
This Master’s Thesis is carried out as a part of the education at the

University of Agder and is therefore approved as a part of this

education. However, this does not imply that the University answers

for the methods that are used or the conclusions that are drawn.

University of Agder, 2013

Faculty of Economics and Social Sciences

Department of Information Systems

User Testing Tool

Towards a tool for crowdsource-enabled accessibility evaluation of
websites

Alexander Teinum

Supervisors
Janis Gailis (internal), Mikael Snaprud (external)

Preface

I want to take amoment to acknowledge and thank all who have been in-
volved in someway or another during this research project.

First out, cand. scient. Janis Gailis—thank you for accepting the of-
fer to supervise this project. I am especially grateful for your feedback
regarding the choice anduse of design research. Your enthusiasm for the
open source philosophy has not gone unnoticed over the years at the uni-
versity.

Dr. Mikael Snaprud, I should start by saying thanks for sharing the
burdenwith Janis by beingmy supervisor. Your contribution during this
project is simply beyond words. The last year in Tingtun has been a fan-
tastic experience, and I would like to use this opportunity to give a nod to
all my co-workers around the world.

This project would not be possible without the financial support re-
ceivedbyTheResearchCouncil ofNorway. Iwould like to expressmysin-
cere thanks to the partners of the UTT project for your invaluable feed-
back during the three rounds of evaluation.

I extend my gratitude to Birkir Gunnarsson and Jeroen Hulscher for
engaging in email conversations about the implementation ofUTT.Also,
Iwould like to thankThomasHolmstrømFrandzenandRubenWangberg
for providing insightful comments on the report.

I especially thankmyfamily forproviding loveandsupport—andfood—
during this intenseperiodofwork. Ialsowant to thankmyfriends for just
being there, and for takingme on volleyball breaks every once in a while.

Thanks,

Alexander Teinum, 2013-06-07

i

Abstract

This thesis describes the first open source tool to combine user
testingandautomatedtestingtocheckaccessibilityofwebsites. User
Testing Tool (UTT) integrates with an existing automated checker
for testing websites against the WCAG 2.0 guidelines. UTT gener-
ates and presents questions that need human verification, such as
wether an alternative text representation is appropriate for an im-
age on a web page. In the future, collected data can be used to both
improve the accessibility of the website, as well asmaking the auto-
matic checker smarter.

How to enablemorepeople to improve accessibility testing is the
main question addressed. Based on our proposed solution the the-
sis also deals with how to integrate an automated checker with user
testing, howuser tests can enhance automated checker tests, how to
design the user interface, andhow remove any obstacles preventing
larger numbers of people to contribute for crowdsourcing the tests
of web sites.

Anopensourceprototypebasedonaniframetechniquewasbuilt
to demonstrate a viable path of development. The user interface in-
tegrateswith thewebpage tobe tested, and it satisfiesseveralusabil-
ity criteria. The solution covers design of an API for the automatic
checker for receiving test results, a control flow mechanism, and a
user interface iteratively refined involving evaluators.

The user interface is implemented using a SPA architecture, a
fat client architecture for the web. This will reduce the demand for
bandwidth and server capacity and should therefore be suitable for
crowdsourcing. The user interface needs to take privacy into ac-
countbygivingtheusercontrolaboutwhatdata tocollect. Currently
this is not a problem since the prototype does not store any data.
To initiate the development of a user testing tool, this thesis has fo-
cusedonasolidarchitecturealongwith features that serveademon-
strative purpose. The proposed archtitecture and the open source
approach is designed to facilitate further development.

DesignResearchwas the chosen researchmethod, where knowl-
edgewasderivedfromcreationof theprototypeandinteractionwith
theusers. The researchproblem is basedonapractical need for bet-
ter testing tools. User testing of the tool itself uncovered that effi-
cientmeans of user entry is crucial, and that the tool needs to adjust
for a variety of devices and assistive technologies.

Future researchcan includestorageof collecteddata, exploreap-
proaches to deal with privacy and logging of data, data analysis for
quality assurance, further investigation of the proxy–iframe tech-
nique, and integration with the eAccessibility Checker result view.

ii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Research problem . 2
1.3 Document overview . 3

2 Literature review 4
2.1 Selection of literature . 4
2.2 Design research . 5
2.3 Human–computer interaction 10
2.4 Accessibility . 12
2.5 Usability . 14
2.6 User experience . 16
2.7 Selected topics of web technologies 16
2.8 Crowdsourcing . 22
2.9 Open source software . 23

3 Existing tools 25
3.1 Selection process . 25
3.2 The selection of tools . 26
3.3 Loop11 . 28
3.4 Usabilla . 32
3.5 Draft . 33
3.6 Infomaki . 34
3.7 ClickHeat . 36
3.8 eAccessibility Checker . 36
3.9 Achecker . 37
3.10 Existing research projects 37
3.11 Recruiting services . 38
3.12 Findings . 39
3.13 Objectives and requirements 41

4 Method 44
4.1 Design research . 44
4.2 Borrowing terminology . 46
4.3 Outcomes . 47
4.4 Researchmodel . 47
4.5 Collaboration . 47

iii

4.6 Other . 52

5 Design 53
5.1 Revisiting requirements . 53
5.2 Designing the user interface 54
5.3 Specific user interface functionality 56
5.4 The implementation . 63
5.5 Implementing the frontend 65
5.6 Backend implementation and architecture 69
5.7 Integration with eAccessibility Checker 70
5.8 Architectural concerns . 71
5.9 Deploying andmonitoring the solution 72
5.10 Choice of technologies . 73

6 Discussion 87
6.1 Reflecting on themethod and prior art 87
6.2 Existing tools . 88
6.3 Design . 88
6.4 Limitations . 91
6.5 Research questions . 92
6.6 Suggested future research 95
6.7 Reflecting on the process 99
6.8 Concerns regarding privacy 100

7 Conclusion 103

8 Glossary 104

9 Appendix 105
9.1 Gannt chart . 105

References 106

iv

List of Figures

1 The Design Cyclemodel . 7
2 The Design Science Research Cycles 8
3 The Learning Design Framework 9
4 Loop11 presenting a task during a test run 28
5 Loop11 user interface formanaging a test run 30
6 Defining test page terms . 31
7 Studying the proxy–iframe technique used by Loop11 . . . 31
8 Commenting on an element using Usabilla 33
9 Commenting on an image using Draft 34
10 Infomaki presenting a heatmap 35
11 ClickHeat showing a heatmap 36
12 eAccessibility Checker checking uia.no 36
13 Achecker checking uia.no 37
14 Researhmodel . 47
15 Initial mockup drawn on paper 54
16 Higher fidelitymockup . 55
17 Tests of same type shown in single view 55
18 The home page of UTT 0.3 56
19 The test page of UTT 0.3 . 57
20 The result page of UTT 0.3 58
21 UTT dressed in black . 58
22 The pre-0.1 solution currently in use 61
23 The 0.1 solution proven to be ineffective 61
24 Tests of same type grouped into one page 62
25 UTT translated into Norwegian 63
26 Architecture overview . 64
27 The directory structure in the git repository of UTT 71
28 CoffeeScript and JavaScript side-by-side 78
29 The result view of eAccessibility Checker 92
30 Gantt chart . 105

List of Tables

1 The 7 principles of Universal Design 14
2 The attributes of usability (Nielsen–Hackos, 1993) 15
3 Proprietary tools—part 1 27

v

4 Proprietary tools—part 2 27
5 Open source tools . 27
6 Automated checker tools 28
7 Stakeholders . 48
8 The chosen technology stack 85
9 Glossary . 104

1

1 Introduction

As the Internet is gradually changing our societywith the increasing dig-
itization of services, the need for accessible and usablewebsites becomes
crucial. Peoplewithdisabilities stillfindinsurmountablebarriersonweb-
sites and online services, preventing full participation. The need for ac-
cessibleonlineserviceswill continuetogrowwith increasing lifeexpectancy
(E. Commission, 2007).

TheWebContentAccessibilityGuidelines2.0(WCAG)fromtheWorld
WideWeb Consortium (W3C) is a set of guidelines with defined success
criteriaonhowtheaccessibilityofawebsiteshouldbedesigned(Caldwell,
Cooper, Reid, & Vanderheiden, 2008). While it is possible to manually
check a website against these guidelines, a more effective approach is to
automate the testing. eAccessibility Checker1 (Nietzio, Eibegger, Good-
win, & Snaprud, 2012) is one such tool that automatically checks a web-
site against the success criteria defined inWCAG 2.0.

Someof the success criteria inWCAG2.0 canbe automatically tested,
but there are also some whose result cannot be reliably determined by a
computer. A checker can e.g. discover if the alternative text for an im-
age ismissing, or if it is a duplicate of another alternative text. Clearly, it
is much harder to automatically determine to what extent an alternative
text is indeed a good alternative source of information for thosewho can-
not see the image. For this and similar cases, the eAccessibility Checker
produces a result called “to-be-verified,” indicating that human verifica-
tion is yet needed.

In the course of this master’s project, a software artifact will be de-
signed that integrates with the eAccessibility Checker, to allow human
testers to determine what cannot be determined automatically.

The aim of the thesis is to arrive at a prototype to show a viable way
towards a crowdsource enabled user testing solution for websites. This
implies that the tool should have the potential to reach a large audience,
and to faciliate for this wide use, the tool is iteratively developed, and de-
sign decisions are informed by the feedback from evaluators. Given this
background, design research is chosen as the researchmethod.

1http://accessibility.egovmon.no/

2

1.1 Context

Themaster’sproject isorganized inthecontextofapre-project supported
by the Research Council of Norway, under the IT Funk program (User
Testing Tool forprosjekt – IT Funk, 2012). The project is co-ordinated by
Tingtun AS and is namedUser Testing Tool (UTT). The partners include
Accessibility Foundation (the Netherlands), Evangelische Stiftung Vol-
marstein /ForschungsinstitutTechnologie undBehinderung (Germany)
andSeniornett (Norway). All partnershave strong interest inwebsite ac-
cessibility testing. Both to shape theUTT design and facilitate the wider
take-up of the project results, the UTT project has established a strate-
gic reference group. To obtain further user testing input, additional or-
ganizations have been invited to form a reference group, including The
DeltaCentre (TheNationalResourceCentre forParticipationandAcces-
sibility), Agency for Public Management and eGovernment (Difi), The
Norwegian Association of the Blind and Partially Sighted (NABP), Dan-
ishAgencyfordigitisation,MinistryofState forAdministrativeDevelop-
ment inEgypt, thegovernmentagenciesLogius, andKINGin theNether-
lands and several individuals.

Dr. Mikael Snaprud, CEO of the Norwegian company Tingtun AS, is
the initiator and co-ordinator of the UTT project. Tingtun AS has co-
ordinated the eGovMonproject 2 andearlier international research lead-
ing to the eAccessibility tools to be used for automatic evaluation in this
thesis.

1.2 Research problem

Themain research problem here is how to design a user testing tool that
enable more people to improve accessibility testing of websites. Ques-
tions supporting this research problem are:

1. How to design a tool that integrates with an automated checker?

2. How can user tests enhance automated checker tests?

3. How to design a user interface to best support the user doing the
user testing?

2http://www.egovmon.no/ The eGovMon project was co-founded by The Research
Council of Norway under theVERDIKTprogramand has delivered tools for benchmark-
ing of eGovernment services.

3

4. How to best track the user behavior without any code injection on
thewebsite tobe studied, or software installationon theclient side?

5. Whatexistingopensourcesolutionscanbehelpful tosolve theabove
questions?

1.3 Document overview

This introductory part (Section 1) has identified a problem and outlined
requirements forasolution. The literaturereviewgivesanoutlooktoprior
research and defines concepts used throughout the thesis. (Section 2)
Subsequently a review of existing tools (Section 3) that UTT can poten-
tiallybuildupon isgiven. Thereviewsectionsare followedbyadiscussion
of researchmethods (Section 4), and an outline of howdesign research is
applied.

The Design section (Section 5) details how UTT is implemented; its
design choices and associated implications, and the choice of technolo-
gies. TheDiscussion andConclusion sections (Section 6 and 7) discusses
and sumsup lessons learned, research contributions, and suggests direc-
tions for future research.

4

2 Literature review

This section introduces existing knowledge related to the research prob-
lem, and attempt to build a working model that will be used throughout
the thesis. It starts out by describing the selection of literature, and then
presenting the chosen subset of the literature that is thought to be rele-
vant to this project. For instance, usability is one conceptwithmany def-
initions/models. Several have emerged throughout the years, and there
have been attempts of consolidating earlier definitions.

The author has chosen to structure the field into groups with each re-
search field as a sub-section in this literature review.

2.0.1 A note on terms and writing conventions

In the literature related to this research there is more than one defini-
tion/model of one concept. Also, there are different views regarding how
one concept is related to another, and even how fields of concepts relate
to other fields. There also exists overlap between the entitiesmentioned.

We attempt to use a vocabulary that is unambiguous, and we try to
sticktoonedefinition/modelperconceptconsistently throughout thethe-
sis. While different views are presented in the literature review, a sin-
gle definition/model will be used throughout the report. We have tried to
choose definitions/models which seem to be well-established.

This report is filled with jargons. A choice regarding consistency had
tobemade, andconcepts in this report arenotwritten in title case. When
a concept first is introduced, it is written in italic, and it is followed by a
definition. Once a conceptwith anabbreviationhasbeen introduced, the
abbreviation is generally used, even if the concepthasbeen introduced in
an previous section. A glossary is provided for looking up abbreviations
(Table 9).

2.1 Selection of literature

Literature review has been a continuous process throughout the project.
Digital libraries such as ACMDL, Google Scholar, and Bibsys Ask2 have
been used actively for searching the existing base of knowledge. This re-
view also includes resources found on the web, such YouTube videos and
blog posts.

5

Initially, thereviewwasdone inabroad, exploratoryway—searchphrases
were stringed together by combining keywords such as “hci,” “accessi-
bility,” “usability,” and “web evaluation.” Later on, as we started to gain
more insight about the research problem, the searches gotmore specific.
The knowledge-building process has been stimulated by reading litera-
ture reviews, books, blog posts, reviewing existing software, and engag-
ing in discussions both internally and with partners.

2.2 Design research

“Followingaresearchthroughdesignapproach,designerspro-
duce novel integrations of HCI research in an attempt to
make the right thing: a product that transforms the world
from its current state to a preferred state. This model al-
lows interactiondesigners tomake research contributions
based on their strength in addressing under-constrained
problems.”—Zimmerman, Forlizzi, and Evenson (2007)

Designresearch is themethodusedforcarryingout themaster’sproject.
The method consists of analytical techniques and perspectives for per-
forming research in the field of information systems. Design research
involves the analysis of the use and performance of designed artifacts to
understand, explainandvery frequently to improveonthebehaviorofas-
pectsof informationsystems(Vaishnavi&Kuechler, 2004). Theprimary
outcome of this study, the process experience, and the software used for
evaluating websites, is an example of a such designed artifact.

Design research will in this section be viewed in a historic context,
alongwith theorybehindknowledge. Next, threemodelsarepresented to
illustrate thenature of design research; two generalmodels that describe
its phases, and one viewing design research in an educational context.

2.2.1 The science of the artificial

Design science is also known as the science of the artificial. It is related
to the term old school of learning that will be discussed in the upcom-
ing section. Design science contrasts to the natural/behavioral science
paradigm in how knowledge is built. In natural science, theories about
objects or phenomenon in nature or society are developed and verified.

6

The theories describe and explain how the objects or phenomenon be-
have and interact with each other. On the other hand, the design science
paradigm is about building new and innovative artifacts that set out to
solve problems that are derived from practice and/or existing research
(Vaishnavi & Kuechler, 2004; Hevner, March, Park, & Ram, 2004). Both
paradigms are foundational to the IS discipline, and they are both con-
cerned with humans, organizations, and technology.

In design research, knowledge is generated and accumulated through
action (Owen, 1998). Theprocessof creating involves analysis of existing
designs, and a lot of experimentation.

2.2.2 Design research in a historic context

Within research communities, the value of design researchhas for a long
time been met with skepticism. There has been uncertainty “whether
there is such a thing as design knowledge that merits serious attention”
(Buchanan, 2001). Buchanan addresses questions related to its validity
inresearchinapaper that isbasedonapresentationataconferenceabout
design research in the United Kingdom, and it brings to attention the
struggle and conflict over the past centuries about the old school of learn-
ing thatwheredesign is adriving forceversus thenewschool (natural sci-
ences) of learning that ismore theoretical.

There are two works that are considered the earliest examples of de-
sign research, and those are Galileo Galilei’s Dialogues Concerning Two
New Sciences published in 1665, which is about Galilei’s 30 years of per-
sonal research on bodymovements that has resulted in his theory ofmo-
tions, and Francis Bacon’s Principia (1686). Design was not one of the
fields institutionalized in universities following the works of Galilei, Ba-
con, and others, except in general work of architecture and the fine arts.
In this century, natural science drove out design from the professional
school curricula inmany professions (Vaishnavi &Kuechler, 2004).

Manyresearchers,Buchananincluded, areoptimistic, andbelieve that
design research has its place. Daniel C. Edelson argues that it offers op-
portunities to learn unique lessons, yields practical lessons that can be
directly applied, and that it engages researchers in the direct improve-
ment of educational practice (Edelson, 2002). Despite thatmanywant to
seemore design research project being carried out, it has been a struggle
to integrate it in some academic institutions (Zimmerman et al., 2007).

7

2.2.3 A shift away from technological issues in information systems
research

Early information systems research has focused on technological issues,
but later there was a shift away from technological tomanagerial and or-
ganizational issues. A research commentary, drawing on a review of all
articlespublished in the InformationSystemsResearch journal tenyears
prior to its publish date, argues that the field has not deeply engaged its
coresubjectmatter—the ITartifact.Orlikowski&Iacono,2001arguethat
it tends to “disappear from view, be taken for granted, or is presumed to
be unproblematic once it is built and installed.” According to Vaishnavi
and Kuechler (2004), design disciplines have a history of building their
knowledgebase throughmaking,which involves the construction of arti-
facts and the evaluation of artifact performance following construction.

2.2.4 Three models for design research

The concepts of design research is arguably easiest by grasp by studying
models that explain its nature and the knowledge building that happens
through creation in iterations.

Figure 1: The Design Cycle model

Design Cycle model by Takeda et al. The Design Cyclemodel (Figure
1) by Takeda, Veerkamp, and Yoshikawa (1990) presents the design re-
search process along with reasoning. It starts with the awareness of a set
of problems. A problem is chosen to become solved along with a sugges-

8

tion for a solution. The suggested solution to the problem—or artifact—
is designed, and finally evaluated. The process repeated iteratively, and
it continues until a solution is found—or that one runs out of time. The
work results in suggestions for future actions.

Figure 2: The Design Science Research Cycles

Design Science Research Cycles by Hevner The Design Science Re-
search Cyclesmodel (Figure 2) shows three continuous cycles in a design
research project (Hevner, 2007). One cycle is about grounding the de-
sign to the existing base of knowledge. As the design evolves, it must be
reevaluated that it is still addressing problems discovered by existing re-
search. Part of the cycle is also providing new knowledge to the research
base. Another cycle ensures that the artifact addresses requirements in
the real-world environment. The artifact must be tested in a real envi-
ronment. Thefinal cycle is thedesigncycle, and it illustrates the iterative
development of the artifact.

TheLearningDesignFramework Therehavebeenseveral studiesabout
design researchand its effects for learning,which ishighly relevant since
this project is carried out by a student and the project is not a full fledged
researchproject intendedforsubmissiontoeither journalsorconferences.

Bannan–Ritland proposes a Integrative Learning Design Framework
(Figure 3) for design research in education, emphasizing stage sensitiv-
ityof researchquestions,dataandmethods, “andtheneedforresearchers
to design artifacts, processes, and analyses at earlier stages in their re-
searchthatcanthenbeprofitablyused(perhapsbydifferentresearchers)
in later stages” (Bannan-Ritland, 2003). One of its objectives is to con-
struct propositions about learning and teaching, and another is to engi-

9

Figure 3: The Learning Design Framework

neer and construct effective learning environments using software and
other artifacts to make the propositions actionable. It strives to “com-
bine the creativity of design communities with appropriate adherence to
standards of quantitative and qualitativemethods in education.”

Theframeworkhasbeenused inLiteracyAccessOnline(Bannan-Ritland
&Baek,2008), aproject for fosteringcollaborativereadingprocesseswith
children, and particulary those with disabilities.

2.2.5 Design research and HCI

Design research has gained a strong foothold in practice, but it has had
less impact on theHCI community. Zimmerman et al. (2007) argue that
there isnoagreeduponstandardofwhat research throughdesignmeans,
nor what a high quality contribution should be. A set of criteria is sug-
gestedforevaluating interactiondesignresearch: process, invention, rel-
evance, and extensibility.

Also of relevance is participatory design that include “theories, prac-
tices, analyses, and actions, with the goal of working directly with users

10

(and other stakeholders)” in the design of software. Assumptions about
technologies are questioned, such as if it is inevitable that technology is
applied in ways that “constrain, deskill, and devalue human work,” or if
software professionals “recognize and affirm the validity of perspectives
other than their own, […]” (Muller & Kuhn, 1993) Participatory design
attempts to bridge the tacit knowledge developed and used by practition-
ers with “researchers’ more abstract, analytical knowledge.” Participa-
tory design can be loosely defined as amethodology (Spinuzzi, 2005).

2.3 Human–computer interaction

Human–computer interaction (HCI) is a broad field concerned with the
interactionbetweenhumansandcomputers. Onedefinitionof thefield is
“theways that humans interacts with technologies for various purposes”
(Zhang & Li, 2005). Other terms that refer to the the same field and/or
includeHCI and its fields are Nielsen andHackos (1993):

• Computer–human interaction

• User–centered design

• Man–machine interface

• Human–machine interface

• Operator–machine interface

• User interface design

• Human factors

• Ergonomics

Human factors and ergonomics have a broader scope than human–
computer interaction (Nielsen & Hackos, 1993). Ergonomics is defined
as a “scientific discipline concerned with the understanding of interac-
tions among human and other elements of a system, and the profession
that applies theory, principles, and data (S. ISO, 2004). BothHCI and er-
gonomics broad, general fields, and both include three components; the
user, interaction, anda system. SinceHCIdefines the systemcomponent
as a computer system, we find itmore relevant in the context of UTT.

11

2.3.1 Dissecting the HCI term

One can dissect human–computer interaction, and view humans as the
end users of a piece of software. There can be more than one user. In
the context of evaluation software, onemight rather than viewing thehu-
man component as a single user, instead consider it to be a community of
users. (Computer Science 10 - Lecture 13, 2012) A computermight be a
mobile client, a server in the cloud, or a desktop computer. The interac-
tion is users telling the computerwhat theywant done, and the computer
gives resultback. The ideaof interactiondescribes theHCIcore, but isof-
ten neglected in existing research (Agrawal, Boese, & Sarker, 2010). The
interaction happens through a user interface.

