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Abstract

In traditional financial theory the returns of prices are assumed to be independent of each
other, they are said to have short memory. However, it has been shown that returns in many
cases are correlated and these instance are said to possess long memory or long range depen-
dence. This phenomenon is also found in other research disciplines such as biology, economics,
physics, linguistics and hydrology. Long memory can not be established on beforehand but
has to be estimated. The goal of this thesis is to evaluate seven estimators of long range
dependence by generating time series with varying known long memory parameters and then
measure the performance of the estimators under such environments. The estimators are
also evaluated when estimating a long memory time series distorted by heavy tailed noise for
varying levels of corruption. The noise has similar features to what is observed in financial
data. To the author’s knowledge this study of estimation algorithms has the broadest cov-
erage of long memory parameters and noise in terms of numbers of replications which make
the results statistically valid. The general observation is that a heavy persistent or heavy
anti-persistent series leads to less accurate estimates although some estimators are unaffected
by this. There are also differences among the point estimators in how they perform under
different sample sizes. When adding noise to the time series the estimation is affected little
by persistent series but is affected heavily by the anti-persistent series.
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Chapter 1

Introduction

Long range dependence, long memory or long range correlations are synonyms for a property

found in a type of stationary process. It differs from traditional financial theories in which

returns are assumed to have short range correlations or no memory. Although this thesis

will have an angle of econometrics the disciplines interested in this topic are widespread,

including finance and economics [48, 30, 52, 40, 50], econometrics [62], DNA sequences [57],

climates [61], pollution [74], and linguistics [1]. Within the mentioned articles a variety of

issues are addressed: statistical estimation of long range dependence parameters, detection

of long range dependence in data, and simulation of long range dependence among others.

The majority of the studies performed on the topic of long range dependence are aimed at

revealing long range dependence in empirical data whereas only a smaller part of this field

consider the simulation and estimation of long range dependent data.

As long range dependent behavior cannot be assumed a priori, but requires establishment,

the need for estimation procedures arises. Several studies has been conducted where the

performance of estimators of long range dependence is examined [70, 4, 60]. Most of these

studies rely on data generating processes which have normal distributions and uncomplicated

correlation structures in the higher order moments. Many of these studies evaluate the

performance of long memory estimators based on the ability to estimate independent time

series with short memory. The same studies often conclude with the time series having short

memory or not short memory.

The goal of this thesis is to evaluate a set of commonly used estimators of long memory.

This will be done by simulating two different long range dependent data sets with known

parameters and then estimate these under different parameter regimes. Then the generated

data sets are then corrupted by a noise which has similar properties to empirical (economic

and financial) data.

The experiments are carried out by first observing how the estimators perform under
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Gaussian conditions for different sample sizes and intensities of long range dependence. The

long range dependent time series are then corrupted by alternating levels of noise at different

sample sizes and intensities of long range dependence. It is then observed for which levels of

corruption the estimators break down.

The contribution to the current research will be the broadness of the simulation study and

the investigation of how the estimators react to noise in the underlying process. Although

similar experiments have been carried out none has been similarly performed, as far as the

author is aware.

The thesis starts out by presenting definitions and concepts regarding time series analysis

and stationary time series which is the foundation of long range dependent series. The second

order properties, namely the autocorrelations and spectral densities, of short memory time

series are covered.

The second part accounts for the concept of long range dependence and the differences

between short range dependent series by investigating the second order properties of such

stationary processes as these constitute most of the definitions of long memory. In particular,

the second order properties are the behavior of the autocorrelations and the spectral den-

sities where slowly decaying autocorrelations or a spectral density with a pole at the origin

characterize a long range dependent process.

As follows, the third part is a scrutiny of a set of commonly used estimators of long range

dependence. Each procedure is covered and the known finite sample properties are discussed.

In the fourth part the estimators are applied to pure long range dependent series with

different sample sizes and different intensity of long range dependence. In economics the

length of time series are often short due to low frequency measurements as opposed to financial

data which can be recorded by the minute. Finite sample properties for estimating simulated

long memory data is acquired for different lengths and different intensities of long memory.

