&S| UNIVERSITY OF AGDER

User Testing Tool

Towards a tool for crowdsource-enabled accessibility evaluation of
websites

Alexander Teinum

Supervisors
Janis Gailis (internal), Mikael Snaprud (external)

This Master’s Thesis is carried out as a part of the education at the
University of Agder and is therefore approved as a part of this
education. However, this does not imply that the University answers

for the methods that are used or the conclusions that are drawn.

University of Agder, 2013
Faculty of Economics and Social Sciences

Department of Information Systems

Preface

I want to take a moment to acknowledge and thank all who have been in-
volved in some way or another during this research project.

First out, cand. scient. Janis Gailis—thank you for accepting the of-
fer to supervise this project. I am especially grateful for your feedback
regarding the choice and use of design research. Your enthusiasm for the
open source philosophy has not gone unnoticed over the years at the uni-
versity.

Dr. Mikael Snaprud, I should start by saying thanks for sharing the
burden with Janis by being my supervisor. Your contribution during this
project is simply beyond words. The last year in Tingtun has been a fan-
tastic experience, and I would like to use this opportunity to give a nod to
all my co-workers around the world.

This project would not be possible without the financial support re-
ceived by The Research Council of Norway. I would like to express my sin-
cere thanks to the partners of the UTT project for your invaluable feed-
back during the three rounds of evaluation.

I extend my gratitude to Birkir Gunnarsson and Jeroen Hulscher for
engaging in email conversations about the implementation of UTT. Also,
I'would like to thank Thomas Holmstrem Frandzen and Ruben Wangberg
for providing insightful comments on the report.

Iespecially thank my family for providing love and support—and food—
duringthisintense period of work. I also want to thank my friends for just
being there, and for taking me on volleyball breaks every once in a while.

Thanks,

Alexander Teinum, 2013-06-07

Nl

Abstract

This thesis describes the first open source tool to combine user
testing and automated testing to check accessibility of websites. User
Testing Tool (UTT) integrates with an existing automated checker
for testing websites against the WCAG 2.0 guidelines. UTT gener-
ates and presents questions that need human verification, such as
wether an alternative text representation is appropriate for an im-
age on a web page. In the future, collected data can be used to both
improve the accessibility of the website, as well as making the auto-
matic checker smarter.

How to enable more people to improve accessibility testing is the
main question addressed. Based on our proposed solution the the-
sis also deals with how to integrate an automated checker with user
testing, how user tests can enhance automated checker tests, how to
design the user interface, and how remove any obstacles preventing
larger numbers of people to contribute for crowdsourcing the tests
of web sites.

Anopen source prototype based on an iframe technique was built
to demonstrate a viable path of development. The user interface in-
tegrates with the web page tobe tested, and it satisfies several usabil-
ity criteria. The solution covers design of an API for the automatic
checker for receiving test results, a control flow mechanism, and a
user interface iteratively refined involving evaluators.

The user interface is implemented using a SPA architecture, a
fat client architecture for the web. This will reduce the demand for
bandwidth and server capacity and should therefore be suitable for
crowdsourcing. The user interface needs to take privacy into ac-
count by giving the user control about what datato collect. Currently
this is not a problem since the prototype does not store any data.
To initiate the development of a user testing tool, this thesis has fo-
cused on asolid architecture along with features that serve ademon-
strative purpose. The proposed archtitecture and the open source
approach is designed to facilitate further development.

Design Research was the chosen research method, where knowl-
edge was derived from creation of the prototype and interaction with
the users. The research problem is based on a practical need for bet-
ter testing tools. User testing of the tool itself uncovered that effi-
cient means of user entry is crucial, and that the tool needs to adjust
for avariety of devices and assistive technologies.

Future research can include storage of collected data, explore ap-
proaches to deal with privacy and logging of data, data analysis for
quality assurance, further investigation of the proxy-iframe tech-
nique, and integration with the eAccessibility Checker result view.

Contents

1 Introduction

1.1
1.2

1.3

context i e e e e e e e e e e e e
Researchproblem
Documentoverview

2 Literature review

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12

3-13

4.1
4.2
4.3
4.4
4.5

Selection of literature
Designresearch
Human-computer interaction
Accessibilityo oo
Usability
USer eXperience v v v v vt i i i
Selected topics of web technologies
Crowdsourcing
Opensourcesoftware

Existing tools

Selectionprocess oo
The selectionoftools.
Loopll. . . o o v i i e e

eAccessibilityChecker
Achecker
Existing researchprojects
Recruitingservices oo,
Findings
Objectives and requirements

Method

Designresearch
Borrowing terminology
Outcomes o i i e e e e e e e e e e e e
Researchmodel
Collaboration

ii

10
12
14
16
16
22

23

25
25
26
28
32
33
34
36
36
37
37
38
39
41

iii

4.6 Other e 52
5 Design 53
5.1 Revisitingrequirements 53
5.2 Designingtheuserinterface 54
5.3 Specific user interface functionality 56
5.4 Theimplementation 63
5.5 Implementingthe frontend 65
5.6 Backend implementation and architecture 69
5.7 Integration with eAccessibility Checker 70
5.8 Architecturalconcerns 71
5.9 Deploying and monitoring the solution 72
5.10 Choice oftechnologies 73
6 Discussion 87
6.1 Reflecting on the method and priorart. 87
6.2 Existingtools 88
6.3 Design 88
6.4 Limitations« .. e 91
6.5 Researchquestions. 92
6.6 Suggested futureresearch 95
6.7 Reflectingontheprocess 99
6.8 Concernsregardingprivacy v v v oot .. 100
7 Conclusion 103
8 Glossary 104
9 Appendix 105
9.1 Ganntchart. 105

References 106

iv

List of Figures
1 TheDesignCyclemodel 7
2 The Design Science ResearchCycles 8
3 The Learning Design Framework 9
4 Loopi1presenting atask duringatestrun 28
5 Loopi1iuserinterface for managingatestrun 30
6 Definingtestpageterms 31
7 Studying the proxy-iframe technique used by Loop11 . .. 31
8 Commenting on an elementusing Usabilla 33
9 Commenting on animageusingDraft 34
10 Infomakipresentingaheatmap 35
11 ClickHeat showingaheatmap 36
12 eAccessibility Checker checkinguia.no 36
13 Acheckercheckinguia.no 37
14 Researhmodel 47
15 Initial mockupdrawnonpaper 54
16 Higher fidelitymockup 55
17 Tests of same type shown in singleview 55
18 Thehomepageof UTTO0.3 56
19 Thetestpageof UTTO0.3 57
20 Theresultpageof UTTO0.3. 58
21 UTTdressedinblack. 58
22 The pre-o.1 solution currentlyinuse 61
23 The 0.1 solution proven to be ineffective 61
24 Tests of same type grouped intoonepage 62
25 UTT translated into Norwegian 63
26 Architectureoverview 64
27 Thedirectory structure in the git repositoryof UTT 71
28 CoffeeScript and JavaScript side-by-side 78
29 The result view of eAccessibility Checker 92
30 Ganttchart 105
List of Tables
1 The7principles of Universal Design 14
2 The attributes of usability (Nielsen-Hackos, 1993) 15

3 Proprietarytools—part1 27

© 0NN O Ul

Proprietarytools—part2 27
Opensourcetools. 27
Automated checkertools 28
Stakeholders 48
The chosen technologystack 85

Glossary 104

1 Introduction

Asthe Internet is gradually changing our society with the increasing dig-
itization of services, the need for accessible and usable websites becomes
crucial. People with disabilities still find insurmountable barriers on web-
sites and online services, preventing full participation. The need for ac-
cessible online services will continue to growwith increasinglife expectancy
(E. Commission, 2007).

The Web Content Accessibility Guidelines 2.0 (WCAG) from the World
Wide Web Consortium (W3C) is a set of guidelines with defined success
criteriaon howthe accessibility of awebsite should be designed (Caldwell,
Cooper, Reid, & Vanderheiden, 2008). While it is possible to manually
check a website against these guidelines, a more effective approach is to
automate the testing. eAccessibility Checker® (Nietzio, Eibegger, Good-
win, & Snaprud, 2012) is one such tool that automatically checks a web-
site against the success criteria defined in WCAG 2.0.

Some of the success criteriain WCAG 2.0 can be automatically tested,
but there are also some whose result cannot be reliably determined by a
computer. A checker can e.g. discover if the alternative text for an im-
age is missing, or if it is a duplicate of another alternative text. Clearly, it
is much harder to automatically determine to what extent an alternative
text is indeed a good alternative source of information for those who can-
not see the image. For this and similar cases, the eAccessibility Checker
produces a result called “to-be-verified,” indicating that human verifica-
tion is yet needed.

In the course of this master’s project, a software artifact will be de-
signed that integrates with the eAccessibility Checker, to allow human
testers to determine what cannot be determined automatically.

The aim of the thesis is to arrive at a prototype to show a viable way
towards a crowdsource enabled user testing solution for websites. This
implies that the tool should have the potential to reach a large audience,
and to faciliate for this wide use, the tool is iteratively developed, and de-
sign decisions are informed by the feedback from evaluators. Given this
background, design research is chosen as the research method.

http://accessibility.egovmon.no/

1.1 Context

The master’s projectis organized in the context of a pre-project supported
by the Research Council of Norway, under the IT Funk program (User
Testing Tool forprosjekt — IT Funk, 2012). The project is co-ordinated by
Tingtun AS and is named User Testing Tool (UTT). The partners include
Accessibility Foundation (the Netherlands), Evangelische Stiftung Vol-
marstein / Forschungsinstitut Technologie und Behinderung (Germany)
and Seniornett (Norway). All partners have strong interest in website ac-
cessibility testing. Both to shape the UTT design and facilitate the wider
take-up of the project results, the UTT project has established a strate-
gic reference group. To obtain further user testing input, additional or-
ganizations have been invited to form a reference group, including The
Delta Centre (The National Resource Centre for Participation and Acces-
sibility), Agency for Public Management and eGovernment (Difi), The
Norwegian Association of the Blind and Partially Sighted (NABP), Dan-
ish Agency for digitisation, Ministry of State for Administrative Develop-
ment in Egypt, the government agencies Logius, and KING in the Nether-
lands and several individuals.

Dr. Mikael Snaprud, CEO of the Norwegian company Tingtun AS, is
the initiator and co-ordinator of the UTT project. Tingtun AS has co-
ordinated the eGovMon project ? and earlier international research lead-
ing to the eAccessibility tools to be used for automatic evaluation in this
thesis.

1.2 Research problem

The main research problem here is how to design a user testing tool that
enable more people to improve accessibility testing of websites. Ques-
tions supporting this research problem are:

1. How to design a tool that integrates with an automated checker?
2. How can user tests enhance automated checker tests?

3. How to design a user interface to best support the user doing the
user testing?

*http://www.egovmon.no/ The eGovMon project was co-founded by The Research
Council of Norway under the VERDIKT program and has delivered tools for benchmark-
ing of eGovernment services.

4. How to best track the user behavior without any code injection on
the website to be studied, or software installation on the client side?

5. Whatexisting open source solutions can be helpful to solve the above
questions?

1.3 Document overview

This introductory part (Section 1) has identified a problem and outlined
requirements for asolution. Theliterature review gives an outlook to prior
research and defines concepts used throughout the thesis. (Section 2)
Subsequently a review of existing tools (Section 3) that UTT can poten-
tiallybuild upon is given. The review sections are followed by adiscussion
of research methods (Section 4), and an outline of how design research is
applied.

The Design section (Section 5) details how UTT is implemented; its
design choices and associated implications, and the choice of technolo-
gies. The Discussion and Conclusion sections (Section 6 and 7) discusses
and sums up lessons learned, research contributions, and suggests direc-
tions for future research.

2 Literature review

This section introduces existing knowledge related to the research prob-
lem, and attempt to build a working model that will be used throughout
the thesis. It starts out by describing the selection of literature, and then
presenting the chosen subset of the literature that is thought to be rele-
vant to this project. For instance, usability is one concept with many def-
initions/models. Several have emerged throughout the years, and there
have been attempts of consolidating earlier definitions.

The author has chosen to structure the field into groups with each re-
search field as a sub-section in this literature review.

2.0.1 A note on terms and writing conventions

In the literature related to this research there is more than one defini-
tion/model of one concept. Also, there are different views regarding how
one concept is related to another, and even how fields of concepts relate
to other fields. There also exists overlap between the entities mentioned.

We attempt to use a vocabulary that is unambiguous, and we try to
stick to one definition/model per concept consistently throughout the the-
sis. While different views are presented in the literature review, a sin-
gle definition/model will be used throughout the report. We have tried to
choose definitions/models which seem to be well-established.

This report is filled with jargons. A choice regarding consistency had
tobe made, and concepts in this report are not written in title case. When
a concept first is introduced, it is written in italic, and it is followed by a
definition. Once a concept with an abbreviation has been introduced, the
abbreviation is generally used, even if the concept has been introduced in
an previous section. A glossary is provided for looking up abbreviations
(Table 9).

2.1 Selection of literature

Literature review has been a continuous process throughout the project.
Digital libraries such as ACM DL, Google Scholar, and Bibsys Ask2 have
been used actively for searching the existing base of knowledge. This re-
view also includes resources found on the web, such YouTube videos and
blog posts.

Initially, the reviewwas done in abroad, exploratory way—search phrases
were stringed together by combining keywords such as “hci,” “accessi-
bility,” “usability,” and “web evaluation.” Later on, as we started to gain
more insight about the research problem, the searches got more specific.
The knowledge-building process has been stimulated by reading litera-
ture reviews, books, blog posts, reviewing existing software, and engag-
ing in discussions both internally and with partners.

2.2 Designresearch

“Following aresearch through design approach, designers pro-
duce novel integrations of HCI research in an attempt to
make the right thing: a product that transforms the world
from its current state to a preferred state. This model al-
lows interaction designers to make research contributions
based on their strength in addressing under-constrained
problems.” —Zimmerman, Forlizzi, and Evenson (2007)

Designresearchisthe method used for carrying out the master’s project.
The method consists of analytical techniques and perspectives for per-
forming research in the field of information systems. Design research
involves the analysis of the use and performance of designed artifacts to
understand, explain and very frequently to improve on the behavior of as-
pects of information systems (Vaishnavi & Kuechler, 2004). The primary
outcome of this study, the process experience, and the software used for
evaluating websites, is an example of a such designed artifact.

Design research will in this section be viewed in a historic context,
alongwith theorybehind knowledge. Next, three models are presented to
illustrate the nature of design research; two general models that describe
its phases, and one viewing design research in an educational context.

2.2.1 The science of the artificial

Design science is also known as the science of the artificial. 1t is related
to the term old school of learning that will be discussed in the upcom-
ing section. Design science contrasts to the natural/behavioral science
paradigm in how knowledge is built. In natural science, theories about
objects or phenomenon in nature or society are developed and verified.

The theories describe and explain how the objects or phenomenon be-
have and interact with each other. On the other hand, the design science
paradigm is about building new and innovative artifacts that set out to
solve problems that are derived from practice and/or existing research
(Vaishnavi & Kuechler, 2004; Hevner, March, Park, & Ram, 2004). Both
paradigms are foundational to the IS discipline, and they are both con-
cerned with humans, organizations, and technology.

In design research, knowledge is generated and accumulated through
action (Owen, 1998). The process of creating involves analysis of existing
designs, and a lot of experimentation.

2.2.2 Design research in a historic context

Within research communities, the value of design research has for a long
time been met with skepticism. There has been uncertainty “whether
there is such a thing as design knowledge that merits serious attention”
(Buchanan, 2001). Buchanan addresses questions related to its validity
inresearchinapaperthatisbased onapresentation ataconference about
design research in the United Kingdom, and it brings to attention the
struggle and conflict over the past centuries about the old school of learn-
ing that where design is adriving force versus the new school (natural sci-
ences) of learning that is more theoretical.

There are two works that are considered the earliest examples of de-
sign research, and those are Galileo Galilei’s Dialogues Concerning Two
New Sciences published in 1665, which is about Galilei’s 30 years of per-
sonal research on body movements that has resulted in his theory of mo-
tions, and Francis Bacon’s Principia (1686). Design was not one of the
fields institutionalized in universities following the works of Galilei, Ba-
con, and others, except in general work of architecture and the fine arts.
In this century, natural science drove out design from the professional
school curricula in many professions (Vaishnavi & Kuechler, 2004).

Many researchers, Buchanan included, are optimistic, and believe that
design research has its place. Daniel C. Edelson argues that it offers op-
portunities to learn unique lessons, yields practical lessons that can be
directly applied, and that it engages researchers in the direct improve-
ment of educational practice (Edelson, 2002). Despite that many want to
see more design research project being carried out, it has been a struggle
to integrate it in some academic institutions (Zimmerman et al., 2007).

2.2.3 A sshift away from technological issues in information systems
research

Early information systems research has focused on technological issues,
but later there was a shift away from technological to managerial and or-
ganizational issues. A research commentary, drawing on a review of all
articles published in the Information Systems Research journal ten years
prior to its publish date, argues that the field has not deeply engaged its
core subject matter—the IT artifact. Orlikowski & Iacono, 2001 argue that
it tends to “disappear from view, be taken for granted, or is presumed to
be unproblematic once it is built and installed.” According to Vaishnavi
and Kuechler (2004), design disciplines have a history of building their
knowledge base through making, which involves the construction of arti-
facts and the evaluation of artifact performance following construction.

2.2.4 Three models for design research

The concepts of design research is arguably easiest by grasp by studying
models that explain its nature and the knowledge building that happens
through creation in iterations.

Action Level

Object Leve] —— M — [—
(Awareness of problem \

Enumeration of problems Decision on a problem to be solved

(]

Suggestion

&

)

\y

Evaluation

(
(
C

Evaluation to confirm the solution —(Evﬂfféiugﬁt?nktﬂiwsmﬁgf 2)
* bonclusilon
(Decision on a solution to be adopted Decision on an action to be done ne}
— / ~ _J

Figure 1: The Design Cycle model

Design Cycle model by Takeda et al. The Design Cycle model (Figure
1) by Takeda, Veerkamp, and Yoshikawa (1990) presents the design re-
search process along with reasoning. It starts with the awareness of a set
of problems. A problem is chosen to become solved along with a sugges-

tion for a solution. The suggested solution to the problem—or artifact—
is designed, and finally evaluated. The process repeated iteratively, and
it continues until a solution is found—or that one runs out of time. The
work results in suggestions for future actions.

Environment Design Science Research Knowledge Base

Application Domain Foundations
* People Build Design ® Scientific Theories
L Artifacts & & Methods
¢ Organizational Processes
f}ystems. . c ® Experience
Technical Relevance Cycle Rigor Cycle Expertise
Systems Design [¥e di
® Requirements Cycle oRxing
o "
* Field Testing Additions to KB
* Problems
& Opportunities Evaluate * Meta-Artifacts
(Design Products &
Design Processes)

Figure 2: The Design Science Research Cycles

Design Science Research Cycles by Hevner The Design Science Re-
search Cycles model (Figure 2) shows three continuous cycles in a design
research project (Hevner, 2007). One cycle is about grounding the de-
sign to the existing base of knowledge. As the design evolves, it must be
reevaluated that it is still addressing problems discovered by existing re-
search. Part of the cycle is also providing new knowledge to the research
base. Another cycle ensures that the artifact addresses requirements in
the real-world environment. The artifact must be tested in a real envi-
ronment. The final cycle is the design cycle, and it illustrates the iterative
development of the artifact.

The Learning Design Framework There havebeen several studiesabout
design research and its effects for learning, which is highly relevant since
this project is carried out by a student and the project is not a full fledged
research projectintended for submission to either journals or conferences.
Bannan-Ritland proposes a Integrative Learning Design Framework
(Figure 3) for design research in education, emphasizing stage sensitiv-
ity of research questions, dataand methods, “and the need for researchers
to design artifacts, processes, and analyses at earlier stages in their re-
search that canthen be profitably used (perhaps by different researchers)
in later stages” (Bannan-Ritland, 2003). One of its objectives is to con-
struct propositions about learning and teaching, and another is to engi-

A L4 g = B 1B N A)
Woedy | Suney Moy S Pt it | e | Fommane| T ey R B P
w [e) B)) o) | R) =)
| 1 =] 30 Y
JrY‘m‘?‘aﬂ E xploratian T Enactmeant I Evaluabon Local dmpact | F'-&I\.Rt"nr Hr-—_\a‘.ﬂr.\rrpa-‘.l]
— - 4 r
Product Nens i3 |.,'..: | . I pevrpll | 5 el B - I,___,
Desxgn e : e 1
|
. L B
S0 —-—{ - - { - e i) e —————
-
t A E

Educational e o Tt [st
Research PO | vt | crchien | Sovet [Moo’y . j O) Oe o e | Frmeent | - .
cru v rvers [ura

Figure 3: The Learning Design Framework

neer and construct effective learning environments using software and
other artifacts to make the propositions actionable. It strives to “com-
bine the creativity of design communities with appropriate adherence to
standards of quantitative and qualitative methods in education.”

The framework hasbeenused in LiteracyAccess Online (Bannan-Ritland
& Baek, 2008), aproject for fostering collaborative reading processes with
children, and particulary those with disabilities.

2.2.5 Designresearch and HCI

Design research has gained a strong foothold in practice, but it has had
less impact on the HCI community. Zimmerman et al. (2007) argue that
there is no agreed upon standard of what research through design means,
nor what a high quality contribution should be. A set of criteria is sug-
gested for evaluating interaction design research: process, invention, rel-
evance, and extensibility.

Also of relevance is participatory design that include “theories, prac-
tices, analyses, and actions, with the goal of working directly with users

10

(and other stakeholders)” in the design of software. Assumptions about
technologies are questioned, such as if it is inevitable that technology is
applied in ways that “constrain, deskill, and devalue human work,” or if
software professionals “recognize and affirm the validity of perspectives
other than their own, [...]” (Muller & Kuhn, 1993) Participatory design
attempts to bridge the tacit knowledge developed and used by practition-
ers with “researchers’ more abstract, analytical knowledge.” Participa-
tory design can be loosely defined as a methodology (Spinuzzi, 2005).

2.3 Human-computer interaction

Human-computer interaction (HCI) is a broad field concerned with the
interaction between humans and computers. One definition of the field is
“the ways that humans interacts with technologies for various purposes”
(Zhang & Li, 2005). Other terms that refer to the the same field and/or
include HCI and its fields are Nielsen and Hackos (1993):

« Computer-human interaction
« User-centered design

« Man-machine interface

« Human-machine interface

« Operator-machine interface

« User interface design

« Human factors

« Ergonomics

Human factors and ergonomics have a broader scope than human-
computer interaction (Nielsen & Hackos, 1993). Ergonomics is defined
as a “scientific discipline concerned with the understanding of interac-
tions among human and other elements of a system, and the profession
that applies theory, principles, and data (S. ISO, 2004). Both HCI and er-
gonomics broad, general fields, and both include three components; the
user, interaction, and a system. Since HCI defines the system component
as a computer system, we find it more relevant in the context of UTT.