2.3.2 User interface

A user interface is the part of an application that allow a dialog to hap-
pen (Computer Science 10 - Lecture 13, 2012). It might consist of ele-
ments such as dialog boxes, buttons, check boxes that are interactedwith
throughtheuseofconventional inputdevicessuchasakeyboard, amouse,
and touchpanels. The results of the interaction are shownon a computer
display and/or though physical feedback such as vibration. An example
of a user interface recently invented is the Reactable3—a software and
hardware device shaped like a round table that letmusiciansmanipulate
sound by placing and moving physical objects on top of it. The objects
affect each other, and some of the parameters related to each object are
changed by using touch gestures on the display.

A web page can be considered a user interface. It provides informa-
tion to the user, and the user canmanipulate what information is shown
by interactingwith elements on thewebpage andnavigating thewebsite.
Thenavigation is doneby clicking links or searching through the content
of the website.

2.3.3 Subfields and classification of fields

Classifying HCI and its related fields is a challenge, and HCI in IS has
beendescribed as a “fragmented adhocracy,”where IS researchersmight
be unsure if they should even consider themselves as HCI researchers
(Agrawal et al., 2010). What is certain is thatHCIhas amultidisciplinary

3http://www.reactable.com/

12

nature, and it coversmany fields and professions. A few of themany sub-
fields of HCI that are especially relevant in the context of evaluation of
websites are accessibility, usability, user experience, and visual design.

Astudythat isconcernedwithcommonagreeddefinitionsof the terms
ergonomics, usability, accessibility, andsafety setsout to stimulateacon-
sistent use of the terms (Wegge&Zimmermann, 2007). According to the
study, all fieldshave a foundation in or relation to the area of ergonomics.
In the context of the web, HCI is more specific, since the term says that
the component that a user interacts with is in fact a computer. For this
reason, and becausemost, if not all of the collected literature concerning
web technologies use theHCI terminology, the author has chosen to stick
with that. The workingmodel for this report is that usability, accessibil-
ity, and user experience are three distinct concerns.

2.4 Accessibility

Accessibility is about making content and services available to individu-
als, regardlessofanydisabilitiesorenvironmental constraints theyexpe-
rience (Mankoff,Fait,&Tran, 2005). Other termsused to refer to this are
universal usability, universal design, and design for all. While accessi-
bility is a subfield ofHCI, universal design is a broader term that implies
that the society as a whole should be accessible for everyone. Terms such
asAccessibilityanduniversaldesignareoftenmixedupandreplacedwith
synonyms (Wegge & Zimmermann, 2007).

Webaccessibilityencompassalldisabilities includingvisual, auditory,
physical, speech, cognitive, and neurological disabilities (Introduction
to Web Accessibility, n.d.). There might be varying degrees of impair-
ment, and there seems to be a well-establishedmyth that accessibility is
only about blind people (gotreehouse, 2012a). Universal design, while it
includes accessible technologies, also covers the physical environment,
i.e. persons using wheelchairs should be able to access buildings by way
of properly designed ramps, lifts, etc.

There has been a shift in terminology in recent years, where the per-
spective has changed from focusing onproblems to possibilities. Human
diversity is an example of a phrase intended to be inclusive and to not
stigmatize. “Only if and when human diversity becomes a natural start-
ingpoint for architectural designandsocietal planning, theneed for spe-
cial terms will vanish” (Iwarsson & Ståhl, 2003). A paper about the ter-

13

minology suggests to rather use the term functioning, as it denotes pos-
itive aspects of interaction between an individual and that individual’s
contextual factors (Iwarsson & Ståhl, 2003). Possible problems with a
change in terminology, is that they need broad acceptance in order to be
useful, and additional new termsmight in general cause confusion.

There are guidelines that state how a website should be designed to
ensure accessibility. One example of this is WCAG from the WAI/W3C.
Web accessibility is covered in depth in Section 2.7.8. There are several
measures to make websites accessible for all. International legislation
like the “Proposal for a Directive of the European Parliament and of the
Councilontheaccessibilityofpublicsectorbodies’website”(DigitalAgenda
for Europe - European Commission, n.d.), and the ratification of the UN
Convention on theRights of PersonswithDisabilities (Convention on the
Rights of Persons with Disabilities, n.d.) require that governments and
society (including the private sector) take appropriate measures to en-
sure that persons with disabilities have access to information and com-
munications technology. In Norway, a regulation to the Discrimination
andaccessibility law is expected to come into force in2013 to enforceuni-
versal designof all public online content anda large share of theprivately
ownedweb sites (LOV2008-06-20 nr 42: Lov om forbudmot diskriminer-
ingpågrunnavnedsatt funksjonsevne(diskriminerings-og tilgjengelighet-
sloven), n.d.).

Finally, there is a distinction between what is considered accessible
and what is usable. Accessibility is a prerequisite for all to be able to ac-
cess thetechnology, but thisdoesnotensureusability (Leventhal&Barnes,
2008). One business case argument for making a website more accessi-
ble, is that “28% of the WCAG Success Criterion are mapped to benefits
for Senior users. Baby Boomers account for 47% of US families and have
over $2,000,000,000 in buying power.” So when a website performs bet-
ter for older people, it is tied to ROI for the website owner (Yes, actually,
itmay be you one day, 2012). Another argument supportingmakingweb-
sites accessible is that it simply is the right thing to do, it leads to good
practice, and it helps avoid legal concerns (gotreehouse, 2012b).

It should be mentioned that technology set out to help people with
disabilities in many cases have also helped people without any disabili-
ties. When supporting different font sizes and color schemes on a web-
site, onemight as well let the user customize the look to his or her liking.
A another example is audiobookswhich took off as aUS government sup-

14

ported “Talking Books Program” in the 1930s aimed at persons with vi-
sual impairments, but which with the development of smaller and more
mobilemedia has reached amuch broader audience (Rubery, 2011).

Universal Design There are seven principles for universal design (The
Principles of Universal Design at Center for Universal Design, n.d.), and
they overlap somewhat with the usabililty definitions that follow.

Principle Description

1. Equitable use Usable and marketable for people with di-
verse abilities

2. Flexibility in use Accommodates a wide range of individual
preference and abilities

3. Simple and intuitive use Easy to understand, regardless of experi-
ence, knowledge, language skills or current
concentration levels

4. Perceptible information Communicates necessary information ef-
fectively, regardless of ambient conditions
or sensory abilities

5. Tolerance for errors Minimizes hazards and adverse conce-
quences of accidental or unintended ac-
tions

6. Low physical effort Can be used efficiently and comfortably,
with a minimum of fatigue

7. Size and space for approach and use Appropriate size and space for approach,
reach, manipulation, and use regardless of
body size, posture, or mobility

Table 1: The 7 principles of Universal Design

2.5 Usability

During thepastdecades, therehavebeenmanydefinitionsof the termus-
ability. This undoubtedly has something to dowith the shift in computer
use during the past decades, although some of the definitions are gen-
eral. In addition to several definitions, there have also been attempts at
creating new definitions that consolidate previous definitions. For this
report, I’ll stick to what seems to be two of themost cited definitions.

15

2.5.1 The Nielsen–Hackos definition (1993)

UsabilityasstatedbyNielsenandHackos(1993) isnotasingle, one-dimensional
propertyofauser interface. Ithasmultiplecomponents, and is tradition-
ally associated with these usability attributes:

Attribute Description

Learnability The system should be easy to learn so that the user can rapidly start
getting some work done with the system.

Efficiency The system should be efficient to use, so that once the user has
learned the system, a high level of productivity is possible.

Memorability The system should be easy to remember, so that the casual user is
able to return to the system after some period of not having used it,
without having to learn everything all over again.

Errors The system should have a low error rate, so that users make few er-
rors during the use of the system, and so if they do make errors they
can easily recover from them. Further, catastrophic errors must not
occur.

Satisfaction The system should be pleasant to use, so that users are subjectively
satisfied when using it; they like it.

Table 2: The attributes of usability (Nielsen–Hackos, 1993)

2.5.2 ISO definitions related to usablity

There are several ISOdefinitions related to usability, and two of themare
ISO9241-11 (W. ISO, 1998), and ISO/IEC9126-1 (I.O. f. S. E.Commission,
2001). The formerdefinesusability as “Theextent towhichaproduct can
be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use.” This standard is
said to be process-oriented. The latter standard defines usability as “The
capability of the software product to be understood, learned, used andat-
tractive to the user, whenused under specified conditions.” It is said to be
product-oriented.

Ithasbeenproposedto turnthesemodels intoaconsolidatedone(Abran,
Khelifi, Suryn, & Seffah, 2003) that takes both process and product into
consideration. The study also takes the definition/model of Nielsen and
Hackos(1993)andothers intoaccount. BecauseIhaveobservedthemodel
by Nielsen et al. being cited in a number of sources, I choose to use their

16

definition/model throughout the thesis.

2.5.3 User friendliness an inappropriate term

Someusabilityexpertsfindthetermuser friendliness inappropriate (Nielsen
& Hackos, 1993; Leventhal & Barnes, 2008). One of the reasons is that
machinesdonotneed tobe friendly to users—they should solveproblems
without getting in the way of the user. A second reason being that the
term implies that user’s needs can be described along a single dimension
by systems that are more or less friendly. A system that is perceived as
being friendly to onemight not be perceived as being friendly to another
user.

2.6 User experience

User experience4 is a term from the mid-1990s that has gained traction
recently. As computer hardware continue to becomemore powerful, and
computers are becoming an increasingly integrated part of peoples lives,
user interfaces are not only expected to solve the problems in an efficient
way, but to also involve the emotions of the user byhaving software that is
attractive. Subtle use of animations, refined typography, and careful use
of white space in designs, and social features are some attributes of the
recent trends.

2.7 Selected topics of web technologies

Since a large portion of the thesis is devoted to implementing a tool for
evaluatingwebsites, it is crucial tohavea solidunderstandingof the tech-
nologies that thewebbuildsupon, itshistory, andalsowhat the landscape
looks like today.

2.7.1 Development of a website requires many skills

One indicator of its growth is that to maintain a modern web page re-
quires more specialized expertise than previously. As roles tied to web
development are growing, there are blog posts written about classifying
roles such as frontend developer or backend developer (Redefining Web

4User experience is often abbreviated to UX, but we will write it out in this report.

17

Designers,WebDevelopers, andWebHybrids for themodernmarket -Tris-
tanDenyer, n.d.). In the early days of theweb, it was not unusual that one
person provided the code for a web page, designed it, and its content. To-
day, It isnotuncommonfora largerwebsite tohavean informationarchi-
tect, one ormore visual designers, one ormore developers, and for larger
websites there can be one person specializing in website performance.
There are many services and technology that abstracts away/outsources
tasks such as visual design. WordPress is one such example. Social net-
works abstracts away everything except the content.

2.7.2 HTML and CSS

It is important to understand the idea of markup versus presentation of
markup. A web page has traditionally, and to some extent today, con-
sisted of anHTML file (HyperText Markup Language) containing a tree
structure of elements thatdefine the content. Oneexample of anelement
is afirst-levelheading, and its contentmightbe“Signupforour services.”
W3C is the organization maintaining the HTML standards. (Standards
-W3C, n.d.). The latest standard, which views theweb not only as a page,
but as a platform, is HTML5. HTML5 covers a broad range of technolo-
gies, such as local data storage, video, web camera, and location (HTML5
Rocks - A resource for open web HTML5 developers, n.d.).

From the very beginning when the web was invented by Tim Berners
Lee and his team, it was intended to reframe the way information was
used, and how people work together (Tim Berners-Lee on the next Web |
Video on TED.com, n.d.). It was meant to be semantic, meaning that the
content should be described, or tagged tomake them easy to process by a
computer (The SemanticWeb: Scientific American, n.d.).

As thewebevolved, andthe the importanceofvisualdesign increased,
the HTML files were filled with markup that not only said what content
was, but also how it should be presented. There were several problems
with this. The most fundamental being that content and presentation
weremixedtogether, creatingaclutteredmarkup. CascadingStyleSheets,
orCSS,was created to solve this problemby separating content frompre-
sentation.

The problem of separating content from presentation is of course di-
rectly tiedtowebaccessibility, becausehavingthemseparatedmeansthat
the content can be presented in alternativeways. One example of how se-

18

mantic HTML is useful for screen readers is the difference between tag-
ging content as italic versus tagging content as having emphasis, or that
the content is a citation. For a sighted user, it makes little or no differ-
ence if a word is tagged with <i> or . To a visually impaired user, the
difference is significant, as the screen reader, at least in theory, can read
that particular word in an emphasized way (Bold and Italic Formatting |
AccessAbility, n.d.). An other common example is the use of font size or
bold typeface to indicate titles in a document. Suchpurely visualmarkup
is much harder to interpret automatically than the appropriate markup
using the HTML heading levels (Heading Tags (H1, H2, H3, P) in HTML
| AccessAbility, n.d.).

2.7.3 Frontend and backend

As websites becamemore complex, and grew into large stores (e.g. Ama-
zon) and libraries (e.g. Wikipedia), there was a need to generate HTML
pages instead of creating one and one “by hand.” A modern website is
built on aweb framework. Awebsite is usually divided into a frontend and
a backend. The backend receives e.g. an id of an article, and it delivers
HTML files that are often generated by mixing templates with content
from a database.

Thewebhasemerged tobecomemoredynamic, as therewaswithWeb
2.0 a shift from a vendor providing content towards users building the
content of a site. On a technical level, one very central component is the
use of JavaScript/ECMAscript in the frontend, i.e. the part of the web
page that is rendered/calculated on the client-side. JavaScript has been
available in browsers since 1995 as the only language, and it is the only
native scripting language available in web browsers. JavaScript has re-
ceived a lot of attention by browser engine developers, and a lot of work
has been put inmaking it perform fast.

In the early 2000s, the term Dynamic HTML was coined. It involved
the use ofHTML,CSS, and JavaScript and it involved changing awebsite
in subtle ways, such as showing/hiding a menu on a website (Web Style
Sheets, n.d.). In the mid 2000s, an interesting use of XMLHttpRequest
emerged, a technologyfirst introduced inInternetExplorer in1999(Native
XMLHTTPRequest object - IEBlog - SiteHome -MSDNBlogs, n.d.). It was
used to change the content dynamically an a page without reloading the
page. Downloading the entire page from the server and re-rendering it

19

takes longer, and also causes the screen to flicker. Today entire frame-
works are written in JavaScript that dynamically builds the website.

A common requirement for websites today is that they are expected
to adapt to desktop, mobile, and tablet devices. A website that renders
correctly on these devices is said to be responsive (ResponsiveWebDesign
· An A List Apart Article, n.d.).

2.7.4 Web application frameworks

Therole of aweb framework is to give anapplication structure, and to sep-
arate its responsibilities. An application needs some sort of structure,
e.g. to to separate how it looks (views) from how it is navigated (routes),
and a way to handle the application data (model).

Some web frameworks dictate a directory structure. This has a num-
ber of advantages. First, it makes it easy to find the file that one’s af-
ter, but perhaps more importantly, it means that as one jump from one
project to the next, then it is consistent.

Some web frameworks provide a tool for initiating a new project, e.g.
with a directory tree, an initial route, and a “Hello,World” view.

2.7.5 Single-page application architecture

Single-pageapplication (SPA) is “awebapplicationorwebsite thatfitson
a single web page with the goal of providing amore fluid user experience
akin to a desktop application” (Single-page application - Wikipedia, the
free encyclopedia, n.d.).

SPA has gained traction recently, and one notable example is Sound-
cloud, awebsite forartists sharingtheirmusic thatrewrote itsentireweb-
site to SPA in 2012 (Building The Next SoundCloud - SoundCloud Back-
stage SoundCloud Backstage, n.d.). The website now allows for playing
music while navigating within the between pages, something that previ-
ously would have required opening an external popup window. Another
example is the newweb based Spotify client that is now in beta.

For a SPA, there is an initial HTML file requested by the user agent
containing the application code. Any subsequent content than what is
initiallypresented iseithercontained inthefile, or it is transferredthrough
apersistentWebSocketconnection. ASPAisusuallybasedona library/framework.

20

Backbone.js5 and Ember.js6 are examples of SPA frameworks.
SPAcanenablenavigation similarwebsites built using the traditional

architecturewhere each page is separately requested. One benefit of SPA
however, is that it allows formorefine-graineddefinitionsofwhat exactly
a page is. But by doing so, it conceptually breaks themodel of what a page
is, and while logical pages can and should be defined, caremust be taken
when designing them.

The part of an URL that follow a HTML file7—the fragment identi-
fier (Fragment identifier -Wikipedia, the free encyclopedia, n.d.)—is not
sent to the server, regardless of architecture. The user agent recognizes
a combination of a hash sign and identifier as a jump to a section defined
by the identifier. However, since it is possible using a client-side script to
pick up the fragment following theHTML, it can also be used for routing
purposes.

One of the challengeswith SPA is that a long-runningweb pagemight
leadtomemory leaksaselementsaremanipulated—i.e. elementsarecre-
ated anddestroyed. Variousmechanisms exists for addressing this prob-
lem (HowTo: Detect BackboneMemory Leaks | AndrewHenderson, n.d.).

2.7.6 State

State is a complex issue in software development. For a web shop, state
might be the notion of a user that is logged in, and that the user should
stay logged inwhennavigatingbetweenpages. Traditionally, clickingaround
on a web pagemeans sending a HTTP request to the server. Since HTTP
isa statelessprotocol, stateneeds tobe implemented ina layerabove, and
a session is usually implemented both by using cookies in the client, and
by sharing the cookie data with the server.

2.7.7 Semantic versioning

The concept of versioning of software needs no introduction. The term
semantic versioning refers to a formalization of a very common way of
versioningschemeforsoftware(SemanticVersioning2.0.0-rc.2, n.d.), and

5http://backbonejs.org/
6http://emberjs.com/
7Usually one does not see the name of the HTML file, as web servers removes in-

dex.html by default from the URL.

21

it is especially useful for software components that are used in software
products.

Semantic versioning follows an x.y.z scheme, where ‘x’ is amajor ver-
sion, ‘y’ is aminor version, and ‘z’ is a bug fix. Whilemost software com-
ponents follow this scheme, or a very similar one, the versioning of soft-
ware products, such as operating systems, image manipulation applic-
taions, and web browsers are often tied to marketing. In a competitive
market, a higher numbermight give the impression that it is better than
a competing product with a lower number. Sometimes an internal ver-
sion is used in addition to the “marketing version” to make it easier for
developers tomanage the various versions.

Recently, the version numbers for web browsers such as Chrome has
reached a high number such 27, and it updates itself in the background.
It is our observation that people pay less attention to versionnumbers, as
there seems to be a trend towards incremental improvements—at least
for software in this category.

2.7.8 Web technologies and accessibility

As stated in the beginning of the previous section, the web was initially
designedtobesemanticbywrappingcontent intheappropriateelements.
Although this helpsmachineparsing, this alone is not a guarantee for ac-
cessibility. An image for instance, needs further to have its alt attribute
filled out so that a screen reader can present the image to the user. The
presence of an alt attribute is a requirement for awebpage to becomeval-
idated against the HTML standard.

Web Accessibility Initiative (WAI) is an effort by W3C launched in
1997with the intent of improve the accessibility of theweb (WAIHistory,
n.d.). WebContentAccessibilityGuidelines is a set of guidelines formak-
ing web content accessible.

As outlined in the previous section, the web is gettingmore complex,
andthere isneedforadditionalmarkupbeyondwhat is intheHTMLstan-
dard to help users with disabilities. Recently, mechanisms has emerged
for giving additional cues to assistive technologies. WAI-ARIA is one of
them, and involves adding so-called landmarks to existing elements. An
example is setting attribute role of a div-element to value navigation so
that a screen reader quickly canmove to this region of the page (The Ac-
cessibility ofWAI-ARIA, n.d.).

22

Many of today’s accessibility checking tools work by measuring the
source code against implemented success criteria belonging to a guide-
line such as WCAG. There is one problem with this. Taking the source
codeas input is startingtogetproblematicas theweb is transitioning into
client side architecture that involves content being loaded into the doc-
ument at run time. For UTT, the source code only contains the skeleton
of the application. The fact thatmany accessibility tools rely on a source
based DOM has been blogged about recently (MOTHER EFFING TOOL
CONFUSER, n.d.).

Anexistingcrowdsourceapproachtoaccessibility testing isFixTheWeb
(Addressing accessibility | Fix the Web, n.d.), a website where one group
of people report accessibility issues encountered on websites. Another
group notifies owners of the websites about the reported issues.

2.8 Crowdsourcing

Crowdsourcing is defined as “the practice of obtaining needed services,
ideas, or content by soliciting contributions froma large group of people,
and especially from an online community, rather than from traditional
employees or suppliers” (Crowdsourcing - Definition and More from the
FreeMerriam-Webster Dictionary, n.d.). Here is a more throughout def-
inition by JeffHowe:

“Simplydefined, crowdsourcingrepresents theactofacom-
pany or institution taking a function once performed by em-
ployeesandoutsourcing it toanundefined(andgenerally large)
networkofpeople in the formofanopencall. Thiscantake the
form of peer-production (when the job is performed collabo-
ratively), but is also oftenundertakenby sole individuals. The
crucial prerequisite is the use of the open call format and the
largenetworkofpotential laborers.”—JeffHowe(Crowdsourcing:
Crowdsourcing: A Definition, n.d.)

Wikipedia is perhaps the success story with its use of crowdsourcing,
and Kittur,Chi, Pendleton, Suh, andMytkowicz (2007)address theques-
tion whether it “is driven by a core group of ‘elite’ users who do the lion’s
share of work,” or if there is a large number of “common” contributors.
The study acknowledges that there has been a shift from elite users to

23

large crowd in recent years, but that the story is more complex than pre-
vious explanations. The results mirror the dynamics found in more tra-
ditional collectives.

Another example is Amazon’s Mechanical Turk8—amicro-task mar-
ketwherea largeamountofworkerssolve tasks“formarginalcostswithin
the timeframe of days or even minutes.” For this approach to be effec-
tive, special care is needed in formulating the tasks, and especially for
measurements that are subjective or qualitative (Buhrmester, Kwang, &
Gosling, 2011).

A further interesting approach is to solve large-scale computational
problems through online games. The ESP Game was designed to assign
labels to images and involves two players that are paired together, and
the goal is to guess a label that thepartnerwould give to an image. Anum-
ber of suggestions can be typed, and the process is called “agreeing on an
image.”A similar approach canbe used for providing appropriate textual
descriptions for images on the web (Von Ahn, 2006).

A recent, novel use of crowdsourcing is the SwedishDJAvicii that for
EricssonproducedXYou, theworld’sfirstcrowdsourcedhit (Ericssonteams
upwithDJ and producer Avicii to try and crowdsource theworld’s first hit
song, n.d.).

2.9 Open source software

Thehistory of open source iswell-knownandwill not be covered in depth
here. It canbe summedupby saying that it has beenahistorywith strong
personalities, hacker culture, politics, and open source is today imple-
mentingmost of the infrastructure on theweb and formany enterprises.
Thereexists largeecosystemsforcommoninfrastructurecomponents that
runsbankingsystems, largee-commercesolutions, andmobilephones to
mention some. Linux is perhaps themost known, and arguably themost
successful open source technology.

