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Abstract

In this paper we present a stochastic model for daily average tem-

perature. The model contains seasonality, a low-order autoregressive

component and a variance describing the heteroskedastic residuals.

The model is estimated on daily average temperature records from

Stockholm (Sweden). By comparing the porposed model with the

popular model of Campbell and Diebold (2005), we point out some

important issues to be adressed when modelling the temperature for

application in weather derivatives market.
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1 Introduction

In recent years there has been a growing interest in modelling the dynamics of

surface air temperature with application in pricing weather derivatives. We

follow up this stream of research with a critical discussion on model building

and estimation, contrasting two stochastic models proposed by Campbell

and Diebold [14] and Benth and Šaltytė Benth [5]. Both models are based

on a seasonal autoregressive (AR) process, but with significant differences

in structure which influences their applicability in relation to temperature

derivatives. The two models are widely used in the field, and are

similar to or nest a number of related models, see, for example,

Dornier and Querel [17], Alaton et al. [1], Cao and Wei [12] to

mention a few. The performance (in terms of forecasting weather

indices) of various models for temperature dynamics, including the

two considered here, was compared by Oetoma and Stevenson [25],

Svec and Stevenson [30], Papazian and Skiadopoulos [26], Zapranis

and Alexandridis [31], Schiller et al. [29]. Our main goal is to point

out the principle differences between the models of Campbell and

Diebold [14] and Benth and Šaltytė Benth [5].

At the Chicago Mercentile Exchange (CME) there is an organized trade

in weather futures and options. In particular, the CME offers trade in futures

contracts written on temperature indices measured at various locations world

wide, providing financial instruments to hedge weather risk exposure. The

locations are major cities in the US, Canada, Europe and Asia. The tem-

perature indices measure the daily cumulative average temperature (CAT),

the cumulative heating-degree days (HDD) or the cumulative cooling-degree
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days (CDD). The reference temperature is taken as the average of the daily

minimum and maximum temperature, wich we further refer to as tempera-

ture.

More specifically, if we denote the temperature on day t by Z(t), then

the CAT index over a measurement period [T1, T2] is defined as

CAT(T1, T2) =

T2∑
t=T1

Z(t) , (1)

where the measurement period is typically a given month or season. At

CME, CAT futures are traded on European cities for measurement periods

in warm season. The HDD index measures the demand for heating in the

cold period of the year, and is defined as the cumulative amount of average

temperatures below a threshold over a measurement period. That is, one

aggregates max(c−Z(t), 0), where the threshold c is 65◦F or 18◦C. The CDD

index analogously aggregates max(Z(t)− c, 0) and measures the demand for

air-conditioning cooling. The CDD and HDD futures are traded for US cities.

The temperature futures contracts are financially settled proportionally to

the underlying index at the end of the measurement period. To assess the risk

in trading such contracts and to be able to settle reasonable futures prices,

one needs precise models for the temperature dynamics. A model should

incorporate such properties as possible trend due to global warming and/or

urbanisation, seasonal component describing periodic temperature variations

related to cold and warm seasons, AR properties for temperature changes,

and seasonal variations in residuals. In this study, we follow up the analysis

from papers Benth and Šaltytė Benth [5], Benth et al. [7], Šaltytė Benth et

al. [28], and contrast it to the approach of Campbell and Diebold [14].
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As observed by Campbell and Diebold [14] for US temperature data, and

later confirmed for Swedish, Norwegian and Lithuanian temperatures (see

above-cited papers), there is a clear seasonality in the temperature varia-

tions after removing trend, seasonal variations and AR effects from the data.

The model for temperature proposed by Benth and Šaltytė Benth contains

(linear) trend, seasonal component, low-order AR process and a seasonal vari-

ance component describing the remaining heteroskedasticity in temperature

residuals. It differs from the model of Campbell and Diebold [14] first of all in

its simplicity. Beside trend and seasonal component, Campbell and Diebold

propose to use a high-order AR time series model with seasonal generalized

AR conditional heteroskedesticity (GARCH) model for the residuals. We

are able to show that the model by Benth and Šaltytė Benth is sophisticated

enough to explain the basic stylized facts of temperatures just as well as the

parameter-intensive alternative proposed by Campbell and Diebold [14].

The contribution of this paper is threefold. First, we critically review the

process of modelling the temperatures. In this paper we promote a stepwise

procedure used in [5, 7, 28], where one models and estimates each component

step-by-step. This turns out to be advantageous in order to build a confident

model explaining the various stylized facts of temperature. In particular, such

an approach leads to a very low-order AR structure in the temperature dy-

namics, in contrast to the approach of Campbell and Diebold [14] suggesting

to use an AR model with 25 lags. We argue that one can model temperature

dynamics equally good using AR(3) and show that a simpler model explains

the temperature evolution very well. A bigger empirical analysis also shows

that the model by Benth and Šaltytė Benth explains extremely good the
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historical index values of CAT, HDD and CDD.

As a second contribution, we discuss the major role played by the mean

of temperature in the context of weather derivatives. The main factor ex-

plaining the indices CAT, HDD and CDD turns out to be the seasonal mean

temperature, as we demonstrate later on. This is not surprising, taking into

consideration the relatively strong mean reversion of temperatures along with

indices averaging temperatures over intervals like months. In the model pro-

posed by Benth and Šaltytė Benth, the seasonal mean is modelled explic-

itly, and is directly estimated from temperature observations. In this way

one obtains a confident model for the seasonality of temperature. Camp-

bell and Diebold [14] choose to model it indirectly, estimated together with

all the other parameters in the model. In the model by Benth and Šaltytė

Benth, one regresses the deseasonalized temperatures on deseasonalized tem-

peratures, that is, the AR structure is modelled after removing the seasonal

mean. Campbell and Diebold [14] choose to regress today’s deseasonalized

temperature on the temperature in previous days. Their seasonal function

will then not be the seasonal mean, but merely a seasonal component. We

demonstrate how one can compute the seasonal mean from the model of

Campbell and Diebold, involving the AR parameters and thus leading to

potentially increased uncertainty in parameter estimates.

