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Abstract	
  
	
  

The measuring of risk has become one of the main fields in finance during the last two 

decades. Value-at-Risk (VaR) has become one of the most important risk measures and is 

widely used for numerous applications. This thesis compares different approaches to VaR 

based on traditional methods such as Historical Simulation, Moving Average and 

Exponentially Weighted Moving Average as well as advanced approaches based on GARCH 

models. Comparison is done on the OBX index return data, which is the main benchmark 

index on the Oslo Stock Exchange. The performance of the different VaR models is evaluated 

with out of sample backtests over two periods of changing market conditions. The first period 

is the crisis period with high volatility and market uncertainty that covers the financial crisis 

in 2008. The second period is the post crisis period after the financial crisis that has more 

normal market conditions. 

 

Our findings are that traditional VaR methods do not capture the risk of the OBX index. The 

models tend to underestimate the risk when the market goes through a crisis and generally 

perform poorly. Several of the VaR models based on GARCH dynamics perform quite well 

and overall the best model is the skew Student-t GARCH(1,1) which is not rejected in any 

backtest and therefore captures the risk in both the crisis period and the post crisis period. The 

model also outperforms sophisticated GARCH models that are able to capture asymmetries in 

volatility and power effects. The choice of error distribution for the GARCH models is also 

found to be very important. Changing the normal error distribution to the skew Student-t 

distribution significantly improves the forecasting performance of the GARCH models. 
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1 Introduction	
  

1.1 Background	
  

Measuring of market risk has become one of the main fields in finance as it has become 

increasingly important for regulatory purposes and management decisions. Market risk arises 

from unexpected changes in market prices and can be classified into interest rate risk, 

exchange rate risk, equity risk, commodity risk and so on. The recent financial crisis in 2008 

with the following fluctuations in equity, commodity and property prices emphasize the 

importance of correctly measuring the risk which corporations, individual investors and even 

countries are exposed to.  

 

The standard measure of market risk is volatility and is defined as the standard deviation of 

returns. Volatility captures the risk of a financial asset if the returns are normally distributed 

because all the statistical properties of the normal distribution are described by the mean and 

standard deviation. However, it is generally known that financial returns are not normally 

distributed. Therefore, assuming that the returns are normally distributed could lead to an 

underestimation of the risk associated with a financial asset. Another common risk measure is 

the Value-at-Risk (VaR) approach, which is distribution independent. It focuses at estimating 

the potential loss given a probability level that losses are equal or exceed the VaR. Although 

the definition of VaR is broadly the same, there is no general consensus among either 

researchers or practitioners on how VaR should be calculated. This has lead to a development 

of an enormous amount of different models. There are two main methods for calculating VaR: 

Non-parametric and parametric. Most of the methods used are parametric volatility models 

that estimate the underlying distribution of an asset returns. The parametric volatility model is 

used to forecast the volatility over the risk horizon from which the VaR forecast can be 

obtained. There are many volatility models available today and the majority of these models 

are in the family of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

models. The GARCH models are able to quickly adapt to changing market conditions and can 

also capture the most common characteristics of financial return series. 

 

The history of VaR started in the late 1970s and 1980s as major financial institutions needed 

tools to aggregate the total risk across the institution as a whole. As the institutions grew and 

became more complex, the need to accurately aggregate the risk became increasingly 

difficult. The institutions started to impose arbitrary restrictions that limited the traders and 
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asset managers, which resulted in sub-optimal decision making since investment opportunities 

that could decrease the overall risk were passed. There was also little connection between the 

risk that was actually taken and the limits that were imposed. The best known system that 

evolved from this era was the RiskMetrics system developed by JP Morgan, which was 

intended to give the management a daily one-page report that summarized the overall risk of 

the company over the next day. This report was given to the management 4:15 each day after 

the closing of the markets and was therefore called the "4:15 report". The system was based 

on the VaR approach and was built on the traditional portfolio theory of standard deviations 

and correlations estimates between the returns of the different assets in their portfolio. Around 

1990 the system was up and running internally in JP Morgan, and it was soon discovered that 

the system had very positive qualities that gave the management a tool to make more efficient 

investment decisions. In 1994, JP Morgan decided to make the RiskMetrics system available 

for free enabling outside investors and institutions to use the system and incorporate it as they 

wished. This lead to a rapid adoption and development of the VaR framework in the 1990s, 

which resulted in VaR being the risk measure of choice by most institutions today. 

1.2 Previous	
  research	
  

There is a vast amount of research done on the forecasting performance of volatility and VaR 

models. A lot of theses studies provide results that contradict each other. Below we present 

two studies of this kind. 

 

Hansen and Lunde (2005) published the paper "A forecast comparison of volatility models: 

does anything beat a GARCH(1,1)?". They studied 330 different GARCH model for their 

ability to forecast one-day ahead conditional variance for an out of sample period of about 

250 days. The models were applied to the DM/USD rate and the IBM stock price returns, and 

the models were tested for their forecasting performance between 1992/1993 for the DM/USD 

currency, and 1999/2000 for the IBM stock. They found that none of the sophisticated models 

performed any better than the standard GARCH model with normal error distribution for the 

DM/USD rate, while they found that models allowing for leverage effects could perform 

better for the IBM stock. 

 

More recently, Ghalanos (2013a) published an article on his webpage www.unstarched.net 

where instead of asking if any model could beat the standard GARCH(1,1), he asked if 

anything does NOT beat the GARCH(1,1). He used a range of tests to make a comparison of 
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different VaR models based on GARCH. The data used is the S&P500 index and the models 

are tested for one-day out of sample performance over 1500 days from 2007 to 2013. In his 

tests he found that the standard GARCH(1,1) was actually not hard to beat at all, in fact it was 

one of the worst performing models. He argues that the normality assumption of the standard 

GARCH(1,1) does not realistically capture the observed market movements. 

1.3 Purpose	
  

The main inspiration for this thesis has been drawn from the studies of Hansen and Lunde 

(2005) and Ghalanos (2013a). The purpose is to evaluate different VaR models on the OBX 

index return history, which is the main benchmark index on the Oslo Stock Exchange. Even if 

the studies presented above contradict each other to some extent, this could relate to 

differences in the assets that have been studied and the testing framework. Different assets 

have different price dynamics, and therefore it is likely that some models will perform better 

for certain assets and worse for others. With this in mind it is important to validate a risk 

model for the actual assets that it is supposed to be applied to. There are also very few studies 

done on Norwegian data that are freely available. This study will focus on the one-day 

forecasting performance of VaR models based on the non-parametric Historical Simulation 

method and the parametric Moving Average, Exponentially Weighted Moving Average and 

GARCH methods.  

1.4 Outline	
  

In the next chapter we will focus on the theory of financial returns and the most common 

characteristics that are present in financial returns. We will also identify these characteristics 

in the returns of the OBX index. The third chapter will cover volatility modeling and present 

the models that are used with their main properties. It will also cover in sample fit diagnostics 

for volatility models based on GARCH that is applied to our OBX index data. Chapter 4 gives 

the theory of VaR, how it is applied and the strengths and weaknesses of the VaR measure. 

Chapter 5 will cover the methodology that is used for evaluating the forecasting performance 

of VaR models with backtesting methods. The models are backtested over two time periods of 

the OBX index returns that have very different market dynamics. In chapter 6 we will discuss 

our empirical results. Finally, chapter 7 will present our most important findings and 

conclusions. 
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2 Data	
  description	
  and	
  return	
  characteristics	
  

2.1 Financial	
  returns	
  and	
  characteristics	
  

Most financial analyses involve returns rather than prices of assets. Campbell, Lo, and 

MacKinlay (1997) give two main reasons why this is the case: 

1. The return of an asset is a complete and scale-free summary of the investment 

opportunity. 

2. Return series of assets have more attractive statistical properties and are easier to 

handle than asset price series. 

 

There are several definitions of asset return, but we will use the continuously compounded 

returns in this thesis. One advantage of continuously compounded returns is that the return 

over a period of time is simply the sum of the single-period returns in the period. Handling of 

the time-series is also easier when using continuously compounded returns. The definition of 

continuously compounded return !! is: 

 

 !! = log
!!
!!!!

= log  !! − log  !!!! (2.1) 

 

where log is the natural logarithm and !! is the asset price series. 

 

Extensive research of financial returns has shown some stylized characteristics that are 

present in almost all financial return series: 

1. Non-normality 

2. Volatility clustering 

 

Non-normality 

The non-normality of financial return series has been known since Mandelbrot (1963) studied 

the price of cotton. Today financial return series are generally regarded to be leptokurtic, also 

known as positive excess kurtosis, which means that they have fatter tails and excess 

peakedness at the mean. The fat tails implies that the market has more large and small return 

outcomes than one would expect if the returns were truly normal distributed. Excess 

peakedness indicates that there are more days when little occurs in the market than indicated 

by the normal distribution. There is also a wide range of literature showing that financial 
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return distributions are not symmetric but are in fact skewed. Several studies have found that 

indices are usually negatively skewed and that individual assets are positively skewed, more 

recently studied by Albuquerque (2012). 

 

There are two main methods for identifying the non-normality of financial returns: Graphical 

methods and statistical tests. With statistical tests you compare the observed returns with a 

base distribution, usually the normal distribution. Graphical methods use values predicted 

from some distribution and compares it to the observed returns. A typical statistical test for 

identifying non-normality is the Jarque-Bera test (Jarque & Bera, 1987), where the skewness 

and excess kurtosis of the sample distribution is significantly different from zero is tested. 

The Jarque-Bera test statistic is defined as:  

 

 !" =
!
6 !"#$! +

(!"#$ − 3)!

4  (2.2) 

 

where the !"#$  and !"#$  is the sample skewness and sample kurtosis. Reject the null 

hypothesis of normality if: !" > !!,!! . 

 

A typical graphical method used to identify non-normality is the Quantile-Quantile plot. 

Unlike the Jarque-Bera test, which can only test for non-normality, the QQ plot can be used to 

assess if a dataset has any specific distribution. The QQ plot compares the quantiles of a 

reference distribution to the quantiles of the sample data. If the sample data and the reference 

distribution are distributed approximately the same, the sample data should lie on the 45-

degree reference line in the QQ plot. Plotting the observed returns in a histogram is also a 

common approach to check the distribution of the returns. If the returns are distributed 

according to a certain distribution, the histogram should follow the curve of the distribution. 

 

Volatility clustering 

The tendency that volatility in financial returns appears in bursts is called volatility clustering. 

High returns (positive or negative) are more likely to be followed by high returns, and low 

returns (positive or negative) are more likely to be followed by low returns. In other words the 

volatility tends to be high in some periods and low for other periods. For example in the mid 

1990s volatility was very low in most markets, but it increased in the last part of the decade 

due to among other things, the Asian crisis. Since Engle (1982) published his work on the 
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Autoregressive Conditional Heteroskedasticity (ARCH) model, the volatility clustering has 

been widely considered a feature observed in most financial return series. 

 

A standard graphical method to identify volatility clustering is the autocorrelation function 

(ACF). The ACF is used to measure how squared returns on one day are correlated with 

squared returns on the previous days. If the correlations are significant, we have strong 

evidence for volatility clustering in the data. The reason for studying squared returns is that 

they are proxies for volatility and are used in most volatility forecast models. The definition 

of ACF of squared returns: !!,! =
! !!!!!(!!! ) !!!!

! !!(!!!!
! )

!"#(!!!)
 where !!,!  is the ith 

autocorrelation. 

 

A statistical method to test for volatility clustering is the Ljung-Box test, which is built on the 

ACF. It tests for overall randomness based on a number of lags. Under the null hypothesis all 

autocorrelations for the lags included are zero. The Ljung-Box Q statistic is defined as: 

 

 ! = !(! + 2)
!!,!!

! − !

!

!!!

 (2.3) 

 

where ! is the number of lags included. Reject the null of no autocorrelation if: ! > !!,!! . 

