X_TCP, Y_TCP and Z_TCP are given in meters, alpha and gamma are given in radians, vel is
the velocity of the toolpoint in m/s, and zone is a fillet radius in millimetres for smoothing corners.
The Matlab code of the path planning program is shown in more detail in Appendix C Now, we
want to simulate the following path:



moveL(1,:) = [0.6542 0.7964 1.0886 0 0 0 0];

moveL(2,:) = [1.6542 0.7964 1.0886 0 0 50 60];

moveL(3,:) = [1.6542 0.7964 0.7386 0.2 0 50 60];

moveL(4,:) = [1.2542 0.7964 0.7386 0.2 0.2 50 60];

moveL(5,:) = [1.2542 0.7964 1.0886 0 0.2 50 60];

moveL(6,:) = [1.6542 0.7964 1.0886 0 0 50 60];

moveL(7,:) = [1.6542 0.7964 0.7386 0.2 0 50 60];

moveL(8,:) = [1.2542 0.7964 0.7386 0.2 0.2 50 60];

moveL(9,:) = [1.2542 0.7964 1.0886 0 0.2 50 60];

moveL(10,:) = [0.6042 0.7964 1.0886 0 0 50 0];

that generates the following results:

Figure 3.2: Tool point trajectory on the XZ plane.

Figure 3.3: X position of the tool point with respect of time.



Figure 3.4: Y position of the tool point with respect of time.

Figure 3.5: Z position of the tool point with respect of time.

Figure 3.6: Alpha angle with respect of time.



Figure 3.7: Gamma angle with respect of time.





Chapter 4

Control of the Gantry-Tau

As explained in chapter 2, the inverse kinematics allows to calculate the actuators position for a
desired path of the tool point, but since the system in not ideal, perturbations affect the response
of the robot leading to errors. Then, we need to apply control techniques to minimize the error as
much as possible.

In this chapter we will develop a simulation that gradually describe the controller used for the
Gantry-Tau. For this, we build up an extension to Simulink of the Matlab program, including
the functions obtained for the IK, the IVK, the path planning, and now the controller for all the
actuators of the robot. Also, an important remark to say, is that the simulation is cooperative with
a feature call Co-Simulation from SimulationX, that allows to communicate with other simulations
programs like Simulink, and in this way, simulate the system in SimulationX which will be controlled
from Simulink. This feature greatly expands the possibilities for an improved control study since
Simulink has specialized tools for this.

All the actuators of the Gantry-Tau are driven by servomotors with an internal velocity control.
Meaning that, we can design a simple position-velocity controller for each motor, taking set-points
from the outputs of the robot’s main program. Then, the controller structure will be as shown in
Figure 4.1

P PI Motor 1 1/s 
𝜃  𝜃 𝑞1 

𝑞1  

- - 

Figure 4.1: Controller of the Gantry-Tau for the servomotor of actuator q1.
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4.1 Co-Simulation

Now, we introduce to the Co-Simulation between Simulink and SimulationX, where their models
are shown in Appendices E and F respectively. Since SimulationX does not have the possibility
of creating a program code like in Matlab/Simulink, we make use of its principal feature as the
modelling of multi-body systems, and leave Simulink all the control part.

The actuators of the Gantry-Tau are driven by servomotors and a gearing relation in between. This
gearing relation is given by a belt drive and a ball screw drive. These two are shown in Figure 4.2.
However, these elements had to be modelled for the system of the Gantry-Tau using their main
characteristics as data to input the program. Then SimulationX is capable of representing these
elements as the real ones. Of course, one might extend or refine the model by adding friction for
example. An advantage of the Co-Simulation is a safe way of testing the robot’s program without
taking the risk on the real prototype, and allows more access to other results, providing a better
interpretation of the program and system behaviour.

Servomotor 

Belt drive 

Ball-screw drive 

Figure 4.2: Gearing found between the base actuator and servomotor.

A long path for the tool point of the robot was created, very similar to the one shown in the
last chapter. This path starts the tool point from the home position of the robot and afterwards
it draws several square with round corners. Also it is present changes of speed and zone for the
path trajectory. The computation part of the Simulink program is to calculate the appropriate
displacements, velocity and accelerations for the robot, and the the Co-Simulation feature loads
this data into the SimulationX environment, updating the kinematic and kinetic results. Also, a
feedback of position of each actuator occurs, this feedback is needed to compensate for the error
the tool point has with respect to the actual path.