The third contribution of the paper is a multiplicative seasonal stochastic

volatility model. Instead of using an additive GARCH process in modelling

the seasonal heteroskedastic residuals as Campbell and Diebold [14] do, we

suggest using a product between a seasonal deterministic function and a

classical GARCH process instead. With a multiplicative structure one avoids
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potential problems related to the positivity of variance. Moreover, no new

estimation procedure is required to estimate the GARCH component, leading

to a model which is simpler to fit and therefore more practically applicable.

The paper is organized as follows. First, we state the model for the daily

temperature variations and discuss in detail the different components of it.

Then we describe the data and estimate the model. Next, we validate the

proposed model on out-of-sample data and apply it for forecasting different

temperature indices. We end our paper by discussing continuous-time models

and weather derivatives pricing.

2 A general model for temperature dynamics

We present a general time series model for the temperature dynamics, which

is nesting many of the existing models. For modelling of temperature, we

suggest to use a time series decomposition approach, where the time series is

decomposed into different components like trend, seasonality, an AR process

(so-called cyclic component) and residual term, all appearing in observed

data simultaneously. By estimating and eliminating different components of

time series step-by-step and examining all intermediate residuals, one gets

a good insight into the data structure and is likely able to come up with a

precise model.

We consider the following model for temperature (see Benth et al. [8]):

Z(t) = µ(t) + ε(t), (2)

where µ(t) and ε(t) denote, respectively, the mean and the residual process
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at time t = 1, ..., τ . Here

µ(t) = S(t) +

p∑
i=1

αi (Z(t− i)− S(t− i)) , (3)

where S(t) is a deterministic function and αi, i = 1, ..., p, are the parameters

of the AR(p) process. A more general autoregressive moving average

process (ARMA) could be considered instead of AR, but the em-

pirical analysis suggests that there is no need for such an extension.

The AR parameters can in general be time-dependent. The sta-

bility analysis of AR(1) process was performed in Benth et al. [7]

for Stockholm temperatures. There were no significant differences

observed among the regression parameters estimated for different

years or seasons. We therefore assume that the mean reversion for

Stockholm temperatures is stable over time.

The deterministic function S(t) plays the role of the long-term average of

the temperature, towards which the temperature mean reverts due to the AR

structure. One could think of fitting ARMA process directly on the

temperature observations. However, Oetomo and Stevenson [25]

have shown that a conventional ARMA model without controlling

for long-term trend and seasonality does not outperform alterna-

tive models.

Another way to represent (2) is to write

Z(t)− S(t) =

p∑
i=1

αi(Z(t− i)− S(t− i)) + ε(t) ,

where it is assumed that the deseasonalized temperature follows an AR(p)

process, i.e. todays’ deseasonalized temperature is regressed on the p previous
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days’ deseasonalized temperatures. As long as the residual process ε(t) has

mean zero, we observe that the expected temperature Ẑ(t) = E[Z(t)] follows

the recursion

Ẑ(t)− S(t) =

p∑
i=1

αi(Ẑ(t− i)− S(t− i)) , (4)

and under stationarity hypothesis of the AR coefficients αi we have that the

stationary mean of Z(t) is S(t). Thus, taking the representation (2) and (3)

of the temperature dynamics gives a natural interpretation of S(t) as the

temperature seasonality. In the sequel, we will frequently refer to this as the

seasonal mean function of temperature.

Some authors have modelled temperatures as a mean reversion towards a

seasonal mean level. Dornier and Querel [17] suggest an AR(1) structure for

temperatures observed at Chicago O’Hare airport, whereas Alaton et al. [1]

use a similar model for temperatures in Bromma, Sweden. Brody et al. [11]

suggest to model temperatures in central England by such a model, followed

by Benth and Saltyte-Benth [4] for temperatures collected in several cities in

Norway and Mraoua and Bari [24] for observations in Casablanca, Marocco.

Cao and Wei [12] use the approach to model temperature evolution in five US

cities. Higher-order AR models have been proposed and analysed by Benth

et al. [28, 7] for data in Sweden and Lithuania. Recently, such models have

been extended to Berlin data and several Asian cities by Härdle and Lopez

Cabrera [20] and Benth et al. [9].

The reason for emphasizing the structure (3) is that Campbell and Diebold [14]

propose a slightly different representation. They choose the mean process
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µ(t) to be

µ(t) = S̃(t) +

p∑
i=1

αiZ(t− i) (5)

for a deterministic function S̃(t). In this case, the stationary mean temper-

ature will not be given as S̃(t), and the role of S̃ does not have any physical

intepretation other than being a deterministic component in the AR tem-

perature dynamics. In fact, in Campbell and Diebold [14], S̃(t) is called the

seasonal component or seasonality of the temperature dynamics, and not the

seasonal mean function of temperatures, a distinction which is very impor-

tant for both the interpretation and the application of the model. Chang et

al. [15] adopt the model of Campbell and Diebold in their study for five US

cities (for the same as in Cao and Wei [12]), while Svec and Stevenson [30]

use it to fit Sidney temperature data. Recently, Papazian and Skiadopou-

los [26] compared the model of Campbell and Diebold with other models in

a bigger empirical study consisting of 10 US and five European cities.