2.2 OBX	
  return	
  characteristics	
  

We will now study the characteristics of the OBX index returns and identify the most 

important features that are present in financial time series. The complete historical data has 

been provided by the Oslo Stock Exchange and consists of the daily closing price from 

02.01.1996 to 31.01.2013. The OBX index is based on the 25 most traded securities listed on 

the Oslo Stock Exchange and is a tradable index with ETFs and options available. The index 

is free-float adjusted along with its compositions semiannually. Figure 2.1. plots the OBX 

closing price and log returns. Looking at the plots we easily identify the financial crisis in 

2008 with a sharp decline in the index value and very high volatility. We also see that there is 

a clear pattern of volatility clustering, as the volatility seems to appear in bursts. 
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Figure 2.1. OBX index closing price and log returns 02.01.1996 - 31.01.2013 

 

Table 2.1. OBX return statistics 02.01.1996 - 31.01.2013 

Mean 0.040 % 

Standard deviation 1.601 % 

Min -11.273 % 

Max 11.020 % 

Skewness -0.543 

Kurtosis 9.050 

ACF returns, one lag 0.004 

ACF squared returns, one lag 0.227 

Jarque-Bera test p = 0.000 

Ljung-Box test returns, 20 lags p = 0.018 

Ljung-Box test squared returns, 20 lags p = 0.000 

 

From Table 2.1. we see that the returns of the OBX index have a daily mean of 0.04% and a 

daily volatility of 1.60%. Thus the daily mean is only about one-fortieth of daily volatility. 

The minimum and maximum values lies far from what the normal distribution could predict 

and the kurtosis is also very high indicating that the returns are leptokurtic. We also notice 

that the distribution of returns is negatively skewed. This is confirmed by the Jarque-Bera test 

that rejects the null hypothesis that the returns are normally distributed. A graphical 

examination of the returns in Figure 2.2. also supports our findings. In the normal QQ-plot we 

immediately detect an S-shape of the sample data. This indicates that the sample data has 

heavier tails than the normal distribution. The leptokurtic feature of the data is easily detected 

in the histogram in Figure 2.2. as the data lie outside the normal curve in the tails and in the 
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center of the distribution. Taking all of the evidence presented above into consideration the 

returns of the OBX index is very unlikely to be normally distributed. 

 

  
Figure 2.2. OBX log returns normal QQ-plot and histogram 02.01.1996 - 31.01.2013 

 

  
Figure 2.3. OBX ACF of returns and squared returns 02.01.1996 - 31.01.2013 

 

From Table 2.1. we see that there is significant correlation between squared returns and 

lagged squared returns. The Ljung-Box test of no volatility clustering is also rejected. In 

Figure 2.3. the ACF of returns and squared returns are plotted. Most of the correlations of 

returns lie inside the confidence interval while all the correlations of squared returns lie 

outside the confidence interval. Overall we have found significant evidence that the OBX 

index has volatility clustering. 
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To evaluate the VaR models in this thesis we are testing the performance of the models in the 

period from 21.02.2005 to 11.02.2009 and the period from 12.02.2009 to 31.01.2013. The 

first period covers the financial crisis in 2008 and therefore represents market conditions that 

are extreme and is referred to as the crisis period. The second period is the period after the 

crisis period and represents market conditions that are more stable and is therefore referred to 

as the post crisis period. Table 2.2. prints some statistics from each period. 

 

Table 2.2. OBX return statistics crisis and post crisis 

Statistic Crisis Post crisis 

Mean -0.225 % 0.073 % 

Standard deviation 3.433 % 1.660 % 

Min -11.273 % -6.949 % 

Max 11.020 % 7.189 % 

Skewness -0.381 -0.171 

Kurtosis 4.710 4.587 

ACF returns, one lag 0.024 -0.053 

ACF squared returns, one lag 0.188 0.131 

Jarque-Bera test p = 0.000 p = 0.000 

Ljung-Box test returns, 20 lags p = 0.275 p = 0.305 

Ljung-Box test squared returns, 20 lags p = 0.000 p = 0.000 

 

In Table 2.2. we see that the mean return in the crisis period is extremely low at -0.225%. 

This relates to an average yearly return of −0.225% ∗ 250   =   −56.3%. The volatility is also 

very high at 3.433%, which implies that the average yearly volatility is 3.433% ∗ 250   =

  54.3%. If we do the same calculations for the post crisis period we get an average yearly 

return of 18.3% and an average yearly volatility of 26.2%. We also notice that both periods 

have non-normal return characteristics and that they are rejected by the Ljung-Box test for no 

volatility clustering. Finding a risk model that is able to capture the risk in both these periods 

is challenging since the market dynamics is very different. We will have to find a model that 

is able to quickly adapt to new market conditions. 
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3 Volatility	
  modeling	
  
One of the most important developments in empirical finance has been the modeling of 

volatility, and it has been one of the main subjects for academics and practitioners for the past 

two decades. The reason is that volatility is often used as a standard measure of risk for 

financial assets, and plays an important role in asset allocation under the mean-variance 

framework. Also the pricing of options heavily relies on volatility forecasts as the Black and 

Scholes formula uses volatility as one of its main inputs. In most VaR applications volatility 

models have to be calculated to estimate a risk forecast. 

 

The definition of volatility is the standard deviation of returns. A volatility forecast at time t, 

!!, is typically obtained from a statistical model, ! ∙ , that uses an estimation window, !!, 

which contains a sample of historical observations of returns. The volatility forecast at time t 

is: 

 

 !! = ! !!!!,!!!!, . . . ,!!!!!  (3.1) 

 

For the volatility models that are in the class of Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models the innovations in returns is driven by random shocks 

!!, which is an independent and identically distributed (IID) random variable with zero mean 

and unit variance. The return on day t is then defined as: 

 

 !! = !!!! (3.2) 

 

The distribution of !! is typically assumed to be normal, but it can also be changed to a 

distribution that will fit the data better. We will cover the Student-t distribution that will allow 

for higher kurtosis, and the skew Student-t distribution that will allow for higher kurtosis and 

more skewness than the standard normal process. 

 

A central feature of volatility is that it is not directly observable, which makes modeling 

difficult. Volatility has to be inferred from the observable market prices by looking at the 

price movements from day to day. The presence of non-normality and volatility clustering 

makes volatility modeling even harder. This has lead to the development of a rich family of 

volatility models with different advantages and weaknesses. We need to separate volatility 
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into two different concepts: Unconditional volatility and conditional volatility. Unconditional 

volatility is simply defined as the historical volatility. It is unconditional since it does not 

depend upon all the information that is available today and volatility forecasts will not change 

through time. Conditional volatility takes into account all the information that is available 

today. Since we know that volatility changes in time, and that financial return series have 

structures like volatility clustering, this can be used to improve forecasting. Conditional 

volatility models normally have an unconditional volatility, which the model will revert to as 

the forecasting horizon increases. This is a good feature for a volatility model, as it is 

generally known that volatility time series are mean reverting. 

 

To ensure that the unconditional volatility is defined we usually impose a covariance 

stationarity condition for conditional volatility models. If a volatility model is not covariance 

stationary it will have highly undesirable properties. For instance, if we try to forecast 

volatility with a non-stationary volatility model, the volatility forecast will explode as the 

forecast horizon is increased. Volatility can also never by definition be negative, and a 

negative volatility forecast would also make little sense. Therefore it is usually imposed a 

non-negativity constraint on conditional volatility models to ensure that all future volatility 

forecasts will be positive. 

 

We will assume that the mean return is zero. While this is obviously not precise, the daily 

mean is usually very close to zero, and compared to the daily volatility it is relatively 

insignificant. As presented in Table 2.1. the daily average  the return of the OBX index is only 

0.04% while the daily volatility is 1.6%. Therefore the mean can be safely ignored in most 

volatility forecast models without losing any significant forecasting power.  

 

In the next sections we will first introduce simple volatility models, and then introduce 

conditional volatility models where the parameters are estimated by using maximum 

likelihood.  

3.1 Moving	
  Average	
  

The easiest method to forecast volatility is to calculate the sample standard error from the 

return sample. We keep the sample size at the same level, and every day we add a new return 

to the sample we drop the oldest. This is the Moving Average (MA) model, also known as the 
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historical volatility. There are no parameters to estimate in the MA-model and it is also very 

simple to use and understand. The MA model is defined as: 

 

 !!! =
1
!!

!!!!!

!!

!!!

 (3.3) 

 

where !!! is the volatility forecast for day !, !! is the return on day ! and !! is the length of 

the estimation window. 

 

A limitation of the MA model is that all the observations are equal weighted, or in other 

words the first observation has equal impact on the volatility forecast as the last observation. 

Since we know that financial return series have volatility clustering and that the last 

observations will indicate if we are in a high or low volatility period, equal weighting is 

problematic. Consequently the MA model is very sensitive to the estimation window length. 

If the estimation window is too long, the volatility forecasts will be very sluggish. If the 

estimation window is too short, the volatility forecasts will jump around. 

3.2 EWMA	
  

A further development of the MA model is the Exponentially Weighted Moving Average 

(EWMA) model that was originally developed by J.P. Morgan (1993) and was given the name 

RiskMetrics. The model is based on the MA model but it assigns higher weights to the latest 

observations. The weights exponentially decline into the past. The EWMA is defined as: 

 

 !!! =
1− !

!(1− !!!) !!!!!!!

!!

!!!

 (3.4) 

 

which can be rewritten as the weighted sum of the previous period´s volatility forecast and 

squared returns: 

 

 !!! = (1− !)!!!!! + !!!!!!  (3.5) 
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The ! is known as the decay factor and is restricted to be between zero and one. The larger 

the decay factor is the smoother the volatility estimates will be. J.P. Morgan originally 

proposed that the decay factor should be set to 0.94 for daily returns. 

 

A disadvantage of the EWMA model is that the decay factor is a constant, and if we have 

multiple assets in a portfolio it has to be the same for all assets. It is unreasonable to assume 

that all assets have the same decay factor and that it is constant in time. Unlike the GARCH 

models presented later, the EWMA model does not revert to the unconditional volatility as the 

forecast horizon increases. But EWMA is simple and can be implemented very easily 

compared to more sophisticated models. An advantage of EWMA is that as long as the 

estimation window length is not very short, the model is indifferent to the estimation window 

length. The weighting of the observations will make sure that very distant observations will 

not have a significant impact on the forecasts. 

3.3 ARCH	
  

Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity (ARCH) model 

which was the beginning of a systematic framework for volatility modeling. This was the first 

model that was able to capture the volatility clustering typically observed in financial time 

series. The ARCH(p) model is defined as: 

 

 !!! = ! + !!!!!!!
!

!!!

 (3.6) 

 

where ! is the number of lagged squared returns included. ! and !! are the model parameters 

that have to be estimated. Setting ! = 1 results in the ARCH(1) model: 

 

 !!! = ! + !!!!!!!  (3.7) 

 

This states that the conditional volatility depends on a constant and one lagged squared return. 

It will therefore only pick up the dependence from the previous day squared return. The 

problem is that to capture all the dependence in the conditional volatility one would usually 

have to include a very high number of lags in the ARCH model. If we take a look at Figure 

2.3. we see that there is significant autocorrelations for all the 20 first squared returns. We 

would have to include at least 20 lagged squared returns in the model to capture all the 
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clustering in the OBX volatility. When more parameters are introduced the estimation will 

become trickier and the risk of estimating a negative volatility increases. The conditional 

volatility is changing, but the unconditional volatility is constant and is given by: !! =
!

!! !!
!
!!!

. To make sure that the unconditional volatility is defined we will impose a parameter 

restriction to ensure covariance stationarity. 

 

ARCH(p) parameter restrictions 

In the estimation of ARCH models usually it is imposed restrictions on the parameters: 

1. To ensure non-negative conditional volatility forecast: ∀  ! = 1, . . . ,!, !! ,! > 0 

2. To ensure covariance stationarity: !! < 1!
!!!  

3.4 GARCH	
  

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model was 

developed independently by Bollerslev (1986) and Taylor (1987) in the middle of the 1980s. 

It generalized the ARCH model by allowing the conditional volatility to be dependent upon 

its own lags. This resulted in the GARCH(p,q) model: 

 

 !!! = ! + !!!!!!!
!

!!!

+ !!!!!!!

!

!!!

 (3.8) 

 

where p is the number of lagged squared return included and q is the number of lagged 

volatilities included. !, !! and !! are the model parameters that have to be estimated. Setting 

p=1 and q=1 results in the GARCH(1,1): 

 

 !!! = ! + !!!!!!! + !!!!!!!  (3.9) 

 

The GARCH(1,1) has only three parameters but it can be shown that the model can be 

rewritten as an ARCH(∞). This allows the GARCH model to be influenced by an infinite 

number of past squared returns when estimating the conditional volatility. The GARCH 

model is a more parsimonious model than the ARCH model and therefore it is less likely to 

breach the non-negative constraint. The unconditional volatility for the GARCH(1,1) is: 

!! = !
!!!!!!!

