Master Thesis in Information Systems

Faculty of Economics and Social Sciences
Agder University College - Autumn 2006

Positive and Negative Factors
in Agent Oriented Software
Development — A Case Study

Einar Jakob Hovland



Preface

This thesis is the concluding works of a two-year full time study at the Information Systems
Master study program at Agder University College in Kristiansand, Norway. The research has
been conducted throughout one semester running from August to December 2006, although
preparations started during the spring semester that same year.

The main objective of my research was to identify differing factors in agent oriented software
development in contrast to more traditional software engineering approaches. By building a
prototype of a patient scheduling system using agent technologies, I have attempted to
validate suggested factors from prior research using my own experiences. This has hopefully
given some interesting results, contributing to a yet rather unexplored area within the agent
oriented research communities.

My interest in the agent system field was initiated through a system engineering course
conducted earlier in my master program. Already interested in software development, I saw
this field as an exciting turning point in software engineering. Over this last semester my
interest have only grown, and though regarding this evolution in software development in a
more realistic light, I still see an exciting future with endless opportunities for this type of
software engineering.

Finally I would like to thank my supervisor Even Aby Larsen for excellent guidance and
invaluable constructive remarks throughout the project.

Agder University College, 14.12.2006

Einar Jakob Hovland



Abstract

This thesis attempts to pinpoint the main differences in agent oriented software engineering as
opposed to more legacy approaches. The agent paradigm, still in its infancy, is believed to
offer exciting new prospects to the process of modern complex information systems
development, but although many tools, frameworks and applications are readily available,
there is as of yet no specific research on how these technologies affects and differ the
development process.

The research approach in finding these factors was two-folded. By conducting a
comprehensive literature study, a set of implications was derived to represent suggested
factors from earlier research. These terms could be related to well-established agent system
characteristics and behaviours, and based on these results a framework model was devised to
present a hypothesis of all terms and relationships discovered.

In parallel with this work, a prototype of an agent based patient scheduling system was
developed using agent oriented methods and tools. Besides contributing to the validation of
the agent approach in general, experiences from this work was used to evaluate the findings in
the hypotheses model, and a final factor and relationship model was developed through
comparison and discussion of both prior research and my own experiences.

The results clarify both positive and negative aspects of the agent oriented approach. I
identified in particular three aspects of this paradigm that separates it from more traditional
approaches:

- The high level of abstraction that an agent represents helps in defining components of
complex systems during analysis and design, but poses problems in its lack of detail
during implementation.

- Being autonomous entities, agent oriented development provides a highly modular
development approach, helping to separate complex structures in an advantageous
divide-and-conquer style, but consequently increase complexity in cooperation among
these autonomous components.

- Agents’ close relationship to their environment or domain provides great awareness
and situatedness opportunities in highly modular systems, but this relationship comes
with the price of increasingly complex interaction procedures.

Although these results hopefully can be regarded as a valuable contribution to the agent
systems engineering research field, they are by no means exhaustive. Much work remains in
clarifying the role of agent oriented approaches in the software development evolution, before
the agent paradigm can be established as a validated commercial and industrial option.

il



Table of Contents

1 Introduction 1
1.1 Thesis Objectives and Research QUESTION ............cccueevcueiencuieeniieeeiiieeieesieesieeesiee s 1
1.2 Contributions 10 ReSEATCH.................ccceoiuiiiuiiiiiiiiiieeeete ettt 2
1.3 PAPET SITUCTUTE ...ttt ettt ettt ettt e et e st e e st e e st e e sabeeenabeeenaes 2

2 Background 4
2ud AGORLS .ot ettt et e et e e st be e st e e s baeeeabeeenabeeenns 4

2.1.1 DEIINILIONS ..ttt ettt ettt ettt et e e st et esat e et esabeebeesab e e bt e saaeeaeees 4
2.1.2 Agents and ODJECES.....covuiiiriiiiiiieiiee ettt ettt sabe e e siae e s sateesbteesbeeeeane 5
2.1.3 Agent CharaCteriStICS ...c..eeveruirriirieriietenienieeient et ete ettt ete s ebeete s sbeenesaeesueeanes 6
2.1.4 Basic Structure and FUNCtionality ..........cccocvveeriieiniiieiniieiiieeieeereeeeee e 7
2.1.5 Example Part One: BoOK-Club AZENtS .....c..cocueviiriieienieniiiiinieiicieeeeieeieeeeeeeee 8
2.2 AGONE SYSTEIILS ..ottt ettt ettt et e ettt et e et s e et s 10
2.2.1 DEIINITIONS ...euveeiieeiieeiteeite ettt ettt ettt et st e e e e e s e sneesbee e bt esanesaneennnens 11
2.2.2 Agent System CharaCteriStiCS. . .ueurtarutiriienieeieeniie ettt site e site et esiteseeesareens 11
2.2.3 Interaction and COOPETALION ........eerruveerriiierriieeriteeeiteeeteeesreeesreeesireesireesbreesseeenns 13
2.2.4 Example Part Two: BoOK-CIub SyStem ........ccc.ceviiiiiiniiniiiiiiiiieniccieeteeeeniee 14
2.3 Patient Scheduling USING AGENLS ........cceouueiiueiiiieiieiieeieeeite ettt et nine e 15
2.3.1 Hospital Information Systems CharacteriStiCs ..........eovvueeerieernieernieeniieenieeenieeenne 15
2.3.2 Patient Scheduling Systems CharacteristiCs.........cocueeueevuerrienernieniienienienieneeiennens 17
2.3.3 Example Part Three: Agent Based Patient Scheduling .......c..cccccoceeeivviiiiininncnnns 18

3 Significant Prior Research 20

3.1 AGents ANd AGENTE SYSIEMLS .....cc..covueiiuieiiiiieeeteete ettt ettt ettt sine e 20
3.1.1 Historical Evolution and Today’s Main Challenges ............cccocueevvieeniieenineenneenne 20
3.1.2 Tools and TeChNIQUES.......cc.coveviiriiriiiiiiinieicccrt ettt 22
3.1.3 APPLCALIONS ..eeeiiiiiiiiieeiieeeite ettt et ettt et e st eeesabeesabeesbbeesabaeesabaeenas 27

3.2 The Agent Oriented Software Engineering ProCess............ccccceuuceeencueeeiiueessieeenieeenanns 29
3.2.1 Theoretical ChallENes .....c..cccvevuiriiriiiiiiiinieiieicrteieeteeeee ettt 29
3.2.2 Documented EXPEIICNCE .......cevvuuiiiiiiiiiiiieiiiieeiteeeite ettt ettt eineesreeesabee e 32

4 Research Method 34
4.1 ReVIEWING The LITEFATUTE ..........ccoeueeiieieieiiieieieeeite ettt ettt ettt et e e s 34
4.2 Formalizing a reSearch QUESTION. ............cccucevueerueesieeniieieesieeseeesee et 36
4.3 Establishing the MetROAOLOZY ..............ccocueiriuiiiiiiiiiiiiisiiieeee ettt 36
4.4 Collecting and Analyzing EVIAence..................cocccoveevcuiroeeniiieiiinieeeenieeieesee e 37
4.5 Developing CONCIUSTONS............coecueiieueeiiieeiiiee ettt ettt ettt et e st esire et e e s 38

il



5 Case Study Specifications

5.1 General Structure and OFgANIZATION.............cc.covvueeeeereiieieeniieeeeee ettt
S.1T AZENE TYPES vttt ettt ettt sttt b e st
5.1.2 Agent COMMUNICALION «...eeirutieiriiieiiieeeriteeeiteeeiteeeieeesteeesabeeesateeesabeesaaeesseeesseeens
5.1.3 ON REEIENCES ....vveiuiiiiiieiieeeeee ettt et et e