Taking µ(t) as in (3), we can retwrite it as

µ(t) = S(t)−
p∑

i=1

αiS(t− i) +

p∑
i=1

αiZ(t− i) ,

leading us to

S̃(t) = S(t)−
p∑

i=1

αiS(t− i) . (6)

Thus, µ(t) defined as in (3) implies the representation of Campbell and

Diebold in (5) in mathematical terms. However, as we shall discuss in sub-

section 2.1, it is advantageous to choose the former when modelling the tem-

peratures.
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We assume that the seasonal mean function S(t) has the form

S(t) = a0 + a1t+
J∑

j=1

b1j cos(2πj(t− b2j)/365) . (7)

The level of the long-term average temperature is a0, while the trend a1t

ensures stationarity in temperature time series, since the temperatures might

have risen due to global warming (Rassmusson et al. [27], Handcock and

Wallis [19]) and urbanisation, say. A trend being constant from year to

year seems to be validated in our data set. However, this may turn

out to be a simplification when a longer time series of temperature

data is considered. Then a more complex trend behaviour, calling

for richer models than just a linear trend as we apply here, might

be detected.

The sum of trigonometric functions explains the seasonal variation in tem-

perature, varying with the colder and warmer periods of the year. We know

from Thm 8.20 in Folland [18] that the set {exp(2πκi)}κ∈Z is an orthonormal

basis in L2(T) for T being the torus on the real line. Thus, we can ap-

proximate any square integrable periodic function by a sum of trigonometric

functions as in (7) arbitrarily good. However, we have a very low order of J in

mind, in fact J = 1 seems to be enough for capturing the seasonal behaviour

in most temperature data series, according to standard statistical tests.

We remark in passing that other temperature seasonality functions have been

recently proposed by Härdle et al. [21] in relation to a study of Asian cities.

Zapranis and Alexandridis [31] incorporate wavelet analysis when

modelling the seasonal cycle.
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Note that by using the fundamental identity

cos(x− y) = cos(x) cos(y) + sin(x) sin(y) ,

we find that S(t) can equivalently be rewritten as

S(t) = a0 + a1t+
J∑

j=1

b1j cos(2πjb2j/365) cos(2πjt/365)

+
J∑

j=1

b1j sin(2πjb2j/365) sin(2πjt/365) .

Letting b̃1j = b1j cos(2πjb2j/365) and b̃2j = b1j sin(2πjb2j/365), we have that

S(t) is of the same form as the seasonal component S̃(t) used in the Campbell

and Diebold model [14].

2.1 Recovering the seasonal mean function from the

seasonal component

In the model of Campbell and Diebold, the seasonality of the temperature is

modelled implicitly through the seasonal component S̃(t) and the AR struc-

ture, as we recall from (6). We now show how the true seasonal function S(t)

can be recovered in the situation where the seasonal component in the model

of Campbell and Diebold is known. For this purpose, we suppose that

S̃(t) = ã0 + ã1t+ b̃1 cos(2πt/365) + b̃2 sin(2πt/365) .

The estimates of the parameters ã0, ã1, b̃1 and b̃2 are found from data. Ad-

mittedly, in Campbell and Diebold [14] a series of trigonometric function

with yearly, half-yearly and quarterly frequencies (choosing J = 3, in fact)
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are used. But for the following argument, and motivated from the emprical

study to come, we focus on the simple case here.

Next, we define the ”true” seasonal mean function S(t) to be

S(t) = a0 + a1t+ b1 cos(2πt/365) + b2 sin(2πt/365) . (8)

Our goal is to recover a0, a1, b1 and b2 from the known quantities ã0, ã1, b̃1

and b̃2, respectively. By applying (6) with the fundamental identities for

trigonometric functions

cos(2π(t−k)/365) = cos(2πk/365) cos(2πt/365)+sin(2πk/365) sin(2πt/365) ,

and

sin(2π(t−k)/365) = cos(2πk/365) sin(2πt/365)−sin(2πk/365) cos(2πt/365) ,

we find the following set of equalities after collecting the terms for level, trend

and the trigonometric functions:

a0 = ã0 + a0

p∑
i=1

αi − a1

p∑
i=1

iαi,

a1 = ã1 + a1

p∑
i=1

αi,

b1 = b̃1 + b1

p∑
i=1

αi cos(2πi/365)− b2

p∑
i=1

αi sin(2πi/365),

b2 = b̃2 + b1

p∑
i=1

αi sin(2πi/365) + b2

i∑
i=1

αi cos(2πi/365) .

Solving for the unknown parameters, we find

a0 =
ã0(1−

∑p
i=1 αi)− ã1

∑p
i=1 iαi

(1−
∑p

i=1 αi)2
,
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a1 =
ã1

1−
∑p

i=1 αi

,

b1 =
b̃1(1−

∑p
i=1 αi cos(2πi/365))− b̃2

∑p
i=1 αi sin(2πi/365)

(
∑p

i=1 αi sin(2πi/365))2 + (1−
∑p

i=1 αi cos(2πi/365))2
,

b2 =
b̃1
∑p

i=1 αi sin(2πi/365) + b̃2(1−
∑p

i=1 αi cos(2πi/365))

(
∑p

i=1 αi sin(2πi/365))2 + (1−
∑p

i=1 αi cos(2πi/365))2
.

Note the occurrence of the AR parameters αi in all expressions. Thus, in

order to recover the true seasonality function we must know the AR parame-

ters as well. These are estimated together with ã0, ã1, b̃1 and b̃2 in the model

of Campbell and Diebold, and are therefore affected by an estimation error.