11

2.3.1 Dissecting the HCI term

One can dissect human-computer interaction, and view humans as the
end users of a piece of software. There can be more than one user. In
the context of evaluation software, one might rather than viewing the hu-
man component as a single user, instead consider it to be a community of
users. (Computer Science 10 - Lecture 13, 2012) A computer might be a
mobile client, a server in the cloud, or a desktop computer. The interac-
tion is users telling the computer what they want done, and the computer
gives resultback. Theideaofinteraction describes the HCIcore, butis of-
ten neglected in existing research (Agrawal, Boese, & Sarker, 2010). The
interaction happens through a user interface.

2.3.2 User interface

A user interface is the part of an application that allow a dialog to hap-
pen (Computer Science 10 - Lecture 13, 2012). It might consist of ele-
ments such as dialog boxes, buttons, check boxes that are interacted with
through the use of conventional input devices such as akeyboard, a mouse,
and touch panels. The results of the interaction are shown on a computer
display and/or though physical feedback such as vibration. An example
of a user interface recently invented is the Reactable3—a software and
hardware device shaped like a round table that let musicians manipulate
sound by placing and moving physical objects on top of it. The objects
affect each other, and some of the parameters related to each object are
changed by using touch gestures on the display.

A web page can be considered a user interface. It provides informa-
tion to the user, and the user can manipulate what information is shown
by interacting with elements on the web page and navigating the website.
The navigation is done by clicking links or searching through the content
of the website.

2.3.3 Subfields and classification of fields

Classifying HCI and its related fields is a challenge, and HCI in IS has
been described as a “fragmented adhocracy,” where IS researchers might
be unsure if they should even consider themselves as HCI researchers
(Agrawaletal., 2010). Whatis certain is that HCI has a multidisciplinary

3http://www.reactable.com/

12

nature, and it covers many fields and professions. A few of the many sub-
fields of HCI that are especially relevant in the context of evaluation of
websites are accessibility, usability, user experience, and visual design.

A study thatis concerned with common agreed definitions of the terms
ergonomics, usability, accessibility, and safety sets out to stimulate a con-
sistent use of the terms (Wegge & Zimmermann, 2007). According to the
study, all fields have a foundation in or relation to the area of ergonomics.
In the context of the web, HCI is more specific, since the term says that
the component that a user interacts with is in fact a computer. For this
reason, and because most, if not all of the collected literature concerning
web technologies use the HCI terminology, the author has chosen to stick
with that. The working model for this report is that usability, accessibil-
ity, and user experience are three distinct concerns.

2.4 Accessibility

Accessibility is about making content and services available to individu-
als, regardless of any disabilities or environmental constraints they expe-
rience (Mankoff, Fait, & Tran, 2005). Other terms used to refer to this are
universal usability, universal design, and design for all. While accessi-
bility is a subfield of HCI, universal design is a broader term that implies
that the society as a whole should be accessible for everyone. Terms such
as Accessibility and universal design are often mixed up and replaced with
synonyms (Wegge & Zimmermann, 2007).

Web accessibility encompass all disabilities including visual, auditory,
physical, speech, cognitive, and neurological disabilities (Introduction
to Web Accessibility, n.d.). There might be varying degrees of impair-
ment, and there seems to be a well-established myth that accessibility is
only about blind people (gotreehouse, 2012a). Universal design, while it
includes accessible technologies, also covers the physical environment,
i.e. persons using wheelchairs should be able to access buildings by way
of properly designed ramps, lifts, etc.

There has been a shift in terminology in recent years, where the per-
spective has changed from focusing on problems to possibilities. Human
diversity is an example of a phrase intended to be inclusive and to not
stigmatize. “Only if and when human diversity becomes a natural start-
ing point for architectural design and societal planning, the need for spe-
cial terms will vanish” (Iwarsson & Stahl, 2003). A paper about the ter-

13

minology suggests to rather use the term functioning, as it denotes pos-
itive aspects of interaction between an individual and that individual’s
contextual factors (Iwarsson & Stahl, 2003). Possible problems with a
change in terminology, is that they need broad acceptance in order to be
useful, and additional new terms might in general cause confusion.

There are guidelines that state how a website should be designed to
ensure accessibility. One example of this is WCAG from the WAI/W3C.
Web accessibility is covered in depth in Section 2.7.8. There are several
measures to make websites accessible for all. International legislation
like the “Proposal for a Directive of the European Parliament and of the
Council on the accessibility of public sector bodies’ website” (Digital Agenda
for Europe - European Commission, n.d.), and the ratification of the UN
Convention on the Rights of Persons with Disabilities (Convention on the
Rights of Persons with Disabilities, n.d.) require that governments and
society (including the private sector) take appropriate measures to en-
sure that persons with disabilities have access to information and com-
munications technology. In Norway, a regulation to the Discrimination
and accessibility law is expected to come into force in 2013 to enforce uni-
versal design of all public online content and a large share of the privately
owned web sites (LOV 2008-06-20 nr 42: Lov om forbud mot diskriminer-
ing pa grunn avnedsatt funksjonsevne (diskriminerings- og tilgjengelighet-
sloven), n.d.).

Finally, there is a distinction between what is considered accessible
and what is usable. Accessibility is a prerequisite for all to be able to ac-
cess the technology, but this does not ensure usability (Leventhal & Barnes,
2008). One business case argument for making a website more accessi-
ble, is that “28% of the WCAG Success Criterion are mapped to benefits
for Senior users. Baby Boomers account for 47% of US families and have
over $2,000,000,000 in buying power.” So when a website performs bet-
ter for older people, it is tied to ROI for the website owner (Yes, actually,
it may be you one day, 2012). Another argument supporting making web-
sites accessible is that it simply is the right thing to do, it leads to good
practice, and it helps avoid legal concerns (gotreehouse, 2012b).

It should be mentioned that technology set out to help people with
disabilities in many cases have also helped people without any disabili-
ties. When supporting different font sizes and color schemes on a web-
site, one might as well let the user customize the look to his or her liking.
A another example is audiobooks which took off as a US government sup-

14

ported “Talking Books Program” in the 1930s aimed at persons with vi-
sual impairments, but which with the development of smaller and more
mobile media has reached a much broader audience (Rubery, 2011).

Universal Design There are seven principles for universal design (The
Principles of Universal Design at Center for Universal Design, n.d.), and
they overlap somewhat with the usabililty definitions that follow.

Principle Description

1. Equitable use Usable and marketable for people with di-
verse abilities

2. Flexibility in use Accommodates a wide range of individual
preference and abilities

3. Simple and intuitive use Easy to understand, regardless of experi-
ence, knowledge, language skills or current
concentration levels

4. Perceptible information Communicates necessary information ef-
fectively, regardless of ambient conditions
or sensory abilities

5. Tolerance for errors Minimizes hazards and adverse conce-
qguences of accidental or unintended ac-
tions

6. Low physical effort Can be used efficiently and comfortably,

with a minimum of fatigue

7. Size and space for approach and use Appropriate size and space for approach,
reach, manipulation, and use regardless of
body size, posture, or mobility

Table 1: The 7 principles of Universal Design

2.5 Usability

During the pastdecades, there have been many definitions of the term us-
ability. This undoubtedly has something to do with the shift in computer
use during the past decades, although some of the definitions are gen-
eral. In addition to several definitions, there have also been attempts at
creating new definitions that consolidate previous definitions. For this
report, I'll stick to what seems to be two of the most cited definitions.

15

2.5.1 The Nielsen-Hackos definition (1993)

Usability as stated by Nielsen and Hackos (1993) is not asingle, one-dimensional
property of auser interface. Ithas multiple components, and is tradition-
ally associated with these usability attributes:

Attribute Description

Learnability The system should be easy to learn so that the user can rapidly start
getting some work done with the system.

Efficiency The system should be efficient to use, so that once the user has
learned the system, a high level of productivity is possible.

Memorability The system should be easy to remember, so that the casual user is
able to return to the system after some period of not having used it,
without having to learn everything all over again.

Errors The system should have a low error rate, so that users make few er-
rors during the use of the system, and so if they do make errors they
can easily recover from them. Further, catastrophic errors must not
occur.

Satisfaction The system should be pleasant to use, so that users are subjectively
satisfied when using it; they like it.

Table 2: The attributes of usability (Nielsen—-Hackos, 1993)

2.5.2 ISO definitions related to usablity

There are several ISO definitions related to usability, and two of them are
1S09241-11 (W. IS0, 1998), and ISO/IEC 9126-1 (I. O. f. S. E. Commission,
2001). The former defines usability as “The extent to which a product can
be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use.” This standard is
said to be process-oriented. The latter standard defines usability as “The
capability of the software product to be understood, learned, used and at-
tractive to the user, when used under specified conditions.” It is said to be
product-oriented.

It hasbeen proposed to turn these modelsintoaconsolidated one (Abran,
Khelifi, Suryn, & Seffah, 2003) that takes both process and product into
consideration. The study also takes the definition/model of Nielsen and
Hackos (1993) and othersinto account. Because I have observed the model
by Nielsen et al. being cited in a number of sources, I choose to use their

16

definition/model throughout the thesis.

2.5.3 User friendliness an inappropriate term

Some usability experts find the term user friendliness inappropriate (Nielsen
& Hackos, 1993; Leventhal & Barnes, 2008). One of the reasons is that
machines do not need to be friendly to users—they should solve problems
without getting in the way of the user. A second reason being that the
term implies that user’s needs can be described along a single dimension

by systems that are more or less friendly. A system that is perceived as
being friendly to one might not be perceived as being friendly to another
user.

2.6 User experience

User experience* is a term from the mid-1990s that has gained traction
recently. As computer hardware continue to become more powerful, and
computers are becoming an increasingly integrated part of peoples lives,
user interfaces are not only expected to solve the problems in an efficient
way, but to also involve the emotions of the user by having software that is
attractive. Subtle use of animations, refined typography, and careful use
of white space in designs, and social features are some attributes of the
recent trends.

2.7 Selected topics of web technologies

Since a large portion of the thesis is devoted to implementing a tool for
evaluating websites, it is crucial to have a solid understanding of the tech-
nologies that the web builds upon, its history, and also what the landscape
looks like today.

2.71 Development of a website requires many skills

One indicator of its growth is that to maintain a modern web page re-
quires more specialized expertise than previously. As roles tied to web
development are growing, there are blog posts written about classifying
roles such as frontend developer or backend developer (Redefining Web

4User experience is often abbreviated to UX, but we will write it out in this report.

17

Designers, Web Developers, and Web Hybrids for the modern market - Tris-
tan Denyer,n.d.). In the early days of the web, it was not unusual that one
person provided the code for a web page, designed it, and its content. To-
day, Itis notuncommon for alarger website to have an information archi-
tect, one or more visual designers, one or more developers, and for larger
websites there can be one person specializing in website performance.
There are many services and technology that abstracts away/outsources
tasks such as visual design. WordPress is one such example. Social net-
works abstracts away everything except the content.

2.7.2 HTML and CSS

It is important to understand the idea of markup versus presentation of
markup. A web page has traditionally, and to some extent today, con-
sisted of an HTML file (HyperText Markup Language) containing a tree
structure of elements that define the content. One example of an element
isafirst-level heading, and its content might be “Sign up for our services.”
W3C is the organization maintaining the HTML standards. (Standards
- W3C,n.d.). The latest standard, which views the web not only as a page,
but as a platform, is HTML5. HTML5 covers a broad range of technolo-
gies, such as local data storage, video, web camera, and location (HTML5
Rocks - A resource for open web HTML5 developers, n.d.).

From the very beginning when the web was invented by Tim Berners
Lee and his team, it was intended to reframe the way information was
used, and how people work together (Tim Berners-Lee on the next Web |
Video on TED.com, n.d.). It was meant to be semantic, meaning that the
content should be described, or tagged to make them easy to process by a
computer (The Semantic Web: Scientific American,n.d.).

Asthewebevolved, and the the importance of visual design increased,
the HTML files were filled with markup that not only said what content
was, but also how it should be presented. There were several problems
with this. The most fundamental being that content and presentation
were mixed together, creating a cluttered markup. Cascading Style Sheets,
or CSS, was created to solve this problem by separating content from pre-
sentation.

The problem of separating content from presentation is of course di-
rectly tied toweb accessibility, because having them separated means that
the content can be presented in alternative ways. One example of how se-

18

mantic HTML is useful for screen readers is the difference between tag-
ging content as italic versus tagging content as having emphasis, or that
the content is a citation. For a sighted user, it makes little or no differ-
ence if'a word is tagged with <i> or . To a visually impaired user, the
difference is significant, as the screen reader, at least in theory, can read
that particular word in an emphasized way (Bold and Italic Formatting |
AccessAbility, n.d.). An other common example is the use of font size or
bold typeface to indicate titles in a document. Such purely visual markup
is much harder to interpret automatically than the appropriate markup
using the HTML heading levels (Heading Tags (H1, H2, H3, P) in HTML
| AccessAbility, n.d.).

2.7.3 Frontend and backend

As websites became more complex, and grew into large stores (e.g. Ama-
zon) and libraries (e.g. Wikipedia), there was a need to generate HTML
pages instead of creating one and one “by hand.” A modern website is
built on a web framework. Awebsite is usually divided into a frontend and
a backend. The backend receives e.g. an id of an article, and it delivers
HTML files that are often generated by mixing templates with content
from a database.

The web has emerged tobecome more dynamic, as there was with Web
2.0 a shift from a vendor providing content towards users building the
content of a site. On a technical level, one very central component is the
use of JavaScript/ECMAscript in the frontend, i.e. the part of the web
page that is rendered/calculated on the client-side. JavaScript has been
available in browsers since 1995 as the only language, and it is the only
native scripting language available in web browsers. JavaScript has re-
ceived a lot of attention by browser engine developers, and a lot of work
has been put in making it perform fast.

In the early 2000s, the term Dynamic HTML was coined. It involved
the use of HTML, CSS, and JavaScript and it involved changing a website
in subtle ways, such as showing/hiding a menu on a website (Web Style
Sheets, n.d.). In the mid 2000s, an interesting use of XMLHttpRequest
emerged, atechnology firstintroduced in Internet Explorer in 1999 (Native
XMLHTTPRequest object - IEBlog - Site Home - MSDN Blogs, n.d.). It was
used to change the content dynamically an a page without reloading the
page. Downloading the entire page from the server and re-rendering it

19

takes longer, and also causes the screen to flicker. Today entire frame-
works are written in JavaScript that dynamically builds the website.

A common requirement for websites today is that they are expected
to adapt to desktop, mobile, and tablet devices. A website that renders
correctly on these devices is said to be responsive (Responsive Web Design
-An A List Apart Article,n.d.).

2.7.4 Web application frameworks

The role of aweb framework is to give an application structure, and to sep-
arate its responsibilities. An application needs some sort of structure,
e.g. to to separate how it looks (views) from how it is navigated (routes),
and a way to handle the application data (model).

Some web frameworks dictate a directory structure. This has a num-
ber of advantages. First, it makes it easy to find the file that one’s af-
ter, but perhaps more importantly, it means that as one jump from one
project to the next, then it is consistent.

Some web frameworks provide a tool for initiating a new project, e.g.
with a directory tree, an initial route, and a “Hello, World” view.

2.7.5 Single-page application architecture

Single-page application (SPA) is “aweb application or web site that fits on
a single web page with the goal of providing a more fluid user experience
akin to a desktop application” (Single-page application - Wikipedia, the
free encyclopedia, n.d.).

SPA has gained traction recently, and one notable example is Sound-
cloud, awebsite for artists sharing their music that rewrote its entire web-
site to SPA in 2012 (Building The Next SoundCloud - SoundCloud Back-
stage SoundCloud Backstage, n.d.). The website now allows for playing
music while navigating within the between pages, something that previ-
ously would have required opening an external popup window. Another
example is the new web based Spotify client that is now in beta.

For a SPA, there is an initial HTML file requested by the user agent
containing the application code. Any subsequent content than what is
initially presented is either contained in the file, oritis transferred through
apersistent WebSocket connection. A SPA isusuallybased on alibrary/framework.

20

Backbone.js5 and Ember.js® are examples of SPA frameworks.

SPA can enable navigation similar websites built using the traditional
architecture where each page is separately requested. One benefit of SPA
however, is that it allows for more fine-grained definitions of what exactly
apage is. But by doing so, it conceptually breaks the model of what a page
is, and while logical pages can and should be defined, care must be taken
when designing them.

The part of an URL that follow a HTML file’—the fragment identi-
fier (Fragment identifier - Wikipedia, the free encyclopedia, n.d.)—is not
sent to the server, regardless of architecture. The user agent recognizes
acombination of a hash sign and identifier as a jump to a section defined
by the identifier. However, since it is possible using a client-side script to
pick up the fragment following the HTML, it can also be used for routing
purposes.

One of the challenges with SPA is that along-running web page might
lead to memoryleaks as elements are manipulated—i.e. elements arecre-
ated and destroyed. Various mechanisms exists for addressing this prob-
lem (How To: Detect Backbone Memory Leaks | Andrew Henderson, n.d.).

2.7.6 State

State is a complex issue in software development. For a web shop, state
might be the notion of a user that is logged in, and that the user should
stay logged in when navigating between pages. Traditionally, clicking around
on a web page means sending a HTTP request to the server. Since HTTP

is astateless protocol, state needs to be implemented in alayer above, and

a session is usually implemented both by using cookies in the client, and

by sharing the cookie data with the server.

2.7.7 Semantic versioning

The concept of versioning of software needs no introduction. The term
semantic versioning refers to a formalization of a very common way of
versioning scheme for software (Semantic Versioning 2.0.0-rc.2,n.d.), and

Shttp://backbonejs.org/

Shttp://emberjs.com/

"Usually one does not see the name of the HTML file, as web servers removes in-
dex.html by default from the URL.

21

it is especially useful for software components that are used in software
products.

Semantic versioning follows an x.y.z scheme, where ‘x’ is a major ver-
sion, ‘y’ is a minor version, and ‘z’ is a bug fix. While most software com-
ponents follow this scheme, or a very similar one, the versioning of soft-
ware products, such as operating systems, image manipulation applic-
taions, and web browsers are often tied to marketing. In a competitive
market, a higher number might give the impression that it is better than
a competing product with a lower number. Sometimes an internal ver-
sion is used in addition to the “marketing version” to make it easier for
developers to manage the various versions.

Recently, the version numbers for web browsers such as Chrome has
reached a high number such 27, and it updates itself in the background.
Itis our observation that people pay less attention to version numbers, as
there seems to be a trend towards incremental improvements—at least
for software in this category.

2.7.8 Web technologies and accessibility

As stated in the beginning of the previous section, the web was initially
designed to be semantic by wrapping contentin the appropriate elements.
Although this helps machine parsing, this alone is not a guarantee for ac-
cessibility. An image for instance, needs further to have its alt attribute
filled out so that a screen reader can present the image to the user. The
presence of an alt attribute is a requirement for a web page to become val-
idated against the HTML standard.

Web Accessibility Initiative (WAI) is an effort by W3C launched in
1997 with the intent of improve the accessibility of the web (WAI History,
n.d.). Web Content Accessibility Guidelinesis a set of guidelines for mak-
ing web content accessible.

As outlined in the previous section, the web is getting more complex,
and there is need for additional markup beyond what is in the HTML stan-
dard to help users with disabilities. Recently, mechanisms has emerged
for giving additional cues to assistive technologies. WAI-ARIA is one of
them, and involves adding so-called landmarks to existing elements. An
example is setting attribute role of a div-element to value navigation so
that a screen reader quickly can move to this region of the page (The Ac-
cessibility of WAI-ARIA, n.d.).

22

Many of today’s accessibility checking tools work by measuring the
source code against implemented success criteria belonging to a guide-
line such as WCAG. There is one problem with this. Taking the source
codeasinputisstarting toget problematic asthe web is transitioning into
client side architecture that involves content being loaded into the doc-
ument at run time. For UTT, the source code only contains the skeleton
of the application. The fact that many accessibility tools rely on a source
based DOM has been blogged about recently (MOTHER EFFING TOOL
CONFUSER, n.d.).

Anexisting crowdsource approach to accessibility testing is FixTheWeb
(Addressing accessibility | Fix the Web, n.d.), a website where one group
of people report accessibility issues encountered on websites. Another
group notifies owners of the websites about the reported issues.

2.8 Crowdsourcing

Crowdsourcing is defined as “the practice of obtaining needed services,
ideas, or content by soliciting contributions from alarge group of people,
and especially from an online community, rather than from traditional
employees or suppliers” (Crowdsourcing - Definition and More from the
Free Merriam-Webster Dictionary, n.d.). Here is a more throughout def-
inition by Jeff Howe:

“Simply defined, crowdsourcing represents the act ofacom-
pany or institution taking a function once performed by em-
ployees and outsourcing it toan undefined (and generallylarge)
network of people in the form of an open call. This can take the
form of peer-production (when the job is performed collabo-
ratively), but is also often undertaken by sole individuals. The
crucial prerequisite is the use of the open call format and the
large network of potential laborers.” —Jeff Howe (Crowdsourcing:
Crowdsourcing: A Definition, n.d.)

Wikipedia is perhaps the success story with its use of crowdsourcing,
and Kittur, Chi, Pendleton, Suh, and Mytkowicz (2007) address the ques-
tion whether it “is driven by a core group of ‘elite’ users who do the lion’s
share of work,” or if there is a large number of “common” contributors.
The study acknowledges that there has been a shift from elite users to

23

large crowd in recent years, but that the story is more complex than pre-
vious explanations. The results mirror the dynamics found in more tra-
ditional collectives.

Another example is Amazon’s Mechanical Turk®—a micro-task mar-
ket where alarge amount of workers solve tasks “for marginal costs within
the timeframe of days or even minutes.” For this approach to be effec-
tive, special care is needed in formulating the tasks, and especially for
measurements that are subjective or qualitative (Buhrmester, Kwang, &
Gosling, 2011).

A further interesting approach is to solve large-scale computational
problems through online games. The ESP Game was designed to assign
labels to images and involves two players that are paired together, and
the goal is to guess alabel that the partner would give to an image. A num-
ber of suggestions can be typed, and the process is called “agreeing on an
image.” A similar approach can be used for providing appropriate textual
descriptions for images on the web (Von Ahn, 2006).

A recent, novel use of crowdsourcing is the Swedish DJ Avicii that for
Ericsson produced X You, the world’s first crowdsourced hit (Ericsson teams
up with DJ and producer Avicii to try and crowdsource the world’s first hit
song, n.d.).

2.9 Open source software

The history of open source is well-known and will not be covered in depth
here. It can be summed up by saying that it has been a history with strong
personalities, hacker culture, politics, and open source is today imple-
menting most of the infrastructure on the web and for many enterprises.
There exists large ecosystems for common infrastructure components that
runs banking systems, large e-commerce solutions, and mobile phones to
mention some. Linux is perhaps the most known, and arguably the most
successful open source technology.

There are several advantages with the open source model. Like sci-
entific research, one builds on the shoulders of giants, and the model is
transparent, as it allows one to inspect the code of the running software.
One characteristic of open source technologies, is that a project can be
forked when some people feel that a project should go into another direc-
tion. Similarly, two projects might merge if they should happen to share

Shttps://www.mturk.com/

24

the same vision.