The Co-Simulation result is shown in Figure 4.3, showing the path of tool point on the XZ plane
while it was drawing a trajectory of several squares.



Figure 4.3: Co-simulation result of the tool point position.

4.2 Experiment with the prototype

The prototype of the Gantry-Tau uses a xPC target as the control system, where we upload the
program to test it. The xPC target is a feature of Simulink that allows rapid prototyping, using a
lightweight operative system in a target computer capable of running different types of simulation
models in real-time. Figure 4.4, shows the actual configuration of the Gantry-Tau xPC target and
control system.

P PI Motor 1 1/s 
𝜃  𝜃 𝑞1 

𝑞1  

- - 

Quanser board 

Motor drive 

Servomotor 

xPC target 

Figure 4.4: Configuration of the xPC target with the actuators drives.

By looking again at Figure 4.4, we see that the xPC target and the motor drives communicate
with a Quanser board. This board is a Hardware-in-the-Loop control board for interfacing with
different types of devices like sensors and encoders, and also is capable of writing digital and analog
outputs, as well reading from inputs. This card interacts via a data bus with the xPC target and
must be configured in the Simulink environment.

Appendix G shows the robot’s main program in Simulink, including the path planning, the con-



trollers for each actuator, and the mentioned configuration for interaction with the Quanser board.

Since, the actuators of the robot have encoders, we are able to know their position while the
prototype is being tested. But knowing their position won’t allow us to compute the position of
the tool point since no formulation for the FK is made. For this, the university (UiA) holding the
prototype of the Gantry-Tau offered the use of their high precision calibration machine also known
as the FARO Laser Tracker, as shown in Figure 4.5.

Figure 4.5: Configuration of the xPC target with the actuators drives.

Figure 4.6: Configuration of the xPC target with the actuators drives.

The Laser Tracker is able to measure the absolute distance with the use of a reflector (Figure 4.6).



This reflector is to be mounted on the tool point, and in that way we can measure its position while
the prototype is working.

Figures 4.7 and 4.8 show the position of the tool point in the planes XZ and Y Z respectively
while the prototype was doing the path used in the previous section. It is important to say that,
the measurement is not similar and not calibrated due to the presence of many offsets. Also, the
tracks of the prototype among many other parts are not well aligned, leading to many measurement
errors.

Figure 4.7: Measurement of the prototype’s tool point with the laser tracker (XZ plane).

Figure 4.8: Measurement of the prototype’s tool point with the laser tracker (Y Z plane).





Chapter 5

Conclusion

The Gantry-Tau is a system that comprises many difficulties along the way. However, it offers a
great deal of knowledge for industrial robotics for its complex and yet singular nature as a parallel
robot. The work in this thesis result in revisiting many modelling parts of the Gantry-Tau, having
at the same time a slightly different approach aimed to verification methods, and the introduction
of alternative ways for getting a general perception of this amazing system.

From all the content developed in this work, a more detail explanation of the kinematics was made
for the model-based system of the robot, still leaving place to adventure in other methods and
modelling techniques. The idea of elevating more the prototyping and testing of the Gantry-Tau
was made by the inclusion of a flexible path planner, justifying that, a deeper study must be made
in the control study of this machine.

The verifications made using SimulationX demonstrate the elevated simulation capacity many soft-
ware solutions offer without inquiring into a slow pace learning. This not only eases the investigation
and work, but also encourages other disciplines to give contributions in pro of the science.

The experiments made with the prototype and the obtained results explain the accuracy of the
modelling and control development, even when the real system is attached to many irregularities
in its structure.

5.1 Suggested Improvements and Future Directions

The work and results obtained in this thesis represent only a small part of all the topics developed
for the Gantry-Tau. Since the contents here are based on basic stages of the systems, a number of
suggestions is offered for improving the scope of this work:

• Generalize the inverse kinematics modelling.

• Work out the inverse velocity kinematics for all the links.
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• Develop the inverse dynamics and verify it with the SimulationX model.

• From the inverse dynamics develop a model-based dynamic controller.

• Extend the path planning program to have other types of trajectories and elevate the control
testing.