There are several advantages with the open source model. Like sci-
entific research, one builds on the shoulders of giants, and the model is
transparent, as it allows one to inspect the code of the running software.
One characteristic of open source technologies, is that a project can be
forkedwhen somepeople feel that a project should go into another direc-
tion. Similarly, two projects mightmerge if they should happen to share

8https://www.mturk.com/

24

the same vision.
There are many licenses for an open source project to choose from.

opensource.orgmaintainsa listofall licensesapprovedbytheOpenSource
Initiative. Care must be taken when combining components of various
licenses into oneproduct—this especially holds true for proprietary soft-
ware. What often separates the various licenses is how restrictive they
are when it comes to contributing back, and how they can be used in a
proprietary product.

For this master’s project, open source is important to assure the ac-
countability of the resulting software, and to encourage further develop-
ment of the results.

25

3 Existing tools

Existing tools and services are studied with several goals in mind; the
first is to learn what is the state-of-the-art. Also, we need to find out if
UTT can be built by extending an existing open source tool. A third goal
is to select an automated accessibility checker to integrate with. Finally,
a vocabulary is needed for further discussion of UTT. Terms will be de-
fined based on analysis of existing tools.

What follows is a subsection describing the selection process. The se-
lected tools are subsequently presented in tables, and a few tools are ana-
lyzed indetail. There is anadditional sectiononrecruiting services. This
section closeswith a list of findings, and the objectives and requirements
for the new tool.

3.1 Selection process

The process of finding and selecting existing tools are described in this
section. Tools covering any of the aspects accessibility, usability, user
experience, and visual design are included in the review. Even though
UTT currently only is intended for accessibility evaluation, the tool has
the potential to cover additional aspects in the future, and nevertheless
we believe there is a lot to learn about handling of user interaction from
tools in the latter three categories.

The first goal is to include such variety of tools that the state-of-the-
art is outlined. To accomplish this, we look at tools that use a traditional
survey approach, aswell asmorenovel approacheswhere e.g. a user gives
feedback by clicking directly at an element on a web page. We also see
how crowdsourcing is used by current tools.

Both proprietary and open source solutions are studied. One benefit
of open source is the great potential to reuse and extend existing tools.
For proprietary projects, one can borrow ideas for testing methods. Al-
thoughthemajorityof tools foundarenon-academic, thefindings includes
research projects as well.

The process of searching for existing tools is similar to the literature
review. Web search engines and journal search engines are searched us-
ing keywords, filtering is done based on a set of criteria, and then a num-
ber of tools are studied.

Wehave found lists of tools thathavebeenofhelp, suchasEthnio’s list

26

of usability and user experience tools9. There is aWikipedia page with a
list of GUI testing tools10 for “automating the testing process of software
with graphical user interfaces,” but these belong to adifferent category of
tools, as will be discussed in the upcoming paragraph.

Asource of confusion AutomatedUI testingandUIautomationare two
related categories that have little to do with what we try to accomplish,
but they need to be mentioned since they use several overlapping terms,
and the implication of the term automation differ.

AutomatedUI testing—or regression automation—is about automat-
ing the testing process of UIs by simulating input device events in a UI,
andinanautomatedwaydetermining ifa functionalityworksas intended.
Selenium is a well-known project in this category of software. Similarly,
UI scripting, or automation of UI tools to automate repetetive tasks. Au-
toHotKey and Automator are popular tools in the latter category.

As a sidenote, tools in these categories might be integrated into the
development process of UTT in the future.

3.2 The selection of tools

Table 3 and Table 4 show the proprietary tools found, and Table 5 shows
the open source tools. Table 6 shows the automated checker tools for ac-
cessibility testing that UTT potentially can be integrated with. No work-
ing demos were found of two tools from the literature, and consequently
they are simply described.

9http://remoteresear.ch/tools/
10http://en.wikipedia.org/wiki/List_of_GUI_testing_tools

27

Loop11 Usabilla Ethnio Draft

Website loop11.com usabilla.com ethn.io draftapp.com

Test methods Sequence of tests,
feedback-button
that can be inte-
grated

Feedback-button
integrated on web
page is clicked, user
selects element on
page, reports emo-
tion, tags, shares
comment, and
rates speed of
website

Survey-like
screener shown
to test visi-
tors/recruits test
participants for
other services

Clicks a spot on a
design and leaves a
comment

Test area/coverage Usability, user ex-
perience

Usability, user ex-
perience

User experience Visual design

Needs client-side installation No No No No

Needs modification of website No Yes Several options
– One option is
to use JavaScript
if one wants to
recruit visitors

N/A

Needs to define test run Yes Yes N/A N/A

Table 3: Proprietary tools—part 1

UserTesting UserZoom Verify

Website usertesting.com userzoom.com verifyapp.com

Test methods Video feedback and written
answers to questions

Task-based, card sorts, click
tests, and more

Tool asks a question re-
garding e.g. preference,
user performs action on
web page, tool asks more
questions about user

Test area/coverage Usability, user experience Accessibility, usability, vi-
sual design

User experience, visual de-
sign

Needs client-side installation No Only when capturing be-
havioral data such as heat
maps

Not sure, probably not

Needs modification of website Not sure Not sure Not sure

Needs to define test run Yes Yes Probably

Table 4: Proprietary tools—part 2

Infomaki ClickHeat

Website sourceforge.net/projects/infomaki labsmedia.com/clickheat

Test methods Ask questions regarding a screenshot about
where to find something, capture mouse
movements and click, generate heat map –
also support surveys

Logs mouse activity on a web page which is
used to generate heat maps

Test area/coverage Usability, visual design Unsure

Needs client-side installation No No

Needs modification of website Yes Yes

Needs to define test run Yes N/A

Table 5: Open source tools

28

Achecker Wave eAccessibility Checker

Website achecker.ca wave.webaim.org accessibility.egovmon.no

Test methods Tests website against var-
ious guidelines/custom set
of test criteria

Tests a web page for acces-
sibility barriers

Automatically checks web-
site against WCAG 2.0

Test area/coverage Accessibility Accessibility Accessibility

Needs client-side installation No No, but it is a possibility to
use the tool using a Firefox
toolbar extension

No

Needs modification of website No No No

Table 6: Automated checker tools

3.3 Loop11

Figure 4: Loop11 presenting a task during a test run

Loop11 is a proprietary, web-based usability and user experience test-
ing tool. It integrates with the testedwebsite. The basic flow of the tool is
that a person responsible for testing of a website sets up a test run from
an adminstrative section. A test run is a set of tests that are presented
in a sequence—i.e. one test per page. A test is either a task or a set of
questions. Figure 4 shows a screenshot of a test page with a task. Once a
test run is defined, it is shared with participants. Participants are either
recruited using recruitment services, or they are providing by the user.
Participants are identified by their email address.

Loop11 is free to use for a limited amount of time. The author chose to
registerusinghispersonal email address, and to testhispersonalwebsite
using the tool. Thiswasdone to seehowthe testingprocessworked—both
to get an idea of what the user interface was like, and to get an idea of its
implementation.

29

3.3.1 Definition of a task

A Loop11 task has a name, a scenario, a start URL, and one to many suc-
cess URLs. Loop11 provides an examples of a task name:

“Buy themusic CD titledThe Essential Elvis Presley.”

A task has also a scenario—an elaborated version of the task name,
similar to a use case:

“In two weeks it is your father’s birthday and you need to buy
him a present. He has been a big fan of Elvis Presley since he
was a teenager and he has always talked about how the music
CD titled The Essential Elvis Presley is the only one missing
from his collection. Locate this CD and buy it for him.”

3.3.2 Definition of a question

A set of question might be of one of these types: multiple choice, rating
scale, rankingquestion, oropenended. Thevarious typeshave sub-types.
It is possible to have an open ended answer that is restricted to one line.
This suggests that one is after a short answer. Another possibility is to
have a comments box. This invites the participator towrite downhis/her
thoughs and feelings in detail.

What thevarietywaysofaskingquestionshave incommonis that they
want theuser’sopiniononsomething. Somewaysofgettingthat is through
multiple choices that aremutually exclusive, i.e. one can only choose one
of them. Another where one can check zero to many. Other variants in-
clude rating scales (rate the usability of this website from 1–4), rating
from (1–10) where you have a negative opinion on the left side, neutral
in themiddle, and a positive opinion on the right side.

Thequestionsarenotmandatorybydefault. Onecanmakeonemanda-
tory by clicking a check box while creating the question. There are addi-
tional options for some types of questions. For most types of questions
providing more than one answer, one can randomize the order. For the
multiple choice questions, one can add “Other” as the final choice. For
the rating scale with matrix and ranking question, one can add a “N/A”
option.

30

Figure 5: Loop11 user interface for managing a test run

3.3.3 Managing a test run

We found the interface for managing tasks and questions intuitive (Fig-
ure 5). It is possible to preview tasks and questions, duplicate them, pre-
view them, delete them, and move them up and down by dragging and
dropping with themouse.

There are various features that a test administrator can use to cus-
tomize a user test. One can limit the maximum number of participants,
provideacustomthank-you text, or redirect theuser toapage if theywant
to. It is also possible to appendcustomIDs touser testURL.This is useful
to track participants that one should provide incentives to.

It is also possible to say if one should allowmultiple responses per IP,
and/or include/exclude IP ranges.

3.3.4 Test page

To enable further discussion of both the Loop11 and UTT user interface,
we need to established some general terms. Loop11 integrates questions
withthewebpagethat isbeingtested. Inthetool—whichinself isawebsite—
there is a question on top, and thewebsite is seamlessly presented under-
neath.

As shown in Figure 6, we define a test page as the web page showing
tests, test page header refers to the upper part showing the question and
navigational elements, and test page body to refer to the part showing the
currently tested web page.

31

test page header

test page body

test page

Figure 6: Defining test page terms

3.3.5 The proxy–iframe technique

Loop11 uses iframes to present a web page, and the web page is served
through a proxy. The technique will from now on be referred to as the
proxy–iframe technique, and it allows the tool to modify the tested web-
site. Code is injected into the website, enabling the tool to track various
data, such as navigation around a site and/or capturing events from in-
put devices. Another use of this technique is highlighting of elements by
injecting CSS.

Figure 7: Studying the proxy–iframe technique used by Loop11

Tostudythe implementationof this technique,wehaveusedtheChromium
web browser to inspect the test page (see Figure 7). Although one cannot
always get a clear understanding of how the underlying system is imple-

32

mented this way, it does suggest a great deal about how the user interface
is implemented. We observed that the value of the iframe src-attribute
(URL of embedded web page) does not point directly the web page cur-
rently tested. Instead, the web page being tested is served through an-
other server, one that ismore than likely set up by Loop11 as a proxy.

One interesting note is that in the Loop11 tool, it is recommended to
inject a JavaScript snipped into the site being tested for solving perfor-
mance and rendering issues.

Using a proxy technique might be necessary for doing what we have
mentioned, as an embedded website cannot be modified from the outer
page.

iframes and accessibility The use of an iframe needs to be carefully
considered forUTT.While frames are not inaccessible tomodern screen
readers, they can be disorienting (WebAIM: Creating Accessible Frames,
n.d.). We consulted one of our partners, BirkirGunnarsson, an Icelandic
expert in web accessibility, and he suggested to design the test page body
in such way that it presents no more than what is necessary for user of
screen readers.

3.3.6 Inviting/recruiting participants

Loop11hasavarietyofwaysof inviting—andevenrecruiting—participants.
One possibility is to generate a link that can be sent over email to a par-
ticipant that one knows. Another way is to generate a popup invitation
that needs to be inserted into thewebsite. This is shown to visitors of the
website. The lastmethod is to recruit participants using a recruiting ser-
vice. Loop11 integrates with three different ones. One of them, Ethnio,
is covered in a later section.

3.4 Usabilla

Similar to Loop11 is Usabilla—a proprietary service used for improving
theusabilityanduserexperienceofwebsites. Usabilla isalsousedby large
companies, and it appear high in search resultswhen searching for tools.
Unfortunately, we have not been able to try it out by registering. While
it does have a 14 days free trial, one have to choose a plan with amonthly
price. Since it is notmy intention to pay for the product,Wehave learned
asmuch as we can about the product by researching its website.

33

Figure 8: Commenting on an element using Usabilla

Usabilla works a bit different compared to Loop11. Instead of design-
ing a test run that is used by participants, one inserts a feedback-button
on the website where visitors selects a part of a website, selects an emo-
tion (from hate to love), tags it with tags such as “attractive,” “interest-
ing,” or “complex,” writes a comment, rates the website speed, and op-
tionally enters ones email address (see Figure 8). The feedback box is
shown on top of the website. While it is shown, the website is dimmed.

3.5 Draft

By following the startup community on HackerNews11, one can discover
new and interesting technologies made by small companies and/or indi-
viduals. Draft.12 is aproprietary service for enabling easier collaboration
between designers and clients.

The designer sends a design to a client to recevie comments on. The
image is annotated by the client, and they are able to communicate using
multiple comment fields anchored to spots on the image. This somewhat
is similar to the Usabilla idea, were feedback is given by selecting an ele-
ment and commenting.

One detail regarding the implementation is that Draft uses HTML5
technologies to enable annotation, instead of using e.g. Flash or other

11http://news.ycombinator.com/
12https://www.draftapp.co/

34

Figure 9: Commenting on an image using Draft

non-standard technologies.
Related tools to Draft are Frontify andMocku.ps13. The former is for

communicating between a frontend developer and a visual designer. The
latter has approximately the same use case as Draft.

One possibility for UTT is to present comments from different users
in the test page header. A possible problem with by implementing com-
ments is that a commenter might be influenced by what has previously
been written. This might have both positive and negative effects regard-
ing the quality of the collected data. A solution might be to show other
comments after the user has commented, but is might have a similar ef-
fect, only on a higher level—that is, the users learn from eachother how
they are “supposed” to comment. The effects of having a comment field
in the context of a user testing tool could be a topic for further investiga-
tion.

3.6 Infomaki

Two open source usability/user experience tools were found, and those
are Infomaki and ClickHeat. These are candidates for extension, as one
can either fork one of the tools and develop it further, or suggest for the
developers permission to be a part of the project.

13http://frontify.com/ and http://mocku.ps/.

35

Figure 10: Infomaki presenting a heat map

Infomaki is a project initiated and developed by The New York Pub-
lic Library’s Digital Experience Group. It builds on the ideas of a popu-
lar proprietary service named Five Second Test, and is used to “evaluate
newdesigns for theNYPL.orgwebsite anduncover insights about our pa-
trons.”14 It shows a popup to the user, asking the visitor to answer one
question. The visitor is shown a question with a screenshot below, and is
asked to locate a certain piece of information. Afterwards, the user can
either answer another question or return to the website. Infomaki is de-
veloped on top of the Ruby onRails web framework. The results from the
user testing is a heat map showing where on the page the user is likely to
click to find the information (Figure 10).

It is uncertain to the author wether InfoMaki is actively developed or
not. On its SourceForge page, the latest commit is dated 2009-05-13, sug-
gesting that it is not actively developed. On the summary page, there is
a “last updated” date that says 2013-04-19 – less than amonth relative to
when this was written. The author is not sure what this date indicates.

On a superficial level, Infomaki might seem similar to Loop11. The
user interface can be described using the test page model. However, the
test page body shows a screenshot of a web page—and not a web page.
Also, the test run capabilities of the tool seem limited. There is little to
nothing that can be reused for UTT.

14http://journal.code4lib.org/articles/2099

36

3.7 ClickHeat

ClickHeat is the other open source tool that is a “visual heatmap of clicks
on a HTML page”.15 It does not seem like a product as much as the pre-
vious tools, as it does not suggest any use cases for the heat map. Un-
fortunately, its demo site was down when planning to take screenshot of
the tool, and the one foundon theClickHeatwebsitewas somewhat small
(Figure 11).

Figure 11: ClickHeat showing a heatmap

While the TTwill not implement any tracking ofmouse activities for
the prototype, thismight be interesting in the future.

Figure 12: eAccessibility Checker checking uia.no

3.8 eAccessibility Checker

TheeAccessibilityCheckerchecksawebpage, orawebsiteagainstWCAG
2.0. In the user interface, the address of a web page to check is specified,
and after clicking “Check,” the checker shows what tests have been ap-
plied, howmany have passed, howmany have failed, and howmany that
must be verified by a human. Checker results can be exported to CSV.

15http://sourceforge.net/projects/clickheat/

37

TheeAccessibilityCheckeralsohas functionality tocomparewebsites—
or benchmark—that have been tested. This has been used by Norwegian
municipalities forawhile, but isnowalsousedbythegovernment inQatar.
Thebenchmarkallows formonthly comparisonof checkedwebsites. The
checker also has capabilities for checking PDF documents.

The author is already familiar with the project, as its development is
coordinated by Tingtun.

Figure 13: Achecker checking uia.no

3.9 Achecker

Achecker16 is very similar to eAccessibilityChecker—it checks the acces-
sibility of a website against accessibility guidelines using an automated
approach. While the interface looks lesspolished tous than the eAccessi-
bilityChecker, it supportsseveralmoreaccessibilityguidelines. Achecker
provides aWeb Service API17 returning the results in an XML format.

Achecker does not seem to have capabilities for carrying out large-
scale testing of websites. On its website it says “This tool checks single
HTML pages for conformance with accessibility standards to ensure the
content can be accessed by everyone [emphasis added].”

3.10 Existing research projects

We have looked at existing research to see if we could find existing tools
thathavebeendevelopedforevaluatingusability. Wehavechosentowrite

16http://achecker.ca/
17http://atutor.ca/achecker/demo/documentation/web_service_api.php

38

about existing research projects under one topic, as we have only been
able to find two that seem relevant—and they are developed a decade ago,
whichmakes themnot so relevant when looking at web evaluation tools.

3.10.1 AWUSA (2002)

AWUSA is a tool combining information architecture, automatedusabil-
ity, and webmining techniques (Tiedtke, Märtin, & Gerth, 2002). It is a
prototype developed in Java that takes XML both as input and output. A
SVG is used to represent the results. The tool builds on the assumption
that futurewebsitesweredeveloped inXHTML—inotherwords, that they
were well-formed XML.While XHTML has gained some traction, many
websites are written inHTML.HTML5 offers a XHTML5 variant.

3.10.2 WEBUSE (2003)

WEBUSE (WEBsite USability Evaluation Tool) is a research project that
summarise website usability issues and groups the issues into a set of 24
usability guidelines (Chiew & Salim, 2003). It uses these guidelines to
develop a survey-like tool that asks visitors to evaluate the website.

3.11 Recruiting services

Getting a large number of participants for testing a website can become
a challenge. One way to do it is to use recruiting services such as Ethnio
or Cint18 OpinionHUB. Cint claims to give access to “millions of verified
panelists recruited from over 600 unique panels according to your spe-
cific criteria.”Another isKnowbilityAccessWorks19 that enables recruit-
ingparticipantswithdisabilities. Theusersperformtasksusing their as-
sistive devices, and give “a detailed analysis about accessibility pitfalls at
the website.”

What these services have in common is that they find real people that
canaccomplish theuser testing. EthniousesTwitter tofindparticipants,
and the participants are paid with Amazon Gift Certificates. One possi-
ble problem is that these peoplemight not be representative for the aver-
age of population.

18http://cint.com/
19http://www.knowbility.org/

39

Ethnio, in addition tobeinga recruiting service, alsohas a survey-like
screener that one can add to thewebsite. It is addedby adding JavaScript
to web pages one wants to intercept on.

One weakness of these recruiting services is that the testing subjects
might not be representative for the average of the population. For in-
stance, Ethnio uses Twitter to recruit users. This means that all partic-
ipants are likely to be Twitter users. One can with most of these service
choose demographics, such as country, gender, age, and/or educational
level. TheKnowibilityAccessWorksservice isunique inthat therecruited
participants perform tasks using assistive devices.

3.12 Findings

This section goes through what has been learned by looking at the exist-
ing tools, both by placing them in a matrix by comparing their capabili-
ties, and by looking closely at a few of them.

3.12.1 Interactive usability/user experience tools

Forall theusabilityanduserexperiencetools thatare lookedat, theyseem
tohaveavarietyofways inwhich testing isaccomplished, andhowtesters
are recruited. Some showed a survey to visitors, others provided a feed-
back button where a user can report feedback regarding one specific ele-
ment. Others were more complex, and had a test run with various tests.
What all the usability/user experience tools have in common, is that they
areproprietary, andall of themareprovidedasserviceswithvariouspric-
ingplans. All data are stored at thedomainandbusiness thathosts them,
and the tools provide reports and export to formats such as Excel, SPSS,
orCSV.All the toolswereusingamanualapproachforgathering theopin-
ion of the user— i.e. no automated checker to figure out if a website is us-
able or not. There were two tools found that were related to usability and
userexperienceandthatwereopensource, but theonly functionality that
they had was trackingmouse activity.

3.12.2 Accessibility tools

For accessibility tools, it was quite different. The tools were automated
testing tools that checked the website against implementation of acces-
sibility guidelines. Two out of three tools looked atwere open source, and

40

the last one, while not open, is supported by W3C which generally has
open tools.

3.12.3 There is no existing tool to build upon

Two tools that were open source were found; Infomaki and Labsmedia
ClickHeat. While they seem to be good tools, their goals differ so much
fromUTT and its requirements, that it is not practical to build on top of
them. Bothof themtracksmouseactivity, and it isnotunlikely to include
this in UTT at some point.

While UTTwill not be based on an existing tools, it will be built using
open source technologies. Ideas can be borrowed from all existing tools,
and ideas regarding implementation can be borrowed later on from the
open source toolsmentioned.

3.12.4 Conclusion

According to what we know so far, no tool exists which can combine au-
tomated accessibility testing of websites with user testing. Because we
intend to support checking of websites, the tool will integrate with the
open source tools developed by the eGovMonproject and the user testing
experience among the partners and in the reference group. The tool will
be released under an open source license to facilitate wider use, exten-
sions, and research to build on the master’s project results. Also, choos-
ing an open source approach is essential to enable external review of the
implementation to uncover potential bugs and establish a reliable imple-
mentation of the tool.

The following list sums up our findings:

1. Existingusabilityanduserexperiencetools testsmanually, andthey
are proprietary services with paid subscription

2. Most accessibility tools tests in an automated way against imple-
mentation of accessibility guidelines, most tools are open source,
and they have a public instance available

3. There are few existing usability and user experience tools that are
open source, and those who are has limited functionality

4. There are few, if any, academic projects concerned with usability
and user experience testing that are both recent and active

41

5. There isnotool foundthatcombinesautomatedcheckingwithman-
ual checking

3.13 Objectives and requirements

Based on our findings, we have identified four objectives with respective
requirements; to support testswhose results cannot be determinedby an
automated checker, to build a tool that supports crowdsourcing, to have
a tool that is considered accountable, and finally that the tool should not
require any installation by test users, nor any modifications of the web-
sites to become tested.