It is shown that the previous research which is based on fewer parameters does a poorer job

describing the true performance of the estimators.

The fifth part investigates how the estimators are reacting to the presence of a noise. The

goal is to observe when an estimator deviates from its baseline performance given a corrupted

long memory series. This experiment is driven by the fact that empirical data often have

distributions that diverge from Gaussianity since they have heavy tails. It is shown that in

the presence of a noise, the estimator in general breaks down faster when the long memory

series is anti-persistent.

The last part concludes the thesis by applying the introduced concepts on a set of different

financial time series and a brief comparison of the higher order correlations between corrupted

and empirical data. The data are from stock indexes, exchange rates and bond maturity rates.
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Chapter 2

Time series analysis

2.1 Concepts of time series analysis and stochastic pro-

cesses

In order to introduce the reader on the subject of long range dependence the most salient

features of time series and stochastic processes are presented. The concepts introduced here

is underlying the discussions that follow in later chapters.

A time series is a sequence of values ordered by a time parameter which can be dis-

tinguished by its measurement process. A discrete-time series has observations that are

made at pre-determined points in time whereas continuous-time series are obtained when

observations are written continuously over some time interval. Note that for a discrete-time

series the notation xt is employed opposite to x(t) where the observations are recorded con-

tinuously. Further on, a time series is commonly accepted as a stochastic process which is

observed over time. Throughout the thesis a time series will be considered as one realization

of the underlying stochastic process. The time set T ∈ Z denotes the number of observations

whereas the sub-script t describes the exact observation.

As the nature of a time series constitutes a sequential structure where it is considered a

dependence between xt and xt±1, the classical i.i.d. statistical techniques are invalid. Tests

such as t, F and χ2 will all give invalid results due to the violation of the independence

assumption.

Definition 2.1.1 (Stochastic process [11]). A stochastic process is a family of random vari-

ables {Xt}Tt=0 defined on the probability space (Ω,F ,P).

Remark 1. Observations xt is a realized value of a random variable Xt. The time series

{xt}Tt=0 is a realization of the family of random variables {Xt}Tt=0.
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This framework makes it possible to reason the outcomes of an experiment in addition to

calculating probabilities. The outcome space (Ω,F ,P) consists of;
i) the sample space Ω which constitutes the set of possible outcomes e.g. f : [a, b] → R,

ii) the σ-field F that is a collection of subsets of Ω and

iii) the probability measure P, e.g. P : F → [0, 1].

The concepts of weak and strong stationarity will later be addressed since its a required

assumption of later models. It is imperative that there is knowledge about the stability of

the observed data as this makes it possible to predict future outcomes.

Definition 2.1.2 (Weak Stationarity). A time-series process {xt}Tt=0 is considered weakly

stationary (or covariance stationary) if,

i) E[xt] = µ <∞ ∀t

ii) V[xt] = E[xt − µ]2 = σ2
x <∞ ∀t

iii) Cov[xt, xt+s] = γ(t, t+ s)
def

= γ(s) is independent for of t for all s.

Definition 2.1.3 (Strong Stationarity). A time-series process {xt}Tt=0 is strongly stationary

if for each s the joint probability distribution of the sequence {xt, xt+1, . . . , xt+s} is the same

for all s.

As seen in Definition 2.1.2 and Definition 2.1.3, weak stationarity is implied from strong

stationarity given that the process is normally distributed. Without this condition, other

moments may depend on t. Strong stationarity however, does not imply weak stationarity

since E[x2t ] must be finite. Nonetheless, weak stationarity has fewer restrictions as the distri-

bution in principle can be changing in time. As pointed out by Greene [23], it will usually be

difficult to find a process that is weakly but not strongly stationary. Along these lines only

weak stationarity is required most of the time as it relaxes some of the excessive assumptions

from strict stationarity.