5.2 PALIOIE AGEOILS ..ottt ettt ettt ettt et ettt e bt e s e s e e s e e saaee s
S.2.T ASSUIMPLIONS ...eeruitieruiieeriteeeiteeeiteesteeeriteeetteesbteesbteesabaeesabeeesaseessseessseesseeesseesns
5.2.2 Probability and Utility INtroduction ..........c..ceceevuerieniienieniieninnienienieieeieneeieenens
5.2.3 Utility and Probability Measures for Patient Agents ...........ccoeceeevveeriveenieeeniieenne
5.2.4 Optimal Decision PIOCESS .......c..cocueriiriiriiiniiniiniiniciicieeieieetesecieete e

5.3 Personnel and EQUIPIENT AGENLS .......cc.eouueeiueiniieiesieeieesiie et site ettt naee e
5.3.T ASSUIMPLIONS ...eeeuiiieriiieeniiteeniteeniteesteesriteestteeebteesbteesbeeesabeeesaseeessseessneesseeesssaeenns
5.3.2 ASSIZNING ROIES....couiiiiiiiiiiiiiiiiietcicet ettt
5.3.3 Distribution Using Nash EqQuilibrium ...........cccocoveeriiiiniiiiniiiiiieiieceicceveeeieeene

6 Results

6.1 Development EXPETICHICE ...........cccueevuuieriiiesieeesite ettt e et see st e s s
6. 1.1 ANALYSIS 1.ttt ettt et ettt st e b et e bt e s beenareens
0.1.2 DESIEN.c.ueiiiiniieeiiiteeiteeet ettt ettt ettt e et e e et e st eesabteesabaeea
6.1.3 IMPIEMENTATION. ....eiuiiiiiiieiiiiiieiceteet ettt ettt sttt sbeeneeaee

0.2 MeEASUTEA RESUILS ....cc.veeeeeeeeieeeiie et eeite e eee et et eesave e e taeesaseesabeeessneesseeesnseeensseens
6.2.1 DYNAMIC SYSTEIM ..eevuiiiiriiiiiriiieiiiieiriee ettt ettt et e e sabeeeabeesbaeesabeeesabaeenns
0.2.2 MODILIEY .ttt ettt ettt et et b et et e bt et eaeenbe et eaeens

7 Discussion

7.1 Key DevelOPMEnt FACIOTS ..........coccueuveiiiiaiiiiiieiieeeieetese ettt sttt
7.1.1 Key Factor 1 - Agent ADSITACHON ......veevvieeriiieniieeniieeeeeeieeeeiree et eiee e
7.1.2 Key Factor 2 - Autonomous Design..........cocueeriiriiiniiniiieniinieeieeeieeieenteeiee e
7.1.3 Key Factor 3 - SitUatednessS.....ccoouueeriiieriiieeniieeniieeriteeiteeieee ettt

7.2 AQEONE ADSITACHION ...ttt ettt ettt e et e st e et e e
7.2.1 Agent System Characteristics — Anthropomorphic and Social .........cccccoeceriienie.
7.2.2 Agent Behavior — Personalizability and Pro-activeness .........cccccevveeerveeenieeennneen.

7.3 AULONOMIOUS D@SIGN........eeeeeiiiiiiiieeieite ettt ettt ettt e et e st esate e s abeeesaee
7.3.1 Agent System Characteristics - Decentralization............cocceeveviervienienieenieneenennen.
7.3.2 Agent Behavior — Heterogeneous, Dynamic and Mobile ............ccocceevviiiniiennneen.

74 SITUATOANESS ...ttt ettt
7.4.1 Agent System Characteristics — Social and Anthropomorphic.........cccccevceerniennen.

7.4.2 Agent Behavior — Awareness and Discourse Abilities ..........cceeveervieeniieeniieeenneen.

7.5 Key Development Factors REVISEd..............cocouiiviuiiiiiiiniiiiniiiesieeesieeeieeete e

v

40

40
40
41
42

43
43
43
44
47

50
50
50
51

54

54
54
55
57

58
58
59

61



8 Conclusion 72

8.1 Limitations and FUFTRET RESCATCH ................ceeeeeiiieeeeiinieeieiieieeeeiiieiieeeeseeesesisiisssssseseens 74

References 76

List of Figures

Figure 2.1: Agents and Objects Comparison (Zambonelli and Omicini, 2004) .......c.cccceeeneeeee 6
Figure 2.2: General AZent STIUCLUIE ......c..eoiuiiiiiiiiieieeieete ettt st eas 7
Figure 2.3: Customer Agent EXamPIe.......cccueeriiiiiiiiiiniieiiieiiecercceiceeeeesteeste et 9
Figure 2.4: Book Agent EXamPle......coc.uoiiiiiiiiiiiiieieetee ettt 10
Figure 2.5: Client-Server and Peer-to-Peer Structres (Bellefemine et al, 2003)...................... 12
Figure 2.6: Book Club Agent System EXample .......cccccooiiiiiiiiiiiiiniiiienieeeeeeeeeseeeee 14
Figure 2.7: Towards Computer-Based Hospital Systems (Haux, 2005) .......ccocceeevcveenieennneen. 16
Figure 2.8: Local to Global Architecture (Haux, 2005) ........coioieeiiiiniinniinieeieenieeeeeeeeeee 16
Figure 2.9: Patient Centered Systems (Haux, 2005) .......ccoviiiriiiiiniiiiiienieerieeseeeeeeeeieenn 17
Figure 2.10: New Techologies Emerging (Haux, 2005) ......cccccocieviiiiiiniininiiniiienicnecienene 17
Figure 2.11: Patient Scheduling Cooperation Example ............cocoeieviiniininiiniininncninnennen. 19
Figure 3.1: The Belief-Desire-Intention Model (Wooldridge and Parsons, 2003) .................. 21
Figure 3.2: The life and phases of a technology (Perez, 2002).........ccccoceeviriiniininvieneenicnnens 22
Figure 3.3: Potential Application Fields for Agent Technologies (Luck et al, 2005).............. 28
Figure 4.1: Overview of the Thesis Literature Review .........cccccocevivviniininiiniininncniinicnnens 35
Figure 4.2: Thesis Research Methodology........c.covvieiiiniiiiiiniieiiiiicecccece e 37
Figure 4.3: Hypothesis on Key Development Factors and Relations ..........ccccceecveeveenicnnenee. 38
Figure 5.1: Communication Patterns Amongst AZENtS.........ccceeeevueevieneenieriieneenieerieneenuennens 42
Figure 5.2: John’s Preliminary EXamination........ccccecueeriiriienieniienieneeneeereenee e 45
Figure 5.3: John’s Secondary EXamination.........c.cccoeeeuerieninniiniiniinienienenienecieeieneeneeanens 46
Figure 5.4: John and Mary Parallel Patient Agent Treatment Processes .........ccocceeveerueeneenee. 47
Figure 5.5: John and Mary Resulting Agent Tree Paths ...........cocooiviiniininiininininiiicnne 49
Figure 5.6: John’s Role ASSIZNIMENT ......cccueiiiiiiiiiiiieiieiieeeenieeie et 51
Figure 5.7: General Role Assignment EXample.........cooouieiiiiiiiiiiiniiiniiienieeiceneeeeeeeeenn 52
Figure 6.1: Test Results — Prototype Dynamices .........coovervieenieriiiniciieenieeeeneeeeeseeeneeene 59
Figure 6.2: Test Results — Prototype MODIlItY .....c...cocueeriiriiienieniiiieiececeeesee e 59
Figure 7.1: Key Development Factors and Relations ...........cccceeveiniiiniinicniieniciicniceeee 61
Figure 7.2: Key Development Factors and Relations - Agent Abstraction...........ccccceeveeuneenee. 62
Figure 7.3: Key Development Factors and Relations - Autonomous Design .........c.ccoceeuenee. 65
Figure 7.4: Key Development Factors and Relations - Situatedness .......c..cccceeveerveeneeeneenne 68
Figure 7.5: Revised Key Development Factors and Relations Model .........ccc.ccoceeveeniennnnen. 71
Figure 8.1: Key Development Factors Hypotheses Model ............coocevviiniiiiiincnneenieeneene 72
Figure 8.2: Key Development Factors and Relation Model Revised...........ccccevieriiinicnncnnn. 74



1 Introduction

1 Introduction

From machine-code, via assembly, functional languages and object oriented approaches;
software agents are seen as a further abstraction down the software engineering path, helping
to overcome the ever-increasing complexity in designing modern information systems. Agent-
oriented software engineering has by many researchers been dubbed the new paradigm in
software development, and from its original concepts in the early 80s agents and agent
systems are now active research areas in computer science.