There are many licenses for an open source project to choose from.
opensource.org maintains alist ofall licenses approved by the Open Source
Initiative. Care must be taken when combining components of various
licenses into one product—this especially holds true for proprietary soft-
ware. What often separates the various licenses is how restrictive they
are when it comes to contributing back, and how they can be used in a
proprietary product.

For this master’s project, open source is important to assure the ac-
countability of the resulting software, and to encourage further develop-
ment of the results.

25

3 Existing tools

Existing tools and services are studied with several goals in mind; the
first is to learn what is the state-of-the-art. Also, we need to find out if
UTT can be built by extending an existing open source tool. A third goal
is to select an automated accessibility checker to integrate with. Finally,
a vocabulary is needed for further discussion of UTT. Terms will be de-
fined based on analysis of existing tools.

What follows is a subsection describing the selection process. The se-
lected tools are subsequently presented in tables, and a few tools are ana-
lyzed in detail. There is an additional section on recruiting services. This
section closes with a list of findings, and the objectives and requirements
for the new tool.

3.1 Selection process

The process of finding and selecting existing tools are described in this
section. Tools covering any of the aspects accessibility, usability, user
experience, and visual design are included in the review. Even though
UTT currently only is intended for accessibility evaluation, the tool has
the potential to cover additional aspects in the future, and nevertheless
we believe there is a lot to learn about handling of user interaction from
tools in the latter three categories.

The first goal is to include such variety of tools that the state-of-the-
art is outlined. To accomplish this, we look at tools that use a traditional
survey approach, as well as more novel approaches where e.g. auser gives
feedback by clicking directly at an element on a web page. We also see
how crowdsourcing is used by current tools.

Both proprietary and open source solutions are studied. One benefit
of open source is the great potential to reuse and extend existing tools.
For proprietary projects, one can borrow ideas for testing methods. Al-
though the majority of tools found are non-academic, the findings includes
research projects as well.

The process of searching for existing tools is similar to the literature
review. Web search engines and journal search engines are searched us-
ing keywords, filtering is done based on a set of criteria, and then a num-
ber of tools are studied.

We have found lists of tools that have been of help, such as Ethnio’s list

26

of usability and user experience tools®. There is a Wikipedia page with a
list of GUI testing tools'® for “automating the testing process of software
with graphical user interfaces,” but these belong to a different category of
tools, as will be discussed in the upcoming paragraph.

A source of confusion Automated Ul testing and UI automation are two
related categories that have little to do with what we try to accomplish,
but they need to be mentioned since they use several overlapping terms,
and the implication of the term automation differ.

Automated Ul testing—or regression automation—is about automat-
ing the testing process of Uls by simulating input device events in a Ul,
and in an automated way determining if a functionality works as intended.
Selenium is a well-known project in this category of software. Similarly,
Ul scripting, or automation of UI tools to automate repetetive tasks. Au-
toHotKey and Automator are popular tools in the latter category.

As a sidenote, tools in these categories might be integrated into the
development process of UTT in the future.

3.2 The selection of tools

Table 3 and Table 4 show the proprietary tools found, and Table 5 shows
the open source tools. Table 6 shows the automated checker tools for ac-
cessibility testing that UTT potentially can be integrated with. No work-
ing demos were found of two tools from the literature, and consequently
they are simply described.

9http://remoteresear.ch/tools/
“http://en.wikipedia.org/wiki/List_of_GUI_testing_tools

27

Loopm Usabilla Ethnio Draft

Website loop11.com usabilla.com ethn.io draftapp.com

Test methods Sequence of tests, Feedback-button Survey-like Clicks a spot on a
feedback-button integrated on web screener shown design and leaves a
that can be inte- page is clicked, user to test visi- comment

grated

selects element on
page, reports emo-

tion, tags, shares
comment, and
rates speed of
website

tors/recruits test
participants for
other services

Test area/coverage

Usability, user ex-
perience

Usability, user ex-
perience

User experience

Visual design

Needs client-side installation No No No No
Needs modification of website No Yes Several options N/A
- One option is
to use JavaScript
if one wants to
recruit visitors
Needs to define test run Yes Yes N/A N/A
Table 3: Proprietary tools—part 1
UserTesting UserZoom Verify

Website

usertesting.com

userzoom.com

verifyapp.com

Test methods

Video feedback and written

answers to questions

Task-based, card sorts, click
tests, and more

Tool asks a question re-
garding e.g.

preference,

user performs action on
web page, tool asks more
questions about user

Test area/coverage Usability, user experience Accessibility, usability, vi- User experience, visual de-
sual design sign

Needs client-side installation No Only when capturing be- Not sure, probably not
havioral data such as heat
maps

Needs modification of website Not sure Not sure Not sure

Needs to define test run Yes Yes Probably

Table 4: Proprietary tools—part 2

Infomaki ClickHeat
Website sourceforge.net/projects/infomaki labsmedia.com/clickheat
Test methods Ask questions regarding a screenshot about Logs mouse activity on a web page which is

where to find something, capture mouse
movements and click, generate heat map —

also support surveys

used to generate heat maps

Test area/coverage Usability, visual design Unsure
Needs client-side installation No No
Needs modification of website Yes Yes
Needs to define test run Yes N/A

Table 5: Open source tools

28

Achecker Wave eAccessibility Checker
Website achecker.ca wave.webaim.org accessibility.egovmon.no
Test methods Tests website against var- Tests a web page for acces- Automatically checks web-
ious guidelines/custom set sibility barriers site against WCAG 2.0
of test criteria
Test area/coverage Accessibility Accessibility Accessibility
Needs client-side installation No No, but it is a possibility to No
use the tool using a Firefox
toolbar extension
Needs modification of website No No No
Table 6: Automated checker tools
3.3 Loopmn

0% Youwantto see how the interests of the blogger has evolved over time. To o so, you want to navigate back to the first page
emviss e skimming through the content.

%) Abandon Tas

alexanderte

Home Projects About

Installing Node.js and MongoDB in Ubuntu 12.10

g on. Twill use MongoDB along with
atroduction by Mike Dirolf.

In a Node.js project directory

spm install mongods

Figure 4: Loop11 presenting a task during a test run

Loop11is aproprietary, web-based usability and user experience test-
ing tool. It integrates with the tested website. The basic flow of the tool is
that a person responsible for testing of a website sets up a test run from
an adminstrative section. A test run is a set of tests that are presented
in a sequence—i.e. one test per page. A test is either a task or a set of
questions. Figure 4 shows a screenshot of a test page with a task. Once a
test run is defined, it is shared with participants. Participants are either
recruited using recruitment services, or they are providing by the user.
Participants are identified by their email address.

Loopz11is free to use for alimited amount of time. The author chose to
register using his personal email address, and to test his personal website
usingthe tool. This was done to see how the testing process worked—both
to get an idea of what the user interface was like, and to get an idea of its
implementation.

29

3.3.1 Definition of a task

A Loop11 task has a name, a scenario, a start URL, and one to many suc-
cess URLs. Loop11 provides an examples of a task name:

“Buy the music CD titled The Essential Elvis Presley.”

A task has also a scenario—an elaborated version of the task name,
similar to a use case:

“In two weeks it is your father’s birthday and you need to buy
him a present. He has been a big fan of Elvis Presley since he
was a teenager and he has always talked about how the music
CD titled The Essential Elvis Presley is the only one missing
from his collection. Locate this CD and buy it for him.”

3.3.2 Definition of a question

A set of question might be of one of these types: multiple choice, rating
scale, ranking question, or open ended. The various types have sub-types.
It is possible to have an open ended answer that is restricted to one line.
This suggests that one is after a short answer. Another possibility is to
have acomments box. This invites the participator to write down his/her
thoughs and feelings in detail.

What the variety ways of asking questions have in common is that they
wanttheuser’sopinion on something. Some ways of getting thatis through
multiple choices that are mutually exclusive, i.e. one can only choose one
of them. Another where one can check zero to many. Other variants in-
clude rating scales (rate the usability of this website from 1-4), rating
from (1-10) where you have a negative opinion on the left side, neutral
in the middle, and a positive opinion on the right side.

The questions are not mandatory by default. One can make one manda-
tory by clicking a check box while creating the question. There are addi-
tional options for some types of questions. For most types of questions
providing more than one answer, one can randomize the order. For the
multiple choice questions, one can add “Other” as the final choice. For
the rating scale with matrix and ranking question, one can add a “N/A”
option.

30

' Step 2: Tasks & Questions

Ausertestis a collection of tasks or scenarios you want participants to perform on your website and questions you want them to
respond to. For example, a task might be, "Find the page on our website that has our contact details." A good question might be
"How would you rate the usability ofthis website?"

‘You can find more information here on creafing good task scenarios

+ Insedtask < Insertquestion

1 Go to the page containing the first blog post
£ Edit BDuplicate Q Preview ~Moveup JL-Move down XDelete

+ lnserttask + Insertquestion

2 View posts in category “Master project
@ Edit [Duplicate Q Preview ~Moveup -Move down xDslsts

+ Insedtask = Insertquestion

3 How would you rate the usability of this website?
Question ¢ Edit BDuplicate Q Preview TMoveup JMovedown XDelste

+ Inserttask + Insertquestion

<) Back to previous step‘ Save and continue (= I

Figure 5: Loop11 user interface for managing a test run

3.3.3 Managing a test run

We found the interface for managing tasks and questions intuitive (Fig-
ure 5). It is possible to preview tasks and questions, duplicate them, pre-
view them, delete them, and move them up and down by dragging and
dropping with the mouse.

There are various features that a test administrator can use to cus-
tomize a user test. One can limit the maximum number of participants,
provide acustom thank-you text, or redirect the user to a page if they want
to. Itis also possible to append custom IDs to user test URL. This is useful
to track participants that one should provide incentives to.

It is also possible to say if one should allow multiple responses per IP,
and/or include/exclude IP ranges.

3.3.4 Test page

To enable further discussion of both the Loop11 and UTT user interface,
we need to established some general terms. Loop11 integrates questions
with the web page thatisbeingtested. In the tool—which inselfis awebsite—
there is a question on top, and the website is seamlessly presented under-
neath.

As shown in Figure 6, we define a test page as the web page showing
tests, test page header refers to the upper part showing the question and
navigational elements, and test page body to refer to the part showing the
currently tested web page.

31

test page

test page header

test page body

Figure 6: Defining test page terms

3.3.5 The proxy-iframe technique

Loop11 uses iframes to present a web page, and the web page is served
through a proxy. The technique will from now on be referred to as the
proxy-iframe technique, and it allows the tool to modify the tested web-
site. Code is injected into the website, enabling the tool to track various
data, such as navigation around a site and/or capturing events from in-
put devices. Another use of this technique is highlighting of elements by
injecting CSS.

You're only interested in reading posts in the category “Master project.” Navigate to a special page containing only posts in this
category

alexanderte

Home Projects About

Installing Node.js and MongoDB in Ubuntu 12.10

B der - insge: - inatial
D52 Q nn | bow | avioories *

Figure 7: Studying the proxy—iframe technique used by Loop11

To study the implementation of this technique, we have used the Chromium
web browser to inspect the test page (see Figure 7). Although one cannot
always get a clear understanding of how the underlying system is imple-

32

mented this way, it does suggest a great deal about how the user interface
is implemented. We observed that the value of the iframe src-attribute
(URL of embedded web page) does not point directly the web page cur-
rently tested. Instead, the web page being tested is served through an-
other server, one that is more than likely set up by Loop11 as a proxy.

One interesting note is that in the Loop11 tool, it is recommended to
inject a JavaScript snipped into the site being tested for solving perfor-
mance and rendering issues.

Using a proxy technique might be necessary for doing what we have
mentioned, as an embedded website cannot be modified from the outer

page.

iframes and accessibility The use of an iframe needs to be carefully
considered for UTT. While frames are not inaccessible to modern screen
readers, they can be disorienting (WebAIM: Creating Accessible Frames,
n.d.). We consulted one of our partners, Birkir Gunnarsson, an Icelandic
expert in web accessibility, and he suggested to design the test page body
in such way that it presents no more than what is necessary for user of
screen readers.

3.3.6 Inviting/recruiting participants

Loop11 hasavariety of ways of inviting—and even recruiting—participants.
One possibility is to generate a link that can be sent over email to a par-
ticipant that one knows. Another way is to generate a popup invitation
that needs to be inserted into the website. This is shown to visitors of the
website. The last method is to recruit participants using a recruiting ser-
vice. Loop11 integrates with three different ones. One of them, Ethnio,

is covered in a later section.

3.4 Usabilla

Similar to Loop11 is Usabilla—a proprietary service used for improving
theusabilityand user experience of websites. Usabillais alsoused bylarge
companies, and it appear high in search results when searching for tools.
Unfortunately, we have not been able to try it out by registering. While
it does have a 14 days free trial, one have to choose a plan with a monthly
price. Since it is not my intention to pay for the product, We have learned
as much as we can about the product by researching its website.

33

©

e
-

What do you think of this?

Please select a subject

[c

What would you like to share with us?

The “Start your free trial” button sits
nicely on the page. T think it could be even
bigger though. p

Email (might be used once for follow-up)

How would you rate the speed of our website?

Slow '® Good enough - Fast

Powered by Usabila [l

Figure 8: Commenting on an element using Usabilla

Usabilla works a bit different compared to Loop11. Instead of design-
ing a test run that is used by participants, one inserts a feedback-button
on the website where visitors selects a part of a website, selects an emo-
tion (from hate to love), tags it with tags such as “attractive,” “interest-
ing,” or “complex,” writes a comment, rates the website speed, and op-
tionally enters ones email address (see Figure 8). The feedback box is

shown on top of the website. While it is shown, the website is dimmed.

3.5 Draft

By following the startup community on HackerNews', one can discover
new and interesting technologies made by small companies and/or indi-
viduals. Draft.’? is a proprietary service for enabling easier collaboration
between designers and clients.

The designer sends a design to a client to recevie comments on. The
image is annotated by the client, and they are able to communicate using
multiple comment fields anchored to spots on the image. This somewhat
is similar to the Usabilla idea, were feedback is given by selecting an ele-
ment and commenting.

One detail regarding the implementation is that Draft uses HTML5
technologies to enable annotation, instead of using e.g. Flash or other

"http://news.ycombinator.com/
“https://www.draftapp.co/

34

LOGIN WITH ONE OF THESE

f Facebook S Add a Comment...

LOGIN WITH SONATRIBE| Maybe use the new Twitter icon?

chris@chrismahon.com

n-tﬂmu—a?:

m Join Sonatribe O

Figure 9: Commenting on an image using Draft

non-standard technologies.

Related tools to Draft are Frontify and Mocku.ps'3. The former is for
communicating between a frontend developer and a visual designer. The
latter has approximately the same use case as Draft.

One possibility for UTT is to present comments from different users
in the test page header. A possible problem with by implementing com-
ments is that a commenter might be influenced by what has previously
been written. This might have both positive and negative effects regard-
ing the quality of the collected data. A solution might be to show other
comments after the user has commented, but is might have a similar ef-
fect, only on a higher level—that is, the users learn from eachother how
they are “supposed” to comment. The effects of having a comment field
in the context of a user testing tool could be a topic for further investiga-
tion.

3.6 Infomaki

Two open source usability/user experience tools were found, and those
are Infomaki and ClickHeat. These are candidates for extension, as one
can either fork one of the tools and develop it further, or suggest for the
developers permission to be a part of the project.

Bhttp://frontify.com/ and http://mocku.ps/.

35

Where would 1

2 Doey

Gt
EiE @ §

a

Figure 10: Infomaki presenting a heat map

Infomaki is a project initiated and developed by The New York Pub-
lic Library’s Digital Experience Group. It builds on the ideas of a popu-
lar proprietary service named Five Second Test, and is used to “evaluate
new designs for the NYPL.org website and uncover insights about our pa-
trons.”** It shows a popup to the user, asking the visitor to answer one
question. The visitor is shown a question with a screenshot below, and is
asked to locate a certain piece of information. Afterwards, the user can
either answer another question or return to the website. Infomaki is de-
veloped on top of the Ruby on Rails web framework. The results from the
user testing is a heat map showing where on the page the user is likely to
click to find the information (Figure 10).

It is uncertain to the author wether InfoMaki is actively developed or
not. On its SourceForge page, the latest commit is dated 2009-05-13, sug-
gesting that it is not actively developed. On the summary page, there is
a “last updated” date that says 2013-04-19 - less than a month relative to
when this was written. The author is not sure what this date indicates.

On a superficial level, Infomaki might seem similar to Loop11. The
user interface can be described using the test page model. However, the
test page body shows a screenshot of a web page—and not a web page.
Also, the test run capabilities of the tool seem limited. There is little to
nothing that can be reused for UTT.

“http://journal.code4lib.org/articles/2099

36

3.7 ClickHeat

ClickHeat is the other open source tool that is a “visual heatmap of clicks
on a HTML page”.*> It does not seem like a product as much as the pre-
vious tools, as it does not suggest any use cases for the heat map. Un-
fortunately, its demo site was down when planning to take screenshot of
the tool, and the one found on the ClickHeat website was somewhat small

(Figure 11).

Figure 11: ClickHeat showing a heatmap

While the TT will not implement any tracking of mouse activities for
the prototype, this might be interesting in the future.

)/ @ Poe CheckResulc g x

€ - C [accessibility.egovmon.no

BGOVMON

L

nerpage (Check

Figure 12: eAccessibility Checker checking uia.no

3.8 eAccessibility Checker

The eAccessibility Checker checks aweb page, or awebsite against WCAG
2.0. In the user interface, the address of a web page to check is specified,
and after clicking “Check,” the checker shows what tests have been ap-
plied, how many have passed, how many have failed, and how many that
must be verified by a human. Checker results can be exported to CSV.

http://sourceforge.net/projects/clickheat/

37

The eAccessibility Checker also has functionality to compare websites—
or benchmark—that have been tested. This has been used by Norwegian
municipalities for awhile, but is now alsoused by the government in Qatar.
The benchmark allows for monthly comparison of checked websites. The
checker also has capabilities for checking PDF documents.

The author is already familiar with the project, as its development is
coordinated by Tingtun.

ACHECKER®
©Q web Accossibitiy Chacker

Figure 13: Achecker checking uia.no

3.9 Achecker

Achecker®® isvery similar to eAccessibility Checker—it checks the acces-
sibility of a website against accessibility guidelines using an automated
approach. While the interface looks less polished to us than the eAccessi-
bility Checker, it supports several more accessibility guidelines. Achecker
provides a Web Service API'7 returning the results in an XML format.

Achecker does not seem to have capabilities for carrying out large-
scale testing of websites. On its website it says “This tool checks single
HTML pages for conformance with accessibility standards to ensure the
content can be accessed by everyone [emphasis added].”

3.10 Existing research projects

We have looked at existing research to see if we could find existing tools
thathavebeen developed for evaluating usability. We have chosen towrite

®http://achecker.ca/
Thttp://atutor.ca/achecker/demo/documentation/web_service_api.php

38

about existing research projects under one topic, as we have only been
able to find two that seem relevant—and they are developed a decade ago,
which makes them not so relevant when looking at web evaluation tools.

3.10.1 AWUSA (2002)

AWUSA is atool combining information architecture, automated usabil-
ity, and web mining techniques (Tiedtke, Mértin, & Gerth, 2002). Itisa
prototype developed in Java that takes XML both as input and output. A
SVG is used to represent the results. The tool builds on the assumption
that future websites were developed in XHTML—in other words, that they
were well-formed XML. While XHTML has gained some traction, many
websites are written in HTML. HTMLj5 offers a XHTML5 variant.

3.10.2 WEBUSE (2003)

WEBUSE (WEBsite USability Evaluation Tool) is a research project that
summarise website usability issues and groups the issues into a set of 24
usability guidelines (Chiew & Salim, 2003). It uses these guidelines to
develop a survey-like tool that asks visitors to evaluate the website.

3.11 Recruiting services

Getting a large number of participants for testing a website can become
a challenge. One way to do it is to use recruiting services such as Ethnio
or Cint'® OpinionHUB. Cint claims to give access to “millions of verified
panelists recruited from over 600 unique panels according to your spe-
cificcriteria.” Another is Knowbility AccessWorks'9 that enables recruit-
ing participants with disabilities. The users perform tasksusing their as-
sistive devices, and give “a detailed analysis about accessibility pitfalls at
the website.”

What these services have in common is that they find real people that
can accomplish the user testing. Ethnio uses Twitter to find participants,
and the participants are paid with Amazon Gift Certificates. One possi-
ble problem is that these people might not be representative for the aver-
age of population.

®http://cint.com/
Yhttp://www.knowbility.org/

39

Ethnio, in addition to being a recruiting service, also has a survey-like
screener that one can add to the website. It is added by adding JavaScript
to web pages one wants to intercept on.

One weakness of these recruiting services is that the testing subjects
might not be representative for the average of the population. For in-
stance, Ethnio uses Twitter to recruit users. This means that all partic-
ipants are likely to be Twitter users. One can with most of these service
choose demographics, such as country, gender, age, and/or educational
level. The Knowibility AccessWorks service isunique in thatthe recruited
participants perform tasks using assistive devices.

3.12 Findings

This section goes through what has been learned by looking at the exist-
ing tools, both by placing them in a matrix by comparing their capabili-
ties, and by looking closely at a few of them.

3.12.1 Interactive usability/user experience tools

For all the usability and user experience tools that arelooked at, they seem
tohave avariety of ways in which testing is accomplished, and how testers
are recruited. Some showed a survey to visitors, others provided a feed-
back button where a user can report feedback regarding one specific ele-
ment. Others were more complex, and had a test run with various tests.
What all the usability/user experience tools have in common, is that they
are proprietary, and all of them are provided as services with various pric-
ing plans. All data are stored at the domain and business that hosts them,
and the tools provide reports and export to formats such as Excel, SPSS,
or CSV. All the tools were using a manual approach for gathering the opin-
ion of the user —i.e. no automated checker to figure out if a website is us-
able or not. There were two tools found that were related to usability and
user experience and that were open source, but the only functionality that
they had was tracking mouse activity.

3.12.2 Accessibility tools

For accessibility tools, it was quite different. The tools were automated
testing tools that checked the website against implementation of acces-
sibility guidelines. Two out of three tools looked at were open source, and

40

the last one, while not open, is supported by W3C which generally has
open tools.

3.12.3 There is no existing tool to build upon

Two tools that were open source were found; Infomaki and Labsmedia
ClickHeat. While they seem to be good tools, their goals differ so much
from UTT and its requirements, that it is not practical to build on top of
them. Both of them tracks mouse activity, and it is not unlikely to include
this in UTT at some point.

While UTT will not be based on an existing tools, it will be built using
open source technologies. Ideas can be borrowed from all existing tools,
and ideas regarding implementation can be borrowed later on from the
open source tools mentioned.