Also, many potential opportunities for progress were discovered along the development of this
thesis wich could be considered as future directions for the Gantry-Tau and therefore the general
modelling and identification of parallel robots:

• SimulationX uses the Newton-Euler approach to model the dynamics of any multi-body sys-
tem. It’s convenient to model through this technique since the Lagrange method is too
systematic and generalized for obtaining accurate results.

• SimulationX is capable of generating numerical and analytical Jacobian with respect to almost
any part of the system. This could be an advantage when verifying the elements of the
obtained Jacobians.

• SimulationX is capable of offering an inverse kinematic approach to the system, but also a
forward kinematic approach without conditioning or condtraining any parts of the model.
This could be studied for generating the forward kinematic equations and ease the way of
obtaining Jacobians for velocities and accelerations of actuators, pasive joints, etc.
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# Analytical Inverse Kinematics IK  for the GantryKTau 5 DOF

# This program computes analytical coefficients of each root of W

restart :

with LinearAlgebra :

with CodeGeneration :

# Define rotation matrices with respect of t:

Rx d

1 0 0

0 cos a Ksin a

0 sin a cos a

:

Ryd

cos b 0 sin b

0 1 0

Ksin b 0 cos b

:

Rz d

cos g Ksin g 0

sin g cos g 0

0 0 1

:

# Find the R matrix with the following rotation order:

R d Rx.Rz.Ry :

# We give values to the offsets and links lengths, later this will greatly reduce the size of 

analytical equations:

Dpoffset d

0.1126

0

K0.065

:

Epoffsetd

K0.1126

K0.125

K0.065

:

Dboffset d

0

0.125

0.188

:

Eboffsetd

0

0

0.188

:

L31 d 1.25 :

L32 d 1.25 :

# Define platform joints Dp and Ep, and later assign them separately:
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Dp d R.

Dpoffset 1

Dpoffset 2

Dpoffset 3

C

XTCP

YTCP

ZTCP

:

Ep d R.

Epoffset 1

Epoffset 2

Epoffset 3

C

XTCP

YTCP

ZTCP

:

X
Dp

d Dp 1 :

Y
Dp

d Dp 2 :

Z
Dp

d Dp 3 :

X
Ep

d Ep 1 :

Y
Ep

d Ep 2 :

Z
Ep

d Ep 3 :

L
31

d L31 :

L
32

d L32 :

# Assign offsets of base joints Db and Eb:

Y
Db

d Dboffset 2 :

Z
Db

d Dboffset 3 :

Y
Eb

d Eboffset 2 :

Z
Eb

d Eboffset 3 :

# Create equations from the IK modelling for 5DOF:

U d Y
Dp

KY
Db

2
C Z

Dp
KZ

Db

2
:

V d Y
Ep
KY

Eb

2
C Z

Ep
KZ

Eb

2
:

eq1d X
Dp
K

L
31

2
KL

32

2
KX

Dp

2
CX

Ep

2
KUCV

2 X
Ep
KX

Dp

2

CUKL
31

2
= 0 :

# Relations of sin(b) and cos(b) with the Weierstrass substitution:

eq2d sin b =
2 W

1CW
2

:

eq3d cos b =
1KW

2

1CW
2

:

# Substitute the past relations in the main equation:

eq4d simplify subs eq2, eq3, eq1 :

# Since the equation equals 0, then we take only the numerator:
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eq5d numer lhs eq4 :

# Sort W in descending order:

eq6d collect eq5, W :

eq7d sort eq6, W, descending :

# Take each coefficient of the 9 roots of W:

Root8d simplify coeff eq7, W, 8 :

Root7d simplify coeff eq7, W, 7 :

Root6d simplify coeff eq7, W, 6 :

Root5d simplify coeff eq7, W, 5 :

Root4d simplify coeff eq7, W, 4 :

Root3d simplify coeff eq7, W, 3 :

Root2d simplify coeff eq7, W, 2 :

Root1d simplify coeff eq7, W, 1 :

Root0d simplify coeff eq7, W, 0 :

ROOTS d Vector 9, Root8, Root7, Root6, Root5, Root4, Root3, Root2, Root1, Root0 :

# Generate the Matlab code:

Matlab ROOTS, resultname = "Roots", output = "Roots_W_5DOF.m", optimize :
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# Analytical Inverse Velocity Kinematics (IVK) for the Gantry-Tau 5DOF