. 
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GARCH(1,1) parameter restrictions  

As for the ARCH model there are two parameter restrictions imposed: 

1. To ensure non-negative conditional volatility forecast: !,!!,!! > 0 

2. To ensure covariance stationarity: !! + !! < 1 

3.5 EGARCH	
  

Standard GARCH models are able to capture volatility clustering and non-normal returns, but 

there are also other features that are typically found in financial time series. Black (1976) 

discovered, and later confirmed in many studies, that financial returns are likely to be 

negatively correlated with changes in volatility. That is, a negative shock to a financial return 

series is likely to increase volatility more than a positive shock of the same magnitude. This 

has been called the leverage effect since one explanation of its existence is that when a 

leveraged firms stock price fall, its debt to equity ratio increases. When the debt to equity 

ratio increases, the shareholders, who bear the residual risk of the firm, view their future cash 

flows to be more risky.  

 

The Exponential GARCH (EGARCH) model was developed by Nelson (1991) and is a 

popular model that is able to incorporate the asymmetries in how volatility reacts to past 

returns. The general EGARCH(p,q) can be written as: 

 

 log(!!!) = ! + (!!!!!! + !!( !!!! − E !!!!

!

!!!

))+ !!log(!!!!! )
!

!!!

 (3.10) 

 

Setting ! = 1 and ! = 1 results in the EGARCH(1,1) model: 

 

 log(!!!) = ! + !!!!!! + !!( !!!! − E !!!! )+ !!log(!!!!! ) (3.11) 

 

where !! is the parameter that picks up the size effect of the asymmetries and !! picks up the 

sign effect.  

 

An advantage of the EGARCH model compared to the standard GARCH model is that since 

it is the logarithm of the conditional volatility that is modeled, there is no need to impose non-

negativity constraints because even if the parameters are negative the conditional volatility 

will still be positive. EGARCH is also attractive since it is closely related to continuous time 
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finance. As shown by Ghalanos (2013b) the unconditional volatility of EGARCH(1,1) is: 

!! = !
!!!!

. 

 

EGARCH(1,1) parameter restrictions 

The conditions for covariance stationarity was shown by Nelson (1991). The parameter 

restrictions are: 

1. There is no need to impose any restrictions to ensure non-negative volatility forecast. 

2. Covariance stationary if: !! < 1 

 

Engle and Ng (1993) proposed the sign and size bias tests for asymmetries in volatility. The 

tests are used to check if a symmetric model is adequate or if an asymmetric model is 

required. The sign and size bias test is a joint test that tests for sign bias, where positive and 

negative shocks have different impacts upon future volatility, and also size bias that tests if 

the magnitude of the shocks are important. The Engle and Ng sign and size bias test is usually 

applied to the standardized residuals of a GARCH model. The test is based on the regression: 

 

 !!! = !! + !!!!!!!!! + !!!!!!!!!!!!! + !!!!!!!!!!!!! + !! (3.12) 

 

where !! is an IID error term and ! is the indicator function. If !! is significant, it indicates 

that there is sign bias. If !! or !! is significant, it indicates that there is size bias. Under the 

null hypothesis of no asymmetries in volatility the joint test statistic is !!!, where ! is the 

number of observations and !! is the coefficient of determination from the regression. The 

test statistic will follow a !! distribution with 3 degrees of freedom. Table 3.1. shows the sign 

and size bias test on the OBX returns. The tests show that there are significant asymmetries in 

the whole sample and the post crisis period. But in the crisis period there little evidence for 

asymmetries. This could indicate that an asymmetric model is not needed to capture the risk 

in the crisis period. 

 

Table 3.1. OBX returns sign and size bias test 

Statistic Whole sample Crisis Post crisis 

Engle and Ng sign and size bias test p = 0.013 p = 0.733 p = 0.008 
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A graphical representation of the leverage effect is the news impact curve introduced by 

Pagan and Schwert (1990). The news impact curve plots the next day volatility that will arise 

from the return today given a specific volatility model. We have fitted the standard 

GARCH(1,1) and the EGARCH(1,1) to the whole sample and plotted two news impact curves 

of the models in Figure 3.1. From the plots we see that the symmetric GARCH model gives 

the same volatility forecast for a return of a given magnitude whatever its sign. In contrast, the 

asymmetric model will give a higher volatility forecast if the return is negative than if it is 

positive of the same magnitude. 

 

  
Figure 3.1. OBX News impact curves GARCH(1,1) and EGARCH(1,1) whole sample 

3.6 gjrGARCH	
  

A similar model to the EGARCH model is the gjrGARCH model that is also able to capture 

asymmetries in volatilty. It was developed by Glosten, Jagannathan, and Runkle (1993). The 

gjrGARCH is an extension of the standard GARCH model with an extra term added to model 

any asymmetries. The added term has an indicator function that takes the value 1 if the return 

is less or equal to zero. The general gjrGARCH(p,q) model can be written as: 

 

 !!! = ! + (!!!!!!! + !!!!!!!!!!! )
!

!!!

+ !!!!!!!

!

!!!

 (3.13) 

 

Setting ! = 1 and ! = 1  results in the gjrGARCH(1,1): 

 

 !!! = ! + !!!!!!! + !!!!!!!!!!! + !!!!!!!  (3.14) 
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where !!!! = 1 if !!!! is negative. Otherwise !!!! = 0. As shown by Glosten et al. (1993) the 

unconditional volatility of gjrGARCH(1,1) is: !! = !
!!!!!!!!!.!!!

. 

 

gjrGARCH(1,1) parameter restrictions 

The non-negativity and covariance has been shown by Glosten et al. (1993). 

1. Non-negativity constraint: !,!! > 0  ,!! ≥ 0  !"#  !! + !! ≥ 0 

2. Covariance stationary if: !! < 2(1− !! − !!) 

3.7 APARCH	
  

Taylor (1986) revealed that the ACF of absolute returns usually have stronger 

autocorrelations than for squared returns. This has been found in a large number of financial 

time series and was named the Taylor effect. Ding, Granger, and Engle (1993) later 

discovered that for different financial time series power transformations of absolute returns 

could give even higher autocorrelations. Generally any transformation of the absolute returns 

that lead to stronger autocorrelations is known as power effects. When forecasting volatility it 

is rational to include any transformation of returns that will increase the predictability of the 

model. 

 

The Asymmetric Power ARCH (APARCH) model was developed Ding et al. (1993). 

APARCH is able to capture asymmetries, power effects and other structures in the data. The 

APARCH model is a sophisticated model that nests a wide range of other GARCH models. 

The general APARCH(p,q) model can be written as: 

 

 !!! = ! + !!( !!!! − !!!!!!)!
!

!!!

+ !!!!!!!

!

!!!

 (3.15) 

 

Setting ! = 1 and ! = 1 results in the APARCH(1,1): 

 !!! = ! + !!( !!!! − !!!!!!)! + !!!!!!!  (3.16) 
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The model fits asymmetries when !! ≠ 0 and power effects when ! ≠ 2. Ding et al. (1993) 

showed that the unconditional volatility of gjrGARCH(1,1) is: !! = !
!!!!!!!!( ! !!!!)!

!/!
. 

For further derivation of E( ! − !!!)! refer to Ding et al. (1993). 

 

apARCH(1,1) parameter restrictions 

1. Non-negativity constraint: ! > 0, ! ≥ 0,!! ≥ 0,!! ≥ 0  !"#  − 1 < !! < 1 

2. Covariance stationary if: !!E( ! − !!!)! + !! < 1 

 

In Figure 3.2. we have plotted two ACF of squared returns and absolute returns. It is difficult 

to identify if there is any Taylor effect from the plots. By estimating the normal 

APARCH(1,1) model ! parameter along with its standard error on the OBX returns we found 

that the parameter is significant and is very unlikely to be equal to 2 for the whole sample and 

the post crisis period. But for the crisis period the parameter is rejected for significance. In 

other words there seems to be power effects in the whole sample and the post-crisis. Table 

3.2. lists the parameters and standard errors. 

 

  
Figure 3.2. OBX ACF squared returns and absolute returns 

 

Table 3.2. OBX normal APARCH(1,1) ! parameter estimation 

Statistic Whole sample Crisis Post crisis 

! parameter 1.137 0.663 1.252 

Standard error 0.153 0.484 0.254 
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3.8 Error	
  distributions	
  

The random shocks !! can be modeled in different ways to make the GARCH models fit the 

data better. Extreme outcomes can be systematically underestimated if the GARCH models 

fail to capture the fat tails and skewness that are typically seen in financial return series. !! is 

usually assumed to be normal, but other distributions like the Student-t and skew Student-t 

distributions are also used. Even though a GARCH model with a normal error distribution can 

accommodate for return series that have fat tails and skewness, it is often the case that the 

observed returns has fatter tails and more skewness than the normal process allows for. 

Changing the normal error distribution to a Student-t or a skew Student-t distribution can help 

to improve the fit of the models and possibly offset the difficulty and cost of estimating 

additional parameters. 

 

Normal distribution 

The Normal distribution was originally used by Engle (1982) in the ARCH model for the 

error process !!~! 0,1 . The normal distribution is defined as: 

 

 !(!!; !,!!) =
1
2!!!

!"# −
1
2
(!! − !)!

!!  (3.17) 

 

Any normal distribution can be rewritten as the standardized normal distribution scaled by the 

standard deviation, !! =
!!
!!

. The standardized normal distribution is defined as: 

 

 ! !!; !,!! =
1
!

!"# − 12 !!
!

2!
=
1
! !(!!) 

(3.18) 

 

 

Student-t distribution 

Since it was observed that the normal GARCH usually had too thin tails for financial data, 

Bollerslev (1987) proposed the Student-t distribution for the error distribution to improve the 

GARCH model. !!~!∗ 0,1, ! . The standardized Student-t distribution with zero mean and 

unit variance: 
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 !(!!; !) =
Γ((v+ 1)/2)

Γ(v/2) !(! − 2)
1+

!!!

! − 2

!(!!!)/!

 (3.19) 

 

where Γ(∙) is the gamma distribution and ! is the shape parameter. ! has to be larger than 2 

and as ! → ∞ we get back to the normal distribution. The lower ! is the fatter the tails 

become. 

 

Skew Student-t distribution 

Fernández and Steel (1998) proposed an extension to the Student-t distribution to account for 

more skewness by adding a skewness parameter. Lambert and Laurent (2000, 2001) extended 

the work by Fernández and Steel (1998) to the GARCH framework by expressing the mean 

and variance of the density such that error process has zero mean and unit variance. 

!!~!"∗ 0,1, !, ! . The standardized skew Student-t distribution with zero mean and unit 

variance: 

 

 

!(!!; !, !) =

2
! + !

!
!" !(!!! +!); !                     !"  !! < −

!
!

2
! + !

!
!" (!!! +!)/!; !                     !"  !! ≥ −

!
!

 

! =
Γ !!!

! !!!

!Γ !
!

! −
1
!       and        !! = !! +

1
!! − 1 −!! 

(3.20) 

 

where !(∙  ; !) is the Student-t density and ! is the asymmetry parameter. ! and !! are the 

mean and the variance of the non-standardized skewed Student-t. Setting the asymmetry 

parameter to 1 will give the symmetric Student-t density. The asymmetry parameter ! > 0 is 

defined such that the ratio of probability masses above and below the mean is: !(!!! !)
!(!!! !)

= !! 

3.9 Estimation	
  of	
  GARCH	
  models	
  

The non-linear nature of volatility models makes estimation by linear regression methods not 

possible. There are many feasible methods available, but the common estimation method is by 

maximum likelihood. It uses the idea that if we have a sample of data and an assumption of 

the distribution of the data, maximum likelihood assigns the most probable parameters given 

our sample data by maximizing the likelihood function. 
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If we have an IID random variable following a parametric distribution with density !(∙). We 

then draw a sample of size T from this distribution, we get ! = !!, !!, !!, . . . , !! . The joint 

density of drawing this exact sample given the parameters is: !(!) = !(!!)!(!!). . . !(!!). 

But in our application we want to estimate the parameters given our data. We define the 

likelihood function ℒ(!; !)  where !  is the parameters and z is our sample: ℒ(!; !) =

!(!!;!)!
!!! . Estimates of the parameters are then obtained by maximizing the likelihood 

function. Usually it is much easier to work with the log likelihood function because it is a sum 

rather than a product. The likelihood function is a monotonically increasing function, thus 

maximizing the log likelihood function will produce the same result as maximizing the 

likelihood function. The parameter estimates are defined as: 

 

 !!" = arg  max!   ℒ(!; !)   = arg  max!   !"#   !(!!;!)
!