Early promising theories and frameworks have contributed to this seemingly successful
evolution, ensuring vast amounts of literature released on the subject. However, as there still
only exists a minimal number of documented industrial and commercial test cases, many
researchers (e.g. Brazier et al, 1997; Jennings et al, 1998) warns that this rather new
technology is still immature, and needs to be rigorously tested by practitioners before the hype
can begin.

Patient scheduling systems are seen as a typical challenge for tomorrow in such a context
(Bartelt et al, 2002). Coordinating and processing a vast amount of complex variables, such a
system should be designed to stock and schedule a wide range of resources based on the
patients heath condition and availability, giving rise to complicated data control and
optimization problems.

1.1 Thesis Objectives and Research Question

Taking these theories into account, this thesis will try to identify some key factors in agent
systems development processes. By developing a prototype of a patient scheduling system,
the thesis will both show how such a system might be designed, but more importantly collect
evidence as to which elements of the agent system engineering process that differentiate this
approach from more traditional attempts. The first research question is:

1. Given the ever-increasing size and complexity of modern information systems,
can agent technology contribute in making the build- and maintenance
processes of such systems feasible?

To answer this question, this thesis will attempt to model a patient scheduling system
prototype, encapsulating agent system characteristics like coordination of resources,
negotiation and optimization. This process will involve working through a methodology,
documenting the experiences as the design evolves. These results should give evidence to
answer the second research question:

2. What are the significant positive and negative aspects when building such type
of systems using the agent approach and how do they relate to agent and agent
system characteristics?

This second question will be evaluated by comparing the experiences found during
development of the prototype with a set of relations found in a literature review. This latter
process will result in a hypothesis model so that the results from the engineering process
effectively can be compared to prior research.



1 Introduction

1.2 Contributions to Research

As the two research questions pose a two-folded approach, contributing to research in
different ways. Firstly, the before-mentioned hype, and the rather chaotic nature of theories
within the research of agents and agent-systems poses a serious validity problem for the agent
research branch (e.g. Brazier et al, 1997; Jennings et al, 1998). Still so early in its maturity,
agent-system research is now in need of validation before this new software paradigm can be
established.

This thesis will contribute in such by building and testing an agent-based prototype to
effectively schedule patients at a medical institution. By validating operations like
cooperation and optimization by and between agents, humans and data, the simulation should
contribute to the growing list of agent-oriented applications, demonstrating that building and
using such types of scheduling systems would be, in practice, feasible. Looking back at the
research questions, this contribution will be made by answering question one.

Further, the simulation will hopefully not only contribute in the validation of the agent system
paradigm, but also investigate some common terms and factors thought to influence and
differentiate the approach. The identification and validation of such factors will contribute to
the understanding of advantages and drawbacks of the approach, giving evidence to where
and how the technology might prove useful. Though many frameworks and applications have
been developed over the last decades, very few development processes have been properly
documented, increasing the importance factor of this contribution.

Also, the key development factors found will be investigated in terms of relations with
common agent and agent system properties. Establishing such relations should contribute to
raising the understanding of agent technologies in contrast with other legacy approaches. If
possible, a clear differentiation from traditional approaches is desirable to further clarify the
possible roles of agent technologies.

1.3 Paper Structure

This chapter will describe the remaining chapters of this paper. Including this introduction,
there are eight chapters in total:

e Chapter two presents some background terms and theories, providing a fundamental
knowledge base on agent and agent systems. This chapter also briefly explains how
these theories might be applied on a patient scheduling system. The practical impact of
these theories is presented in the form of a recurring example throughout the chapter.

¢ Chapter three presents significant prior research on and around these subjects. This
includes a general overview, an introduction to existing tools and applications, as well
as an investigation of common factors in regards to the development process.

e Chapter four presents the research method with elaborative explanations on how the
study was conducted and on which basis research methodologies were chosen. This
chapter will also introduce the hypothesis model and give a brief overview of the
design methodology used to develop the prototype.

e Chapter five presents the case study. In such, the mechanisms and cooperation
structures will be presented in a detailed step-by-step manner, providing relevant
diagrams and explanations for each phase.



1 Introduction

Chapter six presents a thorough explanation on the resulting experiences gathered
during the development process. Each phase in the design methodology will be
evaluated in terms of agent characteristics.

Chapter seven discusses these results on terms of prior research, and thereby
especially the hypothesis model. Each factor of this model is thoroughly evaluated and
relationships to agent characteristics are challenged.

Chapter eight concludes the thesis, elaborating on its main findings and shortcomings
from the discussion. Furthermore, this chapter presents limitations of the study as well
as possible future work.



2 Background

2 Background

This chapter will present introductory background material needed in order to present and
explain the work of this project. The first two sections will thoroughly define agent and agent
systems, explaining their distinction from objects and their properties and abilities. The last
section will look at agent and agent systems in the context of patient scheduling, investigating
both positive and negative aspects. To provide a practical view of these concepts, all three
sections are concluded with a recurring example, where an agent system is implemented to
support an online book-club. Note that this example is solely invented and presented by the
author and have origins from reality.

2.1 Agents

As its name implies, agent-based systems are based on agents and their ability to interact with
each other and its environment. In its simplest form; an agent is an autonomous entity capable
of performing actions and interactions based on beliefs and goals. Agent systems can consist
of just one such agent or a collection of agents performing different tasks based on individual
or common goals.

2.1.1 Definitions

A clear definition of agents and agent systems presents a full study by itself. This relatively
young though academically popular technology suffers from poor standardization and lacks in
consensus between researchers, definitions ranging from the rather pessimistic just-another-
object interpretations, to the rather extreme opposite science-fiction tales (Jennings et al,
1998).

Russell and Norvig (2003) take a very broad view on agents, describing them as only acting
entities within an environment:

“An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators.”

Although this definition aligns smoothly with most other agent definitions, it is very general
in its approach. Some recurring definition problems, like distinguishing agents from objects
and specification of dynamic environments, are not accounted for.

The organization AgentLink provides us with a more detailed definition. AgentLink presents
itself as the biggest coordination portal within agent-oriented software development and
defines agents in its continually updated agent systems roadmap paper:

“...a computer system that is capable of flexible autonomous action in dynamic,
unpredictable... domains.” (Luck et al, 2005)

This definition recognizes agents as computer systems, underlining their independent nature.
This is further elaborated by including their capability of performing autonomous actions in
unpredictable environments, distinguishing to greater degree agents from objects and
specifying the underlying dynamic environment.

However, according to many researchers, there are still more to it. Agent research have since
its birth in the 80s been closely related to research within the field of Artificial Intelligence. In



2 Background

fact, many of the terms now related to agents originated from concepts within this discipline
(Jennings et al, 1998). This leads us to the most optimistic and futuristic definition:

“Intelligent agents are software entities that carry out some set of operations on behalf
of a user or another program with some degree of independence or autonomy, and in

so doing, employ some knowledge or representation of the user's goals or desires."
(Knapik and Johnson, 1998)

This definition not only realizes the potential collaboration with artificial intelligence, but also
states that agents have adopted goals and desires, confirming the autonomous and
anthropomorphic nature of such entities. By recognizing these possible intelligence aspects of
agents, the definitions now cover the most common terms associated with agent
characteristics.