Definition 2.1.4 (The Autocovariance Function). If {xt}Tt=0 is a process such that V[xt] <∞
for each t ∈ T, then the autocovariance function γ(t, s) of xt is defined by

γ(t, s) = Cov[xt, xt+s] = E[(xt − E{xt})(xs − E{xs})], t, s ∈ T (2.1.1)

For a stationary process the mean E[xt] = E[x] and the autocovariance function γ(t, s) =

γ(s).

Remark 2. Note that for stationary processes γ(s) = γ(−s). In addition if there is no

constant terms then E[xt] = 0, thus γ(s) = E[xtxt−s] and γ(0) = E[x2t ] = V[xt].
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2.2 Basic time series processes

Throughout the thesis, a number of processes will be encountered. The more complex pro-

cesses are a combination of simple ones introduced here. First of all the concept of white

noise should be introduced. This process is also known in literature [13] as a purely random

process and serves as an infrastructure for time series.

White Noise

A stochastic process {εt} fulfilling E[εt] = 0, E[εt, εs] = 0, t 6= s (absence of serial correlation)

and E[ε2t ] = σ2 <∞ (constant conditional variance) is called a white noise process.

The most general case, the normally distributed white-noise process, is known as a Gaussian

white noise process

εt ∼ i.i.d. N (0, σ2
ε). (2.2.1)

As a convention throughout the thesis the term εt will always mean white noise unless

otherwise stated.

Further on, some very basic processes will be briefly introduced as these are building

blocks for the more advanced ones that will later be encountered.

Random Walk

A process {xt} follows a random walk when it is represented as

xt = β + xt−1 + εt (2.2.2)

where β is a constant and represents the drift if non-zero. Given that the process has no

drift, then it can be represented as the initial state x0 plus the error terms:

xt = xt−1 + εt

xt = xt−2 + εt + εt−1

...

xt = x0 + εt + εt−1 + εt−2 + . . .+ ε1
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The mean of the random walk is then found in

E[xt] = E[x0 +
t
∑

j=1

εj] = E[x0] +
t
∑

j=1

E[εj ] = 0

Later it will be deduced that the random walk process is non-stationary as the variance is

dependent on t. In financial application the random walk is known as the first stochastic

process that was used to model the development of financial assets such as stock prices.

Given the normally distributed increments εt, its application is limited.

Autoregressive (AR)

A process {xt} is said to be an autoregressive process of order p if it satisfies the linear

difference equation

xt =

p
∑

j=1

φjxt−j + εt, ∀t ∈ Z, φj ∈ R (2.2.3)

where φj 6= 0 and εt is white noise. An AR(1) process can be written as xt = φ1xt−1 + εt.

The term autoregression stems from the fact that the value xt depends linearly on the last

p values and because it has the appearance of a regression model. For φp = 1 the model

reduces to a random walk as in Equation (2.2.2), and becomes non-stationary. This is the

case for |φ| > 1, where the series becomes explosive. For |φ < 1|, given the autocorrelation

function ρ(j) = φs , the process is stationary.

Moving Average (MA)

A process {xt} is said to be a moving average process of order q if it satisfies the rewritten

linear difference equation

xt = εt +

q
∑

j=1

θjεt−j (2.2.4)

where εt is white noise. An MA(1) process can be written as xt = εt+ θ1εt−1. Knowing that

E[εt] = 0 it can be determined that E[xt] = 0.

Definition 2.2.1 (Lag operator). A lag operator denoted L imposes an element of a time

series to produce the previous time unit.

The lag operator, also denoted by other authors as the backshift operator B, is a no-

tational convenience that helps describing processes which has a lagged term. Some of the
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features of the lag operator are

Lxt = xt−1 (2.2.5)

Lkxt = xt−k

L−kxt = xt+k.

In addition, it can be formed polynomials of it such as

a(L)p = a0 + a1L+ a2L
2 + . . .+ apL

p

and

a(L)pxt = a0xt + a1xt−1 + a2xt−2 + . . .+ apxt−p.

Remark 3. When differencing xt note that

xt − xt−1 = (1− L)xt
def

= ∆xt.