!!!

 (3.21) 

 

The normal likelihood function 

For a T sample of IID observations, the normal likelihood function can be derived as: 

 

 

ℒ !;!! = !(!!;!)
!

!!!

=
1
! !(!!)

!

!!!

 

=
1
!
!"#(−!

!!!
!)

2!

!

!!!

 

 

 

Obtaining the log likelihood: 

 

 

logℒ(!;!!) = log
1
! −

1
2 !!

! −
1
2 log(2!)

!

!!!

 

                                                              = −
1
2 log!

! −
1
2 !!

! −
1
2 log(2!)

!

!!!

 

                                            = −
1
2 log!! + !!! + log(2!)

!

!!!
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The constants can be dropped since they will not have any impact on the estimation: 

 

 logℒ(!;!!) = −
1
2 log!! + !!!

!

!!!

= −
1
2 log!! +

!!!

!!

!

!!!

 (3.22) 

 

To get the likelihood functions for the different GARCH models, simply replace the 

conditional volatility in the log likelihood function with the GARCH conditional volatility. 

For example, the normal GARCH(1,1) log likelihood function is: 

 

 logℒ(!;!!) = −
1
2 log(ω+!!!!!!! + !!!!!!! )+

!!!

ω+!!!!!!! + !!!!!!!

!

!!!

 (3.23) 

 

The Student-t likelihood function 

The Student-t likelihood function can be derived in a similar way as for the normal 

distribution. The Student-t log likelihood function is: 

 

 

logℒ θ;!! = ! logΓ
! + 1
2 − log

!
2 −

1
2 log ! ! − 2 − 

                                                                            
1
2 log(!!!)+ (1+ !)log 1+

!!!

! − 2

!

!!!

 

(3.24) 

 

The skew Student-t likelihood function 

The skew Student-t likelihood function was derived by Lambert and Laurent (2001). The log 

likelihood function of the skew Student-t density is: 

 

 

logℒ θ;!! = !logΓ
! + 1
2 − log

!
2 −

1
2 log ! ! − 2 + log

2
! + 1 !  

                                      +log(s))−
1
2 log(!!!)+ (1+ !)log 1+

(!!! +!)!

! − 2 !!!!!
!

!!!

 

 

 

(3.25) 
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!! =
1, !! ≥ −

!
!

−1, !! < −
!
!

    ,   

! =
Γ !!!

! !!!

!Γ !
!

! −
1
!       and      !! = !! +

1
!! − 1 −!! 

 

3.10 Maximum	
  likelihood	
  estimation	
  

In practice it is very difficult, time consuming and sometimes impossible to obtain analytical 

solutions to maximum likelihood functions. Therefore computer algorithms called solvers or 

optimizers are generally used to estimate the parameters. When using an iterative algorithm it 

is not always the case that it will produce a sequence that converges to a solution. This can be 

due to the solution being too far from the starting values, causing the solver to need a lot of 

time to converge. Instead of trying to converge, the computer software gives up after a 

number of iterations. Finding the optimal solution can also be difficult as some maximum 

likelihood functions have multiple maxima. If the solver stops at a local maximum, the 

solution that has been estimated is not the optimal solution. 

 

For simple GARCH models it is very rare to encounter the problems discussed above, but for 

more complicated models such as the APARCH model estimation issues are more likely. The 

more parameters a model has, the higher the risk for estimation issues. Standard techniques to 

reduce the risk of estimation issues are: 

• Increasing the data set 

• Setting randomly starting values 

• Trying other solvers 

• Specifying a simpler model with less parameters 

 

This thesis utilizes an open source software package called R, which is an increasingly 

popular programming language used especially for data analysis. R provides a wide variety of 

statistical and graphical techniques and is also easily extended by the use of software 

packages from the R community. We use the "rugarch" package developed by Alexios 

Ghalanos, which is a powerful package for modeling univariate GARCH models. The 

package currently supports five solvers: "solnp", "gosolnp", "nlminb", "L-BGFS-U" and 

"nlopt". All the different solvers have their advantages and disadvantages, so if a model does 
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not converge it could possibly converge if a different solver is used. The "rugarch" package 

also has a "hybrid" solver that automatically rotates among the solvers if it encounters a non-

converged model. See reference manual or vignette for detailed information about the 

"rugarch" package and solvers. (Ghalanos, 2013c) 

3.11 Model	
  selection	
  and	
  tests	
  

There are several methods to evaluate the fit of a GARCH volatility model. But the model 

selection should be done on the basis of what the intended use of the model is. If the intended 

use is to forecast volatility, the model should be selected by considering the out of sample 

forecasting performance. Even though a model is significantly better fitted in sample, it does 

not necessarily perform better out of sample than another model. Actually it is often the case 

that a more parsimonious model will outperform a more flexible model out of sample, even if 

the flexible model is significantly better in sample.  

 

For in sample fit diagnostics there are several statistical methods available to evaluate the fit 

of a model. The first step is to check if the parameters of the estimated model are significant 

or not and then the residuals of the model can be analyzed. To choose among different models 

we can use likelihood ratio tests or information criteria to evaluate which GARCH model fit 

the data the best. 

 

Analysis of residuals 

If a GARCH model is correct, the residuals of the model should be IID and distributed 

according to the assumed conditional distribution. The fitted residuals are: !! =
!!
!!

. To check 

how well the model captures the data, the residuals can be tested if they are IID and follow 

the assumed conditional distribution. If we want to test if the residuals are IID we can use the 

Ljung-Box test and plot the ACF of residuals and squared residuals. We can test if the 

conditional distribution assumption is correct by checking if the moments of the distribution 

of residuals are according to the assumed process and by plotting QQ-plots of the residuals. 

 

Likelihood ratio tests 

A common approach to statistically test if a model fits the data better than another model is to 

use a likelihood ratio (LR) test. The test involves estimating two models, one restricted and 

one unrestricted. The maximized values of the log likelihood functions are then used to 

compare the two models. In theory, the unrestricted model will always have a greater 
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maximized log likelihood function than the restricted model. The question is whether the 

difference in log likelihood is great enough to offset the error induced into the unrestricted 

model by having more parameters. Under the null hypothesis the unrestricted model is not 

significantly better than the restricted model. The test statistic asymptotically follows a Chi-

squared distribution where ! is the number of restricted parameters. The test statistic is 

defined as: 

 

 !" = 2(logℒ! − logℒ!)  ~  !!!  (3.26) 

 

where logℒ! is the loglikelihood of the unrestricted model and logℒ! is the loglikelihood of 

the restricted model.  If !" >   !!,!!   ⇒ Reject  the  null. A problem with the LR test is that the 

models tested have to be nested models. A model is nested in another model if we can obtain 

the nested model by restricting one or more of the parameters in the unrestricted model. For 

example the ARCH(1) model is nested in the GARCH(1,1) since we can obtain the ARCH(1) 

model by setting !! = 0 in the GARCH(1,1) model. Actually the APARCH model nests the 

ARCH, GARCH and gjrGARCH, but not the EGARCH model. So we cannot use the LR test 

to check if the fit of an APARCH model is significantly better than the fit of an EGARCH 

model. 

 

Information criterion 

A more general approach to compare the fit of GARCH models is to use information 

criterion. There are several information criteria available which are all based on likelihood. 

An advantage of these criteria is that they do not depend on nested models. The first 

information criterion was the Akaike Information Criterion (AIC) developed by Akaike 

(1974). The AIC is defined as: 

 

 !"# = −
2logℒ
! +

2!
!  (3.27) 

 

The first part of the equation measures the goodness of fit of the model to the data, and the 

second part penalizes the model by the number of parameters used. The second part is known 

as the penalty function and varies for different information criteria. Another information 

criterion function is the Schwarz-Bayesian Information Criterion (BIC) developed by 

Schwarz (1978).The BIC is defined as: 
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 !"# = −
2logℒ
! +

! ∗ log(T)
!  (3.28) 

 

The BIC penalizes the number of parameters used to a higher degree than AIC when the 

sample size is not small. This is due to the penalty for each parameter used in BIC is log(T) 

and 2 for AIC. Burnham and Anderson (2002) argue that AIC has theoretically advantages 

over BIC, but there is no evidence that AIC outperforms BIC in a real application. 

3.12 OBX	
  fit	
  diagnostics	
  
As previously discussed we will have to fit the volatility models in sample to be able to 

forecast the volatility one-day out of sample. The models will later be evaluated for out of 

sample performance in the crisis period and the post crisis period. This means that the first 

estimation windows of the models will be in the time frame before the crisis and the post 

crisis. Table 3.4. presents likelihood ratio tests of the first estimation window to the crisis 

period. We see that all the models that are nested in the skew Student-t APARCH are rejected, 

in other words the model is significantly better fitted than all the nested models. Looking at 

the information criterion results in Table 3.5. we see that the the AIC chooses the skew 

Student-t APARCH model and the BIC chooses the EGARCH model. This is because the 

BIC penalizes the number of parameters used higher and therefore chooses the APARCH. 

From these results we are not able to conclude if the skew Student-t APARCH or the skew 

Student-t EGARCH model has the better fit in the first estimation window before the crisis. 

 

Table 3.4. LR tests unrestricted skew Student-t APARCH(1,1) 02.01.1996 - 21.02.2005 

Restricted model LR statistic Restrictions p-value 

normal GARCH(1,1) 91,1 4 0,000 

Student-t GARCH(1,1) 38,4 3 0,000 

skew Student-t GARCH(1,1) 19,5 2 0,000 

normal gjrGARCH(1,1) 70,6 3 0,000 

Student-t gjrGARCH(1,1) 22,7 2 0,000 

skew Student-t gjrGARCH(1,1) 7,8 1 0,005 

normal APARCH(1,1) 56,9 2 0,000 

Student-t APARCH(1,1) 12,7 1 0,000 
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Table 3.5. Information criterion & likelihood 02.01.1996 - 21.02.2005 

Model Conditional dist. AIC BIC Loglikelihood 

GARCH(1,1) Normal -6.1094 -6.1019 6995.193 

GARCH(1,1) Student-t -6.1315 -6.1215 7021.534 

GARCH(1,1) Skew Student-t -6.1389 -6.1264 7031.005 

gjrGARCH(1,1) Normal -6.1175 -6.1075 7005.456 

gjrGARCH(1,1) Student-t -6.1375 -6.1250 7029.39 

gjrGARCH(1,1) Skew Student-t -6.1431 -6.1281 7036.831 

EGARCH(1,1) Normal -6.1199 -6.1098 7008.172 

EGARCH(1,1) Student-t -6.1388 -6.1262 7030.811 

EGARCH(1,1) Skew Student-t -6.1437 -6.1287 7037.454 

APARCH(1,1) Normal -6.1226 -6.1101 7012.307 

APARCH(1,1) Student-t -6.1410 -6.1260 7034.391 

APARCH(1,1)* Skew Student-t -6.1457 -6.1282 7040.747 

 

Table 3.6. lists the likelihood ratio tests from the first estimation window leading up to the 

post crisis period. We get the same results as for the first estimation window to the crisis 

period. The skew Student-t APARCH model has the best fit and all the nested models are 

rejected. The information criterion results are listed in Table 3.7. and both the AIC and the 

BIC chooses the skew Student-t APARCH as the best fit.  

 

Overall the best fitted model is the skew Student-t APARCH model. It will be interesting to 

see if the models also perform well out of sample. Even though the model have superior in 

sample fit the models could perform worse than the other models out of sample. The tests also 

only give a measure of the fit at one point in time. When the model is used for forecasting the 

estimation window will change and cover different market conditions, which could make 

other models perform better. 

 

 

 
                                                
* During fitting of the skew Student-t APARCH(1,1) model we had some estimation problems that resulted in a 

local maximum solution with lower loglikelihood value than for nested models. Changing the starting value of 

the ! parameter solved this problem. 