3.13.1 Objective 1: Support users to verify tests that are not auto-
mated

About 20% of the perceivable tests for accessibility can currently be au-
tomatically determined. Extensive user testing is needed to get a more
complete overview of the barriers of a given website. Themain objective
of this thesis is to explore and demonstrate ways in which this user test-
ing can be supported.

Requirement 1.1: Integratewithautomatedchecker Tointegratewith
the automatedchecker, the automatedcheckerneeds anApplicationPro-
gramming Interface (API) thatprovides testswhose resultneeds tobede-
termined by humans.

3.13.2 Objective 2: Support crowdsourcing

Acoreconcept is theuseofcrowdsourcingtocollect largeamountsof test-
ing data. Several benefits are expected from this approach including:

• Better access to more user testing data to enable quality assurance
of the collected data.

• Wider coverage of client applications and their configurations in-
cludingbrowsers, operatingsystems,devicesandassistive technolo-
gies.

• More effective user engagement, allowing disability groups to run
their own targeted initiatives e.g. to cover a group of central ser-
vices for their needs.

42

A remark on privacy Privacy is a critical issue for UTT since the
approach is planned to use data about users capabilities, their installed
tools and settings, and theuser behaviour. It needs tobe carefully consid-
ered in the future what data is to become collected, how to inform users
about this, andhowtoconformtothe lawsregardingdatacollection,which
varies among countries. The prototype will not store any of the collect
data andwe therefore leave thedetailed solutionof these issues for a later
stage (see Section 6.8).

Requirement 2.1: Intuitive to use The tools needs to communicate in a
plain language that is easy for all people tounderstand, and it shouldhave
as few visual elements as possible to prevent the user frombecoming dis-
tracted. Theusability anduser experience shouldbecarefully considered
when designing the user interface.

Requirement 2.2: Works on any device Some existing solutions for
user testing require expensive equipment such as eye tracking input de-
vices, and the testing may be conducted in a testing lab. This limits the
applicability for crowdsourcing andmakes user testing too expensive for
many businesses. A goal of this research is to create a tool to enablemore
people to carry out better tests of websites. Desktop, tablet, and mobile
devices should be supported.

Requirement 2.3: Supports assistive technologies The tool must be
usable by people with disabilities. It needs to work with assistive tech-
nologies such as screen readers.

Requirement 2.4: No need to define a test run There is no need for a
user role for settingupa test runassociatedwith awebsite. One shouldbe
able to test any website without having to e.g. define a sequence of tests.

3.13.3 Objective 3: Assure accountability

Several accountability aspects needs to be built into the tool. This is es-
pecially important for certification of website accessibility.

43

Requirement 3.1: Enable review of test specification In addition to
the code of tests being available, there should be a textual description de-
scribing the intent of the tests, and what they do.

Requirement 3.2: Enable review of test implementation The source
code of tests needs to be open, in a way that enables people to review how
they are implemented.

Requirement 3.3: Enable reproduction of test results It should be
possible to reviewhow the testing software has arrived at a certain result.

3.13.4 Objective 4: Requires no installation ormodifications ofweb-
sites

Requirement 4.1: No need to modify website The tool should be able
to test a website withoutmodifying it.

Requirement 4.2: No need to install any additional software UTT
will not require installationof anyadditional client-side softwarebesides
a web browser.

Requirement 4.3: Support for different techniques The tool should
be able to test content implemented using different techniques, such as
HTML or PDF. Also digital TV formats should ideally be possible to test.

44

4 Method

This section starts out by arguing why design research was chosen over
similar methods for this research project. It proceeds by detailing how
the research project was carried out, and then the research model that
show how the artifact relates to the context is presented. The third sec-
tiondescribes thecollaborativeprocess, and thepeople involved. Finally,
the process of both developing the artifact and writing the thesis is re-
flected upon.

4.1 Design research

It will in this section be argued why design research is chosen over simi-
lar methods for carrying out this research project. The section closes by
mentioning how we choose to borrow terminology from software devel-
opmentmethods to be able to discuss the content of an iteration.

There are three methods that will be discussed, and those are design
research(DR),ActionResearch(AR),andarecentActiondesignresearch
(ADR). For the sake of brevity, we will refer to the technology artifact as
artifact, and organizational concerns as context.

4.1.1 Design research and action research

DRis concernedwith theconstructionandevaluationof artifacts tomeet
organizational needs as well as the development of their associated the-
ories” AR is a change-oriented approach in which the central assump-
tion is that complex social processes can best be studied by introducing
change into theseprocessesandobservingtheireffects (Cole,Purao,Rossi,
& Sein, 2005).

It has been argued that in how knowledge is built, it makes little dif-
ference inpracticewhichapproachisused,despite the fact that theirper-
spectivesdiffer, but that therearenuancesofdifferences(Papas,O'Keefe,
& Seltsikas, 2011). Others acknowledge their similarities, while suggest-
ing to combine the twomethods into a singlemethod, as the research ap-
proaches are said to be compatible, and that they can inform eachother
(Cole et al., 2005).

45

4.1.2 Action design research

In a research essay that proposes a new research method, ADR, it is ar-
gued that DRpay little attention to its shaping by the organizational con-
text, that DR focus on building the artifact and relegate evaluation to a
subsequent and separate phase, that technological rigor is valued at the
cost of organizational relevance, and that it fails to recognize that the
artifact emerges from interaction with the organizational context even
when its initial design is guided by the researcher’s intent (Cole et al.,
2005). ADRisdesignedtoaddress thisproblem,andit reflects“thepremise
that IT artifacts are ensembles shapedby the organizational context dur-
ing development and use.”

What seems to separate the threemethods involvingdesign is towhat
degree they weight the different concerns. For AR, context is a primary
concern, and artifact a secondary one (an artifacts effect on the context
is studied). For DR, artifact is a primary concern and context is a sec-
ondary one (an artifact is built in a context). For ADR, it seems like two
are concerns are weighed equal (an artifact is built in a context, and its
effect on its context is studied) ADR is fairly recent (2011), and it will be
interesting to see if it gains traction in the future.

4.1.3 Choice of method

Allmethodsdiscussedare inonewayoranotherrelatedtobuildingknowl-
edge throughdesign. While there seemtobe far less researchprojects in-
volving design compared to natural science, it is not the intent to choose
the design paradigm for experimental reasons, but rather because it is a
prerequisite to solve the research problem. Given the small size of the
project, we believe that the nuances of differences in the various meth-
ods are not going to affect the outcome in a drastic way. We have sug-
gested that AR, DS, and ADR weight concerns differently. This research
project is primarily concerned with designing an artifact, and its effect
on a context cannot be fully understood until the artifact has reached a
certain stage ofmaturity. We do however receive feedback during the de-
velopment, and for this reason, the context is certainly not ignored—we
let the feedback actively influence the development of the artifact.

Because of the limited amount of documented practice about ADR,
and becausewehave chosen a designmethod out of necessity rather than
forexperimental reasons,wehavechosen togowithamethod that iswell-

46

established. This is consistent with the choice of technologies, where we
favor those thathave alreadygained tractionover those that are still at an
experimental stage, despite the fact that recentonemighthaveattractive
qualities.

4.1.4 Intended use of design research

In this section, it will be statedhowwe intend to applyDR to guide us car-
rying out the research project. The Discussion section (Section 6) revis-
its this discussion, and reflects upon howDRwas used.

The research project stem from both practical problems that needed
to become solved, as well as unexplored areas of research as indicated
by the existing knowledge. More specifically, this project builds further
on the existing work that has been done on the eAccessibility Checker
through the eGovMon project.

Byusing amethod centered arounddesign, it is the belief thatwe gain
newknowledgethroughcreation, andcreation isaniterativeprocess. The
iterative nature is both emphasized by the Design Cycle model by Tak-
enda et. al, and the Design Science Research Cycles by Hevner. It is ac-
ceptable, and even a part of the method to go back and forth between
phases (Vaishnavi &Kuechler, 2004).

The development of the artifact has been split into threemilestones.
Evaluation has been carried out for each iteration by involving evalua-
tors, and have them comment on the artifact.

4.2 Borrowing terminology

Design research does not include a vocabulary for discussing what is ac-
complished during an iteration, as it might be used for more than just
software development. Software development methods such as Scrum
defines one such vocabulary, where the iteration itself is named a sprint.
The complete set of unsolved tasks associated with a project is named a
backlog. A set of tasks to become solved is assigned to one sprint.

There aremany services on the Internet forhosting the source code of
open source projects, and these services usually offer an issue tracker, a
wiki—and some of themevenhave capabilities reminiscent of social net-
works. GitHub is chosen for UTT, and the reasoning will follow. GitHub
has an issue tracker where one can create amilestone with associated is-
sues. Amilestonecan, at least for thisproject, translate toasprint/iteration,

47

andan issue canvieweduponas a task. OnGitHub, thebacklog is all open
issues belonging to a project. We will try to use the GitHub terminology
throughout this thesis, but Scrum is mentioned as a point of reference
since we assume that the reader is already somewhat familiar with it.

4.3 Outcomes

There are two primary outcomes of this research project; the UTT arti-
fact, and the knowledge and experience documented in this thesis.

There is one secondary outcome, and that is the findings about exist-
ing tools (See Section 3.12).

4.4 Research model

The following research model illustrates the research problem and the
context that it lives in.

Human–Computer Interaction

ConceptsWebsite

Testing tools

Universal Design

Accessibility

Usability

prerequisite for

Automated testing tool

Test website against WCAG, Section 508, …

User testing tool

Test website by letting user accomplish tasks

User Experience

enhances

Test website by asking for user opinions

results to be verified

Web page

augments/analysis of user answers enhances

Crowd sourcingOpen source

Figure 14: Researh model

4.5 Collaboration

Manypeople is inonewayoranotherbeeninvolved inthisresearchproject.
In the introduction, the context has been described, and it will not be re-
iterated here. Below is a table of all people involved.

48

Organization Country Role

Agency for Digitisation Denmark Reference group member

Agency for Public Manage-
ment and eGovernment (Difi)

Norway Reference group member

Die Evangelische Stiftung
Volmarstein

Germany Comment on specifications
and testing

Logius The Nether-
lands

Reference group member

Ministry of State for Adminis-
trative Development

Egypt Reference group member

Seniornett Norge Norway Testing of demonstrator

Stichting Accessibility The Nether-
lands

Test, comment on specifica-
tions and method

The National Resource Cen-
tre for Participation and Ac-
cessibility

Norway Reference group member

The Norwegian Association
of the Blind and Partially
Sighted

Norway Reference group member

Tingtun AS Norway Coordination and develop-
ment

Table 7: Stakeholders

What can be considered the core project group is Alexander, Janis,
and Mikael. Alexander is the student, Janis the internal supervisor of
this project. Mikael has several roles in this project. Beside being the
initiator of the project and coordinator for the larger project, he is the
external supervisor, responsible for keeping in touch with partners, and
project owner.

All three are familiar with each other, and the atmosphere has been
informal within the project group. Because of having working together
for a while already, a way of working has already been established, such
as how to contact each other. During the collaboration, there has been a
short feedback loop, whichhas been beneficial for the progress. All three
are deeply into the philosophy open source, and we believe in the saying
“release early, release often.”

49

4.5.1 Meetings with supervisors

As indicated by the Gantt chartmentioned in the previous section, there
have been severalmeetings during the project, and these were organized
and led byAlexander. The planned frequencywas every secondweek, but
meetings were held less often.

An email was sent by Alexander to the supervisors beforehand con-
taining URL the last meeting report, and the agenda. The meeting was
heldoverSkype, andactionpointsanddecisionswere theoutcomeofeach
meeting.

4.5.2 Physical location

Alexander has during the project worked at different physical locations
depending on what has been working on, but most of the development
andwritinghasbeendoneat theTingtunheadquarters. Drafting the text
was done at home, the university cafeteria, in bars and restaurants.

4.5.3 Building of the artifact

Thissectionswill lookat thedevelopmentprocess inregards to thecollaboration—
how to get feedback from the evaluators.

All contact with partners, such as sending invitations for feedback,
have been done by Mikael by email. For some of the emails, Alexander
wrote a draft, and they were refined by Mikael before sending them out.
Each round of feedback has had a duration of approximately 1–2 weeks.
We expected that not all of the Norwegian evaluators could participate
before the 0.3milestone because of lack ofNorwegian translations, but it
did notmakemuch difference in any direction.

When asking users for feedback, rather than sending a survey or ask-
ingopenquestions,wesimplyaskedtheparticipants toprovidetheircom-
ments. The lack of a predefined form for answers has resulted in a great
variety of responses, and we think it worked out well. What makes this
a sensible approach is both the fact thatMikael has a long history of col-
laboration with the evaluators, and also that the evaluators were paid for
giving feedback. One example of feedback that we received was a three
page long document with experiences from a number of users. Another
example is a short paragraph written by one person.

The feedback thatwegotwas frompeoplewithdifferentbackgrounds.

50

Birkir Gunnarson, an Islandic expert of web accessibility that is visually
impaired, gave valuable feedback of what needed to be done to improve
the tool for visually impaired users. We had detailed discussions with
himoveremail regarding implementationof the tool, suchashowtopresent
the test page body in a way that would be effective for a person using a
screen reader.

A topic that needs to be touched upon is who has the final say regard-
ing artifact designdecisionswhenopinionsdiffer. The answer forUTT is
that theprojectownerhas theauthority tomakedecisions if therearedis-
agreements. Therehavebeendiscussions, such ashow to receive input in
the user interface. Theway thatwehaveworked is thatwehave discussed
an idea, we have come up with a few possible solutions, and then we have
decided upon what is the best idea. If there is no consensus, then one ei-
ther discusses possible solutions further, or the project owner makes a
decision for what solution to implement for the upcoming iteration. Not
before trying a solution on real users dowe know if an idea is good or not.
Sometimes one have to go many rounds with ideas before a solution can
be reached. When looking beyond the next iterations, there is really no
“final say”—working with accessibility on the web has a never-finished
nature, and continuous user feedback is the onlyway tomeasurewhether
a solution is effective or not.

As the technologies on the web advances, web accessibilitymust keep
up with the changes. This way of putting it implies that new technology
does not take accessibility into account, and this is in our experience of-
ten true. So as the technology are constantly changing, we need to keep
up to not leave out people with disabilities.

4.5.4 Milestones and associated issues

Asmentioned, GitHub is chosen for handlingmilestones and issues. It is
used to host the source, and it has good integration between source code
and issues. It was chosen because we are already familiar with it—and
we like it, but there are many similar alternatives such as CodePlex, Bit-
bucket, Gitorious and Google Code that provide similar functionality.

Starting fromUTT 0.2, for each iteration has been defined as a mile-
stoneonGitHub. Amilestonehas adescription, andanoptionaldate. We
haveused the versionnumber as thenameof amilestone, andwehave set
the date to a deadline that has been agreed upon. For UTT, issues stem

51

from discussions about objectives and requirements, feedback by users,
andbugs thatarediscovered. Foreachmilestone, anumberof issueswere
selected.

An issue is onGitHub said to be open until either the creator of the is-
sue, oronewithadministratorprivilegeschooses toclose it. Onecanlabel
an issue with “wontfix” if there is some reason why the issue should not
be fixed; thismight be because it is a feature not in linewith the project’s
goals, that the issue isnot really an issue (as the sayinggoes; it’s not abug,
it’s a feature), or that the issue is a duplicate of a previous issue.

Fornow, onlyAlexanderhas created issues, but anyone registered as a
user on GitHub is free to open an issue. During this project, all feedback
has been reported by email. An issue can be labeled, and two labels that
are provided by default are “bug” and “enhancement.” GitHub does not
have built-in functionality to estimate the length of an issue, so we have
setupcustomlabels forhowmanyhourswebelievean issue takes to solve.
A Fibonacci sequence is used, since estimation becomes less precise as
the task complexity increases.

Estimation has proven to be a challenge, and it was not done at all—at
least not at a task-level—beforeplanning the0.3 iteration. Only thedates
of the previous iterations were planned. Some of the estimation errors
was caused by anunderlying assumption that the developer is productive
all the time. Also the tasks were not broken down to smaller tasks, which
could havemade the estimationmore precise if we did.

One of the goals of the eGovMon project is transparency. Having the
issue tracker open enables people to read the reasoning of design deci-
sions. At the start of the project, the issues was stored as a private to-do
list. Lateron, itwasdecided touse theGitHub issue tracker, anda links to
the issue trackerwasput inUTT, and sent in emails topartners. It should
be mentioned that we do not force evaluators to use the issue tracker to
give feedback, as most of them are not software developers, and they are
more used to email.

There are cases where public issues needs to be considered. In 0.2
there was a related bug where typing “http://http://tingtun.no” (or an-
other invalid protocol) in UTT would crash the backend. We chose to fix
it without making the issue public, but we then published the issue for
reference. The worst case scenario in this case is that the backend goes
down, and evaluators will not be able to test the tool.

52

A note on versioning Software components used forUTTuse semantic
versioning, and for UTT, we start the first iteration at 0.1. The second is
0.2, and the third is 0.3. 1.0 is communicates that software is production
ready. For that reason, ending the UTT development at 0.3 signals that
it is an early prototype that need. This semantic versioning scheme was
also used for documents belonging to master’s project—even for meet-
ing reports—but was later dropped in favor of postfixing filenames with
dates.

When it is referred to version 0.2 in the report, it reallymeans 0.2.x—
or, any version of 0.2.

4.6 Other

It will here briefly be mentioned some methods considered for develop-
ing UTT.

4.6.1 Code review

In a professional software development environment, one common pro-
cedure is to submitnewlywritten code tobe reviewedbefore it is included
in the code base. For UTT, there is only one software developer involved,
and for such a small project there is no resources for reviewing the code.
Code review is likely to be more interesting if the project grows, and the
number of developers increases.

4.6.2 Blogging

Alexander decided early to blog about the progress of the UTT develop-
ment on his blog. The advantages was that it would function as a diary
of progress, and that other people could read. Initially, some blog posts
were written, but he lost interest after a while. Bloggingmight work bet-
ter in the future, but for thisproject, direct communication suchas email
and Skype was effective.

53

5 Design

“View it, code it, jam – unlock it”—Technologic, Daft Punk

Inthis section, thedesignactivitiesofbuildinga tool thatmatches the
project objectives and derived requirements is described in detail. We
have found itmost sensible to start by presenting the development of the
user interface, then proceed by describing the architecture of UTT, and
detailing howUTT is implemented. Finally we will describe how choices
weremade.

In many ways, what has been designed has stretched far beyond the
scope of a prototype. A number of concerns have been taken into con-
sideration, such as scalability and longevity, that usually are not consid-
eredwhenbuildingaprototype. Because thisproject is apre-project for a
larger project, it was decided to carefully design the architecture, so that
the artifact can be further extended in the future.

Describing the design process is in many ways a challenge, as it is a
creative process where hundreds, if not thousands of small decisions are
made unconsciously. There is a lot of trial-and-error involved, decisions
affectingotherdecisions, andwehaveoftenreliedonpastexperienceand
intuition rather than planning everything step out in detail. There have
beenfrequentchangesof theartifactbasedonexperimentationandfeed-
back from evaluators.

5.1 Revisiting requirements

The tool needs to be accessible. Since the tool should be used by many
people, it should be easy to learn. And since we want the users to answer
questions, the interface needs to look attractive, and it should have a fast
response timeafterhavingansweredaquestion. Thenextquestionneeds
to show up instantly to not tire the user. It is acceptable that the applica-
tion takesabit longer to load if itmeans that theuser canquicklynavigate
between/answer tests.

Theuser interface alsoneeds to be rock stable. Clicking a button twice
bymistakewhile something is loading should not confuse the state of the
application. Unfortunately, these issues are very common, and often re-
quireonetorestartanapplication. Choiceof technology isdiscussed later
on, but we need to use technology that canmake all of this happen, while
being assured that it will stay relevant for a long time.

54

5.2 Designing the user interface

In this section we start by looking mockups preceding the implementa-
tion of the tool, and thenpresent the user interface of the current version
of UTT.

5.2.1 Preliminary visual design mockups

Mockups were designed during the Fall of 2012 to guide the discussion of
the project. The first mockup was drawn on paper (Figure 15). The final
two (Figure 16; Figure 17) were presented at ameeting at The Agency for
Digitisation in Copenhagen for partners and members of the reference
group about UTT and related projects. While the details have changed
somewhat along the way, the general idea remain unchanged.

Grouping tests of the same type Figure 16 suggests how to present a
test. Figure 17 shows howmore tests of the same type can be grouped to-
gether on a test page. The current version of UTT supports only the for-
mer, but evaluators have suggested to group tests together.

Figure 15: Initial mockup drawn on paper

5.2.2 The current user interface

The user interface of UTT provide three pages; a page shown initially for
enteringURLofawebpage to test, a testpagewhere theuseranswerques-
tions, and a result page that both shows the answers provided in addition
to automated test results.

All three pages share a navigation bar—or navbar—that provide but-
tons for navigating through the tool pages. A label is provided for the test
and result page. The home page is reaced by clicking “UTT.”

55

Figure 16: Higher fidelity mockup

Figure 17: Tests of same type shown in single view

Home page The home page (Figure 18) is the landing page for the tool.
Other thanpresenting general information about the tool, it lets the user
enter a web page to test.

Testpage Thetestpage(Figure19) iswhere theuseranswersquestions.
The page has a test page header consisting of a progress bar, a question,
answer buttons, a link for going to the previous test, and a link for skip-
ping to the next test. The test page body is implemented as an iframe.

Result page The result page (Figure 20) shows all test results returned
from the automated checker, and the user tests are shownfirst. The non-
user tests arehiddenbydefault. Colors are used in the table to emphasize
if a test has passed (green), failed (red), or if it needs to become verified
(orange).

56

Figure 18: The home page of UTT 0.3

5.3 Specific user interface functionality

Thissectiondealswithuser interface functionalitywherewehavereceived
a lot of feedback. Also, there are components that we have made, and
some stuff that we did not have time to implement.

5.3.1 The flow of a test run

Of the results to become verified, UTT selects maximum 10 tests. Maxi-
mum two tests of the same type are presented, and tests of the same type
are grouped so that they are displayed in succession. It is allowed to skip
questions, and it is possible to navigate back and forth between tests.

5.3.2 Hightlighting element being tested

One of the original goalswehad for the 0.3milestonewas to highlight the
element currently being tested on awebsite. Asmentioned, the test page
body is an embedded web page (iframe), and what seems like a good so-
lution is to manipulate the content of the embedded web page from its
parent web page.

Oneproblemis thatonecannotaccess thecontent iframedirectly from
the parent website. It is limitedwhat one can do to an iframe beyond set-
ting itsURL. So to detect for instance themouse coordinates, oneneed to
inject code into thewebpage itself. Wedonotwant to require thewebsite

57

Figure 19: The test page of UTT 0.3

owner to modify it, so a solution is to run the web page through a proxy
while injecting the needed code. This seems to be the approach taken by
Loop11.

We did not have time to implement highlighting of elements, but we
would like to use a technique similar to Loop11 if this should be done in
the future.