3.12.4 Conclusion

According to what we know so far, no tool exists which can combine au-
tomated accessibility testing of websites with user testing. Because we
intend to support checking of websites, the tool will integrate with the
open source tools developed by the eGovMon project and the user testing
experience among the partners and in the reference group. The tool will
be released under an open source license to facilitate wider use, exten-
sions, and research to build on the master’s project results. Also, choos-
ing an open source approach is essential to enable external review of the
implementation to uncover potential bugs and establish a reliable imple-
mentation of the tool.
The following list sums up our findings:

1. Existingusabilityand user experience tools tests manually, and they
are proprietary services with paid subscription

2. Most accessibility tools tests in an automated way against imple-
mentation of accessibility guidelines, most tools are open source,
and they have a public instance available

3. There are few existing usability and user experience tools that are
open source, and those who are has limited functionality

4. There are few, if any, academic projects concerned with usability
and user experience testing that are both recent and active

41

5. Thereisnotool found that combines automated checking with man-
ual checking

3.13 Objectives and requirements

Based on our findings, we have identified four objectives with respective
requirements; to support tests whose results cannot be determined by an
automated checker, to build a tool that supports crowdsourcing, to have
a tool that is considered accountable, and finally that the tool should not
require any installation by test users, nor any modifications of the web-
sites to become tested.

3.13.1 Objective 1: Support users to verify tests that are not auto-
mated

About 20% of the perceivable tests for accessibility can currently be au-
tomatically determined. Extensive user testing is needed to get a more
complete overview of the barriers of a given website. The main objective
of this thesis is to explore and demonstrate ways in which this user test-
ing can be supported.

Requirement 1.1: Integrate with automated checker Tointegratewith
the automated checker, the automated checker needs an Application Pro-
gramming Interface (API) that provides tests whose result needs to be de-
termined by humans.

3.13.2 Objective 2: Support crowdsourcing

A core conceptisthe use of crowdsourcing to collectlarge amounts of test-
ing data. Several benefits are expected from this approach including:

« Better access to more user testing data to enable quality assurance
of the collected data.

« Wider coverage of client applications and their configurations in-
cludingbrowsers, operating systems, devices and assistive technolo-
gies.

« More effective user engagement, allowing disability groups to run
their own targeted initiatives e.g. to cover a group of central ser-
vices for their needs.

42

A remark on privacy Privacy is a critical issue for UTT since the
approach is planned to use data about users capabilities, their installed
tools and settings, and the user behaviour. It needs to be carefully consid-
ered in the future what data is to become collected, how to inform users
about this, and howto conform to the laws regarding data collection, which
varies among countries. The prototype will not store any of the collect
data and we therefore leave the detailed solution of these issues for a later
stage (see Section 6.8).

Requirement 2.1: Intuitive touse The tools needsto communicate in a
plain language that is easy for all people to understand, and it should have
as few visual elements as possible to prevent the user from becoming dis-
tracted. The usability and user experience should be carefully considered
when designing the user interface.

Requirement 2.2: Works on any device Some existing solutions for
user testing require expensive equipment such as eye tracking input de-
vices, and the testing may be conducted in a testing lab. This limits the
applicability for crowdsourcing and makes user testing too expensive for
many businesses. A goal of this research is to create a tool to enable more
people to carry out better tests of websites. Desktop, tablet, and mobile
devices should be supported.

Requirement 2.3: Supports assistive technologies The tool must be
usable by people with disabilities. It needs to work with assistive tech-
nologies such as screen readers.

Requirement 2.4: No need to define a test run There is no need for a
user role for setting up a test run associated with awebsite. One should be
able to test any website without having to e.g. define a sequence of tests.

3.13.3 Objective 3: Assure accountability

Several accountability aspects needs to be built into the tool. This is es-
pecially important for certification of website accessibility.

43

Requirement 3.1: Enable review of test specification In addition to
the code of tests being available, there should be a textual description de-
scribing the intent of the tests, and what they do.

Requirement 3.2: Enable review of test implementation The source
code of tests needs to be open, in a way that enables people to review how
they are implemented.

Requirement 3.3: Enable reproduction of test results It should be
possible to review how the testing software has arrived at a certain result.

3.13.4 Objective 4: Requires no installation or modifications of web-
sites

Requirement 4.1: No need to modify website The tool should be able
to test a website without modifying it.

Requirement 4.2: No need to install any additional software UTT
will not require installation of any additional client-side software besides
aweb browser.

Requirement 4.3: Support for different techniques The tool should
be able to test content implemented using different techniques, such as
HTML or PDF. Also digital TV formats should ideally be possible to test.

44

4 Method

This section starts out by arguing why design research was chosen over
similar methods for this research project. It proceeds by detailing how
the research project was carried out, and then the research model that
show how the artifact relates to the context is presented. The third sec-
tion describes the collaborative process, and the people involved. Finally,
the process of both developing the artifact and writing the thesis is re-
flected upon.

4.1 Designresearch

It will in this section be argued why design research is chosen over simi-
lar methods for carrying out this research project. The section closes by
mentioning how we choose to borrow terminology from software devel-
opment methods to be able to discuss the content of an iteration.

There are three methods that will be discussed, and those are design
research (DR), Action Research (AR),and arecent Action design research
(ADR). For the sake of brevity, we will refer to the technology artifact as
artifact, and organizational concerns as context.

4.1 Design research and action research

DRisconcerned with the construction and evaluation of artifacts to meet
organizational needs as well as the development of their associated the-
ories” AR is a change-oriented approach in which the central assump-
tion is that complex social processes can best be studied by introducing
change into these processes and observing their effects (Cole, Purao, Rossi,
& Sein, 2005).

It has been argued that in how knowledge is built, it makes little dif-
ference in practice which approachisused, despite the fact thattheir per-
spectives differ, but that there are nuances of differences (Papas, O'Keefe,
& Seltsikas, 2011). Others acknowledge their similarities, while suggest-
ing to combine the two methods into a single method, as the research ap-
proaches are said to be compatible, and that they can inform eachother
(Cole et al., 2005).

45

4.1.2 Action design research

In a research essay that proposes a new research method, ADR, it is ar-
gued that DR pay little attention to its shaping by the organizational con-
text, that DR focus on building the artifact and relegate evaluation to a
subsequent and separate phase, that technological rigor is valued at the
cost of organizational relevance, and that it fails to recognize that the
artifact emerges from interaction with the organizational context even
when its initial design is guided by the researcher’s intent (Cole et al.,
2005). ADRisdesigned to address this problem, and it reflects “the premise
that IT artifacts are ensembles shaped by the organizational context dur-
ing development and use.”

What seems to separate the three methods involving design is to what
degree they weight the different concerns. For AR, context is a primary
concern, and artifact a secondary one (an artifacts effect on the context
is studied). For DR, artifact is a primary concern and context is a sec-
ondary one (an artifact is built in a context). For ADR, it seems like two
are concerns are weighed equal (an artifact is built in a context, and its
effect on its context is studied) ADR is fairly recent (2011), and it will be
interesting to see if it gains traction in the future.

4.1.3 Choice of method

Allmethodsdiscussed are in one way or another related to building knowl-
edge through design. While there seem to be far less research projects in-
volving design compared to natural science, it is not the intent to choose
the design paradigm for experimental reasons, but rather because it is a
prerequisite to solve the research problem. Given the small size of the
project, we believe that the nuances of differences in the various meth-
ods are not going to affect the outcome in a drastic way. We have sug-
gested that AR, DS, and ADR weight concerns differently. This research
project is primarily concerned with designing an artifact, and its effect
on a context cannot be fully understood until the artifact has reached a
certain stage of maturity. We do however receive feedback during the de-
velopment, and for this reason, the context is certainly not ignored—we
let the feedback actively influence the development of the artifact.
Because of the limited amount of documented practice about ADR,
and because we have chosen a design method out of necessity rather than
for experimental reasons, we have chosen to go with amethod that is well-

46

established. This is consistent with the choice of technologies, where we
favor those that have already gained traction over those that are still at an
experimental stage, despite the fact that recent one might have attractive
qualities.

4.1.4 Intended use of design research

Inthis section, it will be stated how we intend to apply DR to guide us car-
rying out the research project. The Discussion section (Section 6) revis-
its this discussion, and reflects upon how DR was used.

The research project stem from both practical problems that needed
to become solved, as well as unexplored areas of research as indicated
by the existing knowledge. More specifically, this project builds further
on the existing work that has been done on the eAccessibility Checker
through the eGovMon project.

By using a method centered around design, it is the belief that we gain
new knowledge through creation, and creation is an iterative process. The
iterative nature is both emphasized by the Design Cycle model by Tak-
enda et. al, and the Design Science Research Cycles by Hevner. It is ac-
ceptable, and even a part of the method to go back and forth between
phases (Vaishnavi & Kuechler, 2004).

The development of the artifact has been split into three milestones.
Evaluation has been carried out for each iteration by involving evalua-
tors, and have them comment on the artifact.

4.2 Borrowing terminology

Design research does not include a vocabulary for discussing what is ac-
complished during an iteration, as it might be used for more than just
software development. Software development methods such as Scrum
defines one such vocabulary, where the iteration itself is named a sprint.
The complete set of unsolved tasks associated with a project is named a
backlog. A set of tasks to become solved is assigned to one sprint.

There are many services on the Internet for hosting the source code of
open source projects, and these services usually offer an issue tracker, a
wiki—and some of them even have capabilities reminiscent of social net-
works. GitHub is chosen for UTT, and the reasoning will follow. GitHub
has an issue tracker where one can create a milestone with associated is-
sues. Amilestone can, atleast for this project, translate toasprint/iteration,

47

and an issue can viewed upon as atask. On GitHub, the backlog is all open
issues belonging to a project. We will try to use the GitHub terminology
throughout this thesis, but Scrum is mentioned as a point of reference
since we assume that the reader is already somewhat familiar with it.

4.3 Outcomes

There are two primary outcomes of this research project; the UTT arti-
fact, and the knowledge and experience documented in this thesis.

There is one secondary outcome, and that is the findings about exist-
ing tools (See Section 3.12).

4.4 Research model

The following research model illustrates the research problem and the
context that it lives in.

Universal Design

Human-Computer Interaction

Accessibility

Automated testing tool

1
- 1
-7 /
Ilts to be verified ugments/analysis of user answers enhances __~|” Test website by letting user accomplish tasks
- -

User testing tool e e

Concepts
Open source Crowd sourcing

Figure 14: Researh model

4.5 Collaboration

Many peopleisinonewayor another beeninvolved in this research project.
In the introduction, the context has been described, and it will not be re-
iterated here. Below is a table of all people involved.

48

Organization Country Role

Agency for Digitisation Denmark Reference group member

Agency for Public Manage- Norway Reference group member

ment and eGovernment (Difi)

Die Evangelische Stiftung Germany Comment on specifications

Volmarstein and testing

Logius The Nether- Reference group member
lands

Ministry of State for Adminis- Egypt Reference group member

trative Development

Seniornett Norge Norway Testing of demonstrator

Stichting Accessibility The Nether- Test, comment on specifica-
lands tions and method

The National Resource Cen- Norway Reference group member

tre for Participation and Ac-

cessibility

The Norwegian Association Norway Reference group member

of the Blind and Partially

Sighted

Tingtun AS Norway Coordination and develop-

ment

Table 7: Stakeholders

What can be considered the core project group is Alexander, Janis,
and Mikael. Alexander is the student, Janis the internal supervisor of
this project. Mikael has several roles in this project. Beside being the
initiator of the project and coordinator for the larger project, he is the
external supervisor, responsible for keeping in touch with partners, and
project owner.

All three are familiar with each other, and the atmosphere has been
informal within the project group. Because of having working together
for a while already, a way of working has already been established, such
as how to contact each other. During the collaboration, there has been a
short feedback loop, which has been beneficial for the progress. All three
are deeply into the philosophy open source, and we believe in the saying
“release early, release often.”

49

4.5.1 Meetings with supervisors

As indicated by the Gantt chart mentioned in the previous section, there
have been several meetings during the project, and these were organized
and led by Alexander. The planned frequency was every second week, but
meetings were held less often.

An email was sent by Alexander to the supervisors beforehand con-
taining URL the last meeting report, and the agenda. The meeting was
held over Skype, and action points and decisions were the outcome of each
meeting.

4.5.2 Physical location

Alexander has during the project worked at different physical locations
depending on what has been working on, but most of the development
and writing has been done at the Tingtun headquarters. Drafting the text
was done at home, the university cafeteria, in bars and restaurants.

4.5.3 Building of the artifact

This sections will look at the development processin regards to the collaboration—
how to get feedback from the evaluators.

All contact with partners, such as sending invitations for feedback,
have been done by Mikael by email. For some of the emails, Alexander
wrote a draft, and they were refined by Mikael before sending them out.
Each round of feedback has had a duration of approximately 1-2 weeks.
We expected that not all of the Norwegian evaluators could participate
before the 0.3 milestone because of lack of Norwegian translations, but it
did not make much difference in any direction.

When asking users for feedback, rather than sending a survey or ask-
ingopen questions, we simply asked the participants to provide their com-
ments. The lack of a predefined form for answers has resulted in a great
variety of responses, and we think it worked out well. What makes this
a sensible approach is both the fact that Mikael has a long history of col-
laboration with the evaluators, and also that the evaluators were paid for
giving feedback. One example of feedback that we received was a three
page long document with experiences from a number of users. Another
example is a short paragraph written by one person.

The feedback that we got was from people with different backgrounds.

50

Birkir Gunnarson, an Islandic expert of web accessibility that is visually
impaired, gave valuable feedback of what needed to be done to improve
the tool for visually impaired users. We had detailed discussions with
him over email regarding implementation of the tool, such as how to present
the test page body in a way that would be effective for a person using a
screen reader.

A topic that needs to be touched upon is who has the final say regard-
ing artifact design decisions when opinions differ. The answer for UTT is
thatthe project owner has the authority to make decisionsifthere are dis-
agreements. There have been discussions, such as how to receive input in
the user interface. The way that we have worked is that we have discussed
an idea, we have come up with a few possible solutions, and then we have
decided upon what is the best idea. If there is no consensus, then one ei-
ther discusses possible solutions further, or the project owner makes a
decision for what solution to implement for the upcoming iteration. Not
before trying a solution on real users do we know if an idea is good or not.
Sometimes one have to go many rounds with ideas before a solution can
be reached. When looking beyond the next iterations, there is really no
“final say”—working with accessibility on the web has a never-finished
nature, and continuous user feedback is the only way to measure whether
a solution is effective or not.

As the technologies on the web advances, web accessibility must keep
up with the changes. This way of putting it implies that new technology
does not take accessibility into account, and this is in our experience of-
ten true. So as the technology are constantly changing, we need to keep
up to not leave out people with disabilities.

4.5.4 Milestones and associated issues

As mentioned, GitHub is chosen for handling milestones and issues. Itis
used to host the source, and it has good integration between source code
and issues. It was chosen because we are already familiar with it—and
we like it, but there are many similar alternatives such as CodePlex, Bit-
bucket, Gitorious and Google Code that provide similar functionality.
Starting from UTT o.2, for each iteration has been defined as a mile-
stone on GitHub. A milestone has adescription, and an optional date. We
have used the version number as the name of a milestone, and we have set
the date to a deadline that has been agreed upon. For UTT, issues stem

51

from discussions about objectives and requirements, feedback by users,
and bugs thatare discovered. For each milestone, anumber of issues were
selected.

Anissue is on GitHub said to be open until either the creator of the is-
sue, or onewith administrator privileges choosestocloseit. One canlabel
an issue with “wontfix” if there is some reason why the issue should not
be fixed; this might be because it is a feature not in line with the project’s
goals, that the issue is not really an issue (as the saying goes; it’s not a bug,
it’s a feature), or that the issue is a duplicate of a previous issue.

For now, only Alexander has created issues, but anyone registered as a
user on GitHub is free to open an issue. During this project, all feedback
has been reported by email. An issue can be labeled, and two labels that
are provided by default are “bug” and “enhancement.” GitHub does not
have built-in functionality to estimate the length of an issue, so we have
setup custom labels for how many hours we believe an issue takes to solve.
A Fibonacci sequence is used, since estimation becomes less precise as
the task complexity increases.

Estimation has proven to be a challenge, and it was not done at all—at
least not at a task-level —before planning the 0.3 iteration. Only the dates
of the previous iterations were planned. Some of the estimation errors
was caused by an underlying assumption that the developer is productive
all the time. Also the tasks were not broken down to smaller tasks, which
could have made the estimation more precise if we did.

One of the goals of the eGovMon project is transparency. Having the
issue tracker open enables people to read the reasoning of design deci-
sions. At the start of the project, the issues was stored as a private to-do
list. Later on, it was decided to use the GitHub issue tracker, and alinks to
the issue tracker was putin UTT, and sent in emails to partners. It should
be mentioned that we do not force evaluators to use the issue tracker to
give feedback, as most of them are not software developers, and they are
more used to email.

There are cases where public issues needs to be considered. In 0.2
there was a related bug where typing “http://http://tingtun.no” (or an-
other invalid protocol) in UTT would crash the backend. We chose to fix
it without making the issue public, but we then published the issue for
reference. The worst case scenario in this case is that the backend goes
down, and evaluators will not be able to test the tool.

52

A note on versioning Software components used for UTT use semantic
versioning, and for UTT, we start the first iteration at 0.1. The second is
0.2, and the third is 0.3. 1.0 is communicates that software is production
ready. For that reason, ending the UTT development at 0.3 signals that
it is an early prototype that need. This semantic versioning scheme was
also used for documents belonging to master’s project—even for meet-
ing reports—but was later dropped in favor of postfixing filenames with
dates.

When it is referred to version 0.2 in the report, it really means 0.2.x—
or, any version of 0.2.

4.6 Other

It will here briefly be mentioned some methods considered for develop-
ing UTT.

4.6.1 Code review

In a professional software development environment, one common pro-
cedure is to submit newly written code to be reviewed before it is included
in the code base. For UTT, there is only one software developer involved,
and for such a small project there is no resources for reviewing the code.
Code review is likely to be more interesting if the project grows, and the
number of developers increases.

4.6.2 Blogging

Alexander decided early to blog about the progress of the UTT develop-
ment on his blog. The advantages was that it would function as a diary
of progress, and that other people could read. Initially, some blog posts
were written, but he lost interest after a while. Blogging might work bet-
ter in the future, but for this project, direct communication such as email
and Skype was effective.

53

5 Design
“View it, code it, jam — unlock it” —Technologic, Daft Punk

Inthissection, the design activities of building a tool that matches the
project objectives and derived requirements is described in detail. We
have found it most sensible to start by presenting the development of the
user interface, then proceed by describing the architecture of UTT, and
detailing how UTT is implemented. Finally we will describe how choices
were made.

In many ways, what has been designed has stretched far beyond the
scope of a prototype. A number of concerns have been taken into con-
sideration, such as scalability and longevity, that usually are not consid-
ered when building a prototype. Because this projectis a pre-project fora
larger project, it was decided to carefully design the architecture, so that
the artifact can be further extended in the future.

Describing the design process is in many ways a challenge, as it is a
creative process where hundreds, if not thousands of small decisions are
made unconsciously. There is a lot of trial-and-error involved, decisions
affecting other decisions, and we have often relied on past experience and
intuition rather than planning everything step out in detail. There have
been frequent changes of the artifactbased on experimentation and feed-
back from evaluators.

5.1 Revisiting requirements

The tool needs to be accessible. Since the tool should be used by many
people, it should be easy to learn. And since we want the users to answer
questions, the interface needs to look attractive, and it should have a fast
response time after having answered a question. The next question needs
to show up instantly to not tire the user. It is acceptable that the applica-
tion takes abitlonger toload if it means that the user can quickly navigate
between/answer tests.

The user interface also needs to be rock stable. Clicking a button twice
by mistake while something is loading should not confuse the state of the
application. Unfortunately, these issues are very common, and often re-
quire one torestart an application. Choice oftechnologyis discussed later
on, but we need to use technology that can make all of this happen, while
being assured that it will stay relevant for a long time.

54

5.2 Designing the user interface

In this section we start by looking mockups preceding the implementa-
tion of the tool, and then present the user interface of the current version
of UTT.

5.2.1 Preliminary visual design mockups

Mockups were designed during the Fall of 2012 to guide the discussion of
the project. The first mockup was drawn on paper (Figure 15). The final
two (Figure 16; Figure 17) were presented at a meeting at The Agency for
Digitisation in Copenhagen for partners and members of the reference
group about UTT and related projects. While the details have changed
somewhat along the way, the general idea remain unchanged.

Grouping tests of the same type Figure 16 suggests how to present a
test. Figure 17 shows how more tests of the same type can be grouped to-
gether on a test page. The current version of UTT supports only the for-
mer, but evaluators have suggested to group tests together.

Figure 15: Initial mockup drawn on paper

5.2.2 The current user interface

The user interface of UTT provide three pages; a page shown initially for
entering URL of aweb page to test, atest page where the user answer ques-
tions, and a result page that both shows the answers provided in addition
to automated test results.

All three pages share a navigation bar—or navbar—that provide but-
tons for navigating through the tool pages. A label is provided for the test
and result page. The home page is reaced by clicking “UTT.”

55

Is the title Organisation appropriate for this page?

Figure 16: Higher fidelity mockup

Does the alternative text describe the image?
Skip this test

online_omsorg

F‘ .‘{'Lb‘ = |Teetokrmg

Figure 17: Tests of same type shown in single view

Home page The home page (Figure 18) is the landing page for the tool.
Other than presenting general information about the tool, it lets the user
enter a web page to test.

Testpage Thetestpage (Figure19)iswheretheuseranswersquestions.
The page has a test page header consisting of a progress bar, a question,
answer buttons, a link for going to the previous test, and a link for skip-
ping to the next test. The test page body is implemented as an iframe.

Result page The result page (Figure 20) shows all test results returned
from the automated checker, and the user tests are shown first. The non-
user tests are hidden by default. Colors are used in the table to emphasize
if a test has passed (green), failed (red), or if it needs to become verified
(orange).

56

/| [User Testing Tool

€« C [} utttingtun.no
UTT Test Results @ Language ~

User Testing Tool

The User Testing Tool (UTT) is a prototype that combines user testing with automated testing
services to improve the accessibility and usability of web sites. Read project description
(Norwegian).

To get started, enter a web page to test.
hpuingunno!

To report an issue, please send us an email, or create an issue on GitHub.

Figure 18: The home page of UTT 0.3

5.3 Specific user interface functionality

This section deals with user interface functionality where we have received
a lot of feedback. Also, there are components that we have made, and
some stuff that we did not have time to implement.

5.3.1 The flow of a test run

Of the results to become verified, UTT selects maximum 10 tests. Maxi-
mum two tests of the same type are presented, and tests of the same type
are grouped so that they are displayed in succession. It is allowed to skip
questions, and it is possible to navigate back and forth between tests.

5.3.2 Hightlighting element being tested

One of the original goals we had for the 0.3 milestone was to highlight the
element currently being tested on a website. As mentioned, the test page
body is an embedded web page (iframe), and what seems like a good so-
lution is to manipulate the content of the embedded web page from its
parent web page.

One problemisthatone cannotaccessthe contentiframe directly from
the parent website. It is limited what one can do to an iframe beyond set-
ting its URL. So to detect for instance the mouse coordinates, one need to
inject code into the web page itself. We do not want to require the website

57

)/ [y User Testing Tool

€« C | [utt.tingtun.no/#test =

uTT Test Results http://www.tingtun.no/ Set
|
Does the link text “www.egovmon.no” describe the link purpose?

<Back Yes No | Unsure Skip >

TINngTUun

e GOVMON

ABOUT TINGTUN Download
N N W

Figure 19: The test page of UTT 0.3

owner to modify it, so a solution is to run the web page through a proxy
while injecting the needed code. This seems to be the approach taken by
Loop1i.