# This program computes the analytical Inverse Jacobian Matrix (5x6)

restart :

with LinearAlgebra :

with CodeGeneration :

# Define rotation matrices with respect of t:

Rx d

1 0 0

0 cos a t Ksin a t

0 sin a t cos a t

: 

Ryd

cos b t 0 sin b t

0 1 0

Ksin b t 0 cos b t

:

Rz d

cos g t Ksin g t 0

sin g t cos g t 0

0 0 1

:

# Find the R matrix with the following rotation order:

R d Rx Rz Ry :

# General platform joints calculation from the Inverse Kinematics, where the TCP coordinates 

are also with respect of t: 

Kp d R 

Kpoffset
1

Kpoffset
2

Kpoffset
3

C

XTCP t

YTCP t

ZTCP t

:

# General equation for q
1
, q

2
 and q

3
, later the letter K will be replaced by A, B and D. Also, sol =K1 

for right solution and sol = 1 for left solution :

q123 d Kp 1 Csol L
2
K Kp 2 KKboffset

2

2
K Kp 3 KKboffset

3

2
:

# Declare function for the equation:

q123f d unapply q123, t :

# Now differentiate:

q123dot d D q123f :

# Convert back to an equation:
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q123dot d apply q123dot, t :

# Substitute names of the differential variables with the names used in the Matlab program:

q123dot d subs D XTCP t = XTCPdot, D YTCP t = YTCPdot, D ZTCP t = ZTCPdot,

D a t = adot, D b t = bdot, D g t = gdot , q123dot :

# then substitute the variables with respect of t with the ones used in the Matlab program:

q123dot d subs XTCP t = XTCP, YTCP t = YTCP, ZTCP t = ZTCP, a t = a, b t = b, g t

= g , q123dot :

# Create q1dot and denq1 by substituting K for A and L for L1:

q1dot d subs Kboffset
1

= Aboffset
1
, Kboffset

2
= Aboffset

2
, Kboffset

3
= Aboffset

3
, Kpoffset

1

= Apoffset
1
, Kpoffset

2
= Apoffset

2
, Kpoffset

3
= Apoffset

3
, L = 1.25, sol = sol1 , q123dot :

# Create q2dot and denq2 by substituting K for B and L for L21:

q2dot d subs Kboffset
1

= Bboffset
1
, Kboffset

2
= Bboffset

2
, Kboffset

3
= Bboffset

3
, Kpoffset

1

= Bpoffset
1
, Kpoffset

2
= Bpoffset

2
, Kpoffset

3
= Bpoffset

3
, L = 1.09, sol = sol2 , q123dot :

# Create q3dot and denq3 by substituting K for D and L for L31:

q3dot d subs Kboffset
1

= Dboffset
1
, Kboffset

2
= Dboffset

2
, Kboffset

3
= Dboffset

3
, Kpoffset

1

= Dpoffset
1
, Kpoffset

2
= Dpoffset

2
, Kpoffset

3
= Dpoffset

3
, L = 1.25, sol = sol3 , q123dot :

# Extract each differentiated coefficient to generate equations of each element of the Inverse

Jacobian matrix (rows 1 to 3):

j11 d simplify coeff q1dot, XTCPdot , size :

j12 d simplify coeff q1dot, YTCPdot , size :

j13 d simplify coeff q1dot, ZTCPdot , size :

j14 d simplify coeff q1dot, adot , size :

j15 d simplify coeff q1dot, bdot , size :

j16 d simplify coeff q1dot, gdot , size :

j21 d simplify coeff q2dot, XTCPdot , size :

j22 d simplify coeff q2dot, YTCPdot , size :

j23 d simplify coeff q2dot, ZTCPdot , size :

j24 d simplify coeff q2dot, adot , size :

j25 d simplify coeff q2dot, bdot , size :

j26 d simplify coeff q2dot, gdot , size :

j31 d simplify coeff q3dot, XTCPdot , size :

j32 d simplify coeff q3dot, YTCPdot , size :

j33 d simplify coeff q3dot, ZTCPdot , size :

j34 d simplify coeff q3dot, adot , size :

j35 d simplify coeff q3dot, bdot , size :

j36 d simplify coeff q3dot, gdot , size :
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# Now we work for q
4
 and q