In order to find a0, say, we need p + 2 estimated parameters, all with un-

certainty. This makes the estimate of a0 very uncertain. To get a feeling

for what happens, we apply the estimates for the AR parameters found for

Stockholm data (see next Section for the estimation procedure). The figures

are α1 = 0.96, α2 = −0.25 and α3 = 0.12 (see Table 1). This gives that ã1 is

only 17% of true trend increase a1. Since a1 is typically very small (in fact,

it was estimated to be 0.0001 for the Stockholm data, see next Section), we

run the risk of getting an insignificant estimate of ã1, even if the trend is

significant.

It is highly important to have an accurate estimate of the temperature

seasonality function S(t) in applications to weather markets. Computing

it from the seasonal component may lead to wrong specifications, including

uncertainty in the estimates. Moreover, when applying a stepwise estimation

procedure where one first finds the seasonality function, one reveals the true

structure of it. Another aspect is in the prediction of indices. Taking, for

example, the CAT index defined in (1), the seasonality function S(t) will be
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the dominating factor. This can be seen from the discussion leading to (4),

where S(t) was shown to be the long-term temperature mean level, and simple

summation reveals that the mean long-term level of the CAT will simply be∑T2

t=T1
S(t) when the measurement period is [T1, T2]. By mean reversion, long

measurement periods will imply that the CAT index is essentially equal to

the aggregation of the seasonality function. We will return to this in Section 4

on model validation.

2.2 The residual process

It is a well known fact that the temperature residuals are not independent

identically distributed normal random variables. Alaton et al. [1] observed

in their analysis of Stockholm temperatures using an AR(1) model that the

”volatility” of temperature varied with the seasons over the year. They

proposed to model the volatility of each month as a monthly average emprical

variance. Further, it was observed by Campbell and Diebold [14] that the

autocorrelation function (ACF) of the squared residuals in many US cities has

a seasonal structure. The same observation was made for several locations

in Norway and Lithuania in the papers Benth and Šaltytė Benth [4] and

Šaltytė Benth et al. [28], respectively, for German temperature data in Härdle

and Lopez Cabrera [20], and for Asian data in Benth et al. [9]. Moreover,

a characteristic seasonal pattern for the daily variance of temperature was

observed (see Benth et al [5] for a detailed discussion in connection with

Stockholm temperature data). In addition, in Benth et al. [4] and [5] a

small GARCH effect in the ACF of the squared residuals after explaining

the seasonality in the daily variance was observed, but not modelled.
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Motivated by the above studies, we assume that the residual process ε(t)

is of the following form

ε(t) = σ(t)δ(t), (9)

where σ(t) is a seasonally varying stochastic process (a seasonal stochastic

volatility), and δ(t) is a zero-mean temporally independent Gaussian random

process with standard deviation equal to one.

As observed in, for example, Benth et al. [5] (see above for more ref-

erences), the variance of the temperature residuals demonstrates a rather

distinctive seasonal pattern, which we model by σ2(t) = σ2
BSB(t), with

σ2
BSB(t) = c1 +

K∑
k=1

(c2k cos(2kπt/365) + c2k+1 sin(2kπt/365)) . (10)

In Benth et al. [4, 7], the choice of K = 3 turned out to give a very good

fit to the yearly seasonal pattern of the residual variance. However, there

are examples of locations where the residual variance is varying very little

throughout the year (see, for example, Benth et al. [4] for some Norwe-

gian cities and Campbell and Diebold [14] for the US cities Las Vegas and

Portland). In such a case it is natural to choose K = 0, that is, to as-

sume a constant volatility. Of course, there may also exist cities where a

higher order K might be needed. Zapranis and Alexandridis [31] ex-

ploit wavelet analysis in estimating the stochastic volatility. As an

alternative to stochastic volatility modelling, Härdle et al. [21] use

a local smoother technique.

As already mentioned, in many locations one finds signs of GARCH effects

in the residuals after removing the influence of σBSB(t) (that is, in the data

ε(t)/σBSB(t)). Such effects are minor, but to explain them in the proposed
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model it is natural to assume that σ(t) = σBSB(t)σGARCH(t) with

σ2
GARCH(t) = β1δ

2(t− 1) + β2σ
2
GARCH(t− 1) . (11)

In conclusion, we assume that the residual process ε(t) as in (9) is defined as

ε(t) = σBSB(t)σGARCH(t)δ(t) , (12)

with σBSB(t) defined in (10) and σGARCH(t) in (11).

In Campbell and Diebold [14], a different model is considered. They

explain the seasonality and GARCH effect in temperature volatility by an

additive seasonal GARCH model for σ(t) of the form

σ2
CD(t) = σ2

BSB(t) + β1δ
2(t− 1) + β2σ

2
CD(t− 1) . (13)

In view of the positivity of the variance, it seems more natural to consider a

multiplicative structure of the seasonality and GARCH effect in the temper-

ature volatility, rather than an additive one. It is simple to reveal the true

seasonality and GARCH effects observed in residual variance using a multi-

plicative approach, and positivity of the variance is naturally preserved. In

addition, in the estimation of the multiplicative model as we suggest, no new

estimation procedures are required for the GARCH part.

We remark that Benth et al. [9] are discussing the volatility model of

Campbell and Diebold [14] in connection with a study of Asian temper-

atures using a CAR model. Recently, Härdle et al. [21] considered a local

adaptive modelling approach to find at each time point an optimal smoothing

parameter to locally estimate the seasonality of the volatility. This approach

refines the modelling of σBSB(t).
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3 Empirical analysis of temperature data

We have available temperature observations from Stockholm, Sweden, in

the period January 1, 1961 to May 25, 2006, resulting in 16,570 records

after the observations made on Februrary 29 in all leap years are removed.

We leave out the data starting January 1, 2005 and lasting to the end of

observation period (out-of-sample data set consisting of 510 observations) for

model validation. We thus deal with 16,060 data points (in-sample) when

estimating the model.