Definition 2.2.2 (Integrated processes). A stochastic process {zt} is said to be integrated of

order d ∈ Z , or I(d), if zt = (1−L)dxt is non-stationary and zt = (1−L)d−1xt is stationary.

As introduced earlier, the random walk given in (2.2.2) is integrated of order 1 or I(1)

and white noise from (2.2.1) is I(0). In most of the time series encountered here the first

differences are all that it takes to produce a stationary series.

The combination of the processes AR and MA introduced above is known as a autore-

gressive moving average (ARMA) process.

Autoregressive (Integrated ) Moving Average (AR(I)MA)

An ARMA process has AR and MA components and a ARMA(p,q) process is written as

xt =

p
∑

j=1

φjxt−j +

q
∑

j=1

θjεt−j + εt (2.2.6)

Using the operator notation introduced earlier, the ARMA(p,q) model can be written as

φ(L)pxt = θ(L)qεt. (2.2.7)

The autoregressive integrated moving average model ARIMA(p,d,q) is defined as

φ(L)p(1− L)dxt = θ(L)qεt. (2.2.8)
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where d ∈ Z is the differencing operator.

2.3 Examination of autocorrelations I

As acknowledged later in the thesis, the autocorrelations of the previously introduced pro-

cesses play an important role in describing the memory effects of the underlying process.

Definition 2.3.1 (The Autocorrelation Function). If {xt}Tt=0 is a process such that V[Xt] <

∞ for each t ∈ T,

ρ(s) =
E[(xt − E[xt])]E[(xt−s − E[xt−s])]

√

E[(xt − E[xt])2]E[(xt−s − E[xt−s])2]
=

γ(s)
√

V[xt]V[xt−s]
t, s ∈ T (2.3.1)

which for a stationary process with mean E[xt] = µt and variance V[xt] = σ2 is reduced to

ρ(s) =
Cov[xt, xt−s]

σ2
=
γ(s)

γ(0)
(2.3.2)

where ρ(s) = ρ(−s).

White Noise

A white noise process has by definition no memory; Cov[εt, εs] = 0. Thus ρ(0) = 1 and

ρ(s) = 0, ∀s ≥ 1.

Random Walk

It is assumed for purposes of simplicity that there is no drift β and the initial value is set to

zero. The model is then reduced to the sum of innovations

xt = x0 +

t−1
∑

j=0

εt−j

with x0 = 0 in this case, the mean E[xt] = 0 and variance is given by

V[xt] = γ(0) = E





(

t
∑

j=1

εj

)2


 = E

[

t
∑

j=1

t
∑

k=1

εjεk

]

= E

[(

t
∑

j=1

ε2j +
t
∑

j=1

t
∑

k=1

εjεk

)]

=
t
∑

j=1

E[ε2j ] +
t
∑

j=1

t
∑

k=1,k 6=j
E[εjεk] =

t
∑

j=1

σ2 = tσ2

and V[xt−s] = tσ2 − sσ2 = (t − s)σ2. The variance of the random walk model diverges as
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time progresses and the autocovariance function is deduced

γ(s) = Cov[xt, xt−s] = E

[

t
∑

k=1

εk

t−s
∑

j=1

εj

]

=

t−s
∑

j=1

E[ε2j ]

=
t−s
∑

j=1

σ2 = (t− s)σ2 ∀ s > 0.

Since the covariance function depends on t and s the random walk process is not covariance

stationary as it violates the assumptions given earlier. Finally, the autocorrelation function

is given as

ρ(s) =
γ(s)

√

V[xt]V[xs]
=

(t− s)σ2

√

tσ2(t− s)σ2
=

(t− s)
√

t(t− s)
=

√

1− s

t
.

Again it is clear that the process is non-stationary as ρ depends on both t and s. A random

walk has slowly decaying autocorrelations.

AR(1)

For a stationary AR(1) process

xt = φ1xt−1 + εt

it can be proven that for any lag s the autocovariance is γ(s) =
φs1γ

2

1−φ21
. This gives the

autocorrelation ρ(s) = γ(s)/γ(0) = φs1. For |φ1| < 1 the autocorrelation function decays

exponentially. It can also be seen that for φ = 1, where the process coincides with a random

walk model, the autocorrelation function ρ(s) = 1.