5
:

# General equation for q
4
 and q

5
, later the letter K will be replaced by C and F :

q45 d Kp 1 Kqn
2
C Kp 2 KKboffset

2

2
C Kp 3 KKboffset

3

2
:

# Create equations q2 and q3 that will be substituted later by qn to create q4 and q5 

respectively:

q2 d subs Kboffset
1

= Bboffset
1
, Kboffset

2
= Bboffset

2
, Kboffset

3
= Bboffset

3
, Kpoffset

1

= Bpoffset
1
, Kpoffset

2
= Bpoffset

2
, Kpoffset

3
= Bpoffset

3
, L = 1.09, sol = sol2 , q123 :

q3 d subs Kboffset
1

= Dboffset
1
, Kboffset

2
= Dboffset

2
, Kboffset

3
= Dboffset

3
, Kpoffset

1

= Dpoffset
1
, Kpoffset

2
= Dpoffset

2
, Kpoffset

3
= Dpoffset

3
, L = 1.25, sol = sol3 , q123 :

q4 d subs qn = q2, Kpoffset
1

= Cpoffset
1
, Kpoffset

2
= Cpoffset

2
, Kpoffset

3
= Cpoffset

3
,

Kboffset
2

= Cboffset
2
, Kboffset

3
= Cboffset

3
, q45 :

q5 d subs qn = q3, Kpoffset
1

= Fpoffset
1
, Kpoffset

2
= Fpoffset

2
, Kpoffset

3
= Fpoffset

3
,

Kboffset
2

= Fboffset
2
, Kboffset

3
= Fboffset

3
, q45 :

# Declare functions for the equations and differentiate them:

q4f d unapply q4, t :

q5f d unapply q5, t :

q4dot d D q4f :

q5dot d D q5f :

# Convert back to equations and subtitute variables and diff. variables to the ones used in 

Matlab:

q4dot d apply q4dot, t :

q5dot d apply q5dot, t :

q4dot d subs D XTCP t = XTCPdot, D YTCP t = YTCPdot, D ZTCP t = ZTCPdot,

D a t = adot, D b t = bdot, D g t = gdot , q4dot :

q4dot d subs XTCP t = XTCP, YTCP t = YTCP, ZTCP t = ZTCP, a t = a, b t = b, g t

= g , q4dot :

q5dot d subs D XTCP t = XTCPdot, D YTCP t = YTCPdot, D ZTCP t = ZTCPdot,

D a t = adot, D b t = bdot, D g t = gdot , q5dot :

q5dot d subs XTCP t = XTCP, YTCP t = YTCP, ZTCP t = ZTCP, a t = a, b t = b, g t

= g , q5dot :

# Extract each differentiated coefficient to generate equations of each element of the Inverse

Jacobian matrix (rows 4 and 5):

j41 d simplify coeff q4dot, XTCPdot , size :

j42 d simplify coeff q4dot, YTCPdot , size :
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j43 d simplify coeff q4dot, ZTCPdot , size :

j44 d simplify coeff q4dot, adot , size :

j45 d simplify coeff q4dot, bdot , size :

j46 d simplify coeff q4dot, gdot , size :

j51 d simplify coeff q5dot, XTCPdot , size :

j52 d simplify coeff q5dot, YTCPdot , size :

j53 d simplify coeff q5dot, ZTCPdot , size :

j54 d simplify coeff q5dot, adot , size :

j55 d simplify coeff q5dot, bdot , size :

j56 d simplify coeff q5dot, gdot , size :

# Generate the Inverse Jacobian matrix:

IJd Matrix 5, 6, j11, j12, j13, j14, j15, j16 , j21, j22, j23, j24, j25, j26 , j31, j32, j33, j34,

j35, j36 , j41, j42, j43, j44, j45, j46 , j51, j52, j53, j54, j55, j56 :

# Generate the Matlab code:

Matlab IJ, resultname = "ij", output = "InvJacobianRobot_5DOF.m", optimize :
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function [pathTrans,pathRot,totalTime] = fcn(time) 
%#eml 

  
% This program generates the values for path planning in real time (or 
% simulation time). One must input the number of points for the path and 
% the number of loops the path in going to make. Later in the area of Path 
% Points the user must specify each point in space and its orientation, 
% velocity and zone. 