We did not have time to implement highlighting of elements, but we
would like to use a technique similar to Loopz11 if this should be done in
the future.

5.3.3 Change of colors

Bootstrap allows for swapping out the default theme with others that can
either be downloaded for free, or bought on a website such as WrapBoot-
strap.?°. We tried a few of the free designs, and found one with dark back-
ground and light text aesthetically pleasing (See Figure 212'). As can be
seen in the figure, it can be hard to distinguish between the header and
body of a test page. This topic will be covered in a minute. It was reported
by users that the choice of colors were not optimal both in terms of con-
trast and readability. The default Bootstrap theme was chosen instead,
which has dark text on light background.

One of the feedback we got the last round was that the blue link color
was too light, and that it should be underlined. What we have observed
a trend the past years that the use a dark grey text color instead of black

*°https://wrapbootstrap.com/
*'The screenshot is shown in a small size to be as print-friendly as possible.

)/ [y User Testing Tool

€« C | [I utt.tingtun.no/#result =

UTT Test = Results hctp:/wwwingtun.no/ Set

Results for http://www.tingtun.no/

¥l Hide automated checker results

category Line Column Testid Test result id Test title Answer

Verify 2 2 5C2.42-1 1 Providing descriptive titles for web pages Yes
Verify 40 21 SC2.4.42 1 Making the link purpose identifiable No
Verify a5 73 SC2.4.42 1 Making the link purpose identifiable Yes
Verify 29 9 5C2.4.6-1 il Providing descriptive headings Unsure
Verify 34 10 5C2.46-1 1 Providing descriptive headings Yes
Verify 60 13 52442 il Making the link purpose identifiable

Verify 54 9 5C2.46-1 1 Providing descriptive headings

Verify 6 100 52442 il Making the link purpose identifiable

Verify 37 21 5C2.46-1 1 Providing descriptive headings

Verify 72 8 52442 il Making the link purpose identifiable

Verify 70 2 5C2.46-1 1 Providing descriptive headings

Figure 20: The result page of UTT 0.3

TINGTUN

Figure 21: UTT dressed in black

is common??, and link colors of Bootstrap are somewhat lighter than the
browser default link color. While these colors might be more aestheti-
cally pleasing, they might be a hindrance for people with disabilities.

The power of a framework such as Bootstrap is that its default are used
by several thousands of websites. Accessibility improvements in the de-
fault configuration will benefit many websites, and even more users. While
itisnice to have a framework that looks good, it needs to be carefully con-
sidered by its developers and community what default values it should
have. The changelog for 2.3%3 and a number of accessibility related is-
sued opened by the lead developer®4 indicate that accessibility is actively
considered.

*?A quick inspection at Google’s design reveals the darkest text color in use is #222,

which is almost black. Another example is The Next Web, where article excerps both have

alight font, in addition to having a medium gray color.
*https://github.com/twitter/bootstrap/pull/6346
*https://github.com/twitter/bootstrap/search?p=2&q=accessibility&ref=cmdformé&type=Issues

59

5.3.4 Hard to distinguish between test page header and test page
body

One reported issue for the 0.1 iteration, was that there were no obvious
way to see what part of the user interface was test page header, and what
part of the user interface was the test page body. This problem can be
more prominent in cases where UTT tool and the website happen to share
the same colors.

We can think of three solutions that might be combined to indicate
that these are separate parts. We have chosen to implement two of them.
One solution is that one can detect what background color the website to
become tested has, and use a different color for the test page header. An-
other solution is to have a thick line separating the two. A third is to ani-
mate the test page header so that it slides down, while the test page body
is shown. We have chosen to implement the latter two.

The test page header is only animated for the first test. A slight delay
is added before the slide animation, so that the user can comprehend the
test page body first. A small part of the test page header is shown initially
so that the user can sense that there is something above, before it slides
down.

5.3.5 Handling keyboard input

We received feedback about the lack of keyboard support for UTT. Hav-
ing tools that are keyboard friendly are likely to prevent injuries such as
repetitive strain injury. Having good support for keyboard is important
for tasks that are repeated often, and acommon use case for the keyboard
in a UTT test page is to trigger one of the answer buttons. One currently
needs to press the Tab-key a number of times before arriving at the but-
tons.

Although we did not have time to implement a solution, several solu-
tions were discussed. One is to focus the first answer button. Then the
user can press until the desired answer is highlighted, and finally press
enter. The downside of this solution, and especially for a test user that
gets paid for the amount of tests answered, is that he or she might choose
the first answer because it is convenient. A slightly better solution might
be to focus on a neutral answer such as “Unsure.” However, if that but-
ton is placed in the middle of “Yes” and “No,” then one risk that the same
thing happens, as it is more work to press Shift-Tab to focus the left but-

60

ton compared to focusing on the next button, which requires one to press
Tab. Also, not all users know about Shift-Tab to focus on the previous el-
ement, so they might cycle through the list before arriving at the first.

A better solution for ensuring that has less risk of reducing the in-
tegrity of the collected data is to map a letter on the keyboard to each but-
ton; ‘y’ for “Yes,” ‘n’ for “No,” and ‘w’ for “Unsure.” An alternative/additional
solution is to map numbers to the answer buttons. Itisalsoapossibility to
enable the user to choose answer with arrow keys—this solves the Shift-
Tab problem, but people are might be more used to tab over arrows when
navigating through user interface elements.

Whatever solution is chosen, it should be communicated to the user in
some way. We have not discussed how this can be done, but one possibility
is anotification hint in the upper right corner that disappears after a few
seconds. A cookie might be used for ensuring that the hint is shown three
times or so. Another solution is to have a help section within the tool.

While we did not arrive at a solution for making UTT accessible by
using the keyboard, we did one small keyboard focus detail that we find
essential; after UTT has been loaded, the keyboard focus is set on the el-
ement accepting URL. After receiving feedback from a user, we imple-
mented the URL input does not require one to specify the protocol.

5.3.6 Handling mouse input

Currently the user interface is optimized for answering questions using
the mouse. For the 0.1 iteration, answers were implemented using a set of
radio buttons—one radio button for each answer, and a separate button
for proceeding to the next test as shown in Figure 23. This proved to be
ineffective. The user had to click an answer, move the mouse pointer to
the right to click “Next,” and then move the pointer back to the previous
location to select an answer for the next test. This back-and-forth move-
ment was reported to put strain on the hand after only a few tests. One
user coined the phrase mouse kilometers to describe how he felt about the
mouse movements.

In a pre-o0.1 solution (never used by evaluators), we implemented an-
swers as buttons that would go straight to the next test when clicked, as
shown in Figure 22 (the buttons were implemented as a Bootstrap button
group?>). However, we decided to go for the solution using radio buttons

*http://twitter.github.com/bootstrap/components.html#buttonGroups

61

Does the link text “www.egovmon.no” describ

<Back Yes No | Unsure Skip »

Figure 22: The pre-o0.1 solution currently in use

Does this web page look attractive to you?

Previous ® Yes No Unsure Next

Figure 23: The 0.1 solution proven to be ineffective

right before the release of 0.1. This was done because we assumed testers
would be more familiar with forms for the purpose of evaluating websites.
Secondly, the fact that a form must be submitted makes it convenient for
a user to correct mistakes, and because it allow the user to click various
answers, and think through them before commiting to one2S.

Based on user feedback following the 0.1 release, we reverted to the
pre-o0.1 solution for the 0.2 release, and consequently we chose to not view
the user interface as a form. The use of a button group can be justified,
as people are used to toolbars and similar user interface components for
manipulating objects. In addition, toolbar buttons often lead to an ac-
tion. Small navigational links was included for the user to either go back
to correct an answer, or to skip a test.

Still, there are two concerns that speak in favor of radio buttons. For
a group of tests within one test page (Figure 24), it might be more appro-
priate to have a form with a submit button at the end. The alternative is
to use the current button groups, which can act as radio buttons (one of
them can be pressed down, similar to a button group on a vintage stereo
system), and proceed to the next test automatically when the all tests are
answered.

ELMER? is a set of guidelines for helping making simpler and more
effective web forms. There is no guideline stating that a form choice with

*6The latter is a possibly unintended use of radio buttons, but still interesting observa-
tion of how functionality is used. A similar phenomena is the use of a mouse pointer as
an alternative to the index finger for reading text on a desktop device.

*Thttp://www.brreg.no/elmer/

62

Does the alternative text convey the intent of the image?

“European Commission logo”

Yes O No O Unsure

“José Manuel Barroso”

nnnnn

Ay

“Irish presidency logo ©eu2013.ie”

@R

Figure 24: Tests of same type grouped into one page

a submit button. We sent an email to Thomas Bjerkan, the maintainer
of ELMER, and we asked if we had overlooked something. We also sent a
link to UTT that shows the choice of using toolbar-like buttons. Thomas
confirmed that there was no such guideline, but that he would consider
including it in ELMER 3. He agreed with the solution of using buttons
rather than radio buttons.

5.3.7 Other refinements

A lot of thought went into what information to present as well as what in-
formation tonot presentin the userinterface. It was carefully considered
how much emphasis to place on the various text elements. User interface
test adjustments was mostly feedback from Mikael. Also formatting is-
sues such as line breaks in the introductory text that shows up when first
opening the tool were dealt with.

5.3.8 Internationalization

For an application to be able to reach to a wide audience, it is a prereq-
uisite that it is not only available in English, but also other languages as
well. For the UTT development, having the tool support other languages
means that more people can give feedback. Until UTT 0.3, there was no
support for languages other than English, and this might have excluded
some from participating.

Adding internationalization capabilities took a bit longer than esti-
mated, as it involved changes to the user interface, and the code base,
and a throughout research on what JavaScript libraries were available for

63

/| [User Testing Tool

& €' [utttingtun.no/#
UTT Test Resultate @ sprak ~

User Testing Tool

User Testing Tool (UTT) er en prototype som kombinerer brukertesting med automatiserte
testtjenester for a forbedre tilgjengeligheten og brukervennligheten til nettsteder. Les
prosjektbeskrivelse.

For a sette i gang, skriv inn en nettside som du vil teste.
hpuingunno!

For & rapportere et problem, vennligst send oss en e-post eller opprett en sak pa GitHub.

Figure 25: UTT translated into Norwegian

offering this. Some concerns that makes internationalization complex
are pluralization rules specific to various languages, and different ways
of structuring a sentence.

We have prior experience with translating the eAccessibility Checker
, which might have guided us to go for a solution that is more complex
than what is required in a prototype; a simpler solution for translation
could be realized with a two-level associative array where the first level
key is the language, the level key being the string id, and the value is the
translated string. As mentioned already, we have made a few decisions
which makesthisimplementation more of an architectural base than sim-
ply just a prototype, and this is a good example of that.

5.4 The implementation

“Loadit, checkit, quick - rewrite it” —Technologic, Daft Punk

In previous sections, the UTT has been presented from the perspective
of the user. This section dives deep into the internals, and details how it
has been implemented.

UTT consists of two parts—the frontend and the backend. The fron-
tend is the implementation of the user interface. The backend provides
data such as checker results to the frontend. This is shown in Figure The
frontend and the backend is implemented using CoffeeScript—a script-
ing language known for its high readability that compiles to JavaScript.

64

The frontend is structured around Backbone.js, a JavaScript library for
developing SPAs, and the user interface components is based on Boot-
strap, which is a collection of technologies suited towards building web
applications. The backend is built using Node.js, a a server side software
system designed for writing scalable Internet applications.

The communication between the frontend and the backend is done
through a persistent WebSocket connection. A requestis senttothe back-
end with an URL to be user tested, and the backend issues an HTTP GET
request to the eAccessibility Checker. The checker sends a JSON data
structure in return containing test results. These are processed by the
backend, and sent to the frontend through WebSocket connection. The
general ideain current architecture is that one layer prepares data for the
nextlayer. There is processing at each layer that formats it appropriately.
26.

User agent

agao

User Testing Tool eAccessibility Checker
. initial request-of index.html (port 80)

Frontend

Home page Test page Result page

0 >9>9>> §E JSON export

’ WebSocket client ‘

Backend Persistent connection (port 4563)

’ WebSocket server ‘

’ Locale handler ’ Checker handler }

Request of check results for URL

Figure 26: Architecture overview

The frontend and the backend reside in the same Git repository, and
they share much of the same technologies. They are even hosted on the
same server—albeit in different ways (see Section 5.9 about deployment).
The remainder of this section refers to source code where functionality

65

isimplemented. Sometimes a commit—or change—is referred to, which
mightinclude modifications of several files, and/or files that are added/removed
from the source code.

5.5 Implementing the frontend

Theuserinterface components are handled by Backbone.js views, the data
of an application are handled by Backbone.js models and collections, and
an application router handles navigation between pages. These elements
can be configured in a myriad of ways depending on the requirements of
the application.

The HTML file contains elements for each major user interface com-
ponent, such as the navigation bar on top, and it also contains templates
for each component and their various states. A template is a snippet of
HTML that can contain JavaScript code to display template variables. To
give an example of how templates are used, the test page header has acon-
tainer element. To this element it is rendered a loading template when
UTT is waiting for the backend to deliver checker results. Another tem-
plate is rendered inside the test page header element when the results
have arrived. The question and answers are among the template vari-
ables.

The remainder of this section covers specific aspects regarding the
implementation. First views and router. Then state and handling of de-
pendences.

5.5.1 Backbone.js views

Backbone.js gives the developer great freedom in how toimplement views,
and even define what a view is for a particular application. Technically,
aview is a JavaScript class?® provided by Backbone.js that is sub-classed
by the application using the framework. The class provides arender func-
tion thatis implemented in the sub-class, and a HTML element, usually a
div element, is specified that acts as a container for the view. When ren-
der is called, the render function is supposed to update the content of the
HTML element. It s up to the developer to how and when render func-
tion should be triggered. More than one view can be displayed at the same

#Strictly speaking, the current version of ECMAScript does not have the notion of a
class, although this is planned to appear in future versions of the language. JavaScript
libraries and frameworks provide alternatives that work around this limitation.

66

time in a user interface, and a view can consist of other views.

UTT has user interface components such as the navigation bar, the
iframe, and the. The navigational bar is shared by all views. The remain-
ing components are shown or hidden depending on which view is cur-
rently active.

One general question in programming is what level of granularity is
appropriate for one layer of abstraction, and in this context it has been
a trial-and-error process of getting the granularity of Backbone.js views
justright. For UTT, it made sense to have one view for the navigation bar,
one for the home screen, one for the test page, one for the iframe, and one
for the result view. These views are contained in a composite view.

Another issue about views are their lifecycle. Right now all views are
created when the application is loaded, but the home view, for instance,
is hidden instead of destroyed when navigating to the test page. Back-
bone allows for both mechanisms, but the risk of destroying a view is that
memory leaks may occur. There are several blog posts dealing with this
issue, and consequently there is a variety of suggested solutions. For UTT,
we decided to reuse a view by showing and hiding it. Our main argument
for this solution is that there are very few views in UTT, they do not take
along time to load, nor do they occupy a lot of memory. If there were sub-
stantial amount of views, then we would consider destroying them and
creating them.

Performance was mentioned as agoal, and especially when navigating
from one test to the next in a test run. Using a non-SPA/non-AJAX archi-
tecture, one would request a new page when navigating, and this would
cause the iframe, and the page surrounding the question to be reloaded.
This both causes the interface to blink, and it takes more time. We only
want to change what actually changes, and this what is currently done.
With the current SPA architecture, components render independent of
each other, and they all individually respond to events. This is done in-
stead of having a full page reload for every navigational step. The down-
side of the current solution is that there is a risk of accumulating view-
related show/hide-bugs through a session. This has not happened with
UTT so far.

67

5.5.2 The Backbone.js application router

This section will describe the overall flow of the user interface; how a user
can navigate between pages, and how the navigation between tests are im-
plemented. In addition, we address how the browser back button works
in a SPA.

With the current architecture, it is possible to navigate around in the
UTT user interface while a page is loading. Currently there is one case
thatisnotsupported, and thatis changing website while a website is load-
ing. The fields for entering website are disabled while a website is being
loaded.

Auserfeedback thatwasreceived after the initial iteration was whether
it matters in which order one answer the questions. Although a sequence
is set up, it does not matter. The user can skip tests, go and back to a test
to correct the answer.

Important that the user can navigate the test view using the back but-
ton and forward button. This is done by defining a parameterized route
for the test page. The URL contains the id of the current test. In the re-
sult view, there are links for quickly jumping to a test for correcting the
result.

5.5.3 Stateisin the client

For UTT, the application state is not persisted, nor shared—it lives in a
tab in the web browser, and it is not stored locally in any cookie, nor on a
server. The advantage of this solution, is that one can have multiple in-
stances of UTT running, and it allows having a different web page in each
tab. The drawback is that one cannot duplicate the view of one particular
instance.

One use case was discovered, and this was an evaluator not being able
to open new tab for comparing answers on two tests. To enable the user to
do this, we would need to store the state of the instance in a cookie. This
however, will as mentioned prevent the user from running multiple in-
stances of UTT. An alternative solution for solving this issue is to provide
sufficient amount of information so that the need for another instance
vanishes.

68

5.5.4 Managing dependencies

As will be discussed in the section about choice of technology, the ver-
sion of JavaScript that currently exists does not have support for defining
and loading modules. For backend technologies, the Node.js platform
has one way to do it, and for frontend technologies, it is usually solved
by using the Require.js JavaScript library.

One issue with UTT is that the user interface takes a while to load. At
version 0.2 there was a bug that was quickly corrected?d that resulted in
theuserinterface to sometimes notload atall3°. This was caused by arace
condition bug where one module that depends on another did not load in
a specified order.

Since the frontend uses a number of libraries, and since it consists of
a number of views that spans over multiple files, it would be beneficial
if all JavaScript files were concatenated into one file. That would reduce
the number of HTTP requests for the tool and speed up loading. Also,
it is possible to minify the JavaScript and CSS files. Minifying files in-
volves using a tool that shortens function and variable names, and strips
the files for whitespace. This makes the files much smaller, and as a re-
sult they load faster. Another technique that can be used in combination
with the former two is to run the source code through a tool that removes
functions that are not in use.

We currently only have limited experience with these tools, based on
the estimated effort, we decided to not implement the abovementioned
techniques in the current prototype. To make loading of libraries a bit
faster, we chose CDN/hosted versions of libraries that were available. Ven-
dors such as Google host jQuery and libraries that are used often on a fixed
URL that anyone can reference. An advantage of doing so is that these
files—since they are referenced by so many—are often cached at the In-
ternet service providers. A disadvantage is that some environments ac-
cessing UTT might only have Intranett access.

As of UTT 0.3, loading can take a few seconds, and it could be helpful
to display a loading screen. We hope that applying the mentioned mini-
fication steps can help, so in the future, that should be attempted first.
We created an issue on GitHub suggesting to add a loading indicator3?,
but we later closed with the comment “This should not be necessary if us-

*https://github.com/alexanderte/utt/commit/ag1184517e87af7bag76578adbg98bg2aadg7302
3°https://github.com/alexanderte/utt/issues/10
3'https://github.com/alexanderte/utt/issues/25

69

ing CDN, minified JavaScript and CSS, ...” This is an example of the issue
tracker to document known issues and suggesting solutions.

5.6 Backend implementation and architecture

While the frontend is the implementation of the user interface, the back-
end is what provides data and stores data for the frontend. The data that
the backend provides is data from the automated checker. It also pro-
vides translation strings to the frontend.

Thebackend starts a WebSocket server that the frontend initiates con-
nections to. The backend sets up a WebSocket server listening to port
4563, a port which is unused according Internet Assigned Numbers Au-
thority3? If the project should continue after this pre-project, then it would
makes sense to request that port 4563, or any other available port, gets as-
signed to UTT.

The life of a connection spans for the period that a client instance of
UTT is open. When the user opens UTT, the frontend connects to the
backend. Once connected, the frontend requests the backend to send
translation strings for English, which is the initial language33. When the
translation strings are received, the frontend asks for test results for the
initial website, which is tingtun.no. From that point on, translations and
results are requested as they are changed in the user interface.

The backend asynchronously asks the checker for check results, and
delivers them to the frontend when they arrive. Because this is done in a
non-blocking manner, it means that the backend can process additional
requests from the same source, or for other instances, while waiting for
the checker. The current backend architecture allows for a sequence like
the one below:

. Frontend, requests backend for foo.com checker results
2. Frontend, requests backend for translation

3. Frontend, requests backend for bar.com checker results
4. Backend reponds Frontend, with translation

5. Backend reponds Frontend, with bar.com checker results
6. Backend reponds Frontend; with foo.com checker results

=

32http://www.iana.org/assignments/service-names-port-numbers/service-names-
port-numbers.xml

331t might become possible to configure this later e.g. for businesses to run a private
installation of UTT.

70

Asmentioned, eachlayerinthearchitecture prepares datafor the next
layer until the template is reached that finally renders the data for the
user. One the backend has received checker results, it prepares results
for the frontend. Possible answers to results that are to-be-verified are
added, and translation parameter strings are prepared. Note that both
to-be-verified results and pass/fail results are are received from the checker
and senttothe frontend—results of all types are shown in the results view.

5.7 Integration with eAccessibility Checker

The to-be-verified results that the user will provide answer to with UTT
comes from the automatic eAccessibility Checker, as indicated in the lit-
erature review. There are two ways of getting the data from the eAccessi-
bility Checker; one is to use its export functionality, and the second in-
volves using its component to get the results, and connect to a database
that parses the result. The former was chosen, as it does both steps.

First we attempted to use eAccessibility Checker’s CSV export func-
tionality. This is accessed by sending a HTTP GET request to the eAc-
cessibility Checker with “csv” and an encoded URL as arguments. The
checker runs a check on the web page associated with the URL, and re-
turns a CSV file with the barrier data. A module was first written that
would make sense of the results and build result objects that could be used3+.
However, the data returned from the checker was among other things
lacking line numbers and columns to locate the position of a barrier in
the code behind the page.

Since we have access to the eAccessibility Checker, we have the op-
tion to modify its CSV export, but this can break others that depend on it.
JSON is a data type that is more native to JavaScript as it is syntactically
almost identical (it is in some cases) and thus require less processing by
the UTT backend, and we chose to implement JSON export functionality
right within the automated checker.

One limitation that we stumbled upon when implementing the JSON
export functionality, is that the data that a template associated with a ex-
port type has access to is formatted for being presented in eAccessibility
Checker user interface. Some of the data include custom markup such as
[at] [/at]. Thiswas needed to work around, and the JSON exporter does

34https://github.com/alexanderte/utt/blob/5af73db797a124b7b0429b93de037f31812f5540/js/egovmon-
checker/egovmon-checker.coffee

71

some search-replace processing of the data before sending it to the host
that sent the HTTP request.