MA(1)

For a MA(1) process xt = θ1εt−1 + εt the autocovariances is given as

γ(0) = E[xtxt] = σ2(1 + θ21)

γ(1) = E[xtxt−1] = σ2(θ21)

γ(2) = E[xtxt−2] = 0

γ(s) = 0 for s ≤ 2.

From this

ρ(s) =















1 if s = 0
θ21

1+θ21
if s = 1

0 if s ≤ 2.
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It is clear that the autocorrelation decays with a cutoff at lag 2. In general, for MA(q)

processes, a cutoff is seen at q + 1.

2.4 Spectral representation

Until now the paper has focused on representation of time series in the time domain, i.e.

the relationship between xt and xt±s, but later when introducing estimators for long range

dependence some will be annotated in the frequency (or spectral) domain. It is reasonable

to introduce this representation here. Again, the works of Palma [56] or Brockwell and Davis

[11] provide a good and readable introduction this this topic.

When analyzing economic data such as GDP, price levels, consumption and unemploy-

ment rates, the traditional methods introduced above have proven to be sufficient. A reason

for this is that the data is measured in low frequency (yearly or quarterly) and is aggre-

gated in time and by individuals (i.e. if the price level is high today it is likely to be high

tomorrow). Such low frequency measurement makes the data smooth and uncomplicated to

analyze. Some of the developments in econometrics, especially financial econometrics, are

that data is observed at a much higher frequency and is more disaggregated than macroe-

conomic data [23]. The spectral analysis, which is introduced in the following, has a better

ability of dealing with such processes that are measured at a high frequency.

Operating in the spectral domain makes the use of complex numbers less painful as they

keep track of two real quantities by containing a real part and a imaginary part z = α + βi

where i =
√
−1. Although it is dealt with complex numbers the solutions will always lie in

the real space.

Let ω ∈ [−π, π] denote the frequency and T the period. The period of a cycle is the

minimum time it takes for the wave to go through a complete sequence of values, thus

T = 2π
ω
.

Definition 2.4.1 (The Fourier Transform). Given a time series {xt} its Fourier transform

is defined as

dx(ω) =

∞
∑

t=−∞
e−iωtxt. (2.4.1)

This operation transforms the time series {xt}, which is a function of t, into a complex

valued function of ω.

Definition 2.4.2 (The Inverse Fourier Transform). Given dx(ω), xt can be recovered by the

10



so called inverse Fourier transform

xt =
1

2π

∫ ∞

−∞
eiωtdx(ω)dω. (2.4.2)

Proposition 1. A transformation on a time series from time domain to frequency domain

can be made without loss of information by the utilizing the Fourier transform and vice versa

by using the inverse Fourier transform.

Proof. By substituting the definition of x(ω) in the inverse Fourier transform one gets the

term

xt =
1

2π

∫ ∞

−∞
eiωtdx(ω)dω =

1

2π

∫ ∞

−∞
eiωt

( ∞
∑

s=−∞
e−iωsxs

)

dω

=
1

2π

∞
∑

s=−∞
xs

∫ ∞

−∞
eiωte−iωs

then, after arranging and factoring

=

∞
∑

s=−∞
xs

1

2π

∫ ∞

−∞
eiω(t−s)dω

where the integral part can be evaluated at t− s = 1,

1

2π

∫ ∞

−∞
eiωdω = 0,

and at t− s = 0,

1

2π

∫ ∞

−∞
dω = 1.

These results follows from the fact that the integral of sin or cos from [−π, π] is zero, which
also is the case for any t 6= s. The findings can written as a function of Φ

1

2π

∫ ∞

−∞
eiω(t−s)dω = Φ(t− s) =

{

1 if t− s = 0

0 if t− s 6= 0

11



and finally

∞
∑

s=−∞
xs

1

2π

∫ ∞

−∞
eiω(t−s)dω =

∞
∑

s=−∞
xsΦ(t− s) = xt.