  

  
Tstep = 0.01;    % IMPORTANT, must be equal to the simulation Time-Step 

  
n = 10;        % Number of points for the path 
pathLoops = 1;        % Number of path Path loops (>=1) 

  

  
% -------------------------------------------------------------- 
% Preassign variables 
% -------------------------------------------------------------- 
% It's good to give an starting value to variables that will be used in 
% operations like if-statements and for-loops AND will be used as outputs: 
pathTrans = zeros(1,3);     % Output vector for X_TCP, Y_TCP and Z_TCP 
pathRot = zeros(1,2);       % Output vector for alpha and gamma 
moveL = zeros(n,7);         % Path matrix 

  
if pathLoops >= 2 
    t = n*(pathLoops); 
    X = zeros(t+1,1); 
    Y = zeros(t+1,1); 
    Z = zeros(t+1,1); 
    alpha = zeros(t+1,1); 
    gamma = zeros(t+1,1); 
    vel = zeros(t+1,1); 
    zone = zeros(t+1,1); 
    Tpoint = zeros(t+1,1); 
    Tzone = zeros(t+1,1); 
else 
    X = zeros(n,1); 
    Y = zeros(n,1); 
    Z = zeros(n,1); 
    alpha = zeros(n,1); 
    gamma = zeros(n,1); 
    vel = zeros(n,1); 
    zone = zeros(n,1); 
    Tpoint = zeros(n,1); 
    Tzone = zeros(n,1); 
    t = n-1; 
end 
% -------------------------------------------------------------- 
% -------------------------------------------------------------- 

  

  
% -------------------------------------------------------------- 
% Path points 
% -------------------------------------------------------------- 



% Example: moveL(1,:) = [X_TCP Y_TCP Z_TCP alpha gamma vel zone] 
% X_TCP, Y_TCP and Z_TCP in meters 
% alpha and gamma in radians 
% vel in mm/s 
% zone is fillet radius in mm for smoothing corners 
% For one path loop, in the first moveL the vel and zone are 0 
% For one path loop, in the last moveL the zone is 0 
% For 2 or more path loops the first and last moveL must have values in vel 
% and zone 

  

  
% Beginning of SHORT PATH 5 DoF 
% n=10, pathLoops=1, time for simulation=90 seconds 
% Make sure the Tool-Point starts in home. 
moveL(1,:) = [0.6542 0.7964 1.0886 0 0 0 0]; 

  
moveL(2,:) = [1.6542 0.7964 1.0886 0 0 50 60]; 
moveL(3,:) = [1.6542 0.7964 0.7386 0.2 0 50 60]; 
moveL(4,:) = [1.2542 0.7964 0.7386 0.2 0.2 50 60]; 
moveL(5,:) = [1.2542 0.7964 1.0886 0 0.2 50 60]; 

  
moveL(6,:) = [1.6542 0.7964 1.0886 0 0 50 60]; 
moveL(7,:) = [1.6542 0.7964 0.7386 0.2 0 50 60]; 
moveL(8,:) = [1.2542 0.7964 0.7386 0.2 0.2 50 60]; 
moveL(9,:) = [1.2542 0.7964 1.0886 0 0.2 50 60]; 

  
moveL(10,:) = [0.6042 0.7964 1.0886 0 0 50 0]; 
% End of SHORT PATH 5 DoF 

  
% -------------------------------------------------------------- 
% -------------------------------------------------------------- 

  

  
% -------------------------------------------------------------- 
% Vector assignments for each variable 
% -------------------------------------------------------------- 
aux = 0; 
if pathLoops >= 2 
    for rep = 1:pathLoops 
        X(rep+aux:rep*n,1) = moveL(:,1); 
        Y(rep+aux:rep*n,1) = moveL(:,2); 
        Z(rep+aux:rep*n,1) = moveL(:,3); 
        alpha(rep+aux:rep*n,1) = moveL(:,4); 
        gamma(rep+aux:rep*n,1) = moveL(:,5); 
        vel(rep+aux:rep*n,1) = moveL(:,6); 
        zone(rep+aux:rep*n,1) = moveL(:,7); 
        if rep == pathLoops 
            X(t+1,1) = moveL(1,1); 
            Y(t+1,1) = moveL(1,2); 
            Z(t+1,1) = moveL(1,3); 
            alpha(t+1,1) = moveL(1,4); 
            gamma(t+1,1) = moveL(1,5); 
            vel(t+1,1) = moveL(1,6); 
            zone(t+1,1) = moveL(1,7); 
        end 