5.8 Architectural concerns

5.8.1 Directory structure

The UTT directory structure is pretty straightforward; there is a back-
end and a frontend directory at the highest level of the Git repository as
shown in Figure 27 (alternatively, the Git repository can be browsed on
GitHub3>). At the root level, there is a .gitignore file to prevent certain
files to be checked in, a shell script used for making deployment easier,
and a readme Markdown document that in few words describe what UTT
is and how to set it up.

compile.sh
/“enjson
locale | en.po
backend | \ no.json
‘\ no.po
\;\ main.coffee
/ \ package.json
| collections tests.coffee

backbone.js

| fcomponents —
| C’H jedjs

“‘ bootstrap-responsive.css
[- -
| / bootstrap-responsive.min.css

| css | bootstrap.css

f [_bootstrap.min.css
/ I —
/ | \ screen.css
//_:' t\ locale.coffee
it repositor) I —
(g1t repository models |~ test-run.coffee

/ | test.coffee
\\ frontend | N~

ﬁtest test.coffee
home.coffee
[iframe.coffee

[
e
(- /" navbar.coffee
\ views
\

{_result.coffee
r‘f test.coffee

\ views.coffee
\ index.html

main.coffee

\ require.js

| router.coffee
itignore o
|\ deploy.sh

\ readme.md

Figure 27: The directory structure in the git repository of UTT

3https://github.com/alexanderte/utt/tree/0.3.0

72

The frontend directory is where index.html resides. The directory
contains one sub-directory for each type of Backbone component; views,
models, and collections. There is usually only one router for an applica-
tion, so the router code is put right inside the frontend directory.

There is adirectory named components that refer to third party com-
ponents. Because many of the UTT dependencies are hosted by content
delivery networks (CDN), there are currently only two files in this direc-
tory; backbone.jsand jed.js. Thedirectory name components, sometimes
named vendor or lib, was chosen because it is used by a popular pack-
age manager for web applications named bower.36 bower is currently not
used for managing external components, but it is likely to be used in the
future. A package manager such asbower streamlines among other things
the way external components are retrieved, and it is more convenient to
type “bower install backbone” on the command line rather than hunting
on the web for the .js file.

Early on, for the sake of tidiness the CoffeeScript files were stored sep-
arately from the compiled JavaScript files. This resulted in a somewhat
deep directory structure, which made it cumbersome to navigate to the
files from the editor. Later on the directory structure was flattened out37,
and the uncompiled and compiled files now live side by side—this has no
technical implications.

Both the frontend and the backend has a main.coffee file, and these
are the main entry points of each part of the system. For the backend,
the main.coffee can be started directly on the command line—it is com-
piled on the fly. The main.coffee for the frontend needs to be compiled,
and main.js is referenced in index.html. The main.coffee for the fron-
tend also references require.js which is what actually loads main.js.

The directory structure evolved gradually—the development process
has in general alternated between chaos and tidiness. Splitting the fron-
tend and backend into separate directories3® was done as late as a month
after the development started.

5.9 Deploying and monitoring the solution

It will briefly be discussed how UTT is deployed into a production envi-
ronment. Today, it is common to use cloud services for hosting web appli-

3https://github.com/bower/bower
3Thttps://github.com/alexanderte/utt/commit/co7bsb7e3bd45853215¢f649c349d051317237fc
Bhttps://github.com/alexanderte/utt/tree/feagf608599f86c32b8ed48449e443fd2115fbd3

73

cation. One variety is platform as a service. Since the backend builds on
the Node.js platform, it is possible to use a service like Heroku3? that pro-
vides an environment where Node.js is set up, and the service abstracts
the work of setting up an operating system with a working Node.js envi-
ronment. In addition, a service like Heroku provides command line tools
that makes deployment even easier.

For UTT, we have chosen a infrastructure as a service solution, where
an instance of the Debian operating system is set up in a cloud environ-
ment. We need to manually set up Node.js with the required dependen-
cies. These are documented in the readme.md in the UTT repository.4°
The frontend directory consists of static files, and it is simply served by
Apache—it could be hosted by any web server.

The backend is started by running backend/main.coffee. This pro-
cess is somewhat involved, and it is simplified by running a deploy script.
More about this in a second. The main.coffee script prints debug infor-
mation to standard output, and this can be useful to log. deploy.sh is a
script that fetches the latest revision of UTT from the remote git reposi-
tory, and it starts main.coffee by issuing the following:

nohup coffee backend/main.coffee&

nohup(1) is a UNIX command that is useful when logged in to a SSH
session. It makes sure that the program following it still runs when the
SSH connection is closed, and it also logs the standard output from the
started program to a file named nohup.out.

The deploy script is intended to be run both the first time the UTT
backend is run, and also when it should be updated to the latest revision.
One challenge we faced was how to kill the running instance of the UTT
backend, before doing the update followed by spawning a new process. It
currently works by writing the UNIX process id (PID) of the UTT backend
to /var/run/utt.pid once it has started. If the .pid file exists when launch-
ingthe deploy script, thenitisread and evaluated into the first parameter
to kill.

5.10 Choice of technologies

This section describes the process of choosing a technology stack. First,
a number of concerns are discussed, then a number of ecosystems with

39https://www.heroku.com/
“https://github.com/alexanderte/utt/blob/0.3.0/readme.md

74

associated programming languages are looked at, then there is a review
of components such as web frameworks, databases, and libraries. Finally
the stack of technologies is listed.

We have some requirements that influences the choice, but much of it
admittedly boils down to what the developer enjoys working with. There
are many choices that can lead to a working prototype, and it should be
possible to get something working almost regardless of choice.

5.10.1 Concerns for choosing technologies

Several concerns were considered when choosing the technologies to im-
plement the tool with. We will present 11 concerns for choosing technolo-
gies. These come from our prior experience with software development:

1. Good fit for the problem
2. Easy to integrate with existing technologies in use
3. Scalability
4. Popularity/longevity
5. Healthy community
6. License
7. Accessible
8. Past experience and/or what network of people knows
9. Layers of abstraction
10. Linux and web-centric

11. Productivity

Atthe mostbasic level, the chosen technology needs to be a good fit for
the problem. If not, then one need to work around its limitations. For in-
stance, a web framwork will need to strike a balance between ease-of-use
to address predefined problems and flexiblity to support other problems.

The technology needs to integrate well with the existing technologies
in use. For UTT, we need to interface with the eAccessibility Checker.
This involves issuing an HTTP request, and a JSON data structure is re-
turned. This is not complex. What is slightly more complex is the future

75

plan of integrating the results view of the eAccessibility Checker with the
UTT results view. If this is to be done in a seamless manner (e.g. not em-
bedding the results component using an iframe), then we need to ensure
that its dependencies can be satisfied by UTT.

Scalability is a common concern, and in this case the crowd sourcing
requirement. While a prototype usually does not need to scale, we have
put some effortin the architecture, and allowing it to scale in the future is
important. Scalability is not a fixed attribute tied to a technology. What
scaling means is very specific to the problem to solve. For instance, for
UTT and its current requirement, its an advantage to have the SPA archi-
tecture, as one does not need a HTTP request when navigating back and
forth between tests. This drastically reduces the amount of bandwidth
needed.

When we build software today, we are tied to the technology choices
for a very long time. Changing the underlying technologies means that
the software needs to become rewritten. This is true especially for pro-
gramming languages and web frameworks. Specific components might
be costly to change, but it is possible, and sometimes needed. The pop-
ularity of a technology is an indicator of its longevity—how long we can
expect it to be supported and maintained. Choosing a technology that is
established in the market is a requirement.

Related to the popularity and longevity of a technology is the the com-
munity surrounding it. One will regardless of choice encounter many mi-
nor and larger issues, and for that reason it is vital that the community is
healthy with friendly and helpful people. It certainly also helps that its a
vibrant community that love what they do, and do interesting things with
it both professionally and personally.

Itisarequirementthatlicense of the software is compatible with what
we’re trying to do—to build an open source tool. This is not an issue with
the many programming languages and web frameworks out there. Most
are licensed using a very liberal license such as MIT or BSD.

Although the technologies mentioned in this section are somewhat
general, we need to keep in mind that they make it possible to have a so-
lution that is accessible.

Time is a limitation in any project, and for that reason our past expe-
rience has been weighed, as we need to get up to speed as fast as possible.
What network of people the person has might influence the choice. Then
itiseasiertoask for help,anditisnice to have someonediscussing it with.

76

At the same time, this needs to be balanced with the other factors.

In the world of web, there are abstraction layers for everything. They
are there for browser incompabilities and for simplifying APIs. One pos-
sible downside is when one does not understand what is happening below
the layers. Another downside is added cruft. Its a fine balance when to
use an abstraction layer and when not to.

The technologies mentioned are all open source. Most of the tech-
nologies are Linux-centric, meaning that they are designed around the
Linux directory structure, and configuration is done in text files. Most of
the technologies are available from a Linux distribution’s package man-
ager, and they should be easy to install on OS X. On Windows however,
they are not first-class citizens. For many popular technologies, a “one
click” Windows installer is provided on their respective websites. Many
of them work by installing Cygwin or similar.

Productivity is the final concern. There are some factors that makes a
technology choice productive. One is that the developer can solve a prob-
lem with as little code as possible. Another is that the feedback loop be-
tween writing the code and running the code is short. Third, the author
must find the technology enjoyable to spend a lot of time with it.

5.10.2 Choice of ecosystem

Choosing a programminglanguage for doing web development is not about
programming language as much asitas about choosing an ecosystem con-
sisting of components, websites for browsing available packages, com-
mand line tools, acommunity of people and key personalities. Often there
is a culture that share a philosophy, such as Python’s “There should be
one—and preferably only one—obvious way to do it” (PEP 20 - The Zen
of Python, n.d.)

Since JavaScript is the only language supported by web browsers, it
is a good idea to learn that in addition to the chosen language. While
there are many languages that compile to JavaScript, it is necessary to
know JavaScript in order to debug running code in the browser. In many
ways, the following categorization makes little sense, since technologies
are mixed and matched in a myriad of ways. Despite of this fact, thisisan
attempt at looking at the ecosystems with one language being the domi-
nant one.

This is not a systematic review of languages; we found the subject too

77

complex to present in e.g. a matrix. Rather it is a review taking into ac-
count the before-mentioned concerns, and seeing how they fit with our
objectives and requirements. All the ecosystems covered are large, highly
successful, and they are used to power some of the largest websites on the
Internet.

Haskell Weoriginallyplanned towritethe toolusing Haskell, as Haskell
has several characteristics and qualities that makes it desirable for tech-
nology where correctness is important. The author had no former expe-
rience with Haskell, or functional programming, and the learning curve
seemed too steep to deal with in the limited time-span of the project.

While Haskell has a steep learning curve, it seems to be valued highly
by those who use it, and it is common that even an experienced program-
mer needs to make many attempts atlearning it before being able to grasp
its fundamentals. One possible drawback of choosing Haskell is that the
number of potential contributers might be lower than ifusing ecosystems
that are used by more people. On the other hand, it is likely that the qual-
ity of contributions is very high, since Haskell programmers usually are
very competent.

JavaScript JavaScriptisthelanguage for the web. All modern browsers
supports it. In fact, they support no other language, and it is required
to have JavaScript enabled for many modern websites to function. Al-
though it has Java in its name, it does not have anything to do with Java
beside superficial, syntactic similarities. At the specification level, the
name of JavaScriptis ECMAScript. Thelanguage is dynamic, weakly typed,
has first class-functions, and it supports object-oriented, imperative, and
functional paradigms.

JavaScript is not particularly known for being a robust language, and
it has been subject to a lot of jokes in the community of software devel-
opment. One striking example of what JavaScript is less than good at
is comparing one entity with another (JavaScript Garden, n.d.; Pierre
Kircher, 2012). JavaScript mahatma*' Douglas Crockford has written a
shortbook named JavaScript - The Good Parts (Crockford, 2008), where
he describes what subset of the language that can be safely used. There

4“1 do not think of myself as a guru. I'm more of a mahatma.” —Douglas Crockford
http://www.oreillynet.com/pub/au/3252

78

are abstraction languages on top of JavaScript that prevents the user of
the language to use features beyond “The Good Parts.”

The latest iteration of ECMAScript lacks features that are common in
most other languages, such as the ability to define and load modules. This
is planned to become solved in future revisions of the language. Although
JavaScript is capable of programming in an object oriented-style, it does
not have a class keyword. Currently, what JavaScript lacks is solved by
third-party modules, and languages such as CoffeeScript.

While privacy and security continues to be a concern, modern web ap-
plications are starting to resemble native desktop applications both in
terms of features and performance. JavaScript was previously known for
having poor performance, but a lot of innovation have happened during
recent years, and it is safe to say that this is no longer the case. We are
starting to see first-person shooter games being ported to JavaScript.

Despite its shortcomings, JavaScript is becoming increasingly more
relevant. The fact thatitis available in every web browser makes it attrac-
tive, and unless using an abstracted language, it does not require one to
compile. Instant compilation time gives a short feedback loop between
working on a piece of code and testing it in the browser, which for many
makes programming feel fun and productive. And what JavaScript lacks
is currently duct taped on top using external libraries.

CoffeeScript There have recently been a number of languages that ab-
stracts the complexity and somewhat verbose syntax of JavaScript. Some
of them are CoffeeScript and Dart. There is also a Java web framework
such as Google AWT that generate JavaScript. Figure 28 is an example
from coffeescript.org showing what CoffeeScript looks like when com-
piled into JavaScript.

grade = (student) -> var eldest, grade;
if student.excellentWork
"A+" grade = function(student) {
else if student.okayStuff if (student.excellentWork) {
if student.triedHard then "B" else "B-" return "A+";
else } else if (student.okayStuff) {
nc if (student.triedHard) {
return "B";
eldest = if 24 > 21 then "Liz" else "Ike" } else {
return "B-";
}
} else {
return "C";
}
b

load eldest = 24 > 21 ? "Liz" ; "Ike";

Figure 28: CoffeeScript and JavaScript side-by-side

79

As can be seen, CoffeeScript attempts to make JavaScript easier to
read by dropping much of its verbose syntax. Also it compiles into the
subset of JavaScript from “The Good Parts.” The simplified might not be
for everyone, especially as many developers are familiar with the mus-
tache brackets and semicolons found in C-like languages. But code writ-
ten in CoffeeScript is most often significantly shorter.

The downside of using CoffeeScript, or any other abstraction layer
over JavaScript, is that there is yet another technology to learn, there is
an additional compilation step, and it can make debugging more compli-
cated, as there is limited tool support for debugging the original code that
was written. The web development community on HackerNews seem to
be divided because of the reasons mentioned. Also, the syntax is said to
be a bit magic, and in some cases ambiguous when optional parentheses
are left out.

For UTT, we decided to use CoffeeScript. It was introduced early, as it
would be no need to port the whole thing later on.

Node.js Node.js is an asynchronous, evented I/O framework making it
possible to create server applications written in JavaScript. It has gained
much traction recent years, and it has a large and vibrant community.
Node.js exposes a POSIX-like API for reading and writing files, manag-
ing operating system processes and threads, and provides anon-blocking
programming model especially suited for real-time applications.

Node.js was chosen for the backend. As with the frontend code, one
can write scripts for Node with CoffeeScript. Both the frontend and the
backend of UTT are written using CoffeeScript. One of the advantages
with Node, is that modules can be shared between the frontend and the
backend.

Ruby Ruby is known for being one of the most readable programming
languages. It is known to perform slightly slower than some of its alter-
natives, but in most situations, it being easy to read and the fast develop-
ment time outweigh the execution speed. Ruby is used a lot on the web,
and Ruby on Rails web framework powers large websites like GitHub and
Twitter.

Rails is an opinionated framework that dictate how to structure the
application, but there are more lightweight web frameworks available for
those that desire more choice .

8o

Recently there have been written about some serious security flaws.
While recent patches has addressed these, some say that this is an indi-
cator of adeeper problem (What The Rails Security Issue Means For Your
Startup | Kalzumeus Software, n.d.).

Ruby is a still a good candidate for UTT.

Python Pythonisanall-purposelanguage designed by Guidovan Rossum,
and it widely used for web development. There are many different web
frameworks written in Python. Some frameworks such as web.py, by the
late Aaron Swartz, provide the bare minimum functionality while there
are web frameworks such as Django*? that is complex similar to Rails.
Django is one of the most widely used frameworks, and it is used by some
of the worlds most visited websites. Thelistincludes Instagram and Mozilla.

Python has a readable syntax, it is a great language, and it would be
suitable for UTT.

PHP PHPisawidelyadoptedlanguage known foritsgreat performance.
Much of Facebook is written in PHP. Its standard library is known for
being transparent regarding the API, as they are very similar to the C li-
braries underneath. Because these C APIs vary a great deal, and because
the PHP API seems to not be carefully designed, it is often criticized. One
software developer goes as far as saying that “PHP is an embarrassment,
a blight upon my craft. It’s so broken, but so lauded by every empowered
amateur who'’s yet to learn anything else, as to be maddening. It has pal-
try few redeeming qualities and I would prefer to forget it exists at all”
(PHP: a fractal of bad design - fuzzy notepad, n.d.).

We have been using PHP along with the CakePHP web framework ear-
lier, but found it less than pleasant.

Java Javaisawidelyused technology, and perhaps more so in large en-
terprise environments than in smaller environments. Compared to some

of the other languages mentioned in this section, Java is somewhat more
verbose, it takes longer to compile, but it might be more desirable than
interpreted languages for large code bases. Compile-time type checking
catches errors that otherwise would could show up when the application
isproduction. Also, type checking meansthatthe code canbe refactored/shaped
in radical ways using refactoring tools.

“https://www.djangoproject.com/

81

Javahasalarge number of web frameworks. Some of these are Apache
Click, Apache Tapestry, and Apache Wicket. Another well-known web
framework is Google AWT.43

One Javaweb framework that should be mentioned is Grails. The code
is written in Groovy, which is a dynamic programming language for the
Java platform.

Java is arguably more suited towards enterprise applications rather
than prototypes, and it is not considered an option for UTT.

Others There are a large number of languages that could be reviewed,
such as Scala, Lua, Go, Lisp, Erlang, Perl, or even C—yes, there are web
frameworks for C, and they might be suitable in embedded environments
with performance and memory constraints. Still we think the most used
technologies are covered.

5.10.3 Choice of web framework

The choice of web frameworks is limited to SPA frameworks. During the
past few years a lot of SPA frameworks have appeared. One of major as-
pect in which they differ is how opinionated they are. Frameworks such
as Ember.js and Angular.js shares some similarities to Ruby on Rails, while
Backbone.js in particular leaves it up to developer on how to combine its
various features.

Of all frameworks (and even all projects on GitHub), Backbone.js is
most popular 44, indicating that it is used on more project than the other
frameworks hosted on GitHub. Because Backbone.js leaves so many de-
cisions up to the developer, there are frameworks built on top of Back-
bone.js. But its simplicity might be its strength. The following is a com-
ment from a developer on StackOverflow:

“Then I remembered why I originally choosed backbone.js: simplic-
ity. All those frameworks are adding what backbone has left out by de-
sign” (What are the real-world strengths and weaknesses of the many frame-
works based on backbone.js? - Stack Overflow, n.d.).

I'think one could choose any SPA framework, and accomplish justabout
the same. We chose Backbone because of its popularity, simplicity, and
also because it was said to be faster to learn than the others. The user in-

43These web frameworks are listed on http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#.
#https://github.com/popular/starred

82

terface of UTT is highly specialized, which is a good reason to go for a
framework that is not opiniated. We learned the basics of Backbone.js by
experimenting and reading resources on the web.

5.10.4 Choice of additional components

This is a section about compontents whose choice is of less significance,
and itis for that reason short. These components can be replaced without
requiring a rewrite of the code. Some, such as Require.js, do require a bit
more. jQuery is not covered here, as it is a requirement for nearly all web
development.

As mentioned, JavaScript does not have a concept of modules. Re-
quire.js by far the most popular framework for handling dependencies in
the browser. Node.js has its own way of loading modules. browserify is an
alternative loader for the browser that makes loading of modules similar
to Node.js*> It is beyond the scope of the thesis to go further into detail
about module loading.

WebSocket are used for communicating between the frontend and the
backend. WebSocket are not supported by all browsers, and for this rea-
son the Socket.IO library provide a client-side module with that can fall
back using other means of transport. caniuse.com is a site for checking
which browser supports e.g. WebSocket or other recent browser tech-
nologies. Internet Explorer 9 and below does not support WebSocket, and
in this case Socket.IO uses a Flash implementation.

Backbone.js is dependent on a helper library named Underscore.js.
Underscore.js provides utility functions for advanced list manipulation,
and many of these are similar to map, head, tail functions in Haskell. In
addition, Underscore.js provides functions that compensate for what is
error-prone in native JavaScript—such as checking if a list is empty. Lo-
Dashis acompeting project4® that seem to be actively developed4” The de-
veloper of Lo-Dash, John-David Dalton, states in a post on StackOverflow
that Lo-Dash has a more consistent API, more thorough documentation,
and tests. He has also had push access to Undercore.js, and he had con-

4http://browserify.org/

#61,0-Dash is a pun reference to underscore. This is common for open source libraries.
CoffeeScript has a build system named Cake, and a “third party” build system that sim-
plifies Cake is named Applecake, both as a reference to Cake, but possibly also Apple’s
philosophy of making simple user interfaces.

4Thttp://stackoverflow.com/questions/13789618/differences-between-lodash-and-
underscore

83

tributed with bug fixes to Underscore.js. This is a form of competition
that is unheard of in proprietary software projects, and it is likely that
Underscore will be replaced with Lo-Dash as the default utility library in
the future. With that said, we do not find the choice of utility library criti-
cal for UTT, and we went for Underscore.js because it is suggested on the
Backbone.js website, it seems to be widely used, and it is developed by
Jeremy Ashkenas, the developer of Backbone.js and CoffeeScript. The
fact that it is widely used means that any possible problems are easy to
google4®. In other words, technical merit is a less significant criteria in
this case, as we feel sticking to what is suggested by default leads to the
least number of surprises. We assume that we share this pattern of think-
ing with many others.

Although there are currently no automated unit tests for the source
code, we initially did a review of unit testing frameworks. Mocha by TJ
Holowaychuk seems like a widely used project, and it has an appealing
syntax. This could be used for further development.

Bootstrap, formerly known as Twitter Bootstrap, was initially devel-
oped at Twitter to streamline the user interface of the service, but it has
since “grown out of” the organization. Bootstrap makes it simple to cre-
ate good looking user interface components such as progress bars and
navigation buttons. It also provides a grid-based layout. Grids are use-
ful within visual design to establish solid visual and structural balance
of websites (Designing With Grid-Based Approach | Smashing Magazine,
n.d.). Version 3 of Bootstrap is in development as this is written, and the
difference between the current version and the next is that the latter is
responsive by default, and mobile-first.

Supporting multiple languages can be complex, as different languages
have different pluralization rules, and the structure of sentences differ
widely. Also, there are software specifications such as gettext and Mes-
sageFormat that attempt to solve this. There are a JavaScript libraries
for making a program internationalized, and I have chosen jed, whichisa
GNU gettext solution. GNU gettext is alsoused by eAccessibility Checker.

¥We find it appropriate right here to use the google as a verb—besides, it is a verb
(Google - Definition and More from the Free Merriam-Webster Dictionary, n.d.).

84

5.10.5 Choice of database technology

Using database technology is the common way to store data associated
with a web service. Unfortunately, we did not have time to implement
any data storage, but this section could be useful for future development.