The average in-sample temperature in Stockholm is 7.2◦C with standard

deviation equal to 8.2◦C and range (-23.6, 28.7). In Fig. 1 we plot a snapshot

of the first five years of observations together with the histogram and ACF for

the total dataset. We observe a clear seasonal pattern in both the time series

and ACF plots for the temperatures. The bimodality in the histogram is also

appearing due to the cold winters and rather mild summers in Stockholm.

In addition, we observe a small left skewness in the data (equal to -0.10) and

a negative kurtosis (-0.67).

We now proceed to estimation of the proposed temperature model. We

are going to estimate the different components of the model step-by-step

and carefully examine the resulting residuals after each component has been

eliminated. In this way we want to reveal the true characteristics of the

temperature dynamics.

We first estimate the seasonality function S(t) defined in (7). This is

done by standard least squares approach, the usual way to identify a mean

function. We implemented the least squares estimation procedure by resort-

ing to the built-in function nlinfit in Matlab. The values of the estimates
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Figure 1: Snapshot of five years of temperatures, histogram and ACF of

temperatures in Stockholm.

are: a0 = 6.37, a1 = 0.0001, b1 = 10.44, and b2 = −161.17, all significant

at the level of 5% (although the significance level must be treated with care

because of non-normally distributed and autocorrelated temperature data).

The value of the estimated linear slope shows that the temperature in

Stockholm has risen approximately 1.5◦C in the considered period. This find-

ing is in line with observations made by other authors. Our trend-seasonal

function S(t) with only four parameters explains 81.1% of the variation in

temperature time series. Removing the estimated seasonal mean function

S(t) from the data resulted in a unimodal histogram. The trend-seasonal

function with eight parameters, suggested by Campbell and Diebold [14],

explains 81.6% of the variation in temperature in Stockholm, a very small

increase in performance although a doubling in the number of parameters.

We note that according to Campbell and Diebold, their trend-seasonal func-

tion explains about 90% of the variation in data for the USA cities considered

in their study.
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The ACF values of detrended and deseasonalized data start at around

0.8 and stay rather high (and of course significant) for many lags (see Fig. 2,

left). Clearly, there are memory effects in the data not captured by the

seasonal mean function S(t). The analysis of the PACF (see Fig. 2, right)

suggests an AR(3) process to explain the AR pattern in the residuals. The

parameter estimates of the AR(3) process are given in Table 1 together with

the R2 value. The estimated parameters are all significant at the 5% level.

The model fit is already very good, with R2 of 94.1%.
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Figure 2: ACF and PACF of deseasonalized and detrended temperatures.

The choice of an AR(3) model is in agreement with many other studies

of temperature data. Härdle and Lopez Cabrera [20] find the same for Berlin

temperatures. In Benth et al. [9] several Asian cities are considered, and

the choice of an AR(3) is made based on empirical arguments. Campbell

and Diebold [14] claim that AR(25) is the optimal choice in their study of

US temperature data based on the Akaike’s Information Criterion (AIC).

Interestingly, Cao and Wei [12] apply an AR(3) model for the cities Atlanta,

Chicago and Philadelphia, which are also part of the study of Campbell and
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Diebold.1 Note that the two studies are not directly comparable, since Cao

and Wei consider an AR model for deseasonalized data. It is our experience

that to choose 25 lags to model the temperature is far above what is neces-

sary from a statistical point of view. Furthermore, it is not clear if there is

any meteorological explanation for why today’s temperature should explic-

itly depend on what happened 25 days ago. We remark that for Stockholm

temperature data, the value of AIC is smaller for the AR(3) model than for

the AR(25) model, which is not in line with the conclusions of Campbell and

Diebold [14]. Moreover, most of the lags become insignificant when estimat-

ing an AR(25) model, and the R2 was not improved as compared with the

AR(3) model.

For pure comparison, we took the function S̃(t) in the representation

of µ(t) in (5) and interpreted it as the seasonal mean. As suggested by

Cambell and Diebold [14], we should regress the deseasonalized temperatures

on the temperatures. For the seasonal function S(t) and an AR(3) model,

the R2 value became by almost 10% lower than in the case of the model

specification proposed in this paper. Moreover, we did not get much better

fit by choosing AR(25) as suggested by Campbell and Diebold; most of the

parameters are insignificant (those significant ones are very small in value,

except for the first three). By increasing the number of AR parameters from

three to 25 we managed to increase the value of R2 by 5.4% (from 84.6% to

89.9%). Note that it is still lower than the one obtained with AR(3) model

1In the older version of the paper of Campbell and Diebold [13], the cities are fully

overlapping with those five studied by Cao and Wei [12]. Cao and Wei use an AR(3) for

all cities.
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Table 1: Estimates of parameters of the AR(3) process.

α1 α2 α3 R2(%)

0.96 -0.25 0.12 94.1

on deseasonalized data.

Let us look at the effects on the residuals when using the ”wrong” model

specification above. In Fig. 3, we show the ACF for both types of model

specifications. The left and the right panels present, respectively, the ACF for

residuals and the ACF for squared residuals for the proposed model. In the

middle plot, the ACF for the residuals for the model of Campbell and Diebold

[14] where the function S̃(t) is intepreted as the seasonal mean, is presented.

All three plots are obtained after AR(3) process has been estimated and

eliminated from the data. The ACF of the ”wrong” specification is again

demonstrating seasonality. In addition, data are highly autocorrelated. In

other words, by regressing the deseasonalized data on original temperatures,

we impose the seasonality back into the data. When looking at the ACF

for residuals obtained with our approach, we see that there is no seasonality

left and residuals are basically uncorrelated. As is apparent, the inclusion

of S̃(t) in Campbell and Diebold [14] is not to be intepreted as the seasonal

mean of the temperature, and doing so leads to highly unreasonable effects.