 



 34 

Table 3.6. LR tests unrestricted skew Student-t APARCH(1,1) 02.01.1996 - 12.02.2009 

Restricted model LR statistic Restrictions p-value 

normal GARCH(1,1) 126,9 4 0,000 

Student-t GARCH(1,1) 80,8 3 0,000 

skew Student-t GARCH(1,1) 40,1 2 0,000 

normal gjrGARCH(1,1) 77,1 3 0,000 

Student-t gjrGARCH(1,1) 41,9 2 0,000 

skew Student-t gjrGARCH(1,1) 9,2 1 0,002 

normal APARCH(1,1) 66,6 2 0,000 

Student-t APARCH(1,1) 31,8 1 0,000 

 

Table 3.7. Information criterion & likelihood 02.01.1996 - 12.02.2009 

Model Conditional dist. AIC BIC Loglikelihood 

GARCH(1,1) Normal -5.9127 -5.9071 9726.369 

GARCH(1,1) Student-t -5.9261 -5.9187 9749.435 

GARCH(1,1) Skew Student-t -5.9378 -5.9286 9769.792 

gjrGARCH(1,1) Normal -5.9272 -5.9198 9751.306 

gjrGARCH(1,1) Student-t -5.9373 -5.9280 9768.896 

gjrGARCH(1,1) Skew Student-t -5.9466 -5.9355 9785.24 

EGARCH(1,1) Normal -5.9239 -5.9165 9745.923 

EGARCH(1,1) Student-t -5.9348 -5.9256 9764.831 

EGARCH(1,1) Skew Student-t -5.9439 -5.9328 9780.724 

APARCH(1,1) Normal -5.9298 -5.9205 9756.558 

APARCH(1,1) Student-t -5.9398 -5.9286 9773.958 

APARCH(1,1) Skew Student-t -5.9488 -5.9358 9789.834 
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4 VaR	
  
Value-at-Risk is a single statistical measure that tries to capture the risk of a loss on a trading 

portfolio as a result of typical market movements. Although there are many different 

approaches and no general consensus on how it should be calculated, the definition of VaR is 

generally quite similar in the financial literature. Jorion (2001, p. 22) defines VaR as: 

 

"VaR summarizes the worst loss over a target horizon with a given level of confidence." 

 

VaR is a quantile on the distribution of profit and loss. We indicate the profit/loss by a 

random variable Q and with a particular realization indicated by q. ! = !! − !!!!. More 

generally the profit/loss of a portfolio is: ! = !". Where ! is the portfolio value multiplied 

by the returns Y. The density of Q is denoted by !!(∙). VaR is then defined as: 

 

 ! = !!(!)!"

!!"#(!)

!!

 (4.1) 

 

Since VaR is a positive number we use -VaR(p) when we integrate the density of the 

profit/loss function. Figure 4.1. shows the VaR(1%) and VaR(5%) of a standard normal 

profit/loss function. 

 

 
Figure 4.1. Standard normal profit/loss density and VaR 
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There are three main steps in VaR calculation: 

1. Setting the probability p of losses exceeding VaR 

2. Specifying the holding period 

3. Identifying the probability distribution of the profit/loss function 

 

The choice of probability ! of losses exceeding VaR needs to be specified. The 1% and the 

5% level are the most commonly used probability levels, but other levels are used for some 

applications. For instance, long-run risk analysis for pension funds may apply VaR 

calculations with even lover probability levels than the 1% level. 

 

The time period over which losses are calculated is the holding period. In VaR calculation it 

is usually done at the one-day holding period, but it can be calculated for longer or shorter 

periods of time depending on the investment horizon. For example active investors like day 

traders have limited use of one-day VaR calculations as their portfolio might be liquidized by 

the end of the trading day. For these investors intraday VaR calculated from hour to hour 

makes more sense. Dowd (2005) suggests that an investor should use a holding period that 

equals the time needed to liquidize the portfolio. 

 

The last step is to identify the probability distribution of the profit/loss function. Due to its 

simplicity and ease of use, the normal distribution is the most commonly used. The 

justification of using the normality assumption is the central limit theorem, but the theorem 

only applies to quantities and probabilities in the central mass of the density function. When 

dealing with VaR we are usually trying to calculate outcomes in the lower tail of the 

profit/loss function, thus the central limit theorem assumption makes little sense in this 

application. Another common distribution that is used is the Student-t distribution that has 

fatter tails and excess kurtosis. To accommodate for skewness in the distribution the skew 

Student-t distribution can be used. 

 

VaR has many attractions as a risk measure. Dowd (2005) provides several important 

attractions that VaR has over traditional risk measures: 

1. Provides a common consistent measure of risk across positions and risk factors. 

2. Allows us to aggregate the risk of subpositions to an overall measure. 

3. A holistic measure that takes full account of all risk factors. 
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4. A probabilistic measure that gives useful information on the probability of losing a 

certain amount. 

5. Expressed as a simple and easily understood measure in terms a monetary value. 

 

In the next sections we will show how VaR can be calculated by the non-parametric historical 

Simulation method and the parametric methods with conditional volatility. 

4.1 Non-­‐parametric	
  approach	
  

Historical Simulation (HS) is a non-parametric approach to VaR, and is considered the 

simplest method to estimate. It assumes that past price movements will continue into the 

future and that history will repeat itself. The VaR is computed by using the percentile of the 

empirical distribution corresponding to the chosen confidence level.  

 

VaR at probability ! is the negative (! ∗ !)th value of the sorted return vector. To get the 

VaR of a portfolio simply multiply with the portfolio value. 

 

In the simplest form each historical portfolio return is weighted the same, which makes it 

sluggish in adapting to structural changes in the volatility. But in the absence of structural 

changes the historical simulation method performs quite well compared to other methods. 

This is because it is less sensitive to outliers in the latest observations and it is has less 

estimation error than the parametric models. The number of observations included in the 

empirical distribution is the window size. The size is essential as it will have a big impact on 

the estimation. If the window size is small, the impact of the latest observations will be 

higher, resulting in greater movements in the historical simulation. Daníelsson (2011) 

recommends that the window size should be at least 3/!. If we want to calculate VaR for a 

probability level 0.01 we will need at least 300 observations, which is slightly above one 

trading year. 

 

The main advantage of historical simulation is that we do not have to make any assumptions 

of the distribution of returns. Although parametric models can also incorporate the known 

heavy tails and skewed distribution for returns, fitting the parameters can be very difficult. HS 

also uses the observed data directly and is therefore not subject to estimation error. HS is 

straightforward to understand, not only by risk managers but also for people without in depth 

knowledge of risk management. It is easy to calculate, the only thing required is the portfolio 



 38 

return time series. There is no need to calculate parameters such as variance and covariance. 

This makes it simple to implement in any business or organizational set up. 

 

Maybe the most severe shortcoming of HS is that it assumes that the future will be like the 

past, and that the financial return series holds all the possible outcomes of the future risk. This 

results in a sluggish performance when market conditions change. The lacking ability to pick 

up on sudden changes in market risk is problematic and leads to underestimation of VaR 

when market risk increases and overestimation of VaR when market risk decreases.  

4.2 Parametric	
  approach	
  

Parametric approaches to VaR are based on estimating the underlying distribution of returns 

and then obtain risk forecasts from the estimated models. In the multivariate case the first step 

is usually to forecast the covariance matrix, hence the parametric approach is often referred to 

as the variance-covariance method. Since the parametric method is based on estimating some 

distribution of the return data to obtain a VaR forecast, estimation error becomes a problem. 

The more parameters a model has the more complexity is added and model risk also becomes 

a concern.  

 

We will cover some of the typical volatility models used to forecast parametric VaR, which 

are the MA, EWMA and GARCH models that have previously been described. We will also 

use different error distributions for the GARCH models such as the normal distribution, 

Student-t distribution and the skew Student-t distribution. 

4.2.1 VaR	
  for	
  continuously	
  compounded	
  returns	
  

If we use continuously compounded returns then: 

 

 

! = Pr !! − !!!! ≤ −!"# !   

                        = Pr !!!!(!!! − 1) ≤ −!"# !  

                        = Pr !!!!(!!! − 1) ≤ −!"# !  

                =  Pr
!!
! ≤ −

!"#(!)
!!!!

+ 1
1
!  

 

 

Since the distribution of standardized residuals (!! !)  can be denoted by !(∙), 

−!"#(!) !!!! ≤ 1 and significance level !(!) = !!!!(!), we have:  
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 !"# = −(!!!!!(!)! − 1)!!!!  

 

The VaR for holding one unit of asset with price 1, when !!!!(!)! is small, is then given by:  

 

 !"#(!) = −!"(!) (4.2) 

 

4.2.2 VaR	
  with	
  normal	
  error	
  distribution	
  

The error distribution was not specified above. If we assume that the errors are normally 

distributed and Φ(⋅) is the standardized normal distribution. The VaR is then easily calculated 

as:  

 

 !"#(!) = −!"(!) = −!Φ!!(!) (4.3) 

 

where ! is the next day volatility forecast and Φ!!(!) is the quantile of the standardized 

normal distribution. If we want to calculate the 1% VaR then p=0.01 and the VaR is: 

!"#(1%) = −!Φ!!(0.01) = 2.3264! 

 

The normal distribution has zero skewness, zero excess kurtosis and thin tails. Even if the 

error distribution is normally distributed, the GARCH model will still be able to model the 

actual returns to have heavy tails, excess kurtosis and skewness. However, with a normal 

error distribution the return distribution is still often unable to fully accommodate for the 

heavy tails, excess kurtosis and skewness that are typically seen in financial return series. 

Changing the error distribution to be Student-t or skew Student-t distributed can help to make 

the GARCH models to fit the return series better. 

4.2.3 VaR	
  with	
  Student-­‐t	
  error	
  distribution	
  

If we assume that the errors are Student-t distributed and !∗ ⋅  is the standardized Student-t 

distribution. The VaR is then calculated as: 

 

 

!"# !, ! = −!" !, ! = −!!∗ !, !  

!∗ !, ! =
! !, !

!
! − 2

                                                                       (4.4) 
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where ! is the forecast of the next day volatility and !∗ !, !  is the standardized Student-t 

quantile. For example if p=0.01 and v=4, then the VaR is:  

!"#(1%) = −! ∗
! 0.01,4

4
4− 2

= −! ∗
−3.746947

2
= 2.6495! 

 

The Student-t distribution converges to the normal distribution as the degrees of freedom gets 

larger. Therefore, allowing for Student-t distributed errors can be seen as a generalization of 

the normal process which at the same time allows for fatter tails and excess kurtosis when it is 

needed. But the Student-t distribution still has zero skewness. If we need a process that allows 

for more skewness, we can use the skew Student-t distribution. 

4.2.4 VaR	
  with	
  skew	
  Student-­‐t	
  error	
  distribution	
  

Assuming that the errors are skew Student-t distributed and !"∗ ⋅  is the standardized skew 

Student-t distribution, the VaR is then calculated as: 

 

 

!"# !, !, ! = −!" !, !, ! = −! ∗ !"∗ !, !, !  

 

!"∗ !, !, ! =
!" !, !, ! −!

!   ,                                                           

! =
Γ !!!

! !!!

!Γ !
!

! −
1
!       !"#      !! = !! +

1
!! − 1 −!! 

(4.5) 

 

where ! is the forecasted volatility and !"∗ !, !  is the standardized skew Student-t quantile. 

For example if ! = 0.01, ! = 4 and ! = 0.8 (negative skewness), then the VaR is: 

!"#(1%) = −!
!" 0.01,4,0.8 −!

! = −!
−3.51792− (−0.31819)

1.04940 = 3.0491! 

 

The skew Student-t distribution allows the GARCH models to capture more skewness than 

they normally can do. But the estimation can become more difficult since we have to estimate 

more parameters. Especially for the advanced GARCH models such as APARCH, estimation 

issues are more likely to be a problem when the skew Student-t is used as error distribution. 
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4.2.5 Implementing	
  VaR	
  forecasts	
  with	
  time	
  dependent	
  volatility	
  

Moving Average 

The simplest way to implement a VaR forecast with time-dependent volatility is to use the 

Moving Average (MA) volatility model. We simply calculate the sample standard deviation 

of our return series and insert this into the VaR formula for normally distributed returns. The 

one-day ahead VaR forecast is:  

 

 !"#(!) = −!Φ!!(!) (4.6) 

 

EWMA 

It takes a bit more effort to implement a VaR forecast with the EWMA since we somehow 

have to specify the volatility on the first day !!. By setting the !! to some random number it 

will induce some error into the model. This can be reduced by estimating !! by calculating 

the sample standard deviation of returns of the first 30 days. Then !! can be estimated by 

running the model through the data. The one-day ahead volatility forecast is then finally 

calculated: !!!!! = (1− !)!!! + !!!!. The one-day ahead normal VaR forecast is: 

 

 !"#(!) = − (1− !)!!! + !!!!Φ!!(!) (4.7) 

 

GARCH 

In a similar way as with the EWMA model, the GARCH models can be used to forecast 

volatility. But first we have to estimate the parameters of the model by maximum likelihood. 