5.3.3 Change of colors

Bootstrap allows for swapping out the default themewith others that can
either be downloaded for free, or bought on a website such asWrapBoot-
strap.20. We tried a fewof the freedesigns, and foundonewithdarkback-
ground and light text aesthetically pleasing (See Figure 2121). As can be
seen in the figure, it can be hard to distinguish between the header and
body of a test page. This topicwill be covered in aminute. Itwas reported
by users that the choice of colors were not optimal both in terms of con-
trast and readability. The default Bootstrap theme was chosen instead,
which has dark text on light background.

One of the feedback we got the last round was that the blue link color
was too light, and that it should be underlined. What we have observed
a trend the past years that the use a dark grey text color instead of black

20https://wrapbootstrap.com/
21The screenshot is shown in a small size to be as print-friendly as possible.

58

Figure 20: The result page of UTT 0.3

Figure 21: UTT dressed in black

is common22, and link colors of Bootstrap are somewhat lighter than the
browser default link color. While these colors might be more aestheti-
cally pleasing, theymight be a hindrance for people with disabilities.

Thepowerof a frameworksuchasBootstrap is that itsdefault areused
by several thousands of websites. Accessibility improvements in the de-
fault configurationwillbenefitmanywebsites, andevenmoreusers. While
it is nice to have a framework that looks good, it needs to be carefully con-
sidered by its developers and community what default values it should
have. The changelog for 2.323 and a number of accessibility related is-
sued opened by the lead developer24 indicate that accessibility is actively
considered.

22A quick inspection at Google’s design reveals the darkest text color in use is #222,
which isalmostblack. Another example isTheNextWeb,wherearticle excerpsbothhave
a light font, in addition to having amedium gray color.

23https://github.com/twitter/bootstrap/pull/6346
24https://github.com/twitter/bootstrap/search?p=2&q=accessibility&ref=cmdform&type=Issues

59

5.3.4 Hard to distinguish between test page header and test page
body

One reported issue for the 0.1 iteration, was that there were no obvious
way to see what part of the user interface was test page header, and what
part of the user interface was the test page body. This problem can be
moreprominent incaseswhereUTTtool and thewebsitehappen to share
the same colors.

We can think of three solutions that might be combined to indicate
that these are separate parts. We have chosen to implement two of them.
One solution is that one can detect what background color the website to
become tested has, and use a different color for the test page header. An-
other solution is to have a thick line separating the two. A third is to ani-
mate the test page header so that it slides down, while the test page body
is shown. We have chosen to implement the latter two.

The test page header is only animated for the first test. A slight delay
is added before the slide animation, so that the user can comprehend the
test page bodyfirst. A small part of the test page header is shown initially
so that the user can sense that there is something above, before it slides
down.

5.3.5 Handling keyboard input

We received feedback about the lack of keyboard support for UTT. Hav-
ing tools that are keyboard friendly are likely to prevent injuries such as
repetitive strain injury. Having good support for keyboard is important
for tasks that are repeatedoften, anda commonuse case for thekeyboard
in a UTT test page is to trigger one of the answer buttons. One currently
needs to press the Tab-key a number of times before arriving at the but-
tons.

Although we did not have time to implement a solution, several solu-
tions were discussed. One is to focus the first answer button. Then the
user can press until the desired answer is highlighted, and finally press
enter. The downside of this solution, and especially for a test user that
gets paid for the amount of tests answered, is that he or shemight choose
the first answer because it is convenient. A slightly better solutionmight
be to focus on a neutral answer such as “Unsure.” However, if that but-
ton is placed in themiddle of “Yes” and “No,” then one risk that the same
thing happens, as it is more work to press Shift-Tab to focus the left but-

60

ton compared to focusing on the next button, which requires one to press
Tab. Also, not all users know about Shift-Tab to focus on the previous el-
ement, so theymight cycle through the list before arriving at the first.

A better solution for ensuring that has less risk of reducing the in-
tegrity of the collected data is tomap a letter on the keyboard to each but-
ton; ‘y’ for“Yes,” ‘n’ for“No,”and‘u’ for“Unsure.”Analternative/additional
solution is tomapnumbers to theanswerbuttons. It is alsoapossibility to
enable the user to choose answer with arrow keys—this solves the Shift-
Tab problem, but people aremight bemore used to tab over arrows when
navigating through user interface elements.

Whatever solution is chosen, it shouldbecommunicated to theuser in
someway. Wehavenotdiscussedhowthis canbedone, butonepossibility
is a notification hint in the upper right corner that disappears after a few
seconds. A cookiemight be used for ensuring that thehint is shown three
times or so. Another solution is to have a help section within the tool.

While we did not arrive at a solution for making UTT accessible by
using the keyboard, we did one small keyboard focus detail that we find
essential; after UTT has been loaded, the keyboard focus is set on the el-
ement accepting URL. After receiving feedback from a user, we imple-
mented the URL input does not require one to specify the protocol.

5.3.6 Handling mouse input

Currently the user interface is optimized for answering questions using
themouse. For the0.1 iteration, answerswere implementedusinga set of
radio buttons—one radio button for each answer, and a separate button
for proceeding to the next test as shown in Figure 23. This proved to be
ineffective. The user had to click an answer, move the mouse pointer to
the right to click “Next,” and thenmove the pointer back to the previous
location to select an answer for the next test. This back-and-forthmove-
ment was reported to put strain on the hand after only a few tests. One
user coined the phrasemouse kilometers to describe howhe felt about the
mousemovements.

In a pre-0.1 solution (never used by evaluators), we implemented an-
swers as buttons that would go straight to the next test when clicked, as
shown in Figure 22 (the buttonswere implemented as a Bootstrap button
group25). However, we decided to go for the solution using radio buttons

25http://twitter.github.com/bootstrap/components.html#buttonGroups

61

Figure 22: The pre-0.1 solution currently in use

Figure 23: The 0.1 solution proven to be ineffective

right before the release of 0.1. This was done because we assumed testers
wouldbemore familiarwith formsfor thepurposeofevaluatingwebsites.
Secondly, the fact that a formmust be submittedmakes it convenient for
a user to correct mistakes, and because it allow the user to click various
answers, and think through them before commiting to one26.

Based on user feedback following the 0.1 release, we reverted to the
pre-0.1 solution for the0.2 release, andconsequentlywe chose tonot view
the user interface as a form. The use of a button group can be justified,
as people are used to toolbars and similar user interface components for
manipulating objects. In addition, toolbar buttons often lead to an ac-
tion. Small navigational links was included for the user to either go back
to correct an answer, or to skip a test.

Still, there are two concerns that speak in favor of radio buttons. For
a group of tests within one test page (Figure 24), it might bemore appro-
priate to have a form with a submit button at the end. The alternative is
to use the current button groups, which can act as radio buttons (one of
them can be pressed down, similar to a button group on a vintage stereo
system), and proceed to the next test automatically when the all tests are
answered.

ELMER27 is a set of guidelines for helping making simpler andmore
effectiveweb forms. There is no guideline stating that a formchoicewith

26The latter is a possibly unintended use of radio buttons, but still interesting observa-
tion of how functionality is used. A similar phenomena is the use of a mouse pointer as
an alternative to the index finger for reading text on a desktop device.

27http://www.brreg.no/elmer/

62

Figure 24: Tests of same type grouped into one page

a submit button. We sent an email to Thomas Bjørkan, the maintainer
of ELMER, and we asked if we had overlooked something. We also sent a
link to UTT that shows the choice of using toolbar-like buttons. Thomas
confirmed that there was no such guideline, but that he would consider
including it in ELMER 3. He agreed with the solution of using buttons
rather than radio buttons.

5.3.7 Other refinements

A lot of thought went into what information to present as well as what in-
formation tonotpresent in theuser interface. Itwascarefully considered
howmuch emphasis to place on the various text elements. User interface
test adjustments was mostly feedback fromMikael. Also formatting is-
sues such as line breaks in the introductory text that shows upwhen first
opening the tool were dealt with.

5.3.8 Internationalization

For an application to be able to reach to a wide audience, it is a prereq-
uisite that it is not only available in English, but also other languages as
well. For the UTT development, having the tool support other languages
means that more people can give feedback. Until UTT 0.3, there was no
support for languages other than English, and this might have excluded
some from participating.

Adding internationalization capabilities took a bit longer than esti-
mated, as it involved changes to the user interface, and the code base,
and a throughout research onwhat JavaScript librarieswere available for

63

Figure 25: UTT translated into Norwegian

offering this. Some concerns that makes internationalization complex
are pluralization rules specific to various languages, and different ways
of structuring a sentence.

Wehave prior experiencewith translating the eAccessibility Checker
, which might have guided us to go for a solution that is more complex
than what is required in a prototype; a simpler solution for translation
could be realized with a two-level associative array where the first level
key is the language, the level key being the string id, and the value is the
translated string. As mentioned already, we have made a few decisions
whichmakesthis implementationmoreofanarchitecturalbase thansim-
ply just a prototype, and this is a good example of that.

5.4 The implementation

“Load it, check it, quick–rewrite it”—Technologic,DaftPunk

In previous sections, the UTT has been presented from the perspective
of the user. This section dives deep into the internals, and details how it
has been implemented.

UTT consists of two parts—the frontend and the backend. The fron-
tend is the implementation of the user interface. The backend provides
data such as checker results to the frontend. This is shown in Figure The
frontend and the backend is implemented using CoffeeScript—a script-
ing language known for its high readability that compiles to JavaScript.

64

The frontend is structured around Backbone.js, a JavaScript library for
developing SPAs, and the user interface components is based on Boot-
strap, which is a collection of technologies suited towards building web
applications. The backend is built using Node.js, a a server side software
system designed for writing scalable Internet applications.

The communication between the frontend and the backend is done
throughapersistentWebSocketconnection. Arequest is sent to theback-
end with anURL to be user tested, and the backend issues anHTTPGET
request to the eAccessibility Checker. The checker sends a JSON data
structure in return containing test results. These are processed by the
backend, and sent to the frontend through WebSocket connection. The
general idea incurrent architecture is that one layerpreparesdata for the
next layer. There isprocessingat each layer that formats it appropriately.
26.

Frontend

User agent

Backend

Home page Test page Result page

WebSocket client

WebSocket server

Locale handler Checker handler

eAccessibility Checker

JSON export

Request of check results for URL

User Testing Tool

Persistent connection (port 4563)

Initial request of index.html (port 80)

Figure 26: Architecture overview

The frontend and the backend reside in the same Git repository, and
they share much of the same technologies. They are even hosted on the
sameserver—albeit indifferentways (seeSection5.9aboutdeployment).
The remainder of this section refers to source code where functionality

65

is implemented. Sometimes a commit—or change—is referred to, which
might includemodificationsofseveralfiles, and/orfiles thatareadded/removed
from the source code.

5.5 Implementing the frontend

Theuser interfacecomponentsarehandledbyBackbone.jsviews, thedata
of an application are handled byBackbone.jsmodels and collections, and
an application router handles navigation betweenpages. These elements
can be configured in amyriad of ways depending on the requirements of
the application.

The HTML file contains elements for eachmajor user interface com-
ponent, such as the navigation bar on top, and it also contains templates
for each component and their various states. A template is a snippet of
HTML that can contain JavaScript code to display template variables. To
giveanexampleofhowtemplates areused, the testpageheaderhasacon-
tainer element. To this element it is rendered a loading template when
UTT is waiting for the backend to deliver checker results. Another tem-
plate is rendered inside the test page header element when the results
have arrived. The question and answers are among the template vari-
ables.

The remainder of this section covers specific aspects regarding the
implementation. First views and router. Then state and handling of de-
pendences.

5.5.1 Backbone.js views

Backbone.jsgives thedevelopergreat freedominhowto implementviews,
and even define what a view is for a particular application. Technically,
a view is a JavaScript class28 provided by Backbone.js that is sub-classed
by theapplicationusing the framework. Theclassprovidesarender func-
tion that is implemented in the sub-class, and aHTMLelement, usually a
div element, is specified that acts as a container for the view. When ren-
der is called, the render function is supposed to update the content of the
HTML element. It s up to the developer to how and when render func-
tionshouldbe triggered. More thanoneviewcanbedisplayedat the same

28Strictly speaking, the current version of ECMAScript does not have the notion of a
class, although this is planned to appear in future versions of the language. JavaScript
libraries and frameworks provide alternatives that work around this limitation.

66

time in a user interface, and a view can consist of other views.
UTT has user interface components such as the navigation bar, the

iframe, and the. The navigational bar is shared by all views. The remain-
ing components are shown or hidden depending on which view is cur-
rently active.

One general question in programming is what level of granularity is
appropriate for one layer of abstraction, and in this context it has been
a trial-and-error process of getting the granularity of Backbone.js views
just right. ForUTT, itmade sense to have one view for thenavigation bar,
one for thehomescreen, one for the test page, one for the iframe, andone
for the result view. These views are contained in a composite view.

Another issue about views are their lifecycle. Right now all views are
created when the application is loaded, but the home view, for instance,
is hidden instead of destroyed when navigating to the test page. Back-
bone allows for bothmechanisms, but the risk of destroying a view is that
memory leaks may occur. There are several blog posts dealing with this
issue, andconsequently there isavarietyof suggestedsolutions. ForUTT,
we decided to reuse a view by showing and hiding it. Ourmain argument
for this solution is that there are very few views in UTT, they do not take
a long time to load, nor do they occupy a lot ofmemory. If therewere sub-
stantial amount of views, then we would consider destroying them and
creating them.

Performancewasmentionedasagoal, andespeciallywhennavigating
fromone test to thenext in a test run. Using anon-SPA/non-AJAXarchi-
tecture, one would request a new page when navigating, and this would
cause the iframe, and the page surrounding the question to be reloaded.
This both causes the interface to blink, and it takes more time. We only
want to change what actually changes, and this what is currently done.
With the current SPA architecture, components render independent of
each other, and they all individually respond to events. This is done in-
stead of having a full page reload for every navigational step. The down-
side of the current solution is that there is a risk of accumulating view-
related show/hide-bugs through a session. This has not happened with
UTT so far.

67

5.5.2 The Backbone.js application router

This sectionwill describe the overall flowof theuser interface; howauser
cannavigatebetweenpages, andhowthenavigationbetweentestsare im-
plemented. In addition, we address how the browser back button works
in a SPA.

With the current architecture, it is possible to navigate around in the
UTT user interface while a page is loading. Currently there is one case
that isnot supported, andthat is changingwebsitewhileawebsite is load-
ing. The fields for entering website are disabled while a website is being
loaded.

Auser feedbackthatwasreceivedafter the initial iterationwaswhether
itmatters in which order one answer the questions. Although a sequence
is set up, it does not matter. The user can skip tests, go and back to a test
to correct the answer.

Important that the user can navigate the test view using the back but-
ton and forward button. This is done by defining a parameterized route
for the test page. The URL contains the id of the current test. In the re-
sult view, there are links for quickly jumping to a test for correcting the
result.

5.5.3 State is in the client

For UTT, the application state is not persisted, nor shared—it lives in a
tab in the web browser, and it is not stored locally in any cookie, nor on a
server. The advantage of this solution, is that one can have multiple in-
stances ofUTT running, and it allows having a differentweb page in each
tab. The drawback is that one cannot duplicate the view of one particular
instance.

One use case was discovered, and this was an evaluator not being able
to opennew tab for comparing answers on two tests. To enable the user to
do this, we would need to store the state of the instance in a cookie. This
however, will as mentioned prevent the user from running multiple in-
stances ofUTT.Analternative solution for solving this issue is to provide
sufficient amount of information so that the need for another instance
vanishes.

68

5.5.4 Managing dependencies

As will be discussed in the section about choice of technology, the ver-
sionof JavaScript that currently existsdoesnothave support fordefining
and loading modules. For backend technologies, the Node.js platform
has one way to do it, and for frontend technologies, it is usually solved
by using the Require.js JavaScript library.

One issue with UTT is that the user interface takes a while to load. At
version 0.2 there was a bug that was quickly corrected29 that resulted in
theuser interface to sometimesnot loadatall30. Thiswascausedbyarace
condition bugwhere onemodule that depends on another did not load in
a specified order.

Since the frontend uses a number of libraries, and since it consists of
a number of views that spans over multiple files, it would be beneficial
if all JavaScript files were concatenated into one file. That would reduce
the number of HTTP requests for the tool and speed up loading. Also,
it is possible to minify the JavaScript and CSS files. Minifying files in-
volves using a tool that shortens function and variable names, and strips
the files for whitespace. This makes the files much smaller, and as a re-
sult they load faster. Another technique that can be used in combination
with the former two is to run the source code through a tool that removes
functions that are not in use.

We currently only have limited experience with these tools, based on
the estimated effort, we decided to not implement the abovementioned
techniques in the current prototype. To make loading of libraries a bit
faster,wechoseCDN/hostedversionsof libraries thatwereavailable. Ven-
dorssuchasGooglehost jQueryand libraries thatareusedoftenonafixed
URL that anyone can reference. An advantage of doing so is that these
files—since they are referenced by so many—are often cached at the In-
ternet service providers. A disadvantage is that some environments ac-
cessing UTTmight only have Intranett access.

As of UTT 0.3, loading can take a few seconds, and it could be helpful
to display a loading screen. We hope that applying the mentioned mini-
fication steps can help, so in the future, that should be attempted first.
We created an issue on GitHub suggesting to add a loading indicator31,
butwe later closedwith the comment “This shouldnot benecessary if us-

29https://github.com/alexanderte/utt/commit/a91184517e87af7ba976578adb998b92aad97302
30https://github.com/alexanderte/utt/issues/10
31https://github.com/alexanderte/utt/issues/25

69

ingCDN,minified JavaScript andCSS,…”This is an example of the issue
tracker to document known issues and suggesting solutions.

5.6 Backend implementation and architecture

While the frontend is the implementation of the user interface, the back-
end is what provides data and stores data for the frontend. The data that
the backend provides is data from the automated checker. It also pro-
vides translation strings to the frontend.

ThebackendstartsaWebSocketserver that thefrontendinitiatescon-
nections to. The backend sets up a WebSocket server listening to port
4563, a port which is unused according Internet Assigned Numbers Au-
thority32 If theproject shouldcontinueafter thispre-project, thenitwould
makes sense to request thatport 4563, or anyother availableport, gets as-
signed to UTT.

The life of a connection spans for the period that a client instance of
UTT is open. When the user opens UTT, the frontend connects to the
backend. Once connected, the frontend requests the backend to send
translation strings for English, which is the initial language33. When the
translation strings are received, the frontend asks for test results for the
initial website, which is tingtun.no. From that point on, translations and
results are requested as they are changed in the user interface.

The backend asynchronously asks the checker for check results, and
delivers them to the frontend when they arrive. Because this is done in a
non-blockingmanner, it means that the backend can process additional
requests from the same source, or for other instances, while waiting for
the checker. The current backend architecture allows for a sequence like
the one below:

1. Frontend1 requests backend for foo.com checker results
2. Frontend1 requests backend for translation
3. Frontend2 requests backend for bar.com checker results
4. Backend reponds Frontend1 with translation
5. Backend reponds Frontend2 with bar.com checker results
6. Backend reponds Frontend1 with foo.com checker results

32http://www.iana.org/assignments/service-names-port-numbers/service-names-
port-numbers.xml

33It might become possible to configure this later e.g. for businesses to run a private
installation of UTT.

70

Asmentioned, each layer inthearchitecturepreparesdata for thenext
layer until the template is reached that finally renders the data for the
user. One the backend has received checker results, it prepares results
for the frontend. Possible answers to results that are to-be-verified are
added, and translation parameter strings are prepared. Note that both
to-be-verifiedresultsandpass/fail resultsarearereceivedfromthechecker
andsent to thefrontend—resultsofall typesareshownintheresultsview.

5.7 Integration with eAccessibility Checker

The to-be-verified results that the user will provide answer to with UTT
comes from the automatic eAccessibility Checker, as indicated in the lit-
erature review. There are two ways of getting the data from the eAccessi-
bility Checker; one is to use its export functionality, and the second in-
volves using its component to get the results, and connect to a database
that parses the result. The former was chosen, as it does both steps.

First we attempted to use eAccessibility Checker’s CSV export func-
tionality. This is accessed by sending a HTTP GET request to the eAc-
cessibility Checker with “csv” and an encoded URL as arguments. The
checker runs a check on the web page associated with the URL, and re-
turns a CSV file with the barrier data. A module was first written that
wouldmakesenseof theresultsandbuildresultobjects thatcouldbeused34.
However, the data returned from the checker was among other things
lacking line numbers and columns to locate the position of a barrier in
the code behind the page.

Since we have access to the eAccessibility Checker, we have the op-
tion tomodify itsCSVexport, but this canbreakothers that dependon it.
JSON is a data type that ismore native to JavaScript as it is syntactically
almost identical (it is in some cases) and thus require less processing by
theUTTbackend, andwe chose to implement JSONexport functionality
right within the automated checker.

One limitation that we stumbled uponwhen implementing the JSON
export functionality, is that the data that a template associatedwith a ex-
port type has access to is formatted for being presented in eAccessibility
Checker user interface. Some of the data include custommarkup such as
[at][/at]. Thiswas needed towork around, and the JSONexporter does

34https://github.com/alexanderte/utt/blob/5af73db797a124b7b0429b93de037f31812f5540/js/egovmon-
checker/egovmon-checker.coffee

71

some search–replace processing of the data before sending it to the host
that sent theHTTP request.

5.8 Architectural concerns

5.8.1 Directory structure

The UTT directory structure is pretty straightforward; there is a back-
end and a frontend directory at the highest level of the Git repository as
shown in Figure 27 (alternatively, the Git repository can be browsed on
GitHub35). At the root level, there is a .gitignore file to prevent certain
files to be checked in, a shell script used for making deployment easier,
and a readmeMarkdowndocument that in fewwords describe whatUTT
is and how to set it up.

Figure 27: The directory structure in the git repository of UTT

35https://github.com/alexanderte/utt/tree/0.3.0

72

The frontend directory is where index.html resides. The directory
contains one sub-directory for each type of Backbone component; views,
models, and collections. There is usually only one router for an applica-
tion, so the router code is put right inside the frontend directory.

There is a directory named components that refer to third party com-
ponents. Because many of the UTT dependencies are hosted by content
delivery networks (CDN), there are currently only two files in this direc-
tory; backbone.jsandjed.js. Thedirectorynamecomponents, sometimes
named vendor or lib, was chosen because it is used by a popular pack-
agemanager for web applications named bower.36 bower is currently not
used for managing external components, but it is likely to be used in the
future. Apackagemanagersuchasbowerstreamlinesamongother things
the way external components are retrieved, and it is more convenient to
type “bower install backbone” on the command line rather than hunting
on the web for the .js file.

Earlyon, for the sakeof tidiness theCoffeeScriptfileswere storedsep-
arately from the compiled JavaScript files. This resulted in a somewhat
deep directory structure, which made it cumbersome to navigate to the
files from the editor. Later on the directory structurewas flattened out37,
and the uncompiled and compiled files now live side by side—this has no
technical implications.