This demonstrates the advantage of the decomposition approach used; one

has full controll over the effects of each model component. This makes it

possible to reveal potential misspecification of the model.

The ACF for squared residuals (right-hand plot in Fig. 3) demonstrates a

clear seasonal pattern, calling for more sophisticated models than just a white
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Figure 3: ACF of residuals (detrended and deseasonalized DAT after AR(3)

has been eliminated) (left), squared residuals (right) and residuals when CD

specification is used (middle).

noise process. We consider a seasonal volatility model with and without a

multiplicative GARCH(1,1), as defined in (11) and (10), respectively.

To estimate the volatility model, we first compute the daily empirical

variance by averaging the values of the squared residuals of the particular

day over all years. This results in 365 data points, each calculated from 45

residuals. In Fig. 4 we have plotted the fitted truncated Fourier function

(10) with the empirical daily variances, where we observe the clear seasonal

pattern present in the data. The parameters of the fitted function (10) are

given in Table 2. From Fig. 4 we see that the temperature fluctuations in the

cold (or HDD) season are considerably higher than those during the warm

(CDD) season. Furthermore, the variations seem to be lower in spring and

autumn, than in the summer. These observations are consistent with Cao

and Wei [12] and Campbell and Diebold [14].

Neither residuals nor squared residuals obtained after σBSB(t) was elim-
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Table 2: Estimates of parameters of the σ2
BSB(t) in Stockholm.

c1 c2 c3 c4 c5 c6 c7

4.024 1.177 0.695 0.781 -0.162 0.201 0.436

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

8

9

day

va
ria

nc
e

Figure 4: Daily variances of final residuals together with the fitted function

σ2
BSB(t).

inated from the data reveal any seasonal pattern (not shown). The ACF

plots for residuals and squared residuals in Fig. 5 (top row) confirm that

basically all the seasonality is explained by the model. On the other hand,

from the ACF of the squared residuals we observe a small GARCH effect not

accounted for. Motivated by this, we fit the model in (11) as well, where the

seasonal variance function σ2
BSB(t) is multiplied by a GARCH(1,1) process.

The parameters of the GARCH(1,1) model were estimated to be β1 = 0.06

and β2 = 0.93. As it is seen from the Fig. 5 (bottom row), the GARCH effect

is clearly explained. In order to demonstrate how well our model is capturing
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the seasonal variations in the residuals, we plot in Fig. 6 the squared resid-

uals after trend-season component and AR(3) process have been eliminated

from temperature data together with the fitted σ2
BSB(t)σ

2
GARCH(t) function.

0 100 200 300 400 500 600 700 800
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lag

A
C

F

0 100 200 300 400 500 600 700 800
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lag

A
C

F

0 100 200 300 400 500 600 700 800
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lag

A
C

F

0 100 200 300 400 500 600 700 800
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lag

A
C

F

Figure 5: ACF for final residuals (left) and squared residuals (right) after

σ2
BSB(t) (top row) and σ2

BSB(t)σ
2
GARCH(t) (bottom row) have been eliminated.

Final residuals are demonstrating clear symmetry (Fig. 7) for both cases

of variance functions used. The p-values of the Kolmogorov-Smirnov normal-

ity test are in both cases around 0.01. With the amount of data we have at

hand, it is almost impossible to reach insignificant p-values with a test such as

Kolmogorov-Smirnov, since even small deviations from normality may have

a big influence on the test statistic. This would likely be the case also if
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Figure 6: Squared residuals after trend-seasonal function and AR(3) have

been removed together with fitted σ2
BSB(t)σ

2
GARCH(t) function.

another test for normality was applied. The variances of residuals are

essentially equal to one, while the means, skewnesses and kurtoses are close

to zero, indicating that the distributions are close to normal. We notice

however, that Zapranis and Alexandridis [31] obtain normally dis-

tributed residuals when assuming time-dependent speed of mean

reversion along with a wavelet analysis in modelling the seasonal

component and seasonal variance.

4 Model validation

For model validation we used 510 out-of-sample observations. To validate

the model, one-step-ahead predictions for out-of-sample observations were

generated and prediction errors (PE) calculated as differences between the
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Figure 7: Histograms of final residuals for σ2
BSB(t) (left) and

σ2
BSB(t)σ

2
GARCH(t) (right).

observed and predicted values. PEs were normally distributed (p-value for

the Kolmogorov-Smirnov test was 0.61) and not autocorrelated with mean

zero and standard deviation of 1.9.

Further, the prediction intervals (PI) were built by simulating 1000 re-

alisations of the model by first generating a series of random innovations

and then constructing a sequence of values from the model. From this set

of simulated observations, we calculated PIs by finding the interval within

which the required percentage of future values lie. Various PIs together with

the percentage of predicted values outside of them are given in Table 3. For

illustrative purposes, we plot in Fig. 8 the observed and predicted values

together with the 95% PI containing 0.39% of predicted values outside the

PI.

Cumulative HDDs and CATs are very relevant for weather derivatives.

We use the estimated model for temperature to simulate the cumulative

HDDs and CATs for the cold (October 1 through April 30) and warm (April
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Table 3: Various PIs based on percentiles.

PI %

(0.05; 99.95) 0

(2.5; 97.5) 0.39

(16.0; 64.0) 13.95

(20.0; 80.0) 21.81

(30.0; 70.0) 39.49

(40.0; 60.0) 69.55

1 through October 31) periods, respectively, in the years 1961 through 2004.