If we are using the standard GARCH(1,1) the volatility of day t is: !!! = ! + !!!!!!! +

!!!!!!! . Leading the model by one period gives the one-day ahead volatility forecast: 

!!!!! = ! + !!!!! + !!!!!. Finally, the one-day ahead normal VaR forecast is:  

 

 !"#(!) = − ! + !!!!! + !!!!!Φ!!(!) (4.8) 

 

VaR forecasts can be implemented with each of the GARCH models described earlier in a 

similar way. Simply estimate the model parameters and obtain the volatility forecast. Then 

calculate the quantile of the assumed conditional distribution given the probability level of the 

VaR model. By multiplying the volatility forecast with the quantile figure we obtain the VaR 



 42 

forecast. As with the EWMA model we have to specify the volatility on the first day !!. The 

default implementation of the "rugarch" package is to set !! to the entire sample standard 

deviation.  

4.3 The	
  impact	
  of	
  the	
  mean	
  

Previously we have argued that we can safely assume that the expected return is zero when 

calculating the volatility. Assuming that the mean is zero simplifies the calculations since we 

do not have to specify the mean. But how will this impact the calculation of VaR? Rewriting 

the general parametric VaR formula to take the mean into account: !"#(!) = −!"(!)− !. 

Where ! is the expected daily return. When calculating VaR there is usually a statistical 

uncertainty of more than 10%, therefore the calculated VaR will only be significant to one 

digit. The expected daily return will for most applications be smaller than this, so assuming 

the mean is zero will have an insignificant impact on the daily VaR calculation.  

 

Under the assumption that the returns are IID, the mean will aggregate at the rate of time and 

the volatility will aggregate at the square root of time. The T-period VaR is: !"#(!) =

− !!"(!)− !". We find that for longer time horizons the impact of the mean becomes 

relatively larger compared to the volatility. When calculating VaR for longer time horizons, 

the mean could become significant and should then be specified. But usually VaR is 

calculated for a horizon of up to 10 days and can therefore be assumed to be zero. 

4.4 VaR	
  criticism	
  

A drawback of VaR is that it does not give any information about the loss that can occur 

beyond the calculated VaR level. Actually, the VaR estimate only tells us what the maximum 

loss is if a tail event does not occur. VaR therefore provides the "best of worst case scenarios" 

and will systematically underestimate the potential losses given a probability level. This can 

lead to some very unfavorable outcomes, as a potential investment opportunity can appear to 

be more desirable than they really are. 

 

VaR has also been criticized for not being a coherent risk measure. In their article "Thinking 

Coherently" Artzner, Delbaen, Eber, and Heath (1997) wrote the first formal mathematical 

study on financial risk measures. They studied which properties a risk measure should have in 

order to be a sensible and useful risk measure, and they identified four axioms that have to be 

fulfilled. If a risk measure does fulfill these axioms the risk measure is said to be coherent. 
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If X and Y represent two portfolios´ profit/loss functions, and ! ∙  is a measure of risk over a 

chosen horizon, the risk measure ! ∙  is said to be coherent if it satisfies the axioms: 

1. Monotonicity: If ! ≥ ! ⇒ !(!) ≥ !(!) 

2. Positive homogeneity: !(!") = !"(!)  for  ! > 0 

3. Translational invariance: !(! + !) = !(!)− ! 

4. Subadditivity: !(! + !) ≤ !(!)+ !(!) 

 

The first axiom, monotonicity, states that if risk X never exceeds the risk of Y, the risk 

measure of Y should always be larger than the risk measure of X. If positive homogeneity 

holds, risk is directly proportional to the value of the portfolio. For example, the risk of 

holding 10 shares of some stock should have 10 times the risk of holding one share of the 

same stock. The translational invariance axiom holds if adding cash to the portfolio, or some 

other risk free asset, reduces the risk with this exact cash amount. Subadditivity is the last 

axiom that ensures that diversification results in reduced risk, which is fundamental in 

investment theory. If subadditivity does not hold we could get to an irrational conclusion that 

diversification is actually bad for an investment, and that putting all the wealth in one asset 

might be a good risk management decision. 

 

The first three axioms are intended to rule out awkward outcomes in risk measures. In the 

follow-up paper by Artzner, Delbaen, Eber, and Heath (1999) it was proven that VaR 

measures generally satisfies the first three axioms, but not subadditivity. Although they 

showed that subadditivity holds when the returns are normally distributed, they could not find 

that subadditivity would always hold in practice. Later Daníelsson, Jorgensen, 

Samorodnitsky, Sarma, and de Vries (2012) studied the subadditivity of VaR further and 

found that VaR is subadditive when the tails of the return distribution are not super fat. Assets 

like equities, exchange rates and commodities do rarely have tails that are so fat that 

subadditivity is violated. Even though VaR seems to be coherent in most cases, we cannot 

generalize that VaR is a coherent measure of risk. 

 

Another weakness of VaR is that it is very easy to manipulate. A financial institution will find 

it very easy to move the quantiles of the profit and loss distribution around to change the VaR. 

For example Daníelsson (2002) has shown how easy it is to manipulate VaR with put options 

to deliver any VaR level desired. This will result in a lower VaR for the calculated probability 

level, but the VaR for almost all other levels will increase. 
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Based on the criticism above alternative risk measures have been developed such as Expected 

Shortfall (ES), which theoretically is a better risk measures than VaR. ES estimates the 

expected loss when losses exceed VaR and has the advantage of being subadditive. But ES is 

calculated with a greater estimation error than VaR and it is much harder to backtest. To 

backtest ES it has to be compared with the output from a model, while VaR can be compared 

with the actual outcome. Extreme Value Theory (EVT) has more recently been developed to 

calculate VaR in economics, though it has been widely used in engineering for many decades. 

EVT is considered to improve risk forecasting especially for calculating VaR at a lower level 

than the 1% probability level, but EVT is complicated and very challenging to implement. 

 

Even though the inadequacies of VaR are well documented and alternative risk measures have 

been developed, VaR is still the risk measure of choice by financial institutions. The reason is 

that VaR has been incorporated internally in the institutions and is used as a standard measure 

for regulatory reporting. As long as there is a demand for VaR calculations, the challenge will 

be to make VaR models that reflect the true risk as accurately as possible. 
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5 Backtesting	
  
It is important to validate a risk model before it is put to practical use, and its performance 

should regularly be evaluated. To validate that VaR models calculate the future risk 

appropriately, the models are tested with out of sample quantitative methods that are known 

as backtests. A quote from a risk manager underlines the importance of backtesting VaR 

models: 

 

“VaR is only as good as its backtest. When someone shows me a VaR number,  

I don’t ask how it is computed, I ask to see the backtest.” (Brown, 2008, p. 20) 

 

Backtesting aims to take ex ante VaR forecasts from a risk model and compare them with ex 

post realized returns. A VaR violation is said to have occured when losses exceed the 

forecasted VaR. For example if we backtest a 1% VaR model we would expect to have a VaR 

violation every 100 day on average. So if we backtest over a 1000 day time period we expect 

to get only 10 violations. On the other hand, if we backtest a 5% VaR model over the same 

time period we expect to get 50 violations. 

 

A good VaR model should produce around the expected number of VaR violations when it is 

backtested. If the model produces violations that exceed the expected number of violations the 

model underestimates the risk, and if the model produces less than the expected number of 

violations it overestimates the risk. In theory, the violations of a backtested risk model should 

also be evenly spread out in time and not be clustered together. Even if a backtested model 

produces the expected number of violations, all the violations could come in a very short 

time-period. This indicates that the VaR model is unable to capture the changes in market 

volatility and underestimates the risk in periods of high market volatility. If a VaR model fails 

the backtesting, the assumptions and parameters of the model should be carefully examined. 

5.1 Estimation	
  window	
  and	
  testing	
  window	
  

The number of observations used to forecast risk is the estimation window !!. !! is the 

testing window that is the historical data which the risk is forecasted over. The entire sample 

T is the sum of the estimation window !! and the testing window !!. The backtest is 

performed using a rolling window method where the testing window is rolled over almost the 

entire data sample. The estimation window and forecast horizon is constant during the whole 

rolling process. Figure 5.1. illustrates how the rolling backtest method works. 
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Figure 5.1. Rolling windows with VaR forecasts 

 

VaR violations are rare events, which makes it difficult to analyze the result of a backtest if 

the testing window is too small. For example, if the testing window is 100 days and we 

backtest a VaR(1%) model we would only expect to get one violation. This makes it 

impossible to reject or accept a well specified model since the sample of violations will be too 

small. To get reliable testing results Daníelsson (2011) recommends that the expected number 

of VaR violations should be at least 10. Hence the testing window of a VaR(1%) will have to 

be at least 1000 days. The longer the testing window is, the more powerful the results will be. 

The size of the estimation window depends on the VaR model and the probability level. 

Different forecasting models will need different amounts of data to perform well. Of the 

models described earlier, the MA and EWMA do not need as much data as historical 

simulation. However, GARCH models need a lot of data. It could also be interesting to use 

different sizes for the estimation window for HS and MA models since the performance for 

these models is highly affected by the size of the estimation window. 

5.2 VaR	
  violations	
  and	
  violation	
  ratio	
  

A quick and easy method to evaluate if a risk model is acceptable is to calculate the violation 

ratio. If we get a violation ratio of 1, the number of violations of the backtested model equals 

the number of expected violations. A violation ratio larger than one indicates that the model 

underestimates the risk, while a violation ratio less than 1 indicate that the model 

overestimates the risk. First we define the VaR violations: 

 

!"#(!! + 1) 

!"#(!! + 2) 

!"#(!! + 3) 

!"#(!) 

t = 1 t = T  Entire data sample 
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 !! =
1        if  !! ≤ −!"#!
0        if  !! > −!"#!

 (5.1) 

 

where !! is the count of !! = 1 and !! is the count of !! = 0, which is defined as: !! = !! 

and !! =!! − !!. The violation ratio is: 

 

 !" =
Observed  number  of  violations
Expected  number  of  violations =

!!
! ∗!!

 (5.2) 

 

Because there is some degree of uncertainty in VaR calculations we will accept models that 

have violation ratios close to 1. Daníelsson (2011) recommends that risk models which 

produce violation ratios in the range 0.8 to 1.2 can be accepted as good risk models and 

models that produce violation ratios below 0.5 or above 1.5 should be rejected. This can only 

be seen as a rule of thumb method as the bounds theoretically should shrink with larger 

testing windows. For a more formal approach, the number of violations can be statistically 

tested if they are significantly different from the expected number of violations. 

 

The violation ratio only provides an evaluation of the actual number of violations versus the 

expected number of violations. To check if the violations are clustered it could be helpful to 

plot a backtesting chart with both the predicted profit/loss and the actual profit/loss plotted. A 

violation has occurred each time the actual profit/loss exceeds the predicted profit/loss. But it 

is difficult to detect clustering of violations by only studying the backtesting chart and 

therefore statistical methods are more appropriate to use. In the next section we will show the 

statistical methods that can be used to check the significance of backtests. 

5.3 Statistical	
  tests	
  

A more formal approach to backtesting is to use statistical methods. The violations in a 

backtest are a sequence of ones and zeroes that are Bernoulli distributed with a probability 

level p. If the violations reflect the assumed risk level the probability level of the Bernoulli 

variable should be equal to the VaR probability level. This is known as the unconditional 

coverage property. The Bernoulli variable of the violations should also be independent to 

ensure that the violations do not cluster, which is known as the independence property. The 

statistical testing is divided into three tests: Unconditional coverage test, independence test 

and joint test of conditional coverage. 
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Figure 5.2. Overview statistical backtesting methods 

 

When we perform statistical backtesting we use the standard hypothesis paradigm. We 

specify a null hypothesis that we want to test, and an alternative hypothesis that is accepted if 

the null is rejected. But we also have to select a significance level for the tests. However, 

there is a problem with choosing the significance level as there is a tradeoff between the 

possibility of rejecting a correct model and accepting an incorrect model, respectively known 

as type 2 and type 1 errors. Ideally, the significance level should be chosen to balance out the 

probability of getting a type 1 error and a type 2 error. In practice the significance level is set 

to a 5% level, which implies that the null hypothesis is rejected only if the evidence against it 

is reasonably strong. 