2.1.2 Agents and Objects

Another approach in understanding agents is by comparison with earlier attempts at computer
science abstractions. As mentioned above, earlier abstractions originated from machine code
into more human friendly languages and frameworks. Examples are the early and highly
mechanical approach of assembly, the mathematical, lambda calculus based methods of
functional programming and the more recent, more human friendly, object abstractions.

Most agent researchers believe that agent technology is in some way the next in line in this
computer science evolution. However, there is no clear consensus as to how big a step the
agents have taken to distinct them from the now validated and well-used object oriented
methods and technologies. Related to the hype factor described earlier, many researchers
warn not to get too carried away in this distinction, fearing that agents might suffer the same
backlash as that of the artificial intelligence research field in the 80s (e.g. Foner, 1993;
Jennings et al, 1998). However, most agree on particularly three distinctions.

1. While objects rather passively perform actions based on input, agents are more
autonomous, deciding for themselves whether to perform actions or change state
through sets of goals and desires (e.g. Jennings and Wooldridge, 2000; Wooldridge
and Ciancarini, 2001).

2. An agent is for this reason more flexible. By performing tasks based on goals and
desires, there are intrinsically several ways those tasks can be done, often taking
greater advantage of the potential resources available as a result (e.g. Wooldridge and
Ciancarini, 2001; Zambonelli and Omicini, 2004).

3. While objects simply call on other objects requesting explicit tasks, agents are
considered more social entities. They exhibit formal languages to perform complex
conversation and discussions. This enables groups of agents to work on the same goals
and allows for effective optimization strategies (e.g. DeLoach et al, 2001; Jennings
and Woodridge, 2000).

To summarize these concepts, a comparison model is presented below. The model, originated
from Zambonelli and Omicini (2004) illustrates the autonomous, flexible and social
characteristics of agents, contrasted with traditional method-call architecture:



2 Background

AN A 0
et a0 i
e o

o,

e - e Fraditionad Softvwars Architectars !
" Bociety of Agents (Multisgont Architesture) ™.

Highs-lowet Dynamme

Titersctinng betwp

Figure 2.1: Agents and Objects Comparison (Zambonelli and Omicini, 2004)

Jennings et al (1998) argues that the main difference lies in the negotiation abilities of agents.
While objects communicate passively, agents interact, socialize and reach agreements. Hence,
the abovementioned authors summarize:

“Objects do it for free; agents do it for money.”

As a consequence agents not only have control over their own state, but also their own
behaviour. For example: Whereas objects can only explicitly define access to public methods,
the autonomous and social properties of agents allows for negotiating access terms and
conditions to initiate behaviours and services.

2.1.3 Agent Characteristics

The definitions and comparisons above give us a general idea on what agents are and what
they can do. This section will elaborate on this by giving a more detailed insight to agent
characteristics. In this context, abilities denote agents’ behavioural capabilities, while
properties encapsulate structural and operational features. As we have seen, agent definitions
vary in scope, consequently relating a vast amount of different characteristics to the agent
term. The list below is therefore not a complete description of all interpreted characteristics,
but encapsulates the most important recurring concepts from literature:

Anthropomorphic

Anthropomorphism denotes the attributing of human characteristics to non-human entities. As
the agent abstraction often represent a human actor, adopting mental properties and complex
behaviours, this property is thought to have more relevance and usefulness when designing
agents than other computer science abstractions. Abilities like personalizability, learning and
reasoning are often mentioned in this context (e.g. Foner, 1993; Wooldridge and Jennings,
1995).

Autonomous

Autonomy is a recurring and encapsulating term found in most agent related papers. In
essence, the term refers to the property of independence, closely related to the ability of
having grater control over own state and actions (e.g. Jennings et al, 1998, Woodridge and
Ciancarini, 2001).



2 Background

Pro-active

Pro-activeness denotes agents’ ability of taking actions on their own account. An agent does
not only react to its environment, but often exhibit behaviours to taking initiative, performing
actions to achieve goals (e.g. Woodridge and Ciancarini, 2001; Zambonelli and Omicini,
2004).

Situated

Situatedness encapsulates the agents’ close relationship to its environment. Agents optimally
have awareness capabilities, supervising their domain through sensors and performing
reactive actions through effectors accordingly. When all agents in a given environment inhibit
such properties, they are in this context dynamically related to each other, and can to a greater

degree work towards common goals (e.g. Jennings and Wooldridge, 2000; Weyns et al,
2004).

Social

This property denotes agents’ ability to communicate and reach mutual decisions through
conversation and negotiation. These behaviours are often encapsulates by the term discourse
as discussion often is the foundation for making decisions within an agent environment (e.g.
Foner, 1993; Wooldridge and Ciancarini, 2001).

2.1.4 Basic Structure and Functionality

This section will use the characteristics described above to give a simple overview of an agent
structure and functionality. Note that there are many different approaches to designing agents,
thus this suggestion must be regarded as a general example. The model below shows how an
agent uses its properties, abilities and the environment to achieve its goals:

Planosr Sermy nga

Environment

Cargerk Action

Figure 2.2: General Agent Structure

The agent planner can be considered the processing unit of the agent. As shown in the figure
above, decisions are made by the planner on the basis of its current state, its set of goals, its
possible actions and the surrounding environment or domain. More specifically, an action is
scheduled with the intention of achieving a goal by performing one of the possible actions,
taking both the current state and the environment into consideration.



2 Background

Further, the action is performed through effectors on the environment and the list of goals,
possible actions and state are updated accordingly - possibly leaving the agent with a
completely new agenda as a result. Note that the model does not account for additional agents
in the domain as agent systems will be investigated in section 2.2.

2.1.5 Example Part One: Book-Club Agents

To conceptualize the model above, this section will present the first part of a recurring
example. The example will introduce an online book-club to see how agents can help solve
common tasks related to data transfer and interaction. Note that this chapter is considered
introductory, and will therefore not provide any technical details or thorough concept
explanations. Refer to the case study in chapter five for a more detailed approach.

Briefly, the online book-club in question must provide some services to its customers. A
customer must have a personal member area where they can search for, reserve and buy
books. Additionally, they should receive personalized book information and offers through
stated preferences. A natural start when designing agent systems is to define the agents that
are needed to complete the task. Considering the requirements above, our system will consist
of only two agent types: Customer and Book.

Customer Agent

The customer agents will represent each member of the book-club and must therefore be able
to store information about its user, provide this information to book agents and receive new
personal information to update its preferences. These operations can be materialized through a
set of goals with complimentary possible actions. For example, the agents’ goals can be set to:

1. Store and provide updated information about the customer.
2. Provide search service for the user.
3. Display book offers and provide buy options for the user.

The two goals capture the service oriented nature of the agent. While the first goal ensures an
updated profile servicing its user, the second provides search parameters, servicing the book
agents. We will see how this service orientation is exploited in section 2.2.4. To continue, the
possible actions to achieve these goals can be defined as follows:

Add and store information about a new customer.

Receive and update customer preferences.

Communicate with book agent(s) to provide customer information.
Interact with book agent(s) to find relevant book titles.
Communicate purchase details.