The simulation is performed in the following way. Just as for the model val-

idation, we first generate a series of innovations from the standard normal

distribution in order to construct a sequence of realizations of temperatures

from the model. We repeat this process 1000 times. From the simulated

series, we calculate cumulative HDDs and CATs for relevant months. To

summarize the results of simulation, we aggregate all simulated values into

few descriptive statistics and present them in Table 4 and Table 5 together

with the corresponding statistics for observed HDDs and CATs. The ob-

served and simulated mean, min and max values of HDD and CAT are close

to each other, just validating the proposed model once more. The 95% confi-

dence intervals (CI) for observed HDDs and CATs are much wider than those

for simulated indices. This is because the observed CIs are only based on

45 years of data, while the simulated ones are the result of 1000 iterations.

Note that in Table 4 (Table 5) the average observed HDD (CDD)

values have a tendency to be a bit higher or lower than the simu-
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Figure 8: Observed (circles) and predicted (discs) values with 95% prediction

intervals (dotted line).

lated HDDs in the succeeding months. The differences are small,

however it might be that they are not random due to too low order

of seasonal component and/or seasonal variance.

We have earlier in this paper argued for the importance of the seasonal-

ity function S(t) in temperature modelling and weather derivatives pricing.

We discuss next how the seasonal function explains the CAT and HDD in-

dices. In Fig. 9 (left) we have plotted the CAT index computed from a 30

days window of Stockholm temperatures rolling through the year 2004. In

addition, we have calculated the index based solely on the estimated sea-

sonal mean function S(t) in (7). As we see, the CAT index derived from

the seasonal mean function follows remarkably close the empirical one. The

same observation is made when doing the exercise for the HDD index instead

(Fig. 9 (right)). This is seemingly more surprising, however, since the cut-off

28



Table 4: Descriptive statistics for observed and simulated values of HDD.

Month Mean 95% CI Min Max

January Observed 626.2 (436.3; 816.0) 459.2 903.3

Simulated 631.4 (593.3; 669.4) 428.6 933.0

Februray Observed 572.3 (381.3; 763.3) 383.4 802.6

Simulated 570.0 (536.6; 603.3) 348.5 811.1

March Observed 536.1 (402.3; 669.8) 404.4 661.7

Simulated 533.7 (503.8; 563.6) 372.1 689.7

April Observed 383.8 (298.7; 469.0) 306.1 487.0

Simulated 378.4 (349.8; 407.1) 261.0 510.9

October Observed 324.9 (231.7; 518.1) 212.2 430.1

Simulated 322.9 (295.8; 350.1) 186.7 444.7

November Observed 459.6 (356.9; 562.4) 331.5 573.9

Simulated 459.7 (429.7; 489.8) 310.9 598.0

December Observed 580.3 (445.5; 715.1) 440.3 723.7

Simulated 584.1 (548.5; 619.7) 419.6 758.3
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Table 5: Descriptive statistics for observed and simulated values of CAT.

Month Mean 95% CI Min Max

April Observed 156.2 (71.0; 241.4) 53.0 233.9

Simulated 161.6 (132.9; 190.3) 29.1 279.2

May Observed 344.0 (253.2; 434.7) 272.3 445.7

Simulated 346.0 (314.8; 377.2) 234.7 486.0

June Observed 478.4 (394.5; 562.2) 381.8 537.1

Simulated 476.1 (446.4; 505.7) 349.3 594.8

July Observed 560.3 (456.8; 663.8) 457.8 685.3

Simulated 555.8 (529.6; 581.9) 427.7 695.1

August Observed 529.6 (420.1; 639.1) 422.8 673.8

Simulated 527.6 (504.0; 551.3) 403.2 684.3

September Observed 370.2 (289.0; 451.3) 287.2 488.2

Simulated 374.9 (350.4; 399.4) 265.2 509.6

October Observed 233.1 (140.0; 326.3) 127.9 345.9

Simulated 235.1 (208.0; 262.3) 113.3 371.3
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value is 18◦C and the daily average rarely goes above this, the HDD index is

corresponding to the CAT for large parts of the year.
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Figure 9: Observed and estimated (solid line) CAT (left) and HDD (right)

indices for year 2004 calculated from a 30 days window.

From a scatter plot of the empirically observed index versus the one com-

puted from the estimated seasonal mean function (Fig. 10), we observe that

observed and estimated values for both CAT and HDD show a strong lin-

ear dependence. The slope in a linear regression model is close to one for

both CAT and HDD. Although the regression analysis may be based on false

assumptions, it gives a clear indication of the strong explanatory power of

the seasonal function when it comes to index prediction. Note that it is

the relatively strong mean reversion of temperature combined with a linear

noise structure which explains the close connection between the seasonality

function and the index value. In view of these results, it is clear that em-

phasis must be put on the seasonality function when modelling temperature

dynamics.
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Figure 10: Scatter plot of observed vs. estimated CAT (left) and HDD (right)

indices for year 2004 calculated from a 30 days window.

5 A discussion of continuous-time models and

weather derivatives pricing

Admittedly, most of the models for the temperature dynamics mentioned

in this paper are stated as continuous-time stochastic processes, with the

exception of the model of Campbell and Diebold [14]. For example, in Benth

and Šaltytė Benth [4], the dynamics of the deseasonalized temperature is

assumed to follow an Ornstein-Uhlenbeck process

dZ̃(t) = −αZ̃(t) dt+ σBSB(t) dB(t) , (14)

where the temperature is defined as Z(t) = S(t) + Z̃(t), α > 0 is a positive

constant measuring the speed of mean reversion and B is a Brownian mo-

tion defined on a filtered probability space (Ω,F ,Ft, P ). Alaton et al. [1]

consider the same dynamics, except that the volatlity σ(t) is assumed to be

constant for each month, whereas Dornier and Querel [17] assume a con-

stant volatility in their seminal paper. The dynamics (14) is generalized to
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a so-called continuous-time AR (CAR) process in Benth et al. [7], which is

applied to Stockholm data. Later, Härdle and Lopez Cabrera [20] studied

this class of processes for German temperature data, and Benth et al. [9]

for Asian temperatures, all validating the relevance of this class of models.