5.3.1 Unconditional	
  coverage	
  test	
  

Kuiper’s unconditional coverage test is based on testing if the number of VaR violations is 

significantly different from the expected number of violations (Kupiec, 1995). The null 

hypothesis of the VaR violations is: !! ∶   !  ~  !(!). Where ! is the Bernoulli distribution. 

The Bernoulli density is: (1− !)!!!!(!)!! ,          !! = 0, 1. The probability p is estimated by: 

! = !!
!!

. Kupiec showed how the test could be performed by a likelihood ratio test. The test 

statistic is: 

 

 !"!" = 2  log
(1− !)!!(!)!!
(1− !)!!(!)!!   ∼   !!

! (5.3) 

 

If !"!" >   !!,!!   ⇒ Reject  the  null. A shortcoming of the Kupiec test is that it does not take 

into account how large the discrepancy between the VaR forecast and the actual loss is. 

Consequently, a VaR model will pass the Kupiec test if it produces violations within the 

acceptable range of the test, even if it provides very poor VaR forecasts of the losses larger 
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  Unconditional	
  coverage	
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than VaR. Alternative backtests like the loss function based backtest developed by Lopez 

(1999) takes the magnitude of VaR violations into account, but will not be covered in this 

thesis. 

5.3.2 Independence	
  test	
  

To detect clustering of violations, a test for independence of the violations was developed by 

Christoffersen (1998). The test is based on comparing the probability of two consecutive 

violations to follow each other versus the probability of a non-violation to be followed by a 

violation. The two probabilities should be equal if the violations are independent. If we let !!" 

be the number of days that state j occurred after state i occurred the day before, where the 

states refers to states of violations or non-violations. Table 5.1. illustrates the outcomes. 

 

Table 5.1. Contingency table independence test 

 !!!! = 0 !!!! = 1  

!! = 0 !!! !!" !!! + !!" 

!! = 1 !!" !!! !!" + !!! 

 !!! + !!" !!" + !!! N 

 

We then define !!" as the probability of observing state j if the state on the day before was i. 

The probabilities are estimated by: !!" =
!!"

!!!!!!"
,        !!! =

!!!
!!"!!!!

,      ! = !!"!!!!
!!!!!!"!!!"!!!!

. 

Under the null hypothesis of independent violations, the probabilities !!" and !!! are equal. 

Christoffersen showed how the test could be performed by a likelihood ratio test. The test 

statistic is: 

 

 !"!"# = 2  log
(1− !)!!!!!!"!!!"!!!!

(1− !!")!!!!!"
!!"(1− !!!)!!!!!!

!!!   ∼ !!! (5.4) 

 

If !"!"# >   !!,!!   ⇒ Reject  the  null. A problem with the independence test is that it only has 

power to detect clustering in the form of violations occurring in pairs. For example, the test 

will not detect if the probability of a violation today is dependent upon if there was a violation 

two days ago, which is also a breach of the independence property. 



 50 

5.3.3 Joint	
  test	
  of	
  conditional	
  coverage	
  

Christoffersen (1998) also proposed a joint test for unconditional coverage and independence 

that is known as a conditional coverage test. The test is based on combining the two 

likelihood ratio tests of unconditional coverage and independence described above. Under the 

null hypothesis of correct coverage and independence, the test statistic is: 

 

 !"!! = !"!" + !"!"# ∼ !!! (5.5) 

 

If !"!! >   !!,!!   ⇒ Reject  the  null. The joint test allows us to test for both coverage and 

independence at the same time, but the test loses power to detect if a VaR model only satisfies 

one of the properties. Therefore, the individual tests for coverage end independence should 

always be performed if the model is not rejected by the joint test. 

5.4 Selecting	
  risk	
  models	
  based	
  on	
  backtests	
  

Choosing a VaR model should ultimately be based on the performance during backtesting. It 

is possible that two different VaR models perform the same during backtesting, yet they could 

have major differences in their forecasts. Daníelsson (2011) suggests that VaR models with 

the least amount of variations in their VaR forecasts are preferred. Therefore, calculating the 

standard deviation of the VaR forecasts can be helpful to choose between VaR models that 

perform the same during backtesting. 

5.5 Backtesting	
  results	
  

All the models are backtested over 1000 days in each of the crisis period and the post crisis 

period. We have also backtested the models over both periods to get more reliable total 

results. Backtesting the models for the complete period should in theory give the sum of the 

backtests from the individual periods, but since the estimation windows are different for the 

two testing periods we have to backtest the models for the complete period. The GARCH 

models parameters are refitted every 100 days. For HS and MA the estimation windows are 

also changed to check if different window sizes can improve the VaR forecasts. Since the 

GARCH model is regarded as superior to the ARCH model, we have excluded to checking 

the performance of the ARCH model. All the models that are passed both for coverage and 

independence in the backtesting results are highlighted. 
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5.5.1 Scenario	
  1	
  -­‐	
  Crisis	
  

 

Table 5.2. VaR 1% Exceedance 21.02.2005 - 11.02.2009 
Model Conditional dist. Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

GARCH(1,1) Normal 10 21 2,10 0,002 0,075 0,002 

GARCH(1,1) Student-t 10 17 1,70 0,043 0,031 0,012 

GARCH(1,1) Skew Student-t 10 13 1,30 0,362 0,157 0,243 

gjrGARCH(1,1) Normal 10 25 2,50 0,000 0,151 0,000 

gjrGARCH(1,1) Student-t 10 21 2,10 0,002 0,075 0,002 

gjrGARCH(1,1) Skew Student-t 10 14 1,40 0,231 0,013 0,022 

EGARCH(1,1) Normal 10 30 3,00 0,000 0,068 0,000 

EGARCH(1,1) Student-t 10 25 2,50 0,000 0,151 0,000 

EGARCH(1,1) Skew Student-t 10 19 1,90 0,011 0,370 0,026 

APARCH(1,1) Normal 10 25 2,50 0,000 0,151 0,000 

APARCH(1,1) Student-t 10 21 2,10 0,002 0,075 0,002 

APARCH(1,1) Skew Student-t 10 16 1,60 0,079 0,023 0,016 

 
Model Estimation 

window 

Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

HS 2289 10 29 2,90 0,000 0,009 0,000 

MA 2289 10 51 5,10 0,000 0,004 0,000 

EWMA 2289 10 23 2,30 0,000 0,109 0,001 

HS 1000 10 29 2,90 0,000 0,056 0,000 

MA 1000 10 54 5,40 0,000 0,002 0,000 

HS 300 10 25 2,50 0,000 0,151 0,000 

MA 300 10 44 4,4 0,000 0,002 0,000 

 

Table 5.2. gives the backtesting results from the crisis period for VaR(1%). The skew 

Student-t GARCH(1,1) model is the only model that passed the backtesting both for coverage 

and independence. It is interesting to see that the EGARCH and the APARCH models that are 

chosen as the best in sample fit in Table 3.4. and Table 3.5. do not perform as well out of 

sample. We also notice that the GARCH models are all improved by changing the error 

distribution to the Student-t and the skew Student-t distribution. All the traditional VaR 

models based on HS, MA and EWMA perform poorly. They underestimate the risk and are 

not able to adapt to the extreme market conditions. 
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Table 5.3. VaR 5% Exceedance 21.02.2005 - 11.02.2009 
Model Conditional dist. Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

GARCH(1,1) Normal 50 69 1,38 0,009 0,059 0,006 

GARCH(1,1) Student-t 50 69 1,38 0,009 0,059 0,006 

GARCH(1,1) Skew Student-t 50 63 1,26 0,069 0,054 0,030 

gjrGARCH(1,1) Normal 50 64 1,28 0,051 0,064 0,027 

gjrGARCH(1,1) Student-t 50 67 1,34 0,019 0,105 0,017 

gjrGARCH(1,1) Skew Student-t 50 62 1,24 0,093 0,045 0,032 

EGARCH(1,1) Normal 50 74 1,48 0,001 0,132 0,002 

EGARCH(1,1) Student-t 50 75 1,50 0,001 0,068 0,001 

EGARCH(1,1) Skew Student-t 50 65 1,30 0,037 0,076 0,024 

APARCH(1,1) Normal 50 70 1,40 0,006 0,070 0,004 

APARCH(1,1) Student-t 50 72 1,44 0,003 0,097 0,003 

APARCH(1,1) Skew Student-t 50 63 1,26 0,069 0,138 0,064 

 
Model Estimation  

window 

Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

HS 2289 50 99 1,98 0,000 0,000 0,000 

MA 2289 50 100 2,00 0,000 0,000 0,000 

EWMA 2289 50 63 1,26 0,069 0,054 0,030 

HS 1000 50 104 2,08 0,000 0,000 0,000 

MA 1000 50 100 2,00 0,000 0,000 0,000 

HS 300 50 80 1,60 0,000 0,000 0,000 

MA 300 50 81 1,62 0,000 0,000 0,000 

 

Table 5.3. gives the backtesting results from the crisis period for VaR(5%). A few models 

perform quite well. The skew Student-t gjrGARCH(1,1) model produces the most exact 

exceedance, but it is rejected for independence. The skew Student-t GARCH(1,1), normal 

gjrGARCH(1,1), skew Student-t APARCH(1,1) and EWMA are passed both for coverage and 

independence. We also notice that the GARCH models are not improved by changing the 

error distribution to the Student-t distribution and for some models even perform worse. This 

is probably because the VaR(5%) does not lie as far out in the tail region of the return 

distribution as the VaR(1%). But the skew Student-t distribution improves all the GARCH 

models. All of the simple VaR models based on HS and MA are rejected for both coverage 

and independence. As for the VaR(1%) level they underestimates the risk and fail to adapt to 

the new market conditions. 
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5.5.2 Scenario	
  2	
  -­‐	
  Post	
  crisis	
  

 

Table 5.4. VaR 1% Exceedance 12.02.2009 - 31.01.2013 
Model Conditional dist. Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

GARCH(1,1) Normal 10 16 1,60 0,079 0,471 0,166 

GARCH(1,1) Student-t 10 13 1,30 0,362 0,559 0,556 

GARCH(1,1) Skew Student-t 10 9 0,90 0,746 0,686 0,875 

gjrGARCH(1,1) Normal 10 17 1,70 0,043 0,443 0,096 

gjrGARCH(1,1) Student-t 10 13 1,30 0,362 0,559 0,556 

gjrGARCH(1,1) Skew Student-t 10 9 0,90 0,746 0,686 0,875 

EGARCH(1,1) Normal 10 16 1,60 0,079 0,471 0,166 

EGARCH(1,1) Student-t 10 11 1,10 0,754 0,621 0,842 

EGARCH(1,1) Skew Student-t 10 9 0,90 0,746 0,686 0,875 

APARCH(1,1) Normal 10 18 1,80 0,022 0,416 0,053 

APARCH(1,1) Student-t 10 12 1,20 0,538 0,589 0,715 

APARCH(1,1) Skew Student-t 10 9 0,90 0,746 0,686 0,875 

 
Model Estimation 

window 

Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

HS 3289 10 5 0,50 0,079 0,823 0,208 

MA 3289 10 18 1,80 0,022 0,329 0,046 

EWMA 3289 10 20 2,00 0,005 0,366 0,013 

HS 1000 10 0 0,00 0,000 1,000 0,000 

MA 1000 10 5 0,50 0,079 0,823 0,208 

HS 300 10 4 0,40 0,030 0,858 0,094 

MA 300 10 8 0,80 0,510 0,719 0,755 

 

Table 5.4. gives the backtesting results from the post crisis period for VaR(1%). All the 

models with skew Student-t error distribution perform very well. We notice that the models 

adapt to the more tranquil market conditions very quickly. Changing the error distribution of 

the GARCH models to the Student-t and the skew Student-t distribution improves the 

performance of all the models. Some of the traditional VaR models are also passed for both 

coverage and independence but the results seems to be spurious. Most of the models seems to 

overestimate the risk and are influenced by the high volatility in the previous period. 
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Table 5.5. VaR 5% Exceedance 12.02.2009-31.01.2013 
Model Conditional dist. Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