S

As we can see, the possible actions should be sufficient to achieve the abovementioned goals.
The agent is summarized in our familiar model below, showing that the planner can use the
suggested goals and possible actions to schedule appropriate tasks:



2 Background

Customer Agent

i

Possible Actions

States ; :
B svd providee | Padd o et
i D Profile Lipiated £ s prediie.
2. Update Prifile profile.
Search R Frosdde o sk
. Dt affactive Iforimtion with
Bagrch sendoeg, b agends

Currend Action
| Usicaim Pols

Figure 2.3: Customer Agent Example

Book Agent

The book agent will represent each book in the book-club and must, as such, store information
about its book in addition to actively search for customers which might be interested in
reading it. The search for interested buyers is based on the book information and the customer
preferences mentioned above. Keeping this in mind, the goals can be defined as follows:

1. Store and provide updated information about a book.
2. Provide relevant book information to potential buying customer profiles.

The two goals are similar to the customer agent, but the book agent is not passive and
responsive, but rather pro-active in its search for matching profiles. Considering these goals,
the following possible actions can be devised:

Add and store information about a new book.

Actively interact with customer agents to find matching preferences.

Provide book details and offers to relevant customer profiles.

Interact with both customer agents and other book agent to find relevant search results.
Handle customer agent purchase order.

N

Again, the agent is summarized in the model below. In addition to actively searching for
buyers, note also the similarities with the customer agent, especially in providing book
information services to customer agents.



2 Background

Book Agent

s ——

 Possitie Ations

i Pied or adif hook
|t Hook A Batails,
R Upeate Hook el T
B Provide Offge ks Fropeloise or suction
. ; fevfcrrmation with
EUSIONIRE SHRTIE

Turrent Action

Frodde
prfornation
sustanar profle

Figure 2.4: Book Agent Example

To summarize, we look back at the presented models with the list of agent properties and
abilities in mind. Each time a new customer joins the online book-club, a new customer agent
is made. Analogies can be drawn to its represented user, seeing the agent as the members’
protégé in the system, thus giving evidence to the anthropomorphism property of agents.

Further, we have seen that the customer agent functions as a service provider, both to the
customer and to the book agents. The customer can update his/her profile, including metadata
like book genre preference, favourite authors, language and so on. Reacting to this change in
environment, the book agent actively seek out the new information, eventually matching it
with its own book details, thus giving rise to the ability of pro-activeness and situatedness.
When the book agent finds a relevant customer profile, offers and book details are displayed,
personalizing the private member area.

Further, if the customer wishes to perform a search, the resulting titles will be based on
auction between relevant book agents. Based on the search criteria provided by the customer
agent, the book agents argue their relevance, before returning an agreed list of titles. This
process underlines the social ability and discourse property of agents.

Finally, despite the close communication and cooperation between the two agent types, it is
evident that they are distinct and independent entities. For example, a book-agent pro-actively
searches for potential customer agents to achieve its goals, denoting distinct entities
exemplifying the autonomous nature of agents.

2.2 Agent Systems

Agent systems denote a society of agents, collectively functioning as a software system. The
agents cooperate within such a system to achieve individual or common goals, often through
complicated interrelated tasks and interaction. Some examples of well suited domains are
online ticket ordering services, large manufacturing pipeline software or hospital information
systems (Luck et al, 2005). As agents already have been defined above, this section will
elaborate on the collective aspects like system structure, interaction and cooperation.

10



2 Background

2.2.1 Definitions

As with agents, there is a wide selection of definitions available to capture the essence of
agent systems. Vlassis (2003) takes a general, yet valid view, defining agent systems simply
to be an interacting group of agents:

“...a group of agents that can potentially interact with each other...”

This definition correctly captures the collective effort amongst agents, but is as we will see
somewhat defensive in its approach. Note also, that this definition does not view interaction
as a necessary property, but rather as a beneficial quality - hence, agent systems might consist
of only one agent. Zambonelli et al (2003) further elaborate on the above definition by
including how these interactions are done and for what purpose:

“In multi-agent systems, applications are designed and developed in terms of
autonomous software entities (agents) that can flexibly achieve their objectives by
interacting with one another in terms of high-level protocols and languages.”

By detailing some agent properties, this definition encapsulates the flexible nature of agent
systems. It also states that the motivation for collaboration is a set of objectives, or as can be
interpreted to the more common agent term; goals.

Though most of the common features of multi-agent systems are captured in the definitions
above, there is still one very important point to make, namely the effectiveness of
collaboration. Bernon et al (2005) captures this benefit in their definition:

“Most of the authors agree on viewing a MAS as a system composed of agents that
communicate and collaborate to achieve specific personal or collective tasks.”

By using the potential abilities of agents in an interactive environment, tasks and goals can be
reached in a collaborative manner, where specialized agents can be used to their fullest
advantage, exploiting all competence available in the system.

2.2.2 Agent System Characteristics

To define collaborative operations including interaction procedures, decision making
processes and data sharing, an agent information system must be built on the basis of a
controlling structure, or in agent-terms; an underlying architecture. In addition to defining
standards within data structures and communication language, this surrounding framework
should also assist in coordinating mental states like intentions and goals, both between to the
environment and amongst the participating agents. As we will see in the next chapter, agent
architectures are readily available through implementation tools and communication
protocols.

Having established the architecture, individual agents must be defined, organized and
implemented to the system. As explained in the previous section, an agent is often an
abstraction of some real-life entity. Deciding which abstractions to associate to which group
of agents is a challenge developers must face early on in such software development projects.
During this process, there are a number of properties associated with agent systems, which all
must be considered:

11



2 Background

Decentralization

Accounting for their autonomous nature, agent system architecture does not denote any form
of centralized control, but rather the underlying foundation on which certain abilities may be
materialized. In agent-oriented systems there is no centralized process to control and
distribute agent operations. Instead, the agents are interdependent processes, communicating
and solving tasks directly with each other or through the environment (Vlassis, 2003).

An example of this is two general structure models from some traditional software systems.
The client-server model (Figure 4) is a typical centralized structure, where a central server
provides services to its clients. An example of such a structure is web pages, where browsers
are clients and web-servers provide the services. The other structure is the peer-to-peer model
(Figure 5). Here, there is no central server, as all communication and processing is done
directly between and amongst the peers. Example of the peer-to-peer structure is popular file-
sharing programs like Napster or BitTorrent.

Figure 2.5: Client-Server and Peer-to-Peer Structres (Bellefemine et al, 2003)

Deterministic or stochastic states

Agents must in many situations evaluate future action outcomes in order to schedule optimal
behaviour. These future predictions are affected by a number of factors in the environment,
and vary accordingly in both complexity and operation. While a deterministic environment is
fully predictable and holds no random properties, a stochastic environment is probabilistic,
containing unpredictable factors which may affect action outcomes (Vlassis, 2003). As such,
these terms are closely related to the observability problem and discrete data presented
elsewhere in this section.

Discrete or continuous data

These terms denotes whether the agent system environment has a finite set of states or not.
For example, when simulating a game like chess there will be a finite set of states. Computing
in this context is based on a set of allowed moves and actions, hence a discrete number of
possibilities. A contrasting example could be simulating coordinates in space, presenting a
seemingly infinite number of possibilities, hence making the system continuous. Such a
system is often harder to engineer and maintain as results within an infinite scope are
inherently harder to predict (Weyns et al, 2004).

Dynamic or static environments

One of the widely referenced properties of agent systems is exploitation of the flexible nature
of agents to create a dynamic system. While static systems does not account for components
entering, leaving or changing at run-time, dynamic systems are engineered for handling such
events (Woodridge and Ciancarini, 2001). Consequently, dynamic structures are inherently
harder to implement and govern.

12



2 Background

Heterogeneous or homogeneous agents

As agents in agent systems are decentralized and autonomous they provide greater
opportunities for variation in structure and design. While cooperating to reach the same goals
and intentions, agents can inhibit widely different capabilities and data structures. Despite
being distinctly different entities they can still cooperate through the underlying environment.
This in mind, a system comprising such a variety of agents is called a heterogeneous system,
whereas a system containing agents of similar design and data structured can be labeled
homogeneous (Vlassis, 2003).