When estimating these models, discretization of the stochastic process is ap-

plied leading back to the time series models discussed and analysed in the

present paper. The comparison of Campbell and Diebold [14] and

Benth and Šaltytė Benth [5] models seems to be most fair in dis-

crete time directly, since we avoid the risk of introducing an error

when moving from continuous to discrete time in the estimation

procedure. In addition, the model of Campbell and Diebold [14] is

difficult to formulate in continuous time. This section is devoted

to discuss the continuous-time models, which are most appropriate

in derivatives pricing context.

Temperatures are naturally evolving continuously over time, so it is very

appealing to use continuous-time stochastic processes to model the dynamics

although the data may be on a daily scale and the weather derivatives market

settles contracts based on indices of daily average temperature. There is

another fundamental aspect related to the nature of the temperature futures

markets. Temperature futures can be traded continuously in the opening

hours of the exchange. Thus, a model for the forward price dynamics is

naturally formulated as a continuous-time stochastic process.

A standard definition (see Benth et al [8]) for the dynamics of temperature

futures prices is to use the risk-adjusted predicted index value, given today’s
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information modelled by the filtration Ft,

FI(t, T1, T2) = EQ [I(T1, T2) | Ft] , (15)

with I being one of the indices CAT, HDD or CDD, and measurement period

[T1, T2]. To take into account a compensation for risk bearing, the expectation

is computed under a pricing probability Q, denoted EQ. To compute prices,

we need to know the probabilistic properties of the index I(T1, T2) under Q,

that is, of the temperature dynamics under Q. In continuous-time models of

Brownian motion type, this can be achieved by a Girsanov transform which

effectively shifts the seasonal function by some constant usually called the

market price of risk (we refer the reader to Benth et al. [8] for details on this

topic). Using the ”burn-in” approach of Jewson and Brix [22] is in some sense

corresponding to choosing Q = P , that is, no risk premium is introduced in

the forward prices. We note that the seasonal mean function will significantly

influence the futures price dynamics as can be seen from (15). This again

argues for the importance of having an accurate description of the seasonal

mean S(t).

With the continuous-time models for temperatures proposed in (14), or

more general CAR models, we can easily compute the price dynamics of

CAT, CDD and HDD futures (see Benth et al. [8] for details). With a time

series approach, as suggested by Campbell and Diebold [14], this becomes

a cumbersome task. Firstly, we will obtain a time series model for the fu-

tures price dynamics, with time measured on a daily scale. This could of

course be easily mended by defining the model on a finer time scale. But

more importantly, the dynamics is rather complex and one needs to resort

to simulations in order to calculate the conditional expectations in (15). An
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alternative to this is to try to reformulate the Campbell and Diebold model

as a continuous-time stochastic process.

Since the weather market at CME offers trade in European options on

temperature futures, it is of big value to have an explicit dynamics of the

futures prices. In fact, from Benth et al. [8], we can derive analytic prices

for options on CAT futures. With the HDD and CDD futures dynamics

one cannot obtain explicit option prices, however, they will be reasonably

simple to simulate. If we use a time series model for temperatures of some

complexity, option prices must be simulated from scenarios of futures prices,

involving a computer-intensive nested simulation procedure. The question of

hedging is also easily treated in a continuous-time framework (see Benth et

al. [8]), in contrast to a time series approach.

We have proposed a model for the residuals ε(t) based on a multiplicative

structure of variance seasonality and GARCH effects. There exists many

stochastic volatility models in continuous-time, and we here briefly

discuss the Barndorff-Nielsen and Shephard (BNS) dynamics in-

troduced in [2]. Suppose that the deseasonalized temperature dynamics is

given by

dZ̃(t) = −αZ̃(t) dt+ σBSB(t)
√

V (t) dB(t) , (16)

with

dV (t) = −λV (t) dt+ dL(λt) . (17)

Here, λ > 0 is a constant measuring the speed of mean reversion for the

volatility process V (t), which reverts to zero. The process L(t) is assumed to

be a subordinator independent of B, the Brownian motion, meaning a Lévy

process with increasing paths. In this way one is ensured that V (t) is posi-
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tive. The unusual time scaling by λ in the argument of L is convenient when

estimating such a stochastic volatlity model. In fact, one may get relatively

explicit distributions for the ”deseasonalized” residuals
√

Z(t) dB(t), which

become conditionally normal, with mean zero and variance V (t). In station-

arity of V , this distribution becomes independent of λ, and therefore one

may separate the modelling of these residuals from the dependency structure

in the paths. For this stochastic volatility model, the squared residuals will

have an exponentially decaying ACF, with decay rate λ. By subordination

of such V ’s, the ACF may decay as a sum of exponentials. We refer to

Barndorff-Nielsen and Shephard [2] for an extensive analysis of this class of

stochastic volatility models. We remark that this stochastic volatility model

is easily included in CAR(p) processes, see Benth and Šaltytė Benth [6]. We

emphasize that the stochastic BNS volatility does not become a GARCH

dynamics in discrete time, but is applied here as a continuous-time alter-

native sharing some similar properties as GARCH (see [2] for a discussion

of the properties of the BNS model, and its relationship with the

GARCH-dynamics).
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