There are what seem to be two directions for database technology for
the web. One is NoSQL and the other is traditional, relational databases.
The term NoSQL has appeared recent years, and differs from relational
databasesinthat one does not model the relationship between data. There
are no schemas, but rather collections of data structures. The data struc-
tures are most often encoded as JSON. Since JSON is close to being JavaScript
data structures, it means that for JavaScript applications, the data can
travel through whole stack nearly unmodified—the whole way from the
database, and up to the view template. Nearly all languages have func-
tions built in to serialize and deserialize a native data structure to and
from JSON.

Two popular NoSQL database technologies are MongoDB and CouchDB.
We have observed that there have been reported stability issues with Mon-
goDB, but we are uncertain whether these are major flaws of the product.
CouchDB is a cloud storage service. PostgreSQL, and MySQL are exam-
ples of popular relational databases. For smaller applications and/or test
environments of alarger application, there is SQLite which is arelational
database, but the database is contained in a single file that can easily be
moved around.

Another variety that is neither NoSQL or relational is Redis, which is
an in-memory key-value data store. It is fast and simple, and especially
useful for caching.

For future development of UTT, we suggest to use PostgreSQL, as it is
already used by the eAccessibility Checker, and also because the domain
of testing websites seem to fit well with the schema approach.

5.10.6 Building a software stack

A software stack is not only related to web technologies, but generally a
set of technologies intended to work as a whole. Things changes fast in
the world of web development, but we hope that the larger components
will stay relevant and supported in at least five years to come.

The following table sums up the stack of technologies that was chosen
for implementing UTT.

85

Technology Description

Node.js Event-driven I/O server-side JavaScript environment

CoffeeScript ~ Programming language that compiles into JavaScript

Backbone.js JavaScript frontend framework

Underscore.js JavaScript utility library

Require.js JavaScript file and module loader
Socket.lO Cross-browser WebSocket framework
Mocha JavaScript test framework

jed JavaScript gettext translation library
Bootstrap Frontend user interface framework

PostgreSQL Relational database

Table 8: The chosen technology stack

5.10.7 License

UTT is released under an open source license. There are many reasons
for this. When the software is free—both as in price and freedom—the
threshold for others starting using is lowered considerably. Also, hav-
ing an open source license is an invitation for developers to contribute
with additional tests, or refine existing tests. A possibility thatlie further
ahead is having a team of data analysts study large amounts of collected
test data.

An objective of the Integrative Learning Design Framework (page 8)
is to design artifacts that can be profitably used in later stages, and it
should be possible for other researcherstodo this. Anopen sourcelicense
facilitate for letting others continue the development. This way, most is
gotten out of the time developing the software artifact.

UTT is licensed under the GPLv2 license*9. Licenses can be hard to
understand if one is not lawyer within the field of software. What follows
is an easy-to-understand summary (GNU General Public License v2 (GPL-
2) Explained in Plain English, n.d.):

You may copy, distribute and modify the software but you must
relicense anychanges and your entire projectunder GPLv2 and

Whttp://www.gnu.org/licenses/gpl-2.0.html

86

disclose all the source code. You must also track changes and
dates in the source code. The GPLv2 is complex and may not
be compatible with common commerciallicensing models. Be
careful and view Full Text for details.

87

6 Discussion

This section starts out with a section reflecting on how design research
was used to carry out the study, and follows with the main findings of the
study of existing tools. The section is followed up by a discussion about
the implementation with choice of technologies, and the implementa-
tion of thebackend and the frontend. The section that follows goes through
known limitations of the research results. Then the research questions
asked initially in the introduction will be addressed. The remainder of
this section suggests future directions that projects can go into that builds
on this research, there will be a section for reflecting of the process of de-
veloping the artifact and writing of the thesis, and finally there is a short
section about concerns regarding privacy of the users of the tool.

The discussions also aims to describe contribution to research—additions
tothe knowledge base, and verification of existing knowledge—and lessons
learned during the process. Lessons learned include what we would do
different if we started today, and what should have been, but was not de-
livered. This is summed up in the conclusion.

6.1 Reflecting on the method and prior art

It will be reflected on how design research was used to carry out the re-
search, and also how the study of the existing tools has shaped the devel-
opment of the tool.

6.1.1 Design research

The Design Science Research Cycles model by Hevner was used to guide
theresearch process. Inaddition tothe research method, we used a Scrum-
like process of handling tasks and sprints. It was necessary to use a subset
of the software development method in addition to the research method,
sincedesign research is not strictly tied to software development. As GitHub
was chosen as a tool for supporting the development, its terminology was
used during the project.

The Design Cycle is the heart of a design research project (Hevner,
2007), and it was given a great deal of attention. With the exception of
letting formal evaluators shape the project, the relevance between prac-
tice and theory was kept in mind.

88

Design research seemed tobe agood fit for this project. In this project,
knowledge was derived from creation and user interaction. It is a possi-
bility that future projects building on this research might use other meth-
ods, and one suggestion is to use natural science methods to either con-
firm or invalidate findings from this study. Much like automated check-
ing tools and manual checking tools can complement each other, design
research and natural science methods can as well, something that is sug-
gested by Hevner in an interview (Winter, 2009).

Because this was a project with the intent to build an artifact, we still
feel that design research was more appropriate than action research—the
artifactis still too experimental to be used in areal-world context, and the
feedback received has been from experts within the accessibility field.

6.2 Existing tools

One of the outcomes of this study beside this thesis and the artifact, is
an overview of a selection of related tools given in Section 3.12. The main
finding is that there is no tool that combines automated checking with
user testing—neither open source nor proprietary, and not within any of
the many fields of human-computer interaction included in this study.

Also, another finding was that most existing usability and user expe-
rience tools are interactive in some way or another, and they are propri-
etary services with paid subscription preventing a wider use in crowd-
sourcing. Most accessibility tools tests in an automated way against im-
plementation of accessibility guidelines, and most of these tools are open
source. All the surveyed open source tools have an public instance that
can be accessed publicly.

Although we could not find any suitable tools to base the project upon,
there was open source components to build upon. This will be discussed
in the upcoming section about implementation.

6.3 Design

This section reflects on the Design activities—the choice of technologies,
the design of the artifact, and the feedback process with the evaluators.

89

6.3.1 Choice of technologies

Most of the chosen components are widely used on the web today. When
there was a problem, a quick search on the web helped us solve the issue.
No custom components needed to be developed during the project. For
each component, there were often several alternatives to choose from,
whichisanindication that the chosen ecosystem was suitable for the prob-
lem.

Bootstrap, the framework that the user interface is built upon, is used
on a large number of websites today. As reported by one evaluator, links
were not styled in a way that would be clear to everyone. A continuation
of the UTT project is an excellent opportunity to help shape the major
building blocks on the web by making them more accessible. This has the
potential to make a difference for thousands of websites, and millions of
users.

6.3.2 Designing the artifact

This section sums up what was learned from a technical point of view
when designing the artifact.

The initial goal was to build a prototype. During the project the fo-
cus was shifted more to an architectural design base. This can be helpful
for further work as there is a solid foundation to build upon. The shift of
fcocus to architecture has caused a reduction of the number of features
implemented.

Fidelity is aword often used to describe the distance between a proto-
type or mock-up to the final product. A lower fidelity prototype might be
designed using pen and paper, and a slightly higher fidelity might mean
that it is designed using a prototyping software tool that simulates inter-
action. For UTT, there is no difference between what was designed and
what would be a real implementation.

Because the task involved picking technologies to build upon, it was
most natural to build a high fidelity prototype using these technologies.
We could have taken shortcuts by e.g. doingless refactoring, but this would
have resulted in a less solid architecture.

Single-page application One idea that was attempted for the frontend
was to use SPA architecture. This architecture seems to be effective for

90

designing this particular user interface—when answering a large num-
berof tests, itisimportant that the user interface is responding fast when
moving from one test to another, so that the user does notlose focus. Also,
this architecture seems to be a good fit for crowdsourcing and scaling, as
there is noneed for the client to request a page for every test case. The web
application is sent initially, and from that point the minimum amount of
data is sent from the server.

Backbone.js seems tobe agood solution for user interfaces with unique
requirements. Usinganon-opinionated framework like Backbone.js might
beless than ideal for solving known problems such as building a web shop.

iframe Using iframe to embed a web page into UTT worked in many
cases for integrating the two, but there are still cases where this tech-
nique is problematic. It was tried to merge the source code of two web
pages into one, but this was less successful than using an iframe, as it
was very difficult to create test page markup that would not be affected
by the styling and scripts belonging to the page to become tested. It will
be further discussed in future research about possible alternatives and/or
workarounds.

As an alternative to using iframes, it was discussed if the test page
header and the web page body should be split into two windows. An ad-
vantage with this solution is that one view cannot possibly interfere with
the other. A couple of downsides is that it is very uncommon for a web ap-
plication to be split into different windows, and the user needs to manage
the windows themselves. This can be a challenge for many users, and es-
pecially on non-desktop devices.

Performance Atthispoint, UTT takes between 1-5 seconds to load ini-
tially. Minifying JavaScript dependencies can help reduce the loading
time, and this should be considered.

The backend Implementing the backend started after the user inter-
face wasin place. The responsibility of the backend is to provide the fron-
tend with locale data such as translations, and it communicates with the
eAccessibility Checker. The backend crashed a few times because of ini-
tial bugs, and it will be a good idea to have better monitoring in the future.

91

Feedback from users We received a lot of feedback from users, and es-
peciallynear the end of the project. This section sums up whatwe learned.

When integrating a web page with the test page, it must be easy to dis-
tinguish between the two. This is currently done by animating the test
page, and having a border between the two parts of the view, but in the
future one should also consider checking that the color of UTT test page
is different from the website.

Havingwell-designed input functionality is a determinable factor when
asking auserto do repeating tasks. For keyboard support, there are many
ways it can be done, and one solution is to let the user press ‘y, ‘n, and
‘u’ Additional solutions were discussed, but none were implemented be-
cause of time constraints. For mouse support, itis crucial that the user do
not have to move more then absolutely necessary. It was the assumption
at first that the test page header was a form to become submitted. This
required the user to choose an option, and then confirm it. It was later
turned into something similar to toolbar with buttons, and this reduced
the mouse movements significantly.

A comment from a evaluator is grouping similar questions within the
same view makes it possible to compare the answers before submitting, as
well as predicting new answers based on previous. More work is needed
to see how this can be solved.

Color combination is a critical factor. At first, a light-on-dark color
scheme wasused, but later the default Bootstrap color scheme was chosen
after requests from several evaluators. With the default Bootstrap color
scheme, it was reported that links were hard to identify because they are
too light, and also because they are not underlined.

Internationalization is important to reach a wide audience, but lack
of it did not have too much impact for the feedback of this project.

6.4 Limitations

In this section some of the not yet implemented functionality is outlined.

6.4.1 Not collecting data

One important limitation of the current version of UTT, is that it does
not store the collected data. For the prototype, it was prioritized to im-
plement functionality that both would provide a base for the architecture
while having a demonstrative effect.

92

A JSON data structure is already built during a test run. To reach the
goal of storing the collected data, the data structure needs to become per-
sisted. PostgreSQL is the suggested technology for data storage.

6.4.2 Supporting old browsers

Anotherlimitation with the current version, is that it uses newer web tech-
nologies, and while many of the components in use have fallback mecha-
nisms for functionality not supported by older browsers, we did not test
UTT in older browsers. We suspect that IE 8 and IE 7 might be problem-
atic. It is not planned to support Internet Explorer 6.

6.4.3 Using the result view of eAccessibilty Checker

JIRISREESN, Occurrences WCAG 2.0 context

show ¥ Fail () Verify () pass & Print all tests {@F Exportas CSV

Applied Tests Test Detail: Using a 1abe 1 to identify the purpose of a form
control
fy and Pass resules (1 ests and 205 resul(s) are nox (Testfor Success Citerion 3.2 Labels r Instructions)

Veri
displayed. Change the settings
EEB o

bel to identify the purpose of the form control
5)

* 2.462: Providing descriptive labels x3

* 31.2:2: Specifying language changes i the content

nnnnn

* 41.1-6: Writing correct code

> 41.2-8 Naming form controls

A Result description

* Line379, Column 18:

Code extract form control: <select class="linkSelect"
onchange="if (this

Figure 29: The result view of eAccessibility Checker

For the 0.3 release, it was planned to swap out the table on the result
page with the result view of eAccessibility Checker (see Figure 29), as this
hasbeen developed iteratively over several years with feedback from Nor-
wegian municipalities. The suggestion to use it came after choosing the
technology stack for UTT. Because the frontend eAccessibility Checker is
based on a different stack of technologies, and since it is integrated into
the user interface, this might require some work.

6.5 Research questions

The project has been guided by several resaerch questions as outlined in
the introduction. The main question was:

93

How to design a user testing tool to enable more people to improve ac-
cessibility testing of websites?

This question is attempted to become answered not directly, but rather
through the five questions that supports it.

6.5.1 Research question 1: How to design a tool that integrates with
automated checker?

The naive answer to this question is to create a tool that connects to an
automated checker, passes it an URL, and receives test results. For UTT,
we chose to integrate with eAccessibility Checker because of prior work-
ing experience with it, it belongs to an existing research project, and we
have the possibility to extend it.

Technically, to solve this problem we need to design an export Appli-
cation Programming Interface (API) at the automated checker that takes
an URL as input, checksit, and gives adata structure back containing test
results for tests that passes, fails, and tests that needs to become verified.
UTT generates questions for the latter group.

There is already a CSV export, but it does not contain all data that we
need. In addition, CSV is not as convenient to parse in a JavaScript ap-
plication as JSON. So we have designed a JSON export functionality that
is received and further processed by the UTT backend. The JSON export
API can be used by others, but is currently not documented.

6.5.2 Research question 2: How can user tests enhance automated
checker tests?

Clearly having auser verifying the results termed “to be verified” can give
us a more complete check result. The automatic checker returns results
for agiven web page in three categories; tests that have passed, tests that
have failed, and tests that needs to become verified by a human. The au-
tomated checker cannot determine if an alternative text is appropriate
for an image®°. A goal is to continuously push the limit for what can be
determined automatically, and user testing can contribute to improve an
automated checker by e.g. reporting to it that a text looks like a place-
holder text (inserted by a CMS). The idea is to contribute improving the

5°As a side note, the eAccessibility Checker currently has not implemented this test,
but it is planned for inclusion in the near future.

94

data that heuristic tests are based on. Similarly, one might used existing
data to predict answers to user tests.

6.5.3 Research question 3: How to design a user interface to best
support the user doing the user testing?

We think that the tool must integrate the web page to become tested with
the testing tool. It needs to be easy to learn for a wide group of people.
Moreover, it has to be effective at letting the user accomplish repeating
tasks. This is both done by having it perform fast when going between
tests, and requiring as little input as possible.

The tool might need to adapt to various assistive technologies. For
users of screen readers, it needs to show the element being tested in a
context that is limited, and not the whole web page.

Respectingthe privacy of the useriscritical, and for the user interface
itmeans giving the control to the user about what datato collect. The user
interface should whenever possible store data regarding assistive tech-
nologies in use in the client, as this is sensitive data.

6.5.4 Researchquestion 4: How to best track the user behavior with-
out any code injection on the website to be studied, or soft-
ware on the client side?

We have not implemented features for this in the prototype. However,
both for tracking the user behavior, and for highlighting the element cur-
rently being tested, seem to require use of a proxy that serves a web page
that is modified to contain a tracking script and style information that
highlight the element. While this does inject code into a temporary copy
of the page, the original page remains unchanged.

On the client side, the use of the proxy-iframe technique means that
one does not require any additional browser extensions or browser tech-
nologies beyond HTMLs5.

6.5.5 Research question 5: What existing open source solutions can
be helpful to solve the above questions?

The main finding from doing a review of existing tools is that there is no
existing open source products to extend to satisfy the objectives of UTT.
There are however open source components that are well-suited for UTT.

95

Since UTT isto alarge extent tied to the browser, JavaScript technolo-
gies are used throughout its stack. The backend uses the Node.js plat-
form, and the frontend uses the Bootstrap framework for the user inter-
face, and the Backbone.js framework for handling interactivity.

In the future, a proxy-iframe solution might be implemented with ei-
ther PhantomJS or CasperJS.

6.6 Suggested future research

This section suggests directions for future research that extends the UTT
idea outlined during this research project. First, some possibilities are
presented that could be implemented for upcoming research projects,
and then long-term possibilities that lie further ahead are presented. All
suggested possibilities are derived from unfinished issues, the objectives
and requirements, ideas that have appeared along the way, and from user
feedback.

6.6.1 Short-term

Some of the short-term items are issues that we did not have time to fin-
ish. Others are ideas that should not require large amount of work to im-
plement.

Storingdata Adatastructureisalreadybuiltduringatestrunthatstore
the answers of the user, and this is shown in the result view along with the
automated tested results. This data needs to be stored in a database for
further processing. We suggest to use PostgreSQL.

Implement additional to-be-verified tests Not all test results from the
automated checker that needs to become verified by a human is currently
implemented. What is needed is to formulate questions and answers for
the remaining test results. This is a small task.

Integrate with eAccessibility Checker results view This is a slightly
larger task if the goal is seamless integration, both because it is based
on some other technologies, and because the result view integrated into
frontend of the automated tool, i.e. it is not a component. Alternatively,
the results view can be integrated using an iframe, but this is less elegant.

96

Covering more aspects of HCl Currently only accessibility tests are
supported by UTT. Usability and user experience aspects should be cov-
ered in addition. For instance, one can measure how long it takes to ac-
complish a task on a website.

There are also completely different use cases that UTT used for, such
as improving OCR detection algorithms by using a machine learning ap-
proach, or similarly, by parsing free text calendar dates.

Support websites—not only web pages Currently, UTT cancheckonly
aweb page—or, one URL at the time. It should be able to check a website,
either by allowing the user to enter a set of URLSs, or by having a crawler
or similar technology take a web page as input, and then automatically
discover related pages.

Work needed to support websites without modifications It was re-
ported from users, that the iframe technique did not work in all cases;
it seems to have problems with web pages that redirects to other pages,
and/or web pages that have a lot of interaction. Another issue that was
not reported, but that can be problematic, is that the iframe has its own
scrollbar that is separate from the UTT scrollbar. This might confuse
some users. A third issue, is that the iframe presents the whole web page,
which is inconvenient when using screen readers.

Highlight element currently being tested Inthetestpagebody,itshould
be highlighted what element is currently tested. This can be done if us-
ing a tool like Casper.JS, as it can inject CSS into the page. It can with
little effort produce a screenshot. However, that means that it will not be
presented for people with screen readers. What needs further work, is to
figure out how to implement a proxy like Loop11 that downloads a page,
modifies it, and serves it.

Better handling of many tests of same type Right now there is one
test per view. When there are more occurrence of the same test, then
it might be an idea to group them together. This allows for a side-by-
side comparisons of answers, so that the user can check for consistency
among his/her answers.

It was suggested in a feedback to have a pattern-detecting mechanism

97

for answers, suggesting answers for upcoming questions based on previ-
ous answers.

Other We received alot of valuable feedback, and there are functional-
ity that we feel belong into a last category of features that would be nice
to have implemented. One such feature is having a export for test results.
Another feature is linking tests up against guidelines for further reading.

A few tweaks is needed to make UTT load faster. UTT is currently not
designed for mobile or tablet devices, but it would not require much to
make it responsive.

Also, we received feedback related to the tests. Sometimes, there is a
test for an element that is not visible. One specific example is “jump to
content” links. These should be handled in a special way.

Crowdsourcing Once the tool has matured, it might be a possibility to
use a recruiting service to get a large amount of users evaluate it.

6.6.2 Long-term

Thisisalistof possibilities of where the project can go in the future. Mak-
ing sense of the data

Once data such as test answers or mouse activity has been collected
from a large number of users, it needs to be made sense of to be of any
value. Determining the reliability of collected data is both a science and
artofitsown, and there are possible interesting to to combine results pro-
vided by the users. If UTT is used to certify that a website is accessible,
then one need to take into account aspects such as demographics of the
participants, and that there is a variety of devices used for testing a web
page.

One concern that needs to be addressed is test users gaming the sys-
tem. One has to implement preventive mechanisms similar to web ad-
vertisement vendors refers to as false clicks.

Use browser DOM instead of source based DOM Today’s automated
accessibility checkersbasestheir checks onthe HTML source code. Since
the Web 2.0 phenomenon, websites are becoming more dependent on browser
technologies such as JavaScript and WebSocket for building its structure,
and filling that structure with content. UTT is itself an example of a step

98

is this direction, as the meat of the application is not contained in the
HTML file that is initially requested by the user agent of the person visit-
ing the website, but rather loaded dynamically.

Since a HTML file does not always represent the content that is finally
rendered on the web page, we cannot use the HTML as a source when
checking if it is accessible. More work needs to be done in this area, and
especially for automated checker tools.

User preferences It should be possible for users of UTT to change the
textsize, color scheme, and have it adjust for assistive technologies. When
doing so, one need to keep privacy in mind, and prefer storing the user
preferences in the client.

One use case that we became aware of during the project is a busi-
ness that is interested in using UTT internally in a software development
team/department. The business needs to restrict who are able to access
the tool, and to only log anonymous usage by the software developers.

To do this effectively, an instance of UTT can become installed within
the boundaries of the department, and this will offer the business full
control over the collected data. They should be able to delete the collected
data if they wish to.

Analytics user interface for studying data In the future, UTT might
include a dedicated tool for making sense of the collected data, similar
to the Google Analytics interface. There might be a way for them to sug-
gest/report a specific pattern, and perhaps classify it as being a CMS-
related issue. Some of this feedback functionality might become a part
of the testing user interface.

Using collected data to improve automated checker The analysis of
datacollected by UTT can might lead to the automated checker becoming
smarter. Once it is able to recognized a new pattern, it might make a test
fail instantly that previously had to be verified by a human. One example
of this is placeholders for alternative texts inserted by tools and/or CMS
systems. Improving the automated checker might be done from a combi-
nation of machine learning, and from having data analysts study the data
and recognize patterns.

99

6.7 Reflecting on the process

We will in this section reflect on the process of carrying out the research
project. It is split into two parts—the development of the artifact, and
the writing of the thesis.

6.71 Development of the artifact

There are many aspects that influence the process of a software develop-
ment project. Some important ones are the problem itself, the people
working on solving the problem—their past experience and their prefer-
ences. Sometimes a method is followed, other times not. Most projects
are constrained by time. Implementing a large number of features in a
shortamount oftime is sometimes possible, although it might affect qual-
ity negatively. Also, there are differences between open source projects
and proprietary ones beside the license.

From ayears of doing software development both for leisure and pro-
fessionally, we have noticed people work in ways that differ greatly. Some
choose to followamethod, and for those who do it usually varies how strictly
the method is followed. Some developers start with a design on paper,
while other like trying things out first, and then learning afterwards why
it either worked or did not work as expected.

This is a greenfield project, which means that it does not build on an
existing code base—and this influences design decisions quite abit. Work-
ing as a single developer on a greenfield project has given a great deal
of freedom, much like a painter starting with an empty canvas. Use of
frameworks such as Bootstrap and Backbone.js for implementing the fron-
tend provided some grid lines that simplified the decision making pro-
cess somewhat. When implementing the API for eAccessibility Checker,
the design decisions were more constrained the existing code base, but
this was a small part of this project.