Both the frontend and the backend has a main.coffee file, and these
are the main entry points of each part of the system. For the backend,
the main.coffee can be started directly on the command line—it is com-
piled on the fly. The main.coffee for the frontend needs to be compiled,
and main.js is referenced in index.html. The main.coffee for the fron-
tend also references require.js which is what actually loadsmain.js.

The directory structure evolved gradually—the development process
has in general alternated between chaos and tidiness. Splitting the fron-
tend and backend into separate directories38 was done as late as amonth
after the development started.

5.9 Deploying and monitoring the solution

It will briefly be discussed how UTT is deployed into a production envi-
ronment. Today, it is common touse cloud services forhostingwebappli-

36https://github.com/bower/bower
37https://github.com/alexanderte/utt/commit/c07b5b7e3bd45853215cf649c349d051317237fc
38https://github.com/alexanderte/utt/tree/fea9f608599f86c32b8ed48449e443fd2115fbd3

73

cation. One variety is platform as a service. Since the backend builds on
theNode.js platform, it is possible to use a service likeHeroku39 that pro-
vides an environment where Node.js is set up, and the service abstracts
the work of setting up an operating system with a working Node.js envi-
ronment. In addition, a service likeHerokuprovides command line tools
thatmakes deployment even easier.

ForUTT, we have chosen a infrastructure as a service solution, where
an instance of the Debian operating system is set up in a cloud environ-
ment. We need to manually set up Node.js with the required dependen-
cies. These are documented in the readme.md in the UTT repository.40

The frontend directory consists of static files, and it is simply served by
Apache—it could be hosted by any web server.

The backend is started by running backend/main.coffee. This pro-
cess is somewhat involved, and it is simplifiedby running adeploy script.
More about this in a second. The main.coffee script prints debug infor-
mation to standard output, and this can be useful to log. deploy.sh is a
script that fetches the latest revision of UTT from the remote git reposi-
tory, and it startsmain.coffee by issuing the following:

nohup coffee backend/main.coffee&

nohup(1) is a UNIX command that is useful when logged in to a SSH
session. It makes sure that the program following it still runs when the
SSH connection is closed, and it also logs the standard output from the
started program to a file named nohup.out.

The deploy script is intended to be run both the first time the UTT
backend is run, and also when it should be updated to the latest revision.
One challenge we faced was how to kill the running instance of the UTT
backend, before doing the update followed by spawning a new process. It
currentlyworksbywriting theUNIXprocess id (PID)of theUTTbackend
to /var/run/utt.pid once it has started. If the .pid file exists when launch-
ing thedeployscript, then it is readandevaluated into thefirstparameter
to kill.

5.10 Choice of technologies

This section describes the process of choosing a technology stack. First,
a number of concerns are discussed, then a number of ecosystems with

39https://www.heroku.com/
40https://github.com/alexanderte/utt/blob/0.3.0/readme.md

74

associated programming languages are looked at, then there is a review
of components such asweb frameworks, databases, and libraries. Finally
the stack of technologies is listed.

Wehave some requirements that influences the choice, butmuchof it
admittedly boils down to what the developer enjoys working with. There
are many choices that can lead to a working prototype, and it should be
possible to get something working almost regardless of choice.

5.10.1 Concerns for choosing technologies

Several concernswere consideredwhen choosing the technologies to im-
plement the toolwith. Wewill present 11concerns for choosing technolo-
gies. These come from our prior experience with software development:

1. Good fit for the problem

2. Easy to integrate with existing technologies in use

3. Scalability

4. Popularity/longevity

5. Healthy community

6. License

7. Accessible

8. Past experience and/or what network of people knows

9. Layers of abstraction

10. Linux and web-centric

11. Productivity

At themostbasic level, thechosen technologyneeds tobeagoodfit for
the problem. If not, then one need towork around its limitations. For in-
stance, a web framwork will need to strike a balance between ease-of-use
to address predefinedproblems andflexiblity to support other problems.

The technology needs to integrate well with the existing technologies
in use. For UTT, we need to interface with the eAccessibility Checker.
This involves issuing an HTTP request, and a JSON data structure is re-
turned. This is not complex. What is slightly more complex is the future

75

planof integrating the results viewof the eAccessibilityCheckerwith the
UTT results view. If this is to be done in a seamlessmanner (e.g. not em-
bedding the results component using an iframe), then we need to ensure
that its dependencies can be satisfied by UTT.

Scalability is a common concern, and in this case the crowd sourcing
requirement. While a prototype usually does not need to scale, we have
put someeffort in the architecture, andallowing it to scale in the future is
important. Scalability is not a fixed attribute tied to a technology. What
scaling means is very specific to the problem to solve. For instance, for
UTTand its current requirement, its an advantage to have the SPAarchi-
tecture, as one does not need a HTTP request when navigating back and
forth between tests. This drastically reduces the amount of bandwidth
needed.

When we build software today, we are tied to the technology choices
for a very long time. Changing the underlying technologies means that
the software needs to become rewritten. This is true especially for pro-
gramming languages and web frameworks. Specific components might
be costly to change, but it is possible, and sometimes needed. The pop-
ularity of a technology is an indicator of its longevity—how long we can
expect it to be supported andmaintained. Choosing a technology that is
established in themarket is a requirement.

Related to the popularity and longevity of a technology is the the com-
munity surrounding it. Onewill regardless of choice encountermanymi-
nor and larger issues, and for that reason it is vital that the community is
healthy with friendly and helpful people. It certainly also helps that its a
vibrant community that lovewhat theydo, anddo interesting thingswith
it both professionally and personally.

It is a requirement that licenseof thesoftware iscompatiblewithwhat
we’re trying to do—to build an open source tool. This is not an issue with
the many programming languages and web frameworks out there. Most
are licensed using a very liberal license such asMIT or BSD.

Although the technologies mentioned in this section are somewhat
general, we need to keep in mind that they make it possible to have a so-
lution that is accessible.

Time is a limitation in any project, and for that reason our past expe-
rience has beenweighed, as we need to get up to speed as fast as possible.
What network of people the person hasmight influence the choice. Then
it is easier toask forhelp, and it isnice tohavesomeonediscussing itwith.

76

At the same time, this needs to be balanced with the other factors.
In the world of web, there are abstraction layers for everything. They

are there for browser incompabilities and for simplifyingAPIs. One pos-
sible downside iswhenonedoesnot understandwhat is happening below
the layers. Another downside is added cruft. Its a fine balance when to
use an abstraction layer and when not to.

The technologies mentioned are all open source. Most of the tech-
nologies are Linux-centric, meaning that they are designed around the
Linux directory structure, and configuration is done in text files. Most of
the technologies are available from a Linux distribution’s package man-
ager, and they should be easy to install on OS X. On Windows however,
they are not first-class citizens. For many popular technologies, a “one
click”Windows installer is provided on their respective websites. Many
of themwork by installing Cygwin or similar.

Productivity is thefinal concern. There are some factors thatmakes a
technology choice productive. One is that the developer can solve a prob-
lem with as little code as possible. Another is that the feedback loop be-
tween writing the code and running the code is short. Third, the author
must find the technology enjoyable to spend a lot of time with it.

5.10.2 Choice of ecosystem

Choosingaprogramming languagefordoingwebdevelopment isnotabout
programming languageasmuchas itasaboutchoosinganecosystemcon-
sisting of components, websites for browsing available packages, com-
mandlinetools, acommunityofpeopleandkeypersonalities. Oftenthere
is a culture that share a philosophy, such as Python’s “There should be
one—and preferably only one—obvious way to do it.” (PEP 20 – The Zen
of Python, n.d.)

Since JavaScript is the only language supported by web browsers, it
is a good idea to learn that in addition to the chosen language. While
there are many languages that compile to JavaScript, it is necessary to
know JavaScript in order to debug running code in the browser. Inmany
ways, the following categorizationmakes little sense, since technologies
aremixedandmatched inamyriadofways. Despite of this fact, this is an
attempt at looking at the ecosystems with one language being the domi-
nant one.

This is not a systematic review of languages; we found the subject too

77

complex to present in e.g. a matrix. Rather it is a review taking into ac-
count the before-mentioned concerns, and seeing how they fit with our
objectivesandrequirements. All theecosystemscoveredare large,highly
successful, and they are used to power some of the largestwebsites on the
Internet.

Haskell Weoriginallyplannedtowrite the toolusingHaskell, asHaskell
has several characteristics and qualities thatmakes it desirable for tech-
nology where correctness is important. The author had no former expe-
rience with Haskell, or functional programming, and the learning curve
seemed too steep to deal with in the limited time-span of the project.

WhileHaskell has a steep learning curve, it seems to be valued highly
by those who use it, and it is common that even an experienced program-
merneeds tomakemanyattemptsat learning itbeforebeingable tograsp
its fundamentals. One possible drawback of choosing Haskell is that the
numberofpotential contributersmightbe lower than ifusingecosystems
that are used bymore people. On the other hand, it is likely that the qual-
ity of contributions is very high, since Haskell programmers usually are
very competent.

JavaScript JavaScript is the language for theweb. Allmodernbrowsers
supports it. In fact, they support no other language, and it is required
to have JavaScript enabled for many modern websites to function. Al-
though it has Java in its name, it does not have anything to do with Java
beside superficial, syntactic similarities. At the specification level, the
nameofJavaScript isECMAScript. The language isdynamic,weakly typed,
hasfirstclass-functions, andit supportsobject-oriented, imperative, and
functional paradigms.

JavaScript is not particularly known for being a robust language, and
it has been subject to a lot of jokes in the community of software devel-
opment. One striking example of what JavaScript is less than good at
is comparing one entity with another (JavaScript Garden, n.d.; Pierre
Kircher, 2012). JavaScript mahatma41 Douglas Crockford has written a
short booknamedJavaScript –TheGoodParts (Crockford, 2008),where
he describes what subset of the language that can be safely used. There

41“I do not think of myself as a guru. I’m more of a mahatma.” —Douglas Crockford
http://www.oreillynet.com/pub/au/3252

78

are abstraction languages on top of JavaScript that prevents the user of
the language to use features beyond “The Good Parts.”

The latest iterationofECMAScript lacks features that are common in
most other languages, suchas theability todefineand loadmodules. This
is planned tobecomesolved in future revisionsof the language. Although
JavaScript is capable of programming in an object oriented-style, it does
not have a class keyword. Currently, what JavaScript lacks is solved by
third-partymodules, and languages such as CoffeeScript.

Whileprivacy and security continues tobe a concern,modernwebap-
plications are starting to resemble native desktop applications both in
terms of features and performance. JavaScript was previously known for
having poor performance, but a lot of innovation have happened during
recent years, and it is safe to say that this is no longer the case. We are
starting to see first-person shooter games being ported to JavaScript.

Despite its shortcomings, JavaScript is becoming increasingly more
relevant. The fact that it is available ineverywebbrowsermakes it attrac-
tive, and unless using an abstracted language, it does not require one to
compile. Instant compilation time gives a short feedback loop between
working on a piece of code and testing it in the browser, which for many
makes programming feel fun and productive. Andwhat JavaScript lacks
is currently duct taped on top using external libraries.

CoffeeScript There have recently been a number of languages that ab-
stracts the complexity and somewhat verbose syntax of JavaScript. Some
of them are CoffeeScript and Dart. There is also a Java web framework
such as Google AWT that generate JavaScript. Figure 28 is an example
from coffeescript.org showing what CoffeeScript looks like when com-
piled into JavaScript.

Figure 28: CoffeeScript and JavaScript side-by-side

79

As can be seen, CoffeeScript attempts to make JavaScript easier to
read by dropping much of its verbose syntax. Also it compiles into the
subset of JavaScript from “The Good Parts.” The simplifiedmight not be
for everyone, especially as many developers are familiar with the mus-
tache brackets and semicolons found in C-like languages. But code writ-
ten in CoffeeScript ismost often significantly shorter.

The downside of using CoffeeScript, or any other abstraction layer
over JavaScript, is that there is yet another technology to learn, there is
an additional compilation step, and it canmake debuggingmore compli-
cated, as there is limited tool support fordebugging theoriginal code that
was written. The web development community on HackerNews seem to
be divided because of the reasons mentioned. Also, the syntax is said to
be a bit magic, and in some cases ambiguous when optional parentheses
are left out.

ForUTT,we decided to useCoffeeScript. It was introduced early, as it
would be no need to port the whole thing later on.

Node.js Node.js is an asynchronous, evented I/O frameworkmaking it
possible to create server applicationswritten in JavaScript. It has gained
much traction recent years, and it has a large and vibrant community.
Node.js exposes a POSIX-like API for reading and writing files, manag-
ingoperating systemprocessesand threads, andprovidesanon-blocking
programmingmodel especially suited for real-time applications.

Node.js was chosen for the backend. As with the frontend code, one
can write scripts for Node with CoffeeScript. Both the frontend and the
backend of UTT are written using CoffeeScript. One of the advantages
with Node, is that modules can be shared between the frontend and the
backend.

Ruby Ruby is known for being one of the most readable programming
languages. It is known to perform slightly slower than some of its alter-
natives, but inmost situations, it being easy to read and the fast develop-
ment time outweigh the execution speed. Ruby is used a lot on the web,
andRuby onRails web framework powers large websites like GitHub and
Twitter.

Rails is an opinionated framework that dictate how to structure the
application, but there aremore lightweightweb frameworks available for
those that desiremore choice .

80

Recently there have been written about some serious security flaws.
While recent patches has addressed these, some say that this is an indi-
cator of a deeper problem (WhatTheRails Security IssueMeans ForYour
Startup | Kalzumeus Software, n.d.).

Ruby is a still a good candidate for UTT.

Python Pythonisanall-purpose languagedesignedbyGuidovanRossum,
and it widely used for web development. There are many different web
frameworks written in Python. Some frameworks such as web.py, by the
late Aaron Swartz, provide the bare minimum functionality while there
are web frameworks such as Django42 that is complex similar to Rails.
Django is one of themost widely used frameworks, and it is used by some
of theworldsmostvisitedwebsites. The list includesInstagramandMozilla.

Python has a readable syntax, it is a great language, and it would be
suitable for UTT.

PHP PHPisawidelyadopted languageknownfor itsgreatperformance.
Much of Facebook is written in PHP. Its standard library is known for
being transparent regarding the API, as they are very similar to the C li-
braries underneath. Because these C APIs vary a great deal, and because
thePHPAPI seems tonotbecarefullydesigned, it is oftencriticized. One
software developer goes as far as saying that “PHP is an embarrassment,
a blight uponmy craft. It’s so broken, but so lauded by every empowered
amateur who’s yet to learn anything else, as to be maddening. It has pal-
try few redeeming qualities and I would prefer to forget it exists at all”
(PHP: a fractal of bad design - fuzzy notepad, n.d.).

WehavebeenusingPHPalongwith theCakePHPweb frameworkear-
lier, but found it less than pleasant.

Java Java is a widely used technology, and perhapsmore so in large en-
terpriseenvironments than insmallerenvironments. Comparedtosome
of the other languagesmentioned in this section, Java is somewhatmore
verbose, it takes longer to compile, but it might be more desirable than
interpreted languages for large code bases. Compile-time type checking
catches errors that otherwise would could show up when the application
isproduction. Also, typecheckingmeansthat thecodecanberefactored/shaped
in radical ways using refactoring tools.

42https://www.djangoproject.com/

81

Javahasa largenumberofweb frameworks. Someof theseareApache
Click, Apache Tapestry, and Apache Wicket. Another well-known web
framework is Google AWT.43

OneJavaweb framework that shouldbementioned isGrails. Thecode
is written in Groovy, which is a dynamic programming language for the
Java platform.

Java is arguably more suited towards enterprise applications rather
than prototypes, and it is not considered an option for UTT.

Others There are a large number of languages that could be reviewed,
such as Scala, Lua, Go, Lisp, Erlang, Perl, or even C—yes, there are web
frameworks forC, and theymightbe suitable in embeddedenvironments
with performance andmemory constraints. Still we think themost used
technologies are covered.

5.10.3 Choice of web framework

The choice of web frameworks is limited to SPA frameworks. During the
past few years a lot of SPA frameworks have appeared. One of major as-
pect in which they differ is how opinionated they are. Frameworks such
asEmber.jsandAngular.js sharessomesimilarities toRubyonRails,while
Backbone.js in particular leaves it up to developer on how to combine its
various features.

Of all frameworks (and even all projects on GitHub), Backbone.js is
most popular 44, indicating that it is used onmore project than the other
frameworks hosted on GitHub. Because Backbone.js leaves so many de-
cisions up to the developer, there are frameworks built on top of Back-
bone.js. But its simplicity might be its strength. The following is a com-
ment from a developer on StackOverflow:

“Then I remembered why I originally choosed backbone.js: simplic-
ity. All those frameworks are adding what backbone has left out by de-
sign”(Whatare thereal-worldstrengthsandweaknessesof themanyframe-
works based on backbone.js? - Stack Overflow, n.d.).

I thinkonecouldchooseanySPAframework, andaccomplish justabout
the same. We chose Backbone because of its popularity, simplicity, and
also because it was said to be faster to learn than the others. The user in-

43Thesewebframeworksare listedonhttp://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java_2
44https://github.com/popular/starred

82

terface of UTT is highly specialized, which is a good reason to go for a
framework that is not opiniated. We learned the basics of Backbone.js by
experimenting and reading resources on the web.

5.10.4 Choice of additional components

This is a section about compontents whose choice is of less significance,
and it is for that reasonshort. Thesecomponentscanbereplacedwithout
requiring a rewrite of the code. Some, such as Require.js, do require a bit
more. jQuery is not covered here, as it is a requirement for nearly all web
development.

As mentioned, JavaScript does not have a concept of modules. Re-
quire.js by far themost popular framework for handling dependencies in
the browser. Node.js has its ownway of loadingmodules. browserify is an
alternative loader for the browser thatmakes loading ofmodules similar
to Node.js45 It is beyond the scope of the thesis to go further into detail
aboutmodule loading.

WebSocketareused forcommunicatingbetweenthe frontendandthe
backend. WebSocket are not supported by all browsers, and for this rea-
son the Socket.IO library provide a client-side module with that can fall
back using other means of transport. caniuse.com is a site for checking
which browser supports e.g. WebSocket or other recent browser tech-
nologies. InternetExplorer9andbelowdoesnotsupportWebSocket, and
in this case Socket.IO uses a Flash implementation.

Backbone.js is dependent on a helper library named Underscore.js.
Underscore.js provides utility functions for advanced list manipulation,
andmany of these are similar tomap, head, tail functions in Haskell. In
addition, Underscore.js provides functions that compensate for what is
error-prone in native JavaScript—such as checking if a list is empty. Lo-
Dash isacompetingproject46 that seemtobeactivelydeveloped47Thede-
veloper ofLo-Dash, John-DavidDalton, states in apost onStackOverflow
that Lo-Dash has amore consistent API,more thorough documentation,
and tests. He has also had push access to Undercore.js, and he had con-

45http://browserify.org/
46Lo-Dash is a pun reference to underscore. This is common for open source libraries.

CoffeeScript has a build system named Cake, and a “third party” build system that sim-
plifies Cake is named Applecake, both as a reference to Cake, but possibly also Apple’s
philosophy ofmaking simple user interfaces.

47http://stackoverflow.com/questions/13789618/differences-between-lodash-and-
underscore

83

tributed with bug fixes to Underscore.js. This is a form of competition
that is unheard of in proprietary software projects, and it is likely that
Underscore will be replaced with Lo-Dash as the default utility library in
the future. With that said,wedonotfind the choice of utility library criti-
cal for UTT, andwewent for Underscore.js because it is suggested on the
Backbone.js website, it seems to be widely used, and it is developed by
Jeremy Ashkenas, the developer of Backbone.js and CoffeeScript. The
fact that it is widely used means that any possible problems are easy to
google48. In other words, technical merit is a less significant criteria in
this case, as we feel sticking to what is suggested by default leads to the
least number of surprises. Weassume thatwe share this patternof think-
ing withmany others.

Although there are currently no automated unit tests for the source
code, we initially did a review of unit testing frameworks. Mocha by TJ
Holowaychuk seems like a widely used project, and it has an appealing
syntax. This could be used for further development.

Bootstrap, formerly known as Twitter Bootstrap, was initially devel-
oped at Twitter to streamline the user interface of the service, but it has
since “grown out of” the organization. Bootstrapmakes it simple to cre-
ate good looking user interface components such as progress bars and
navigation buttons. It also provides a grid-based layout. Grids are use-
ful within visual design to establish solid visual and structural balance
of websites (DesigningWith Grid-Based Approach | SmashingMagazine,
n.d.). Version 3 of Bootstrap is in development as this is written, and the
difference between the current version and the next is that the latter is
responsive by default, andmobile-first.

Supportingmultiple languagescanbecomplex, asdifferent languages
have different pluralization rules, and the structure of sentences differ
widely. Also, there are software specifications such as gettext and Mes-
sageFormat that attempt to solve this. There are a JavaScript libraries
formakingaprograminternationalized, andIhavechosen jed,which is a
GNUgettext solution. GNUgettext is alsousedbyeAccessibilityChecker.

48We find it appropriate right here to use the google as a verb—besides, it is a verb
(Google - Definition andMore from the FreeMerriam-Webster Dictionary, n.d.).

84

5.10.5 Choice of database technology

Using database technology is the common way to store data associated
with a web service. Unfortunately, we did not have time to implement
any data storage, but this section could be useful for future development.

There are what seem to be two directions for database technology for
the web. One is NoSQL and the other is traditional, relational databases.
The term NoSQL has appeared recent years, and differs from relational
databases inthatonedoesnotmodel therelationshipbetweendata. There
are no schemas, but rather collections of data structures. The data struc-
turesaremostoftenencodedasJSON.SinceJSONisclose tobeingJavaScript
data structures, it means that for JavaScript applications, the data can
travel through whole stack nearly unmodified—the whole way from the
database, and up to the view template. Nearly all languages have func-
tions built in to serialize and deserialize a native data structure to and
from JSON.

TwopopularNoSQLdatabase technologiesareMongoDBandCouchDB.
Wehaveobservedthat therehavebeenreportedstability issueswithMon-
goDB, but we are uncertainwhether these aremajor flaws of the product.
CouchDB is a cloud storage service. PostgreSQL, and MySQL are exam-
ples of popular relational databases. For smaller applications and/or test
environmentsof a largerapplication, there isSQLitewhich is a relational
database, but the database is contained in a single file that can easily be
moved around.

Another variety that is neither NoSQL or relational is Redis, which is
an in-memory key–value data store. It is fast and simple, and especially
useful for caching.

For future development of UTT, we suggest to use PostgreSQL, as it is
already used by the eAccessibility Checker, and also because the domain
of testing websites seem to fit well with the schema approach.

5.10.6 Building a software stack

A software stack is not only related to web technologies, but generally a
set of technologies intended to work as a whole. Things changes fast in
the world of web development, but we hope that the larger components
will stay relevant and supported in at least five years to come.

The following table sumsup the stack of technologies thatwas chosen
for implementing UTT.