Mobility

Because of the autonomous nature of agents and the dynamic property of agent systems,
agents can more easily transfer to other systems with the same characteristics. As agents often
represent a live entity, this is often a desired process, with the preservation of for example
personal data as an example (Sycara, 1998).

Partial observability

Known as the partial observability problem, this term encapsulates agents’ perceptions in
regards to state and data of the environment. Due to inadequate sensors, equal or discrete
entities or transparency of data, an agent may not be able to compute or observe parts of its
domain. The partial observability problem is a direct result of three common and important
properties of data in agent systems (Vlassis, 2003):

1. Data is spatial - it is stored at different locations.
2. Data is temporal - it is distributed at different times.
3. Data is semantic — interpretation varies.

Such properties obviously require the designer to account for undisclosed data and thus
unpredictable behaviour, making the design process increasingly difficult.

2.2.3 Interaction and Cooperation

The social abilities of agents constitute one of the major differences between agent systems
and legacy approaches. By complex interaction agents can negotiate to support cooperation in
performing appropriate tasks and reaching shared goals.

This cooperation must be based on set standards and well founded optimalization structures to
ensure that the agents can understand each others semantics and effectively make optimal
decisions. Also, to make full use of all resources available, it is essential that the agents have
full understanding of the environment as well as other agents’ capabilities. When these
parameters are established, the agents can make optimal decisions to ensure solutions based
on common goals.

Communication Protocols

An explicit, yet essential criterion for such behavior is that agents understand each other, both
in language and semantics. There have been numerous attempts at standardizing agent
language, prominent examples being FIPA-ACL (FIPA, 2002) and KQML (Finin et al, 1994).
These specifications allow for communication between agents based on regular protocol
standards, tailored for agent interaction. Put simply, the protocols allow agents to
communicate, regardless of location, architecture or platform.

13



2 Background

Negotiation

Negotiation between agents is often used as means of optimal decision making. This term
denotes the ability of an agent to perform an optimal individual action, which contributes to
the goals of the system as a whole. This often involves consideration of numerous factors,
including world state, personal goals, other agents’ agenda and task priorities (Vlassis, 2003).

2.2.4 Example Part Two: Book-Club System

To continue our example from part one, we return to our online book-club. We assume our
club has been expanded with several new customer and book agents to represent an agent
system. Following the agent definitions from the previous example, the agents can be
organized in the following way:

Back-offive

Customer Communication o
Communication

Customers
-

Custorer dgant Jofe 4 3 : Hook Agend Calnh 22

interaction  { | teraction

Buook Agent Gragass of

Custormer Sgerst Masy

e

Figure 2.6: Book Club Agent System Example

Looking at figure six, there are two general scenarios. In scenario one, customer agent John
search for relevant book titles based on some keywords. The book agents respond by
collectively deciding on a relevance list which is in turn returned directly to agent John.
Based on this information, John issues a purchase order directly to the book agent Grapes of
wrath which handles the order accordingly.

In scenario two, book agent Catch 22 actively search for potential buyers based on their book
preferences. After interaction between the available customer agents, agent Mary issues a
message of interest directly to the book agent. Catch 22 then sends its book information with
corresponding offers and prices back to Mary which may choose to issue a purchase order.

To conceptualize our definitions of agent system characteristics presented above we can relate
them to our example: The system is solely made of autonomous agents and is thereby
decentralized. This is not so evident looking at the figure where both customer and book
information are provided to a centralized yellow page unit, however, this kind of service are
provided by a single specialized agent, thus adding another autonomous component to the
system. Further, the example is clearly discrete as there are a finite number of known variable

14



2 Background

types in the system and they all range within finite structures. Examples are price, book title,
customer name or book name.

When entering data, whether being a customer or member of staff, there is always a chance of
syntax or semantic errors in for example book titles or customer names. Also, there may be
technical difficulties disclosing certain parts of the book or customer agents’ information
fields. Both issues are fairly common in any computer system and can in our case lead to
problems in interpretation, thus according for the partial observability problem. Further, all
actions within this system is deterministic. In our example we know what will happen if a
customer buys a book for a certain price or if a new book title is added to the system. None of
these events could be related to computational probabilities or uncertainties.

Our agents in the online book-club are fairly homogeneous, though there is no clear line to
confirm this. While there are two distinct types of agents (i.e. heterogeneous) there are but
small variations when comparing agents of the same type. In the same manner, the agent
system above can be considered both dynamic and static. While the system allows for new
agents to represent new books and customer, it is not dynamic enough to accept new types of
agents or variations of the existing ones.

These last properties allow for the final agent system characteristic. Since the system can
accept new agents, representing customers or books, such entities can be moved across similar
system structures, thus accounting for the mobility behaviour.

2.3 Patient Scheduling Using Agents

Having defined the concepts of agents and agent systems, we need to find an appropriate
environment for our case study. The prototype developed during the course of this thesis will
simulate the activities at a medical institution, more specifically focusing on the scheduling of
patients undergoing a number of examinations and treatment methods. This section will
investigate the basic characteristics of such systems and suggest how an agent based solution
might be devised.

2.3.1 Hospital Information Systems Characteristics

First, we will introduce some typical characteristics of hospital information systems in
general. This is both to justify the choice for the case study and to identify the focus areas and
typical challenges involved the engineering of such systems.

In his 1984 paper “Health Information Systems — Past, Present and Future”, late Peter
Reichertz (1984) presented seven typical characteristics for a modern hospital information
system. The characteristics were reviewed and validated in Haux (2005) paper of the same
title, thus providing a solid foundation for investigating such characteristics. Below we have
presented a selected four of these properties and related them to the agent and agent system
characteristics discussed throughout this chapter.

Towards computer-based information processing tools

There has been a great shift from paper-based to computer-based data processing within
hospital systems over the last decades. This shift is thought to continue and agent orientation
being a new paradigm suitable for handling complex systems can be considered in this
context:

15



2 Background

B

st of dote 1o be provessed and slored

AT 158 BurchliBE) 2004
tims

Figure 2.7: Towards Computer-Based Hospital Systems (Haux, 2005)

From local to global information system architectures

Most current health care information systems are in some sense regional, while the sharing of
information and expertise over several institutions, and preferably on a global level, is a
natural goal of the future. Autonomous and flexible in nature, the agent technology can be
seen as a suitable candidate to handle this challenge:

i Range of HIS [Line 2}
frogionsd globall
Feallh nfonmafion
sysivms beyond
e i tons, fad,
Srerg piind Bt cave and
infoemmation flamedicing
o syslame
T dlepartmentad
Information
spstasns
o e

Figure 2.8: Local to Global Architecture (Haux, 2005)

From health care professionals to patients and consumers

There is an ongoing trend in making heath care systems more public, opening up for input and
information sharing also from and between patients and citizens. Agent systems often
represent stakeholders through the agent abstraction, allowing for personalized and tailored
components, highly suitable for such tasks:

16



2 Background

i Laprs of HIS {Line 3}
T —
oy BroalEls W o
S .

o PUTROT ...
o obysiciang .. Henlth cove professfonals .
sl abery oo

Figure 2.9: Patient Centered Systems (Haux, 2005)

Inclusion of new technologies

Among several, the most apparent change in technologies at this stage of the evolution is the
introduction of ubiquitous mobile devices. These devices are integrated in the environment,
for example in clothes, computerized watches etc., and is often used to monitor the health
condition of patients. By drawing on the dynamic and mobile abilities of agent systems,
ubiquitous devices can communicate seamlessly, making agent technologies highly relevant
in this context:

Techaologies iy HIB {Line 7}

sobive environments ..

punsor Based 10T ...

gonvantional ICT ...