        aux = aux+n-1; 
    end 
else 
    X = moveL(:,1); 
    Y = moveL(:,2); 
    Z = moveL(:,3); 
    alpha = moveL(:,4); 
    gamma = moveL(:,5); 
    vel = moveL(:,6); 
    zone = moveL(:,7); 
end 
% -------------------------------------------------------------- 
% -------------------------------------------------------------- 

  

  
% -------------------------------------------------------------- 
% Calculate the times at each point and for each zone 
% -------------------------------------------------------------- 
for m = 1:t 
    L = sqrt((X(m+1)-X(m))^2 + (Y(m+1)-Y(m))^2 + (Z(m+1)-Z(m))^2); 
    if m == 1 
        Tpoint(m) = 0; 
        Tpoint(m+1) = L/(vel(m+1)*0.001); 
        Tzone(m) = 0; 
        Tzone(m+1) = zone(m+1)/vel(m+1); 
    end 
    if (m > 1) && (m < t) 
        Tpoint(m+1) = Tpoint(m) + L/(vel(m+1)*0.001); 
        Tzone(m+1) = zone(m+1)/vel(m+1); 
    end 
    if m == t 
        Tpoint(m+1) = Tpoint(m) + L/(vel(m+1)*0.001); 
        Tzone(m+1) = 0; 
    end 
end 
% -------------------------------------------------------------- 
% -------------------------------------------------------------- 

  

  
% -------------------------------------------------------------- 
% Output of path 
% -------------------------------------------------------------- 
% First build path matrix: 
tcp = [X Y Z alpha gamma]; 

  
% Update for pathTrans (X_TCP, Y_TCP and Z_TCP) 
for k = 1:t 
    if time == 0 
        pathTrans = tcp(1,1:3); 
    end 
    for t = time:(Tpoint(k+1) + Tzone(k+1) + Tstep) 
        if (time > Tpoint(k) + Tzone(k)) && ... 
                (time <= Tpoint(k+1) - Tzone(k+1) + Tstep) 
            pathTrans = tcp(k+1,1:3) - (tcp(k+1,1:3) - 

tcp(k,1:3))*(Tpoint(k+1) - time)/(Tpoint(k+1) - Tpoint(k)); 
        end 



        if (time > Tpoint(k+1) - Tzone(k+1) + Tstep) && ... 
                (time <= Tpoint(k+1) + Tzone(k+1)) && (k < t) 
            pathTrans = tcp(k+1,1:3) - (tcp(k+1,1:3) - tcp(k,1:3))*((time - 

Tzone(k+1) - Tpoint(k+1))^2)/(4*Tzone(k+1)*(Tpoint(k+1) - Tpoint(k)))... 
                + (tcp(k+2,1:3) - tcp(k+1,1:3))*((time + Tzone(k+1) - 

Tpoint(k+1))^2)/(4*Tzone(k+1)*(Tpoint(k+2) - Tpoint(k+1))); 
        end 
    end 
end 

  
% Update for pathRot (alpha and gamma) 
for i = 1:t 
    if time == 0 
        pathRot = tcp(1,4:5); 
    end 
    for j = time:Tpoint(i+1) 
        if (time > Tpoint(i)) && (time <= Tpoint(i+1)) 
            pathRot = (time - Tpoint(i))*(tcp(i+1,4:5) - 

tcp(i,4:5))/(Tpoint(i+1) - Tpoint(i)) + tcp(i,4:5); 
        end 
    end 
end 

  
% Once the time reaches the last Tpoint, maintain the value 
if time >= Tpoint(t+1,1) 
    pathTrans = tcp(t+1,1:3); 
    pathRot = tcp(t+1,4:5); 
end 
% -------------------------------------------------------------- 
% -------------------------------------------------------------- 

  
% -------------------------------------------------------------- 
% Total time of the path 
% -------------------------------------------------------------- 
totalTime = Tpoint(t+1,1); 
% -------------------------------------------------------------- 
% -------------------------------------------------------------- 
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