GARCH(1,1) Normal 50 61 1,22 0,122 0,301 0,178 

GARCH(1,1) Student-t 50 61 1,22 0,122 0,301 0,178 

GARCH(1,1) Skew Student-t 50 55 1,10 0,475 0,157 0,285 

gjrGARCH(1,1) Normal 50 62 1,24 0,093 0,274 0,134 

gjrGARCH(1,1) Student-t 50 64 1,28 0,051 0,224 0,071 

gjrGARCH(1,1) Skew Student-t 50 53 1,06 0,666 0,194 0,392 

EGARCH(1,1) Normal 50 60 1,20 0,159 0,728 0,349 

EGARCH(1,1) Student-t 50 60 1,20 0,159 0,728 0,349 

EGARCH(1,1) Skew Student-t 50 54 1,08 0,566 0,549 0,709 

APARCH(1,1) Normal 50 62 1,24 0,093 0,274 0,134 

APARCH(1,1) Student-t 50 64 1,28 0,051 0,544 0,124 

APARCH(1,1) Skew Student-t 50 56 1,12 0,393 0,469 0,534 

 
Model Estimation  

window 

Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

HS 3289 50 55 1,10 0,475 0,252 0,402 

MA 3289 50 51 1,02 0,885 0,374 0,667 

EWMA 3289 50 56 1,12 0,393 0,933 0,691 

HS 1000 50 73 1,46 0,000 0,554 0,000 

MA 1000 50 19 0,38 0,000 0,370 0,000 

HS 300 50 32 0,64 0,005 0,019 0,001 

MA 300 50 36 0,72 0,033 0,044 0,014 

 

Table 5.5. gives the backtesting results from the post crisis period for VaR(5%). All the 

GARCH models perform well and are passed for both coverage and independence. We notice 

that some of the models are performing worse by changing the error distribution to the 

Student-t distribution, but all models are improved with the skew Student-t distribution. All 

the traditional VaR models with large estimation windows are also passed for coverage and 

independence. 
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5.5.3 Scenario	
  3	
  -­‐	
  Complete	
  period	
  

 

Table 5.6. VaR 1% Exceedance 21.02.2005 - 31.01.2013 
Model Conditional dist. Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

GARCH(1,1) Normal 20 39 1,95 0,000 0,226 0,000 

GARCH(1,1) Student-t 20 31 1,55 0,022 0,093 0,018 

GARCH(1,1) Skew Student-t 20 23 1,15 0,510 0,266 0,434 

gjrGARCH(1,1) Normal 20 44 2,20 0,000 0,346 0,000 

gjrGARCH(1,1) Student-t 20 37 1,85 0,001 0,185 0,001 

gjrGARCH(1,1) Skew Student-t 20 25 1,25 0,279 0,038 0,065 

EGARCH(1,1) Normal 20 47 2,35 0,000 0,124 0,000 

EGARCH(1,1) Student-t 20 39 1,95 0,000 0,226 0,000 

EGARCH(1,1) Skew Student-t 20 28 1,40 0,090 0,409 0,169 

APARCH(1,1) Normal 20 43 2,15 0,000 0,319 0,000 

APARCH(1,1) Student-t 20 36 1,80 0,001 0,167 0,002 

APARCH(1,1) Skew Student-t 20 26 1,30 0,197 0,045 0,059 

 
Model Estimation  

window 

Expected Actual Ratio Kupiec 

p-value 

Ind p-value Joint 

p-value 

HS 2289 20 31 1,55 0,022 0,320 0,045 

MA 2289 20 69 3,45 0,000 0,001 0,000 

EWMA 2289 20 43 2,15 0,000 0,001 0,000 

HS 1000 20 29 1,45 0,058 0,320 0,101 

MA 1000 20 59 2,95 0,000 0,000 0,000 

HS 300 20 29 1,45 0,058 0,071 0,033 

MA 300 20 52 2,60 0,000 0,000 0,000 

 

Table 5.6. gives the backtesting results from the complete period for VaR(1%). The skew 

Student-t GARCH(1,1) perform the best. We also see that the skew Student-t EGARCH(1,1) 

and the skew Student-t APARCH(1,1) models that were chosen as the best in sample fit in 

Table 3.5. and Table 3.7. perform well, but they are outperformed by the skew Student-t 

GARCH(1,1). All the GARCH models are improved by changing the error distribution to the 

Student-t and the skew Student-t distribution. The traditional VaR models based on HS are 

not rejected for shorter estimation windows, but does not perform well compared to the best 

GARCH models.  
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Table 5.7. VaR 5% Exceedance 21.02.2005-31.01.2013 
Model Conditional dist. Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

GARCH(1,1) Normal 100 130 1,30 0,003 0,368 0,009 

GARCH(1,1) Student-t 100 130 1,30 0,003 0,368 0,009 

GARCH(1,1) Skew Student-t 100 114 1,14 0,160 0,323 0,228 

gjrGARCH(1,1) Normal 100 126 1,26 0,010 0,451 0,028 

gjrGARCH(1,1) Student-t 100 129 1,29 0,004 0,546 0,014 

gjrGARCH(1,1) Skew Student-t 100 116 1,16 0,109 0,375 0,187 

EGARCH(1,1) Normal 100 132 1,32 0,002 0,424 0,005 

EGARCH(1,1) Student-t 100 133 1,33 0,001 0,278 0,003 

EGARCH(1,1) Skew Student-t 100 118 1,18 0,072 0,248 0,102 

APARCH(1,1) Normal 100 133 1,33 0,001 0,453 0,004 

APARCH(1,1) Student-t 100 135 1,35 0,001 0,515 0,002 

APARCH(1,1) Skew Student-t 100 117 1,17 0,089 0,402 0,166 

 
Model Estimation  

window 

Expected Actual Ratio Kupiec 

p-value 

Ind. 

p-value 

Joint 

p-value 

HS 2289 100 151 1,51 0,000 0,000 0,000 

MA 2289 100 141 1,41 0,000 0,000 0,000 

EWMA 2289 100 119 1,19 0,058 0,144 0,057 

HS 1000 100 127 1,27 0,008 0,000 0,000 

MA 1000 100 119 1,19 0,058 0,000 0,000 

HS 300 100 112 1,12 0,227 0,000 0,000 

MA 300 100 117 1,17 0,089 0,000 0,000 

 

Table 5.7. gives the backtesting results from the complete period for VaR(5%). We get very 

similar results as for the VaR(1%) backtest results for the complete period. All the GARCH 

models with skew Student-t error distribution are passed for both coverage and independence. 

The best model is once again the skew Student-t GARCH(1,1). As for the backtesting results 

in the crisis period and the post crisis period we see that the models are not improved by 

changing the error distribution to the Student-t distribution, but the skew Student-t 

distribution improves all the GARCH models. Of the traditional VaR models only the EWMA 

is passed for both coverage and independence. 
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6 Discussion	
  
None of the traditional VaR models based on HS, MA and EWMA are able to capture the risk 

appropriately for both the different VaR levels and the different periods that are tested. If we 

look at the individual testing periods we see that all the models underestimates the risk in the 

crisis period. Although the models are passed for both coverage and independence in some of 

the testing periods, generally they do not perform well when they are compared to the 

GARCH models. 

 

When working with the data analysis we did some preliminary testing and backtested the 

models over whole years, and consequently excluded the data from 2013. The results from 

this testing showed that the more advanced GARCH models performed significantly better 

compared to the final test results in this thesis. It shows how sensitive the backtesting 

framework is and how dependent the results are on the estimation window and testing 

window. In the end we decided to include the data from 2013 and backtest the models over 

1000 days, which provided the results in this thesis. Without going too deep into the reason 

why this is the case, it could give an insight to why there are such different results in studies 

of VaR models. If the dynamics of the financial returns are constantly changing, different 

models will perform better in some periods and other models will perform better in other 

periods. With this in mind it would make sense to use a model that is able to capture the most 

important features that is found in the financial returns. Even though other features in the 

financial returns could be significant at some times, the added estimation error and 

complexity of modeling these features is probably not offset by the modeling ability. 

 

The return statistics in Table 2.2. from the crisis and the post-crisis periods show that in both 

periods we have volatility clustering and non-normally distributed returns. There are also 

found some asymmetries in volatility as listed Table 3.1. and power effects as listed in Table 

3.2., but as confirmed by the backtesting these structures do not improve the forecasting 

ability of the models. Overall the skew Student-t GARCH(1,1) model perform the best. 

Considering that the model is not rejected for either coverage or independence in any of the 

backtests it seems that the model is capable to capture the risk of the OBX-index even in 

periods with high volatility and changing market dynamics. Figure 6.1. plots the VaR 

forecasts from the skew Student-t GARCH(1,1) model for both the VaR(1%) level and the 

VaR(5%) level for the complete backtesting period. All the VaR exceedances are plotted with 
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red marks, and from a quick visual inspection the exceedances appear to be evenly spread out 

in time and are not clustered together. 

 

  
Figure 6.1. Backtesting plots skew Student-t GARCH(1,1) VaR(1%) VaR(5%) 2005-2013 

 

These results are valid for the OBX-index for the time period that is tested. But it is very 

likely that the skew Student-t GARCH(1,1) model will perform well for future out of sample 

forecasting of the OBX-index. New models and testing methods are regularly developed and 

could improve the risk forecasting significantly in the future. In recent years the introduction 

of high frequency trading has changed the market conditions and there will certainly be 

changes in the financial markets in the years to come. Therefore the VaR model should 

always be up for validation and the model selection is not a one-time effort but a continuous 

process. 

 

Comparing our findings with the results that Hansen and Lunde (2005) found in their study 

show that we get some of the same results. The standard GARCH model is not outperformed 

by any of the advanced models that can capture asymmetries or power effects. Contradictory 

to the findings of Hansen and Lunde, we have found that using the heavy tailed Student-t 

distribution improves the VaR forecasts especially for the 1% VaR level. But we also see that 

some of the more advanced GARCH models perform worse at the 5% VaR level. However, 

our best model, the skew Student-t GARCH(1,1), generally perform better when the error 

distribution is Student-t distributed. Hansen and Lunde did not study the possibility of skew 

distribution, which we have also found to significantly improve the VaR forecasts. Ghalanos 

(2013a) found that almost any other GARCH model beats the standard normal GARCH 

model. But if we take a closer look on his ranking of the models we notice that all the best 
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ranked models have error distributions that are non-normal, while all the worse ranked models 

have error distributions that are normal. It seems that the choice of error distribution is very 

important and maybe more significant than the choice of GARCH model. Comparing our 

finding with the findings of Ghalanos we have also found that a non-normal error distribution 

significantly improves our VaR forecasts. Overall, our findings are not the same as either 

Hansen and Lunde or Ghalanos, but somewhere in-between. 

 

We have also found that a good in sample fit does not guarantee that the models will perform 

better out of sample. If we take a look at the in sample fit for the crisis period in Table 3.5. we 

see that the skew Student-t APARCH(1,1) and the skew Student-t EGARCH(1,1) models are 

chosen by AIC and BIC respectively. But these models perform significantly worse out of 

sample compared to the more parsimonious skew Student-t GARCH(1,1) model. 

 

For future research it could be interesting to study other asset classes in Norway such as 

individual stocks, currencies and bonds. We would probably get other results since the 

characteristics of different asset classes vary greatly. Since we have found that changing the 

error distribution significantly improves the forecasting ability of our models, it would also be 

interesting to study other error distributions such as the Johnson's Reparametrized SU 

distribution and the Normal Inverse Gaussian distribution which were frequently among the 

best performing models in Ghalanos (2013a). There is also a wide range of other GARCH 

models that have not been described or studied in this thesis that could possibly improve the 

VaR forecasts.  
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7 Conclusion	
  
In this thesis we have studied the out of sample performance of one-day VaR models based on 

HS, MA, EWMA and GARCH models. The comparison has been made on the OBX-index, 

which is currently the main benchmark index on the Oslo Stock Exchange. To examine the 

performance in different market conditions the models have been backtested over two time 

periods and finally across both periods. Our findings can be summarized as follows: 

 

• Based on the backtesting results of coverage and independence we have found that 

none of the traditional VaR models based on HS, MA and EWMA perform well. The 

models underestimate the risk in the crisis period and generally perform poorly in 

comparison to the GARCH models. 

• The VaR model based on the skew Student-t GARCH(1,1) model is overall the best 

model. It is not rejected for either coverage or independence in any of the tests, and is 

therefore able to capture the risk well in periods of high volatility as well as in periods 

of more normal market conditions.  

• Compared to the standard GARCH model, the advanced GARCH models that are able 

to model power effects and asymmetries are not found to generally improve the VaR 

forecasts. The modeling capabilities of these models do not offset the additional 

estimation error of fitting additional parameters. 

• Changing the error distribution of the GARCH models to the skew Student-t 

distribution, which allows for more skewness and fatter tails than the standard 

GARCH model can, significantly improves the models. The normal error distribution 

is not able to capture the leptokurtic and skewness characteristics that are observed in 

the OBX index returns.   
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