Figure 2.10: New Techologies Emerging (Haux, 2005)

2.3.2 Patient Scheduling Systems Characteristics

In accordance with the evolution described above, medical decision support systems, and
especially patient scheduling systems, have become an increasingly important factor in many
hospitals and medical institutions (Manansang and Helm, 1996). This view is supported by
the renowned marketing consultancy company Frost & Sullivan whom in a study in 2004
identified the need for innovative patient-scheduling systems as a reaction to the privatizing,
and thus increasingly competitive tendency of health care institutions in the U.S.

As patient scheduling inherently deals with a distribution problem (Decker and Li, 1998), we
can look at some general characteristics for such systems:

17



2 Background

= Patient scheduling systems have one primary goal: Treating as many patients as
possible in the shortest possible time (e.g. Bartelt et al, 2002; Decker and Li, 1998).

= Dealing with examination and treatment processes for patients involves a high degree
of uncertainty in regards of time spans and resulting diagnosis, thus patient scheduling
systems have been deemed complex (Bartelt et al, 2002).

= Modern patient scheduling system design focuses on patients rather than specific tasks
or resources (Guo et al, 2004).

We can see that patient scheduling systems exhibits many of the same characteristics as we
identified in our introduction to agents and agent systems. Characteristics like goal-oriented
design, and high complexity and abstraction levels are well-founded identifiers in agent-
oriented literature. This last section will merge these theories, exploring how a patient
scheduling system might be constructed from an agent-oriented perspective.

2.3.3 Example Part Three: Agent Based Patient Scheduling

To conceptualize the ideas presented above, this section will continue our ongoing example
by presenting a simple agent system designed to schedule patients. As the general structures
and communication patterns for such systems is described in part two, this part will only show
how to tailor such a system to handle the scheduling tasks described above.

To start off, we need again to define proper agents for our system. As mentioned above,
modern patient scheduling systems focus on the patient rather than functions or tasks. Hence,
our first agent is the patient:

Goals: Get examined/treated as fast as possible
Possible actions: Apply for appointment

i Mgt

But there are of course more stakeholders. As our patients must be examined and treated, we
also need to include agents for doctors/nurses/surgeons etc. and machines/treatment
rooms/medications etc. For simplicity we generalize the terms to personnel and equipment:

Goals: Treat/examine patients as fast as possible
Possible actions: Grant/deny appointment, examine/treat patients.

Parsorresl Agers

Goals: Support treat/examination process effectively
Possible actions: Grant/deny participation, support treat/examine
Equipment Agent process of patient.

In the same manner as in our online book-club example, the agents involved use their
available actions to achieve their goals. Our patient agents use their possible action “Apply for
appointment’ to try to get personnel and equipment for their examination or treatment. It is
then up to the personnel and equipment agents to accept or deny this request based on which
patient agents that needs treatment the most. Such optimization calculations often involve
several variables — for example, in this case; availability of personnel and equipment, the
condition of the patient and the state of other patients.

18



2 Background

After the scheduling calculations are done, the personnel and equipment agents use their
possible actions “Grant/deny appointment/participation” and “Examine/treat patients” to
notify and process the relevant patient agents accordingly. When the scheduling is finished,
the patient agents are notified about their place in the queue, and can apply for
examination/treatment at a later stage if their application for a time slot was denied. The
following model shows how the agents might cooperate during scheduling:

Enuipment Agset 1

Trogtmant
Cyela

Euguiprent Sgert ¥

Conrdinstion arsd
aptimization

Haalth Condition, caleufations

MNosded Experfise

Frarsnnnel Agers

Famunnel Agen; 2

Resulting Trestmen
sohedule

Figure 2.11: Patient Scheduling Cooperation Example

A prototype for a scheduling system was designed as a case study for this thesis. These
theories are therefore reintroduced and thoroughly explained throughout chapter five.

19



3 Significant Prior Research

3 Significant Prior Research

This chapter will present prior research within the agent and agent system field. The first
section will present a brief history as well as available frameworks, tools and techniques. We
will also present some commercial and industrial applications to see how these theories have
been put to work. The second section will focus on the agent oriented system engineering
process itself, discussing some advantages and challenges, as well as looking at some
examples from industry.

3.1 Agents and Agent Systems

This section will introduce available tools, frameworks and applications in a historical
context. The agent paradigm being relatively new, this chronological approach clarifies the
challenges offered by its immaturity as well as presenting a rough state-of-the-art. After a
quick historic glance, each tool and framework genre will be investigated individually before
a presentation of some commercial application examples.

3.1.1 Historical Evolution and Today’s Main Challenges

The term agent can be traced back to the Actor Model first presented by its authors Carl
Hewitt, Peter Bishop and Richard Steiger in 1973 (Hewitt et al., 1973). The paper presented a
mathematical solution on concurrent computation between several autonomous entities.
Hewitt and his colleagues describe the entities to be “computational agents who have a mail
address and a behavior”. Thus the first primitive agent concepts were defined.

Jennings et al (1998), recognize a wide array of disciplines contributing to the early
definitions of agents and agent systems. They define artificial intelligence to be the main
driving force in its early attempts at creating intelligent entities acting in an environment. As
presented in chapter two, this was to be a common definition of an agent. These attempts
however, came as late as the early 80s, due to the artificial intelligence communities focus on
rather specific aspects of intelligence (i.e. learning, vision, understanding etc.).

Through his paper in the mid 80s (Brooks, 1986), robotics specialist Rodney Allan Brooks
presented a new way to reason about planning and learning in artificial intelligence. Instead of
the traditional symbolic reasoning, Brooks proposed interaction as the main challenge and
focus for intelligent entities. His proposed frameworks (e.g. Brooks, 1990) have many
similarities to today’s definitions of agent systems. The entities reasoned on the basis of other
entities and the environment, and the entities were somewhat autonomous in nature. However,
the theories still suffered from having no tailored engineering methods, and their applicability
was highly questionable.

Another research area contributing to early agent research was human-computer interaction;
the idea of simulating human qualities, not only on the intelligence level but also on behavior
and representation. In the late 80s the Belief-Desire-Intention (BDI) model was proposed
(Bratman et al, 1988). The model (fig. 3.1) represented a novel approach of giving human
properties to digital agents. Through available information about the environment (beliefs),
the agents are given a set of certain possible actions (desires) which are activated based on
agent goals (intentions). Many more recent tools and techniques are based on this framework
and propose modeling techniques and implementation tools using these concepts (e.g.
Shoham, 1993; Zambonelli et al, 2003; Kinny et al, 1996). We will look at some of these
approaches more closely in section 3.1.2.

20



3 Significant Prior Research

Sensor Input

Agent w“”‘x\
) o,
/ ’”::é.’/x\ "‘/’ \\’
l 7 interpreter > ]
& K ;

Effector commands

Figure 3.1: The Belief-Desire-Intention Model (Wooldridge and Parsons, 2003)

With the development of the agent notion, there were also ongoing attempts at solving the
communication and cooperation challenge. Knowing the potential of single agents, the multi-
agent system research looked for optimal ways of cooperation and task coordination (Jennings
et al, 1998). One of the most prominent attempts was the ContractNet protocol (Smith, 1980)
which introduced negotiation as a means of reaching optimal cooperation. The framework
allows agents to divide up given tasks before delegating them on auction. Other agents’ bids
are based on how well suited they are to solve the auctioneered sub-tasks. The initial protocol
is however limited in communication options, concentrating on delegation of tasks rather than
more robust discourse abilities. It also lacks flexibility on conflict solving, due to information
restrictiveness in the domain environment (Jennings et al, 1998). ContractNet has however
been extended and adapted to many models and frameworks. The terms negotiation, bids and
auctions have later been an integral part of agents and agent systems research, featuring
heavily in many methods and applications (e.g. Van Dyke Parunak, 1987; Jennings, 1993;
Jennings et al, 2001; FIPA, 2002).