When having worked on projects in larger teams before, the author
hasused a slightly more structured approach, both with the method, and
the surroundingtools. The design research method principles, along with
a small subset of Scrum was used to guide the development. The basic
tools consisted of Git as the version control system, and the GitHub issue
tracker to keep track of milestones and issues. There was no heavyweight
development environments such as Continuous Integration, and there
was no specific development approach such as Test-Driven Development.

100

We have found the latter useful for more backend centric projects in the
past, but less so for frontend centric projects where one need to interact
with the application to see that it behaves correctly.

For the coding activity, the personal preference of the author is to let
the fingers do the work, ask questions along the way, get new insight that
might lead to new directions. The code has been refactored along the way
to make it maintainable. It has been a process of trusting prior expe-
rience, following the intuition, and question assumptions when things
have not been working. We do not think there is any right or wrong when
doingacreative process—people are wired differently. Also, notwo projects
are alike. If one has a clear idea of what to create, then typing it right
mightbe the way. Other times, one hasto tryanumber of different things,
which might lead to unexpected, but positive surprises.

For much of UTT, many of the architecture drawings came after the
implementation. Also, the code started out unstructured, and became in-
creasingly structured. The requirements changed along the way. We be-
lieve refactoring makes this possible. Very often, and especially for pro-
prietary software projects, the code gets less maintainable over time. The
solution is to refactor, and this is true both for writing code and writing
prose—writing is rewriting.

6.7.2 Notes on writing of the thesis

“Write it, cut it, paste it, save it” —Technologic, Daft Punk

Writingof athesisis ahugeundertaking, and the experience hasincluded
feelings of joy, pain, and everything in between.

The process of producing the text evolved along the way, but one se-
quence of steps that seemed to work fine for the author was to draft in a
paper notebook. This was done in various locations such as coffee shops
and the university cafeteria. The drafts were transferred to a LibreOffice
document, where it was further structured, and sent for review. The doc-
ument was finalized in TgX.

It was especially helpful to receive feedback from supervisors often.

6.8 Concerns regarding privacy

Privacy is a concern in every web application collecting data. While we
do not currently log any data, we intend to collect data beyond answers

101

to tests. This needs to be done in a way that both respects the privacy of
the user, and is according to laws in the countries where the tool is in use.
While it is likely that the IP address will be logged, in addition to the user
agent string, we do not intend to collect name or email of the user.

To be able to provide a user interface optimized for assistive technolo-
gies, we need to ask users what devices they are using and/or what disabil-
ities that they have. One advantages of the SPA architecture used, is that
it has the potential to adapt the user interface without ever sending this
information to a server. This is one advantage of fat client architecture
that is rarely mentioned.

Storing of mouse activities such as movements and clicks has been
discussed earlier, and a couple of tools have been looked at. This is sensi-
tive data, because the it might reveal that the user has motor impairments
and/or thattheuseris an inexperienced computer user (e.g. double clicks
where it is more appropriate to single click.) The solution is to clearly in-
form the user about what we collect, and it might be necessary for the user
to decide what we should be able to collect.

To be able to serve the currently tested web page through a proxy, we
need to store its URL. Itis possible for the user to some extent surfthe web
within the iframe—and thus, we are logging sites that are visited. We find
itunlikely that the user would want surf the web through the test page, but
itis still a possibility that the user loses focus, and starts clicking around
in the iframe.

One of'the privacy concerns of logging of keystrokes is ifauser by acci-
dent enters his/her username/password. Entering usernames and pass-
words is sometimes done by external tools that generate keystrokes>', and
itis apossible that keystrokes can be logged if the tool is started acciden-
tally in anon-password field. It should be noted that we only log keystrokes
inside the iframe of the website being tested. It is not possible with the
technique used, or any other in-browser techniques that we are aware of]
to log keystrokes on an operating system level. What needs to be consid-
ered is how to handle testing of websites where the user needs to log in.

A future possibility is to use a web camera to detect and log eye move-
ments. Face-detection is a feature that might be used creatively. Marko
Dugonji¢ has with the use of face-detection created an experimental web-
site using a new HTML5 API that uses the web camera and an algorithm

5! Alexander has developed one such tool named mlt—or, minimal login typer—for sim-
plifying logins. https://github.com/alexanderte/mlt

102

to determine how far away the user is from the computer display. The dis-
tance affects the size of the text,5 resulting in what appears for the user
to be a constant size. The web browser (Chromium on Linux) did ask for
user permission before the web page could access the web camera con-
tent.

To sum up, once UTT starts collecting data in the future, it needs to
ask the user for permission about what is allowed to collect. Since the
prototype does not collect anything, it has no such options.

5?http://webdesign.maratz.com/lab/responsivetypography/

103

7 Conclusion

The master’s project represents the first steps towards enabling accessi-
bility testing of websites using a combination of automated testing and
user testing with a view to a crowdsourcing approach. This section con-
cludes the research.

How to enable more people to improve accessibility testing is the main
question addressed. Based on our proposed solution the thesis also deals
with how to integrate an automated checker with user testing, how user
tests can enhance automated checker tests, how to design the user inter-
face, and how remove any obstacles preventing larger numbers of people
to contribute for crowdsourcing the tests of web sites.

An open source prototype based on an iframe technique was built to
demonstrate a viable path of development. The user interface integrates
with the web page to be tested, and it satisfies several usability criteria.
The solution covers design of an API for the automatic checker for receiv-
ingtestresults, acontrol flow mechanism, and auser interface iteratively
refined involving evaluators.

Theuserinterfaceisimplemented usinga SPA architecture, afat client
architecture for the web. This will reduce the demand for bandwidth and
server capacity and should therefore be suitable for crowdsourcing. The
user interface needs to take privacy into account by giving the user con-
trol about what data to collect. Currently this is not a problem since the
prototype does not store any data. To initiate the development of a user
testing tool, this thesis has focused on a solid architecture along with fea-
tures that serve a demonstrative purpose. The proposed archtitecture
and the open source approach is designed to facilitate further develop-
ment.

Design Research was the chosen research method, where knowledge
was derived from creation of the prototype and interaction with the users.
The research problem is based on a practical need for better testing tools.
User testing of the tool itself uncovered that efficient means of user en-
try is crucial, and that the tool needs to adjust for a variety of devices and
assistive technologies.

Future research caninclude storage of collected data, explore approaches
to deal with privacy and logging of data, data analysis for quality assur-
ance, further investigation of the proxy-iframe technique, and integra-
tion with the eAccessibility Checker result view.

104

8 Glossary

Abbreviation

Definition

CSS Cascading Style Sheets

DOM Document Object Model

HCI Human-computer interaction

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

SPA Single-page application

ul User interface

URL Uniform Resource Locator

utT User Testing Tool

W3C The World Wide Web Consortium
WAI-ARIA Web Accessibility Initiative—Accessible Rich Internet Applications
WCAG Web Content Accessibility Guidelines
XHR XMLHttpRequest

Table 9: Glossary

105

9 Appendix

9.1 Gannt chart

Figure 30 shows the latest revision of the Gannt chart. Some dates were
changed near the end of the project, and the changes are not reflected in
the Gannt chart. Still, it gives an idea of how some of the work was done
in parallel. One deviation from the Gantt chart is that the project plan
is no longer considered an outcome. The change in dates resulted from
estimation errors, other projects that got in the way, and illness.

Sheet!

January February | March April
Artifact Activity Version Deadiine 34351 2 3 4 5 6 7 8 9 10m 12 13 14 15 16 17 18

Literature review (scientific context, terms, planned contribution)

User Testing Tool

a2 Friday - Student sends text to supervisors to receive feedback

b Friday - Supervisor sends text to students with feedback

Page 1

Figure 30: Gantt chart

106

References

Abran, A., Khelifi, A., Suryn, W., & Seffah, A. (2003). Consolidating the
ISO usability models. In Proceedings of 11th international software
quality management conference (p. 23-25).

The Accesstibility of WAI-ARIA. (n.d.). http://alistapart.com/article/the-
accessibility-of-wai-aria. Retrieved 2013-06-02, from

http://alistapart.com/article/the-accessibility-of-wai-aria

Addressing accessibility | fix the web. (n.d.). Retrieved 2013-06-07, from
http://www.fixtheweb.net/

Agrawal, A., Boese, M., & Sarker, S. (2010, August). A review of the HCI
literature in IS: the missing links of computer-mediated commu-
nication, culture, and interaction. AMCIS 2010 Proceedings. Re-
trieved from http://aisel.aisnet.org/amcis2010/523

Bannan-Ritland, B. (2003). The role of design in research:
The integrative learning design framework. Educational
Researcher, 32(1), 21-24. Retrieved 2013-06-02, from

http://edr.sagepub.com/content/32/1/21.short

Bannan-Ritland, B., & Baek, J. Y. (2008). Investigating the act of design
in design research: The road taken. Handbook of design research
methods in education: Innovations in science, technology, mathe-
matics and engineering. Mahway, NJ: Taylor & Francis.

Bold and italic formatting | AccessAbility. (n.d.). Retrieved 2013-06-07,
fromhttp://accessibility.psu.edu/boldface

Buchanan, R. (2001). Design research and the new learning. Design
issues, 17(4), 3-23.

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s mechan-
ical turk a new source of inexpensive, yet high-quality, data? Per-
spectives on Psychological Science, 6(1), 3--5.

Building the next SoundCloud - SoundCloud backstage Sound-
Cloud backstage. (n.d.). Retrieved 2013-06-07, from
http://backstage.soundcloud.com/2012/06/building-the-next-soundcloud/

Caldwell, B., Cooper, M., Reid, L. G., & Vanderheiden, G. (2008). Web
Content Accessibility Guidelines (WCAG) 2.0. World Wide Web
Consortium (W3C).

Chiew, T. K., & Salim, S. S. (2003). Webuse: Website usability evaluation

107

tool. Malaysian Journal of Computer Science, 16(1), 47-57.
Cole, R., Purao, S., Rossi, M., & Sein, M. K. (2005). Being proac-
tive: where action research meets design research. In Pro-
ceedings of the twenty-sixth international conference on in-
formation systems (p. 325-336). Retrieved 2013-06-02, from
http://www.researchgate.net/publication/221599527_Being_ Proactive_Where_Action_

Commission, E. (2007). The social situation in the european union 2005-
2006: The balance between generations in an ageing europe. Office
for Official Publications of the European Communities.

Commission, I. O.f. S. E. (2001). ISO/IEC 9126-1 standard, software en-
gineering, product quality, part 1: Quality model. Author, Geneva.

Convention on the rights of persons with disabilities. (n.d.).
http://www.un.org/disabilities/default.asp?id=150. Retrieved 2013-
06-02, fromhttp://www.un.org/disabilities/default.asp?id=150

Crockford, D. (2008). JavaScript: the good
parts. Yahoo Press. Retrieved 2013-06-02, from
http://www.google.com/books?hl=no&lr=&id=PXa2bby0oQ0C&oi=fnd&pg=PR7&dq=javascr:

Crowdsourcing: Crowdsourcing: A definition. (n.d.).
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html.
Retrieved 2013-06-02, fromhttp://crowdsourcing. typepad. com/cs/2006/06/crowdsourcs

Crowdsourcing - definition and more from the free merriam-
webster dictionary. (n.d.). http://www.merriam-
webster.com/dictionary/crowdsourcing. Retrieved 2013-06-03,

fromhttp://www.merriam-webster.com/dictionary/crowdsourcing

Designing with grid-based approach | smashing magazine. (n.d.).
http://www.smashingmagazine.com/2007/04/14/designing-
with-grid-based-approach/. Retrieved 2013-06-02, from
http://www.smashingmagazine.com/2007/04/14/designing-with-grid-based-approach/

Digital agenda Sfor europe - european commis-
ston. (n.d.). Retrieved 2013-06-07, from
http://ec.europa.eu/digital-agenda/en/news/proposal-directive-european-parliame

108

Edelson, D. C. (2002). Design research: What we learn when we engage
in design. The Journal of the Learning sciences, 11(1), 105-121.

Ericsson teams wup with dj and producer avicii to try
and crowdsource the world’s first hit song. (n.d.).
http://thenextweb.com/media/2013/01/08/ericsson-teams-
up-with-dj-and-producer-avicii-to-try-and-crowdsource-
the-worlds-first-hit-songy/. Retrieved 2013-06-02, from
http://thenextweb.com/media/2013/01/08/ericsson-teams-up-with-dj-and-producer-c

Fragment identifier - wikipedia, the free encyclope-
dia. (n.d.). Retrieved 2013-06-07, from
http://en.wikipedia.org/wiki/Fragment_identifier

GNU general public license v2 (GPL-2) explained in plain
english. (n.d.). Retrieved 2013-06-07, from
http://www.tldrlegal.com/license/gnu-general-public-license-v2-(gpl-2)

Google - definition and more from the free merriam-
webster dictionary. (n.d.). http://www.merriam-
webster.com/dictionary/google. Retrieved 2013-06-04, from
http://www.merriam-webster.com/dictionary/google

gotreehouse. (2012a, March). Web accessibility tu-
torial - wvision pt. 1. Retrieved 2013-06-02, from
http://www.youtube.com/watch?v=DvkKN-sX1leE

gotreehouse. (2012b, March). Why learn web accessibility? Retrieved
2013-06-02, fromhttp://www.youtube.com/watch?v=GNRYSdselkQ

Heading tags (h1, h2, h3, p) in HTML | AccessAbility. (n.d.). Retrieved
2013-06-07, from http://accessibility.psu.edu/headingshtml

Hevner, A. R. (2007). The three cycle view of design sci-
ence research. Scandinavian Journal of Informa-
tion Systems, 19(2), 87. Retrieved 2013-02-17, from

http://community.mis.temple.edu/seminars/files/2009/10/Hevner-SJIS.pdf

Hevner, A. R., March, S. T., Park, J, & Ram, S. (2004). De-

sign science in information systems research. MIS
quarterly, 28(1), 75-105. Retrieved 2013-06-02, from
http://dl.acm.org/citation.cfm?id=2017217

How to: Detect backbone memory leaks | andrew hen-

derson. (n.d.). Retrieved 2013-06-07, from

109

http://andrewhenderson.me/tutorial/how-to-detect-backbone-memory-leaks/

HTML5 rocks - a resource for open web HTML5 developers. (n.d.). Re-
trieved 2013-06-07, from http://www.html5rocks.com/en/

Introduction to web accessibility. (n.d.). Retrieved 2013-06-07, from
http://www.w3.org/WAI/intro/accessibility.php

ISO, S. (2004). 6385. 2004. Ergonomic principles in the design of work
systems (ISO 6385: 2004), 1.

ISO, W. (1998). 9241-11. ergonomic requirements for office work with
visual display terminals (VDTs). Guidance on usability.

Iwarsson, S., & Stahl, A. (2003). Accessibility, usability and
universal design-positioning and definition of concepts de-
scribing person-environment relationships. Disability &
Rehabilitation, 25(2), 57-66. Retrieved 2013-02-17, from
http://informahealthcare.com/doi/abs/10.1080/dre.25.2.57.66

JavaScript garden. (n.d.). http://bonsaiden.github.io/JavaScript-
Garden/#types.equality. Retrieved 2013-06-02, from
http://bonsaiden.github.io/JavaScript-Garden/#types.equality

Kittur, A., Chi, E., Pendleton, B. A., Suh, B., & Mytkowicz, T. (2007).
Power of the few vs. wisdom of the crowd: Wikipedia and the rise
of the bourgeoisie. World Wide Web, 1(2), 19.

Leventhal, L. M., & Barnes, J. A. (2008). Usability en-
gineering: process, products, and examples. Pear-
son/Prentice Hall. Retrieved 2013-02-17, from

http://www.lavoisier.fr/livre/notice.asp?id=0R2WRAALOOSOWZ

LOV 2008-06-20 nr 42: Lov om forbud mot diskriminering pa
grunn av nedsatt funksjonsevne (diskriminerings- og tilgjen-
gelighetsloven). (n.d.). http://www.lovdata.no/all/hl-
20080620-04.2.html. Retrieved 2013-06-02, from
http://www.lovdata.no/all/h1-20080620-042.html

Mankoff, J., Fait, H., & Tran, T. (2005). Is your web page accessible?: a
comparative study of methods for assessing web page accessibility
for the blind. In Proceedings of the SIGCHI conference on human
Jfactors in computing systems (p. 41-50). Retrieved 2013-02-17, from
http://dl.acm.org/citation.cfm?id=1054979

110

MOTHER EFFING TOOL CONFUSER. (n.d.). Retrieved 2013-06-07,
from http://mothereffingtoolconfuser.com/

Muller, M. J., & Kuhn, S. (1993). Participatory design. Communications
of the ACM, 36(6), 24--28.

Native XMLHTTPRequest object - IEBlog - site home -
MSDN blogs. (n.d.). Retrieved 2013-06-07, from
http://blogs.msdn.com/b/ie/archive/2006/01/23/516393.aspx

Nielsen, J., & Hackos, J. T. (1993). Usability engineering (Vol.
125184069). Academic press San Diego.

Nietzio, A., Eibegger, M., Goodwin, M., & Snaprud, M. (2012).
Following the WCAG 2.0 techniques: experiences from de-
signing a WCAG 2.0 checking tool. = Computers Helping Peo-
ple with Special Needs, 417-424. Retrieved 2013-02-17, from
http://www.springerlink.com/index/1V262422218WNW14.pdf

Orlikowski, W. J., & Iacono, C. S. (2001). Research com-
mentary: Desperately seeking the" it" in it research—
a call to theorizing the it artifact. Information systems
research, 12(2), 121-134. Retrieved 2013-02-17, from
http://infosys.highwire.org/content/12/2/121.short

Owen, C. L. (1998). Design research: building the knowledge base. De-
sign Studies, 19(1), 9-20.

Papas, N., O'Keefe, R. M., & Seltsikas, P. ~ (2011). The action
research vs design science debate: reflections from an in-
tervention in eGovernment. European Journal of Informa-
tion Systems, 21(2), 147-159. Retrieved 2013-06-02, from
http://www.palgrave-journals.com/ejis/journal/v21/n2/abs/ejis201150a.html

PEP 20 - the zen of python. (n.d.). http://www.python.org/dev/peps/pep-

0020/. Retrieved 2013-06-02, from
http://www.python.org/dev/peps/pep-0020/

PHP: a fractal of bad design - fuzzy notepad. (n.d.).
http://me.veekun.com/blog/2012/04/09/php-a-fractal-
of-bad-design/. Retrieved 2013-06-03, from

http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/

Pierre Kircher. (2012, April). Gary bernhardt WAT. Retrieved 2013-06-
03, from http://www.youtube.com/watch?v=kXEgk1Hdze0
The principles of wuniversal design at center for wuniversal de-

111

sign. (n.d.). http://www.ncsu.edu/project/design-
projects/udi/center-for-universal-design/the-principles-
of-universal-design/. Retrieved 2013-06-02, from

http://www.ncsu.edu/project/design-projects/udi/center-for-universal-design/the

Redefining web designers, web developers, and web hybrids _for the mod-
ern market - tristan denyer. (n.d.). Retrieved 2013-06-07, from
http://tristandenyer.com/redefining-web-designers-web-developers-and-web-hybric

Responsive web design - an a list apart @ arti-
cle. (n.d.). Retrieved 2013-06-07, from
http://alistapart.com/article/responsive-web-design

Rubery, M. (2011). Audiobooks, literature, and sound studies. Taylor &
Francis.

Semantic versioning 2.0.0-rc.2. (n.d.). http://semver.org/. Retrieved
2013-06-02, from http://semver.org/

The semantic web: Scientific american.
(n.d.). Retrieved 2013-06-07, from

http://www.scientificamerican.com/article.cfm?id=the-semantic-web

Single-page application - wikipedia, the free encyclo-
pedia. (n.d.). Retrieved 2013-06-07, from
http://en.wikipedia.org/wiki/Single-page_application

Spinuzzi, C. (2005). The methodology of participatory design. Technical
Communication, 52(2), 163--174.

Standards - W3C. (n.d.). Retrieved 2013-06-07, from
http://www.w3.org/standards/

Takeda, H., Veerkamp, P., & Yoshikawa, H. (1990). Modeling de-
sign process. AI magazine, 11(4), 37. Retrieved 2013-06-02, from
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/855

Tiedtke, T., Mértin, C., & Gerth, N. (2002). AWUSA-A tool for auto-
mated website usability analysis. In PreProceedings of the 9th int.
workshop DSV-IS (p. 251-266).

Tim berners-lee on the next web / video on
TED.com. (n.d.). Retrieved 2013-06-07, from
http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

112

User testing tool forprosjekt - it funk. (2012).
http://www.itfunk.org/docs/prosjekter/User_Testing Tool.htm.
Retrieved 2013-06-02, fromhttp://www.itfunk.org/docs/prosjekter/User_Testing_Too!

Vaishnavi, V., & Kuechler, B. (2004). Design research in in-
formation systems. http://desrist.org/design-research-
in-information-systems/. Retrieved 2013-06-02, from

http://desrist.org/design-research-in-information-systems/

Von Ahn, L. (2006). Games with a purpose. Computer, 39(6), 92--94.

WAI history. (n.d.). Retrieved 2013-06-07, from
http://www.w3.org/WAI/history

WebAIM: creating accessible frames. (n.d.). Retrieved 2013-06-07, from
http://webaim.org/techniques/frames/

Web style sheets. (n.d.). Retrieved 2013-06-07, from
http://www.w3.org/Style/#dynamic

Wegge, K., & Zimmermann, D. (2007). Accessibility, usabil-
ity, safety, ergonomics: concepts, models, and differences.
Universal Acess in Human Computer Interaction. Cop-
ing with Diversity, 294-301. Retrieved 2013-02-17, from
http://www.springerlink.com/index/82jlr1j18j655g83.pdf

What are the real-world strengths and weaknesses of the many
frameworks based on backbonejs? - stack overflow. (n.d.).
http://stackoverflow.com/questions/10847852/what-are-
the-real-world-strengths-and-weaknesses-of-the-many-
frameworks-based-on. Retrieved 2013-06-02, from
http://stackoverflow.com/questions/10847852/what-are-the-real-world-strengths-e

What the rails security issue means for your
startup / kalzumeus software. (n.d.).
http://www.kalzumeus.com/2013/01/31/what-the-rails-security-
issue-means-for-your-startup/. Retrieved 2013-06-02, from
http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-you

Winter, R. (2009). Interview with Alan R. Hevner on “design science”.
Business & Information Systems Engineering, 1(1), 126-129.

Yes, actually, it may be you one day. (2012). Retrieved 2013-06-02, from
http://www.karlgroves.com/2012/11/16/yes-actually-it-may-be-you-one-day/

113

Zhang, P., & Li, N. (2005). The intellectual development of Human-
Computer interaction research: A critical assessment of the MIS
literature (1990-2002). Journal of the Association for Information
Systems, 6(11), 227-292.

Zimmerman, J., Forlizzi, J., & Evenson, S. (2007). Research through
design as a method for interaction design research in HCI. In Pro-
ceedings of the SIGCHI conference on human factors in computing
systems (p. 493-502).