85

Technology Description

Node.js Event-driven I/O server-side JavaScript environment

CoffeeScript Programming language that compiles into JavaScript

Backbone.js JavaScript frontend framework

Underscore.js JavaScript utility library

Require.js JavaScript file and module loader

Socket.IO Cross-browser WebSocket framework

Mocha JavaScript test framework

jed JavaScript gettext translation library

Bootstrap Frontend user interface framework

PostgreSQL Relational database

Table 8: The chosen technology stack

5.10.7 License

UTT is released under an open source license. There are many reasons
for this. When the software is free—both as in price and freedom—the
threshold for others starting using is lowered considerably. Also, hav-
ing an open source license is an invitation for developers to contribute
withadditional tests, or refineexisting tests. Apossibility that lie further
ahead is having a team of data analysts study large amounts of collected
test data.

An objective of the Integrative Learning Design Framework (page 8)
is to design artifacts that can be profitably used in later stages, and it
shouldbepossible forother researchers todo this. Anopensource license
facilitate for letting others continue the development. This way, most is
gotten out of the time developing the software artifact.

UTT is licensed under the GPLv2 license49. Licenses can be hard to
understand if one is not lawyer within the field of software. What follows
is aneasy-to-understandsummary (GNUGeneralPublicLicense v2 (GPL-
2) Explained in Plain English, n.d.):

Youmaycopy,distributeandmodify thesoftwarebutyoumust
relicenseanychangesandyourentireprojectunderGPLv2and

49http://www.gnu.org/licenses/gpl-2.0.html

86

disclose all the source code. You must also track changes and
dates in the source code. The GPLv2 is complex and may not
becompatiblewithcommoncommercial licensingmodels. Be
careful and view Full Text for details.

87

6 Discussion

This section starts out with a section reflecting on how design research
was used to carry out the study, and follows with themain findings of the
study of existing tools. The section is followed up by a discussion about
the implementation with choice of technologies, and the implementa-
tionof thebackendandthefrontend. Thesectionthat followsgoes through
known limitations of the research results. Then the research questions
asked initially in the introduction will be addressed. The remainder of
this sectionsuggests futuredirections thatprojectscango into thatbuilds
on this research, therewill be a section for reflecting of the process of de-
veloping the artifact andwriting of the thesis, and finally there is a short
section about concerns regarding privacy of the users of the tool.

Thediscussionsalsoaimstodescribecontributiontoresearch—additions
to theknowledgebase, andverificationofexistingknowledge—andlessons
learned during the process. Lessons learned include what we would do
different if we started today, and what should have been, but was not de-
livered. This is summed up in the conclusion.

6.1 Reflecting on the method and prior art

It will be reflected on how design research was used to carry out the re-
search, and also how the study of the existing tools has shaped the devel-
opment of the tool.

6.1.1 Design research

The Design Science Research Cycles model by Hevner was used to guide
theresearchprocess. Inadditionto theresearchmethod,weusedaScrum-
likeprocessofhandling tasksandsprints. Itwasnecessary tousea subset
of the software developmentmethod in addition to the researchmethod,
sincedesignresearchisnotstrictly tied tosoftwaredevelopment. AsGitHub
was chosen as a tool for supporting the development, its terminologywas
used during the project.

The Design Cycle is the heart of a design research project (Hevner,
2007), and it was given a great deal of attention. With the exception of
letting formal evaluators shape the project, the relevance between prac-
tice and theory was kept inmind.

88

Designresearchseemedtobeagoodfit for thisproject. Inthisproject,
knowledge was derived from creation and user interaction. It is a possi-
bility that futureprojectsbuildingonthis researchmightuseothermeth-
ods, and one suggestion is to use natural science methods to either con-
firm or invalidate findings from this study. Much like automated check-
ing tools andmanual checking tools can complement each other, design
research and natural sciencemethods can as well, something that is sug-
gested byHevner in an interview (Winter, 2009).

Because this was a project with the intent to build an artifact, we still
feel thatdesignresearchwasmoreappropriate thanactionresearch—the
artifact is still tooexperimental tobeused inareal-worldcontext, andthe
feedback received has been from experts within the accessibility field.

6.2 Existing tools

One of the outcomes of this study beside this thesis and the artifact, is
an overview of a selection of related tools given in Section 3.12. Themain
finding is that there is no tool that combines automated checking with
user testing—neither open source nor proprietary, and not within any of
themany fields of human–computer interaction included in this study.

Also, another finding was that most existing usability and user expe-
rience tools are interactive in some way or another, and they are propri-
etary services with paid subscription preventing a wider use in crowd-
sourcing. Most accessibility tools tests in an automated way against im-
plementationof accessibility guidelines, andmost of these tools are open
source. All the surveyed open source tools have an public instance that
can be accessed publicly.

Althoughwe couldnotfindany suitable tools to base theproject upon,
there was open source components to build upon. This will be discussed
in the upcoming section about implementation.

6.3 Design

This section reflects on theDesign activities—the choice of technologies,
the design of the artifact, and the feedback process with the evaluators.

89

6.3.1 Choice of technologies

Most of the chosen components are widely used on the web today. When
there was a problem, a quick search on the web helped us solve the issue.
No custom components needed to be developed during the project. For
each component, there were often several alternatives to choose from,
which isanindicationthat thechosenecosystemwassuitable for theprob-
lem.

Bootstrap, the framework that the user interface is built upon, is used
on a large number of websites today. As reported by one evaluator, links
were not styled in a way that would be clear to everyone. A continuation
of the UTT project is an excellent opportunity to help shape the major
building blocks on thewebbymaking themmore accessible. This has the
potential tomake a difference for thousands of websites, andmillions of
users.

6.3.2 Designing the artifact

This section sums up what was learned from a technical point of view
when designing the artifact.

The initial goal was to build a prototype. During the project the fo-
cus was shiftedmore to an architectural design base. This can be helpful
for further work as there is a solid foundation to build upon. The shift of
fcocus to architecture has caused a reduction of the number of features
implemented.

Fidelity is a word often used to describe the distance between a proto-
type ormock-up to the final product. A lower fidelity prototypemight be
designed using pen and paper, and a slightly higher fidelity might mean
that it is designed using a prototyping software tool that simulates inter-
action. For UTT, there is no difference between what was designed and
what would be a real implementation.

Because the task involved picking technologies to build upon, it was
most natural to build a high fidelity prototype using these technologies.
Wecouldhavetakenshortcutsbye.g. doing lessrefactoring,but thiswould
have resulted in a less solid architecture.

Single-page application One idea that was attempted for the frontend
was to use SPA architecture. This architecture seems to be effective for

90

designing this particular user interface—when answering a large num-
berof tests, it is important that theuser interface is responding fastwhen
moving fromone test toanother, so that theuserdoesnot lose focus. Also,
this architecture seems to be a good fit for crowdsourcing and scaling, as
there isnoneedfor theclient to requestapage forevery test case. Theweb
application is sent initially, and from that point theminimumamount of
data is sent from the server.

Backbone.js seemstobeagoodsolutionforuser interfaceswithunique
requirements. Usinganon-opinionatedframework likeBackbone.jsmight
be less than ideal for solvingknownproblemssuchasbuildingawebshop.

iframe Using iframe to embed a web page into UTT worked in many
cases for integrating the two, but there are still cases where this tech-
nique is problematic. It was tried to merge the source code of two web
pages into one, but this was less successful than using an iframe, as it
was very difficult to create test page markup that would not be affected
by the styling and scripts belonging to the page to become tested. It will
be furtherdiscussed in future researchaboutpossiblealternativesand/or
workarounds.

As an alternative to using iframes, it was discussed if the test page
header and the web page body should be split into two windows. An ad-
vantage with this solution is that one view cannot possibly interfere with
the other. A couple of downsides is that it is very uncommon for aweb ap-
plication to be split into differentwindows, and the userneeds tomanage
the windows themselves. This can be a challenge formany users, and es-
pecially on non-desktop devices.

Performance At this point, UTT takes between 1–5 seconds to load ini-
tially. Minifying JavaScript dependencies can help reduce the loading
time, and this should be considered.

The backend Implementing the backend started after the user inter-
facewas inplace. Theresponsibility of thebackend is toprovide the fron-
tend with locale data such as translations, and it communicates with the
eAccessibility Checker. The backend crashed a few times because of ini-
tial bugs, and itwill be agood idea tohavebettermonitoring in the future.

91

Feedback from users Wereceived a lot of feedback fromusers, and es-
peciallynear theendof theproject. Thissectionsumsupwhatwe learned.

When integrating awebpagewith the test page, itmust be easy to dis-
tinguish between the two. This is currently done by animating the test
page, and having a border between the two parts of the view, but in the
future one should also consider checking that the color of UTT test page
is different from the website.

Havingwell-designed input functionality isadeterminable factorwhen
askingauser todo repeating tasks. Forkeyboard support, there aremany
ways it can be done, and one solution is to let the user press ‘y,’ ‘n,’ and
‘u.’ Additional solutions were discussed, but none were implemented be-
causeof timeconstraints. Formouse support, it is crucial that theuserdo
not have to movemore then absolutely necessary. It was the assumption
at first that the test page header was a form to become submitted. This
required the user to choose an option, and then confirm it. It was later
turned into something similar to toolbar with buttons, and this reduced
themousemovements significantly.

A comment from a evaluator is grouping similar questions within the
sameviewmakes itpossible tocompare theanswersbeforesubmitting, as
well as predicting new answers based on previous. More work is needed
to see how this can be solved.

Color combination is a critical factor. At first, a light-on-dark color
schemewasused, but later thedefaultBootstrapcolor schemewaschosen
after requests from several evaluators. With the default Bootstrap color
scheme, it was reported that links were hard to identify because they are
too light, and also because they are not underlined.

Internationalization is important to reach a wide audience, but lack
of it did not have toomuch impact for the feedback of this project.

6.4 Limitations

In this section someof thenot yet implemented functionality is outlined.

6.4.1 Not collecting data

One important limitation of the current version of UTT, is that it does
not store the collected data. For the prototype, it was prioritized to im-
plement functionality that bothwouldprovide abase for the architecture
while having a demonstrative effect.

92

A JSON data structure is already built during a test run. To reach the
goal of storing the collecteddata, the data structureneeds to becomeper-
sisted. PostgreSQL is the suggested technology for data storage.

6.4.2 Supporting old browsers

Another limitationwiththecurrentversion, is that itusesnewerwebtech-
nologies, andwhilemany of the components in use have fallbackmecha-
nisms for functionality not supported by older browsers, we did not test
UTT in older browsers. We suspect that IE 8 and IE 7might be problem-
atic. It is not planned to support Internet Explorer 6.

6.4.3 Using the result view of eAccessibilty Checker

Figure 29: The result view of eAccessibility Checker

For the 0.3 release, it was planned to swap out the table on the result
pagewith the result viewof eAccessibilityChecker (seeFigure29), as this
hasbeendeveloped iterativelyover several yearswith feedback fromNor-
wegian municipalities. The suggestion to use it came after choosing the
technology stack forUTT.Because the frontendeAccessibilityChecker is
based on a different stack of technologies, and since it is integrated into
the user interface, thismight require some work.

6.5 Research questions

The project has been guided by several resaerch questions as outlined in
the introduction. Themain question was:

93

How to design a user testing tool to enablemore people to improve ac-
cessibility testing of websites?

Thisquestion isattemptedtobecomeanswerednotdirectly, butrather
through the five questions that supports it.

6.5.1 Research question 1: How to design a tool that integrates with
automated checker?

The naïve answer to this question is to create a tool that connects to an
automated checker, passes it anURL, and receives test results. For UTT,
we chose to integrate with eAccessibility Checker because of prior work-
ing experience with it, it belongs to an existing research project, and we
have the possibility to extend it.

Technically, to solve this problem we need to design an export Appli-
cationProgramming Interface (API) at theautomatedchecker that takes
anURLas input, checks it, andgivesadata structurebackcontaining test
results for tests that passes, fails, and tests that needs to becomeverified.
UTT generates questions for the latter group.

There is already a CSV export, but it does not contain all data that we
need. In addition, CSV is not as convenient to parse in a JavaScript ap-
plication as JSON. So we have designed a JSON export functionality that
is received and further processed by theUTT backend. The JSON export
API can be used by others, but is currently not documented.

6.5.2 Research question 2: How can user tests enhance automated
checker tests?

Clearlyhavingauser verifying the results termed“tobeverified”cangive
us a more complete check result. The automatic checker returns results
for a givenweb page in three categories; tests that have passed, tests that
have failed, and tests that needs to become verified by a human. The au-
tomated checker cannot determine if an alternative text is appropriate
for an image50. A goal is to continuously push the limit for what can be
determined automatically, and user testing can contribute to improve an
automated checker by e.g. reporting to it that a text looks like a place-
holder text (inserted by a CMS). The idea is to contribute improving the

50As a side note, the eAccessibility Checker currently has not implemented this test,
but it is planned for inclusion in the near future.

94

data that heuristic tests are based on. Similarly, onemight used existing
data to predict answers to user tests.

6.5.3 Research question 3: How to design a user interface to best
support the user doing the user testing?

We think that the toolmust integrate theweb page to become testedwith
the testing tool. It needs to be easy to learn for a wide group of people.
Moreover, it has to be effective at letting the user accomplish repeating
tasks. This is both done by having it perform fast when going between
tests, and requiring as little input as possible.

The tool might need to adapt to various assistive technologies. For
users of screen readers, it needs to show the element being tested in a
context that is limited, and not the whole web page.

Respecting theprivacyof theuser is critical, andfor theuser interface
itmeansgiving thecontrol to theuser aboutwhatdata to collect. Theuser
interface should whenever possible store data regarding assistive tech-
nologies in use in the client, as this is sensitive data.

6.5.4 Researchquestion4: Howtobest track theuserbehaviorwith-
out any code injection on the website to be studied, or soft-
ware on the client side?

We have not implemented features for this in the prototype. However,
both for tracking theuser behavior, and forhighlighting the element cur-
rently being tested, seem to require use of a proxy that serves a web page
that is modified to contain a tracking script and style information that
highlight the element. While this does inject code into a temporary copy
of the page, the original page remains unchanged.

On the client side, the use of the proxy–iframe techniquemeans that
one does not require any additional browser extensions or browser tech-
nologies beyondHTML5.

6.5.5 Research question 5: What existing open source solutions can
be helpful to solve the above questions?

Themain finding from doing a review of existing tools is that there is no
existing open source products to extend to satisfy the objectives of UTT.
There are however open source components that arewell-suited forUTT.

95

SinceUTTis to a large extent tied to thebrowser, JavaScript technolo-
gies are used throughout its stack. The backend uses the Node.js plat-
form, and the frontend uses the Bootstrap framework for the user inter-
face, and the Backbone.js framework for handling interactivity.

In the future, a proxy–iframe solutionmight be implementedwith ei-
ther PhantomJS or CasperJS.

6.6 Suggested future research

This section suggests directions for future research that extends theUTT
idea outlined during this research project. First, some possibilities are
presented that could be implemented for upcoming research projects,
and then long-termpossibilities that lie further ahead are presented. All
suggested possibilities are derived fromunfinished issues, the objectives
and requirements, ideas that have appeared along theway, and fromuser
feedback.

6.6.1 Short-term

Some of the short-term items are issues that we did not have time to fin-
ish. Others are ideas that should not require large amount of work to im-
plement.

Storingdata Adatastructure isalreadybuiltduringatest runthatstore
the answers of theuser, and this is shown in the result viewalongwith the
automated tested results. This data needs to be stored in a database for
further processing. We suggest to use PostgreSQL.

Implement additional to-be-verified tests Notall test results fromthe
automated checker that needs to becomeverifiedby ahuman is currently
implemented. What is needed is to formulate questions and answers for
the remaining test results. This is a small task.

Integrate with eAccessibility Checker results view This is a slightly
larger task if the goal is seamless integration, both because it is based
on some other technologies, and because the result view integrated into
frontend of the automated tool, i.e. it is not a component. Alternatively,
the results viewcanbe integratedusing an iframe, but this is less elegant.

96

Covering more aspects of HCI Currently only accessibility tests are
supported by UTT. Usability and user experience aspects should be cov-
ered in addition. For instance, one can measure how long it takes to ac-
complish a task on a website.

There are also completely different use cases that UTT used for, such
as improving OCR detection algorithms by using amachine learning ap-
proach, or similarly, by parsing free text calendar dates.

Supportwebsites—notonlywebpages Currently,UTTcancheckonly
a web page—or, oneURL at the time. It should be able to check awebsite,
either by allowing the user to enter a set of URLs, or by having a crawler
or similar technology take a web page as input, and then automatically
discover related pages.

Work needed to support websites without modifications It was re-
ported from users, that the iframe technique did not work in all cases;
it seems to have problems with web pages that redirects to other pages,
and/or web pages that have a lot of interaction. Another issue that was
not reported, but that can be problematic, is that the iframe has its own
scrollbar that is separate from the UTT scrollbar. This might confuse
someusers. A third issue, is that the iframepresents thewholeweb page,
which is inconvenient when using screen readers.

Highlightelement currentlybeing tested Inthetestpagebody, it should
be highlighted what element is currently tested. This can be done if us-
ing a tool like Casper.JS, as it can inject CSS into the page. It can with
little effort produce a screenshot. However, thatmeans that it will not be
presented for people with screen readers. What needs further work, is to
figure out how to implement a proxy like Loop11 that downloads a page,
modifies it, and serves it.

Better handling of many tests of same type Right now there is one
test per view. When there are more occurrence of the same test, then
it might be an idea to group them together. This allows for a side-by-
side comparisons of answers, so that the user can check for consistency
among his/her answers.

Itwas suggested in a feedback tohave apattern-detectingmechanism

97

for answers, suggesting answers for upcoming questions based on previ-
ous answers.

Other We received a lot of valuable feedback, and there are functional-
ity that we feel belong into a last category of features that would be nice
tohave implemented. One such feature is having a export for test results.
Another feature is linking tests upagainst guidelines for further reading.

A few tweaks is needed tomakeUTT load faster. UTT is currently not
designed for mobile or tablet devices, but it would not require much to
make it responsive.

Also, we received feedback related to the tests. Sometimes, there is a
test for an element that is not visible. One specific example is “jump to
content” links. These should be handled in a special way.

Crowdsourcing Once the tool has matured, it might be a possibility to
use a recruiting service to get a large amount of users evaluate it.

6.6.2 Long-term

This is a list ofpossibilitiesofwhere theproject cango in the future. Mak-
ing sense of the data

Once data such as test answers or mouse activity has been collected
from a large number of users, it needs to be made sense of to be of any
value. Determining the reliability of collected data is both a science and
artof itsown, andtherearepossible interesting to tocombineresultspro-
vided by the users. If UTT is used to certify that a website is accessible,
then one need to take into account aspects such as demographics of the
participants, and that there is a variety of devices used for testing a web
page.

One concern that needs to be addressed is test users gaming the sys-
tem. One has to implement preventive mechanisms similar to web ad-
vertisement vendors refers to as false clicks.

Use browser DOM instead of source based DOM Today’s automated
accessibilitycheckersbases theirchecksontheHTMLsourcecode. Since
theWeb2.0phenomenon,websitesarebecomingmoredependentonbrowser
technologies suchasJavaScriptandWebSocket forbuilding its structure,
and filling that structure with content. UTT is itself an example of a step

98

is this direction, as the meat of the application is not contained in the
HTMLfile that is initially requested by the user agent of the person visit-
ing the website, but rather loaded dynamically.

Since aHTMLfiledoesnot always represent the content that is finally
rendered on the web page, we cannot use the HTML as a source when
checking if it is accessible. More work needs to be done in this area, and
especially for automated checker tools.

User preferences It should be possible for users of UTT to change the
textsize, colorscheme,andhave itadjust forassistive technologies. When
doing so, one need to keep privacy in mind, and prefer storing the user
preferences in the client.

One use case that we became aware of during the project is a busi-
ness that is interested in usingUTT internally in a software development
team/department. The business needs to restrict who are able to access
the tool, and to only log anonymous usage by the software developers.

To do this effectively, an instance ofUTTcanbecome installedwithin
the boundaries of the department, and this will offer the business full
control over the collecteddata. They shouldbeable todelete the collected
data if they wish to.

Analytics user interface for studying data In the future, UTT might
include a dedicated tool for making sense of the collected data, similar
to the Google Analytics interface. There might be a way for them to sug-
gest/report a specific pattern, and perhaps classify it as being a CMS-
related issue. Some of this feedback functionality might become a part
of the testing user interface.

Using collected data to improve automated checker The analysis of
data collectedbyUTTcanmight lead to theautomatedcheckerbecoming
smarter. Once it is able to recognized a new pattern, it mightmake a test
fail instantly that previously had to be verified by a human. One example
of this is placeholders for alternative texts inserted by tools and/or CMS
systems. Improving the automated checkermight be done froma combi-
nationofmachine learning, and fromhavingdata analysts study thedata
and recognize patterns.

99

6.7 Reflecting on the process

Wewill in this section reflect on the process of carrying out the research
project. It is split into two parts—the development of the artifact, and
the writing of the thesis.

6.7.1 Development of the artifact

There aremany aspects that influence the process of a software develop-
ment project. Some important ones are the problem itself, the people
working on solving the problem—their past experience and their prefer-
ences. Sometimes a method is followed, other times not. Most projects
are constrained by time. Implementing a large number of features in a
shortamountof timeissometimespossible, althoughitmightaffectqual-
ity negatively. Also, there are differences between open source projects
and proprietary ones beside the license.

From a years of doing software development both for leisure and pro-
fessionally, we havenoticed peoplework inways that differ greatly. Some
choose to followamethod, andfor thosewhodoitusuallyvarieshowstrictly
the method is followed. Some developers start with a design on paper,
while other like trying things out first, and then learning afterwards why
it either worked or did not work as expected.

This is a greenfield project, which means that it does not build on an
existingcodebase—andthis influencesdesigndecisionsquiteabit. Work-
ing as a single developer on a greenfield project has given a great deal
of freedom, much like a painter starting with an empty canvas. Use of
frameworkssuchasBootstrapandBackbone.js for implementingthefron-
tend provided some grid lines that simplified the decision making pro-
cess somewhat. When implementing the API for eAccessibility Checker,
the design decisions were more constrained the existing code base, but
this was a small part of this project.

When having worked on projects in larger teams before, the author
has used a slightlymore structured approach, bothwith themethod, and
thesurroundingtools. Thedesignresearchmethodprinciples, alongwith
a small subset of Scrum was used to guide the development. The basic
tools consisted ofGit as the version control system, and theGitHub issue
tracker to keep track ofmilestones and issues. Therewasnoheavyweight
development environments such as Continuous Integration, and there
wasno specificdevelopmentapproachsuchasTest-DrivenDevelopment.

100

We have found the latter useful for more backend centric projects in the
past, but less so for frontend centric projects where one need to interact
with the application to see that it behaves correctly.

For the coding activity, the personal preference of the author is to let
the fingers do the work, ask questions along the way, get new insight that
might lead tonewdirections. The codehas been refactored along theway
to make it maintainable. It has been a process of trusting prior expe-
rience, following the intuition, and question assumptions when things
have not beenworking. We do not think there is any right or wrongwhen
doingacreativeprocess—peoplearewireddifferently. Also,notwoprojects
are alike. If one has a clear idea of what to create, then typing it right
mightbe theway. Other times, onehas to tryanumberofdifferent things,
whichmight lead to unexpected, but positive surprises.