From these early concepts, agent systems are now recognized as a software paradigm.
Although somewhat lacking in validating its usefulness and applicability in industrial and
commercial applications, this new paradigm is by many researchers deemed to cause big
changes in the software industry (e.g. Bernon et al, 2005; Zambonelli and Omicini, 2004).
The hype has however been met with some skepticism, mainly due to the before-mentioned
lack of verification (e.g. Jennings et al, 1998; Wooldridge and Jennings, 1998).

Based on this, Luck et al (2005) argue that agents and agent systems are still far from
reaching its deployment period. Based on Perez’ life of technologies model (fig 3.1), the
authors argue that agent technologies are still at the irruption stage. In this phase, a technology
has not yet reached the maturity which is required for industrial, commercial or even serious
experimental application. The phase is also often related to hype and romanticism. Ibid.
(2005) argues that this immaturity in agent and agent systems is mainly due to the lack of
standardization, making industrial deployment attempts somewhat of a gamble as of yet.
Thus, the main challenge for the agent and agent systems research communities today is

21



3 Significant Prior Research

verification and validation of existing models, frameworks and methods, and finally, the
rigorous process of establishing standards.

TURNMING
PEHNT

o FRCTAR L ATION PERIOED seesesfie WW DEPLOVAMENT PERIOD: seweefior

Degree of diffusion of the
technologival revolution

Hawt Graal
Srge
i By Tash fnstiutionst Newt TTME
Ackustmerns Bl Barsg

Figure 3.2: The life and phases of a technology (Perez, 2002)

In his famous book, Diffusion of Innovations (Rogers, 1995), late Everett Rogers introduced
theories on the lifetime of innovative trends. A major contribution in Rogers” work is the now
well known notion of a tipping point. Rogers suggests that that after a 10-25% adoption of a
technology, adoption will rapidly increase, confirming the S-shaped adoption rate proposed
by Perez. This in mind, we see another confirmation of the immaturity of agent and agent
system technologies, as such adoption numbers are still far from reality (e.g. Luck et al,
2004).

3.1.2 Tools and Techniques

There have been many contributing tools and techniques to aid the development process of
agents and agent systems. Though these contributions have added valuable input for many
aspects of the agent research community, it can be argued that the great variety of approaches
poses the technology with a twofold challenge. While the wide array of techniques presents a
solid foundation to solve problems, the many ontologies, methods and frameworks can be
seen to cause even further chaos to the agent verification process (Jennings et al, 1998).
Nevertheless, this section will present some of the approaches presented over the last decades,
highlighting both differences and similarities.

Methodologies

Amongst the most quoted tools and a key factor in applying agent systems in industry are the
methodologies, aimed to help the developer through the whole engineering process (Iglesias
et al, 1998). Using tools and techniques for modeling and implementation, either adopted
from others or defined from scratch, a methodology should be a high-level, comprehensive
effort to assist a project from start to finish. Looking at the most significant proposals for
agent-oriented methodologies helps broaden the understanding of and the context in which the
various tools are applied. In addition we will outline the strengths and weaknesses of the three
presented methodologies, generalizing some key issues in agent systems development.

AAII (Australian Artificial Intelligence Institute) presented in 1996 is a methodology based on

the before-mentioned BDI (Belief-Desire-Intention) concept (Kinny et al, 1996). The
methodology provided a foundation for many of the methods to come. Building on the

22



3 Significant Prior Research

established formal specification framework DESIRE - DEsign and Specification of Interacting
REasoning (Brazier et al, 1995), the methodology consists of two viewpoints; an internal and
an external. The internal viewpoint defines classes of agents through various models, while
the external viewpoint specifies the interaction and cooperation between these classes.

Presented relatively early in the agent systems history, the methodology have some obvious
constraints (Kumar, 2002). First, the external viewpoint does not provide sufficient details on
cooperation and coordination issues, deeming the methodology somewhat incomplete.
Second, being founded on existing object oriented techniques, communication is purely based
on hierarchal inheritance and method calls, thus not exploiting the negotiating and discourse
abilities of agent systems.

Gaia (Generic Architecture for Information Availability) (Zambonelli et al, 2003) was first
presented in 2000 and offered a more detailed and complete approach. Centered on the
concept of roles, the methodology defines models for individual agents as well as interaction
and communication in a multi-agent system. These characteristics are quite similar to the AAII
methodology mentioned above, but there are some important differences (Kumar, 2002). Gaia
represented a step forward in being designed around and about agent properties and concepts.
This is a contrast to previous attempts, mostly extending object oriented or knowledge
engineering methods (Iglesias et al, 1998). This new level of focus also ensured that the
interaction and cooperation abilities of agents represent a central part of the methodology.
While being in this sense more complete than the AAII methodology, Gaia still lacks
sufficient guiding on the implementation phase, both in respect to communication and agent
specification. While being designed around abstract agent concepts can help the developer to
more easily map agent classes to real-life entities in the analysis and design phase, the
concepts can prove too abstract to handle during implementation. This gap is a reoccurring
and well-documented challenge within the agent systems research field (Sycara, 1998).

Lastly, Message/UML (Multiagent Systems Engineering) by Caire et al (2001) borrows
features from several existing agent methods and is, as a result of this, one of the most
complete methodologies around (Bernon et al, 2005). The process is described from five
different viewpoints, ranging from internal agent buildup to interaction among agent
organizations. All phases include the use of an extended version of UML; AUML — Agent
Unified Modeling Language (Odell et al, 2001), offering a balance between the advantageous
agent abstraction design and easy implementation. But even this methodology has some
limitations (Goméz-Sanz and Pavon, 2002). Message/UML does not model the interaction
with the environment sufficiently. As this interaction is an integral part of an agent system
(labeled situatedness in chapter two), the methodology has shortcomings in encapsulating the
multi-agent system concept as a whole. Further, all the methodologies lacks in providing
sufficient technical tools to assist developers in design, implementation and testing.

The above three methodologies are just a few of many approaches presented over the last
decade. Most of them have contributed in some way to the AOSE research, but have either
problems like the ones described above or is promising, but too novel to yet be confirmed as a
functional methodology. Examples include Tropos (Giunchigilia et al, 2001), MaSE
(DeLoach et al, 2001), INGENIAS (Gémez-Sanz and Fuentes, 2002) and Prometheus
(Padgham and Winikoff, 2002).

23



3 Significant Prior Research

Communication and Language

As mentioned, a good agent system is characterized as social and should inhibit discourse
abilities. This means that communication protocols and language semantics within agent
technologies are somewhat more ambitious than that of earlier software engineering
paradigms, specifying to a higher degree the meaning and intention of communicative acts.
Labrou et al (1999) puts this consequence in relation to the autonomous and anthropomorphic
nature of agent systems. Human language being a superior communication tool, it is only
natural to try to simulate its complexity when designing within the agent abstraction.

There are two communication protocols (commonly labeled ACL — Agent Communication
Language) which have been particularly influential in the agent system research community;
the FIPA (Foundation for Intelligent Physical Agents) specification (FIPA, 2002) and the
KQOML (Knowledge Query and Manipulation Language) language (Finin et al, 1994).

Developed in the early 90s, KOML was the first serious attempt at specifying a unifying
language protocol for software agents. KQML was based on the already established linguistic
and philosophical notion of speech-acts, where messages can be semantically interpreted in
terms of the senders intended actions (ibid.). Though KQML has been extended in many
varieties and successfully tested in different settings by a large research community, it was
criticized early on for lacking backing tools for API specifications, debuggers, interaction
tracers and the likes (Mayfield et al, 1996; Labrou et al, 1999).

The other specification mentioned, FIPA ACL is a product of a standardization effort initiated
by the well established IEEE association and is in essence very similar to KQML. The
specification did however present an extended framework for interaction semantics a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>