For much of UTT, many of the architecture drawings came after the
implementation. Also, thecodestartedoutunstructured, andbecamein-
creasingly structured. The requirements changed along the way. We be-
lieve refactoringmakes this possible. Very often, and especially for pro-
prietary softwareprojects, thecodegets lessmaintainableover time. The
solution is to refactor, and this is true both for writing code and writing
prose—writing is rewriting.

6.7.2 Notes on writing of the thesis

“Write it, cut it, paste it, save it”—Technologic, Daft Punk

Writingofa thesis isahugeundertaking, andtheexperiencehas included
feelings of joy, pain, and everything in between.

The process of producing the text evolved along the way, but one se-
quence of steps that seemed to work fine for the author was to draft in a
paper notebook. This was done in various locations such as coffee shops
and the university cafeteria. The drafts were transferred to a LibreOffice
document, where it was further structured, and sent for review. The doc-
ument was finalized in TEX.

It was especially helpful to receive feedback from supervisors often.

6.8 Concerns regarding privacy

Privacy is a concern in every web application collecting data. While we
do not currently log any data, we intend to collect data beyond answers

101

to tests. This needs to be done in a way that both respects the privacy of
the user, and is according to laws in the countries where the tool is in use.
While it is likely that the IP addresswill be logged, in addition to the user
agent string, we do not intend to collect name or email of the user.

Tobe able toprovide auser interface optimized for assistive technolo-
gies,weneed to askuserswhatdevices they areusing and/orwhatdisabil-
ities that they have. One advantages of the SPA architecture used, is that
it has the potential to adapt the user interface without ever sending this
information to a server. This is one advantage of fat client architecture
that is rarelymentioned.

Storing of mouse activities such as movements and clicks has been
discussed earlier, and a couple of tools have been looked at. This is sensi-
tivedata, because the itmightreveal that theuserhasmotor impairments
and/or that theuser is an inexperiencedcomputeruser (e.g. double clicks
where it ismore appropriate to single click.) The solution is to clearly in-
formtheuseraboutwhatwecollect, and itmightbenecessary for theuser
to decide what we should be able to collect.

To be able to serve the currently tested web page through a proxy, we
needtostore itsURL. It ispossible for theuser tosomeextentsurf theweb
within the iframe—andthus,weare loggingsites that arevisited. Wefind
itunlikely that theuserwouldwant surf theweb throughthe testpage, but
it is still a possibility that the user loses focus, and starts clicking around
in the iframe.

Oneof theprivacyconcernsof loggingofkeystrokes is if auserbyacci-
dent enters his/her username/password. Entering usernames and pass-
words is sometimesdonebyexternal tools thatgeneratekeystrokes51, and
it is a possible that keystrokes can be logged if the tool is started acciden-
tally inanon-passwordfield. It shouldbenotedthatweonly logkeystrokes
inside the iframe of the website being tested. It is not possible with the
technique used, or any other in-browser techniques that we are aware of,
to log keystrokes on an operating system level. What needs to be consid-
ered is how to handle testing of websites where the user needs to log in.

A future possibility is to use a web camera to detect and log eyemove-
ments. Face-detection is a feature that might be used creatively. Marko
Dugonjićhaswith theuseof face-detectioncreatedanexperimentalweb-
site using a newHTML5 API that uses the web camera and an algorithm

51Alexanderhasdevelopedonesuchtoolnamedmlt—or,minimal login typer—forsim-
plifying logins. https://github.com/alexanderte/mlt

102

todeterminehow far away theuser is fromthe computerdisplay. Thedis-
tance affects the size of the text,52 resulting in what appears for the user
to be a constant size. The web browser (Chromium on Linux) did ask for
user permission before the web page could access the web camera con-
tent.

To sum up, once UTT starts collecting data in the future, it needs to
ask the user for permission about what is allowed to collect. Since the
prototype does not collect anything, it has no such options.

52http://webdesign.maratz.com/lab/responsivetypography/

103

7 Conclusion

Themaster’s project represents the first steps towards enabling accessi-
bility testing of websites using a combination of automated testing and
user testing with a view to a crowdsourcing approach. This section con-
cludes the research.

Howtoenablemorepeople to improveaccessibility testing is themain
question addressed. Based on our proposed solution the thesis also deals
with how to integrate an automated checker with user testing, how user
tests can enhance automated checker tests, how to design the user inter-
face, and how remove any obstacles preventing larger numbers of people
to contribute for crowdsourcing the tests of web sites.

An open source prototype based on an iframe technique was built to
demonstrate a viable path of development. The user interface integrates
with the web page to be tested, and it satisfies several usability criteria.
The solution coversdesignof anAPI for the automatic checker for receiv-
ing test results, a controlflowmechanism, andauser interface iteratively
refined involving evaluators.

Theuser interface is implementedusingaSPAarchitecture, a fatclient
architecture for theweb. This will reduce the demand for bandwidth and
server capacity and should therefore be suitable for crowdsourcing. The
user interface needs to take privacy into account by giving the user con-
trol about what data to collect. Currently this is not a problem since the
prototype does not store any data. To initiate the development of a user
testing tool, this thesis has focusedona solid architecture alongwith fea-
tures that serve a demonstrative purpose. The proposed archtitecture
and the open source approach is designed to facilitate further develop-
ment.

Design Research was the chosen research method, where knowledge
wasderivedfromcreationof theprototypeandinteractionwiththeusers.
The researchproblem is basedonapractical need for better testing tools.
User testing of the tool itself uncovered that efficient means of user en-
try is crucial, and that the tool needs to adjust for a variety of devices and
assistive technologies.

Futureresearchcanincludestorageofcollecteddata, exploreapproaches
to deal with privacy and logging of data, data analysis for quality assur-
ance, further investigation of the proxy–iframe technique, and integra-
tion with the eAccessibility Checker result view.

104

8 Glossary

Abbreviation Definition

CSS Cascading Style Sheets

DOM Document Object Model

HCI Human-computer interaction

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

SPA Single-page application

UI User interface

URL Uniform Resource Locator

UTT User Testing Tool

W3C The World Wide Web Consortium

WAI-ARIA Web Accessibility Initiative—Accessible Rich Internet Applications

WCAG Web Content Accessibility Guidelines

XHR XMLHttpRequest

Table 9: Glossary

105

9 Appendix

9.1 Gannt chart

Figure 30 shows the latest revision of the Gannt chart. Some dates were
changed near the end of the project, and the changes are not reflected in
the Gannt chart. Still, it gives an idea of how some of the work was done
in parallel. One deviation from the Gantt chart is that the project plan
is no longer considered an outcome. The change in dates resulted from
estimation errors, other projects that got in the way, and illness.

Sheet1

Page 1

January February March April May

Artifact Activity Version Deadline 34 35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Project plan

Structure 0.1.0

Final 1.0.0

Literature review (scientific context, terms, planned contribution)

Thesis

Structure 0.1.0

Half way 0.5.0 a b

Content for all sections0.9.0

Final 1.0.0 a b

Delivery 1.0.0 2013-05-27
User Testing Tool

Existing tools

Iteration 0.2.0 2013-02-13

Testing

Iteration 0.3.0 2013-04-22

Testing

–

a Friday – Student sends text to supervisors to receive feedback

b Friday – Supervisor sends text to students with feedback

“Mastermøte”

Figure 30: Gantt chart

106

References

Abran, A., Khelifi, A., Suryn,W., & Seffah, A. (2003). Consolidating the
ISO usabilitymodels. In Proceedings of 11th international software
qualitymanagement conference (p. 23–25).

The Accessibility ofWAI-ARIA. (n.d.). http://alistapart.com/article/the-
accessibility-of-wai-aria. Retrieved 2013-06-02, from
http://alistapart.com/article/the-accessibility-of-wai-aria

Addressing accessibility | fix the web. (n.d.). Retrieved 2013-06-07, from
http://www.fixtheweb.net/

Agrawal, A., Boese, M., & Sarker, S. (2010, August). A review of the HCI
literature in IS: the missing links of computer-mediated commu-
nication, culture, and interaction. AMCIS 2010 Proceedings. Re-
trieved from http://aisel.aisnet.org/amcis2010/523

Bannan-Ritland, B. (2003). The role of design in research:
The integrative learning design framework. Educational
Researcher, 32(1), 21–24. Retrieved 2013-06-02, from
http://edr.sagepub.com/content/32/1/21.short

Bannan-Ritland, B., & Baek, J. Y. (2008). Investigating the act of design
in design research: The road taken. Handbook of design research
methods in education: Innovations in science, technology, mathe-
matics and engineering.Mahway, NJ: Taylor & Francis.

Bold and italic formatting | AccessAbility. (n.d.). Retrieved 2013-06-07,
from http://accessibility.psu.edu/boldface

Buchanan, R. (2001). Design research and the new learning. Design
issues, 17(4), 3–23.

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s mechan-
ical turk a new source of inexpensive, yet high-quality, data? Per-
spectives on Psychological Science, 6(1), 3--5.

Building the next SoundCloud - SoundCloud backstage Sound-
Cloud backstage. (n.d.). Retrieved 2013-06-07, from
http://backstage.soundcloud.com/2012/06/building-the-next-soundcloud/

Caldwell, B., Cooper, M., Reid, L. G., & Vanderheiden, G. (2008). Web
Content Accessibility Guidelines (WCAG) 2.0. World Wide Web
Consortium (W3C).

Chiew, T. K., & Salim, S. S. (2003). Webuse: Website usability evaluation

107

tool. Malaysian Journal of Computer Science, 16(1), 47–57.
Cole, R., Purao, S., Rossi, M., & Sein, M. K. (2005). Being proac-

tive: where action research meets design research. In Pro-
ceedings of the twenty-sixth international conference on in-
formation systems (p. 325–336). Retrieved 2013-06-02, from
http://www.researchgate.net/publication/221599527_Being_Proactive_Where_Action_Research_Meets_Design_Research/file/79e4150c075e7ccf4b.pdf

Commission, E. (2007). The social situation in the europeanunion 2005-
2006: The balance between generations in an ageing europe. Office
for Official Publications of the European Communities.

Commission, I. O. f. S. E. (2001). ISO/IEC 9126-1 standard, software en-
gineering, product quality, part 1: Qualitymodel. Author, Geneva.

Convention on the rights of persons with disabilities. (n.d.).
http://www.un.org/disabilities/default.asp?id=150. Retrieved2013-
06-02, fromhttp://www.un.org/disabilities/default.asp?id=150

Crockford, D. (2008). JavaScript: the good
parts. Yahoo Press. Retrieved 2013-06-02, from
http://www.google.com/books?hl=no&lr=&id=PXa2bby0oQ0C&oi=fnd&pg=PR7&dq=javascript+the+good+parts&ots=HIshn6p0gF&sig=UFBpvy_Fz-kqCIS37Epxs3z7qG0

Crowdsourcing: Crowdsourcing: A definition. (n.d.).
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html.
Retrieved2013-06-02, fromhttp://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html

Crowdsourcing - definition and more from the free merriam-
webster dictionary. (n.d.). http://www.merriam-
webster.com/dictionary/crowdsourcing. Retrieved 2013-06-03,
fromhttp://www.merriam-webster.com/dictionary/crowdsourcing

Designing with grid-based approach | smashing magazine. (n.d.).
http://www.smashingmagazine.com/2007/04/14/designing-
with-grid-based-approach/. Retrieved 2013-06-02, from
http://www.smashingmagazine.com/2007/04/14/designing-with-grid-based-approach/

Digital agenda for europe - european commis-
sion. (n.d.). Retrieved 2013-06-07, from
http://ec.europa.eu/digital-agenda/en/news/proposal-directive-european-parliament-and-council-accessibility-public-sector-bodies-websites

108

Edelson, D. C. (2002). Design research: What we learn when we engage
in design. The Journal of the Learning sciences, 11(1), 105–121.

Ericsson teams up with dj and producer avicii to try
and crowdsource the world’s first hit song. (n.d.).
http://thenextweb.com/media/2013/01/08/ericsson-teams-
up-with-dj-and-producer-avicii-to-try-and-crowdsource-
the-worlds-first-hit-song/. Retrieved 2013-06-02, from
http://thenextweb.com/media/2013/01/08/ericsson-teams-up-with-dj-and-producer-avicii-to-try-and-crowdsource-the-worlds-first-hit-song/

Fragment identifier - wikipedia, the free encyclope-
dia. (n.d.). Retrieved 2013-06-07, from
http://en.wikipedia.org/wiki/Fragment_identifier

GNU general public license v2 (GPL-2) explained in plain
english. (n.d.). Retrieved 2013-06-07, from
http://www.tldrlegal.com/license/gnu-general-public-license-v2-(gpl-2)

Google - definition and more from the free merriam-
webster dictionary. (n.d.). http://www.merriam-
webster.com/dictionary/google. Retrieved 2013-06-04, from
http://www.merriam-webster.com/dictionary/google

gotreehouse. (2012a, March). Web accessibility tu-
torial - vision pt. 1. Retrieved 2013-06-02, from
http://www.youtube.com/watch?v=DvkKN-sXleE

gotreehouse. (2012b, March). Why learn web accessibility? Retrieved
2013-06-02, fromhttp://www.youtube.com/watch?v=GNRYSdselkQ

Heading tags (h1, h2, h3, p) in HTML | AccessAbility. (n.d.). Retrieved
2013-06-07, from http://accessibility.psu.edu/headingshtml

Hevner, A. R. (2007). The three cycle view of design sci-
ence research. Scandinavian Journal of Informa-
tion Systems, 19(2), 87. Retrieved 2013-02-17, from
http://community.mis.temple.edu/seminars/files/2009/10/Hevner-SJIS.pdf

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). De-
sign science in information systems research. MIS
quarterly, 28(1), 75–105. Retrieved 2013-06-02, from
http://dl.acm.org/citation.cfm?id=2017217

How to: Detect backbone memory leaks | andrew hen-
derson. (n.d.). Retrieved 2013-06-07, from

109

http://andrewhenderson.me/tutorial/how-to-detect-backbone-memory-leaks/

HTML5 rocks - a resource for open web HTML5 developers. (n.d.). Re-
trieved 2013-06-07, from http://www.html5rocks.com/en/

Introduction to web accessibility. (n.d.). Retrieved 2013-06-07, from
http://www.w3.org/WAI/intro/accessibility.php

ISO, S. (2004). 6385. 2004. Ergonomic principles in the design of work
systems (ISO 6385: 2004), 1.

ISO, W. (1998). 9241-11. ergonomic requirements for office work with
visual display terminals (VDTs). Guidance on usability.

Iwarsson, S., & Ståhl, A. (2003). Accessibility, usability and
universal design-positioning and definition of concepts de-
scribing person-environment relationships. Disability &
Rehabilitation, 25(2), 57–66. Retrieved 2013-02-17, from
http://informahealthcare.com/doi/abs/10.1080/dre.25.2.57.66

JavaScript garden. (n.d.). http://bonsaiden.github.io/JavaScript-
Garden/#types.equality. Retrieved 2013-06-02, from
http://bonsaiden.github.io/JavaScript-Garden/#types.equality

Kittur, A., Chi, E., Pendleton, B. A., Suh, B., & Mytkowicz, T. (2007).
Power of the few vs. wisdom of the crowd: Wikipedia and the rise
of the bourgeoisie. WorldWideWeb, 1(2), 19.

Leventhal, L. M., & Barnes, J. A. (2008). Usability en-
gineering: process, products, and examples. Pear-
son/Prentice Hall. Retrieved 2013-02-17, from
http://www.lavoisier.fr/livre/notice.asp?id=OR2WRAALOOSOWZ

LOV 2008-06-20 nr 42: Lov om forbud mot diskriminering på
grunn av nedsatt funksjonsevne (diskriminerings- og tilgjen-
gelighetsloven). (n.d.). http://www.lovdata.no/all/hl-
20080620-042.html. Retrieved 2013-06-02, from
http://www.lovdata.no/all/hl-20080620-042.html

Mankoff, J., Fait, H., & Tran, T. (2005). Is your web page accessible?: a
comparative study of methods for assessing web page accessibility
for the blind. In Proceedings of the SIGCHI conference on human
factors in computing systems (p. 41–50). Retrieved2013-02-17, from
http://dl.acm.org/citation.cfm?id=1054979

110

MOTHER EFFING TOOL CONFUSER. (n.d.). Retrieved 2013-06-07,
from http://mothereffingtoolconfuser.com/

Muller,M. J., & Kuhn, S. (1993). Participatory design. Communications
of the ACM, 36(6), 24--28.

Native XMLHTTPRequest object - IEBlog - site home -
MSDN blogs. (n.d.). Retrieved 2013-06-07, from
http://blogs.msdn.com/b/ie/archive/2006/01/23/516393.aspx

Nielsen, J., & Hackos, J. T. (1993). Usability engineering (Vol.
125184069). Academic press San Diego.

Nietzio, A., Eibegger, M., Goodwin, M., & Snaprud, M. (2012).
Following the WCAG 2.0 techniques: experiences from de-
signing a WCAG 2.0 checking tool. Computers Helping Peo-
ple with Special Needs, 417–424. Retrieved 2013-02-17, from
http://www.springerlink.com/index/1V262422218WNW14.pdf

Orlikowski, W. J., & Iacono, C. S. (2001). Research com-
mentary: Desperately seeking the" it" in it research—
a call to theorizing the it artifact. Information systems
research, 12(2), 121–134. Retrieved 2013-02-17, from
http://infosys.highwire.org/content/12/2/121.short

Owen, C. L. (1998). Design research: building the knowledge base. De-
sign Studies, 19(1), 9–20.

Papas, N., O'Keefe, R. M., & Seltsikas, P. (2011). The action
research vs design science debate: reflections from an in-
tervention in eGovernment. European Journal of Informa-
tion Systems, 21(2), 147–159. Retrieved 2013-06-02, from
http://www.palgrave-journals.com/ejis/journal/v21/n2/abs/ejis201150a.html

PEP20 – the zen of python. (n.d.). http://www.python.org/dev/peps/pep-
0020/. Retrieved 2013-06-02, from
http://www.python.org/dev/peps/pep-0020/

PHP: a fractal of bad design - fuzzy notepad. (n.d.).
http://me.veekun.com/blog/2012/04/09/php-a-fractal-
of-bad-design/. Retrieved 2013-06-03, from
http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/

Pierre Kircher. (2012, April). Gary bernhardt WAT. Retrieved 2013-06-
03, from http://www.youtube.com/watch?v=kXEgk1Hdze0

The principles of universal design at center for universal de-

111

sign. (n.d.). http://www.ncsu.edu/project/design-
projects/udi/center-for-universal-design/the-principles-
of-universal-design/. Retrieved 2013-06-02, from
http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the-principles-of-universal-design/

Redefining web designers, web developers, and web hybrids for the mod-
ern market - tristan denyer. (n.d.). Retrieved 2013-06-07, from
http://tristandenyer.com/redefining-web-designers-web-developers-and-web-hybrids-for-the-modern-market/

Responsive web design · an a list apart arti-
cle. (n.d.). Retrieved 2013-06-07, from
http://alistapart.com/article/responsive-web-design

Rubery, M. (2011). Audiobooks, literature, and sound studies. Taylor &
Francis.

Semantic versioning 2.0.0-rc.2. (n.d.). http://semver.org/. Retrieved
2013-06-02, from http://semver.org/

The semantic web: Scientific american.
(n.d.). Retrieved 2013-06-07, from
http://www.scientificamerican.com/article.cfm?id=the-semantic-web

Single-page application - wikipedia, the free encyclo-
pedia. (n.d.). Retrieved 2013-06-07, from
http://en.wikipedia.org/wiki/Single-page_application

Spinuzzi, C. (2005). Themethodology of participatory design. Technical
Communication, 52(2), 163--174.

Standards - W3C. (n.d.). Retrieved 2013-06-07, from
http://www.w3.org/standards/

Takeda, H., Veerkamp, P., & Yoshikawa, H. (1990). Modeling de-
sign process. AI magazine, 11(4), 37. Retrieved 2013-06-02, from
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/855

Tiedtke, T., Märtin, C., & Gerth, N. (2002). AWUSA–A tool for auto-
mated website usability analysis. In PreProceedings of the 9th int.
workshop DSV-IS (p. 251–266).

Tim berners-lee on the next web | video on
TED.com. (n.d.). Retrieved 2013-06-07, from
http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

112

User testing tool forprosjekt – it funk. (2012).
http://www.itfunk.org/docs/prosjekter/User_Testing_Tool.htm.
Retrieved2013-06-02, fromhttp://www.itfunk.org/docs/prosjekter/User_Testing_Tool.htm

Vaishnavi, V., & Kuechler, B. (2004). Design research in in-
formation systems. http://desrist.org/design-research-
in-information-systems/. Retrieved 2013-06-02, from
http://desrist.org/design-research-in-information-systems/

VonAhn, L. (2006). Games with a purpose. Computer, 39(6), 92--94.
WAI history. (n.d.). Retrieved 2013-06-07, from

http://www.w3.org/WAI/history
WebAIM: creating accessible frames. (n.d.). Retrieved 2013-06-07, from

http://webaim.org/techniques/frames/
Web style sheets. (n.d.). Retrieved 2013-06-07, from

http://www.w3.org/Style/#dynamic
Wegge, K., & Zimmermann, D. (2007). Accessibility, usabil-

ity, safety, ergonomics: concepts, models, and differences.
Universal Acess in Human Computer Interaction. Cop-
ing with Diversity, 294–301. Retrieved 2013-02-17, from
http://www.springerlink.com/index/82jlr1j18j655g83.pdf

What are the real-world strengths and weaknesses of the many
frameworks based on backbone.js? - stack overflow. (n.d.).
http://stackoverflow.com/questions/10847852/what-are-
the-real-world-strengths-and-weaknesses-of-the-many-
frameworks-based-on. Retrieved 2013-06-02, from
http://stackoverflow.com/questions/10847852/what-are-the-real-world-strengths-and-weaknesses-of-the-many-frameworks-based-on

What the rails security issue means for your
startup | kalzumeus software. (n.d.).
http://www.kalzumeus.com/2013/01/31/what-the-rails-security-
issue-means-for-your-startup/. Retrieved 2013-06-02, from
http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/

Winter, R. (2009). Interview with Alan R. Hevner on “design science”.
Business & Information Systems Engineering, 1(1), 126–129.

Yes, actually, it may be you one day. (2012). Retrieved 2013-06-02, from
http://www.karlgroves.com/2012/11/16/yes-actually-it-may-be-you-one-day/

113

Zhang, P., & Li, N. (2005). The intellectual development of Human-
Computer interaction research: A critical assessment of the MIS
literature (1990–2002). Journal of the Association for Information
Systems, 6(11), 227–292.

Zimmerman, J., Forlizzi, J., & Evenson, S. (2007). Research through
design as a method for interaction design research in HCI. In Pro-
ceedings of the SIGCHI conference on human factors in computing
systems (p. 493–502).