An extension of the Fourier transform is the discrete Fourier transform which is the

foundation of many computationally efficient algorithms, including the ones introduced in

Chapter 5.

Definition 2.4.3 ((Inverse) Discrete Fourier transform). Given a periodic sequence {zk} of

period N where k = 0, . . . , N − 1 the discrete Fourier transform of zk is given as

Fn =

N−1
∑

n=0

zk exp

{

−2πi
nk

N

}

. (2.4.3)

The reverse transformation is the inverse discrete Fourier transform. This is defined as

zk =
1

N

N−1
∑

n=0

Fn exp

{

2πi
nk

N

}

. (2.4.4)

It should be mentioned that there are different notational conventions among authors

regarding the factor in front of the discrete Fourier transforms. The use of either one does

not influence the properties of the transform, however when operating with matrices it serves

as a normalization factor.

2.4.1 Spectral densities

Using the (discrete) Fourier transform from Definition 2.4.1, the spectral density can be

defined.

Definition 2.4.4 (Spectral density). Given {xt}, a zero-mean stationary time series with

autocovariance function γ(·) fulfilling
∑∞

s=−∞ |γ(s)| < ∞. The Fourier transform of the

autocovariance function γ(s) gives the relationship

S(ω) =
1

2π

∞
∑

s=−∞
e−iωsγ(s), −∞ < ω <∞ (2.4.5)

where S is defined as the spectral density of {xt}.

12



One must note that the spectral density does not necessarily exists [12]. A sufficient but

strong condition for its existence is

∞
∑

s=−∞
|γ(s)| <∞. (2.4.6)

Absolutely summable autocovariances guarantees the transition from time domain to fre-

quency domain by the fourier transform.

Remark 4. As in most of the literature regarding time series, there is also in this area an

inconsistency in notations. The usage of the factors 1
2π

and 1√
2π

can be seen amongst other

authors. Some include them into the df of the inverse fourier transform as df = dω/2π. It

will in the entirety of this thesis be chosen to explicitly state this term as is done in the works

of Brockwell and Davis [11, 12].

The spectral density S(ω) describes which frequencies are important in the series xt. For

a time series with quarterly data, a peak or spike in the spectral density at ω = 1
2
π would

indicate seasonal effects since the period of one year is 2π. It should also be noted that a low

frequency corresponding with to a long wavelength so that ω has more impact for a larger

S(ω). In the context of examining long range dependent processes it will later be evident that

their spectral densities have a spike at low frequencies thus rendering the lowest frequencies

as importance in explaining the variance.

Letting the autocovariance generating function be

G(z) =
∞
∑

s=−∞
γ(s)eiωs (2.4.7)

then the spectral density is simply (2.4.7) divided by the period 2π. Using DeMoivre’s

theorem, e±iωs = cos(ωs)± i sin(ωs), s, t ∈ R Equation (2.4.4) can be rewritten as

S(ω) =
1

2π

[

γ(0) + 2
∞
∑

s=1

γ(s) cos(sω)

]

. (2.4.8)

See [11] for proof. By Equation (2.4.8) the connection between the time domain and the

spectral domain is clear, and since cos(ω) = cos(−ω) and γ(s) = γ(−s) the spectrum is

symmetric around zero. As cos has a period of 2π, in further analysis of spectra it is only

necessary to consider the interval ω ∈ [0, π]. By knowing S(ω), by (2.4.2) the autocovariance

function can be computed

γ(s) =

∫ π

−π
eiωsS(ω)dω.

13



Setting s = 0 the variance of the process {xt} is found as the sum of the spectral density

over the period 2π

γ(0) =

∫ π

−π
S(ω)dω.

In other words, the spectral density is a decomposition of V[xt] in terms of frequency. Due to

this representation, it is possible to detect an existence of cyclicality as it will show as peaks

or spikes in the spectral density.

Finally, by dividing the spectral density S(ω) by γ(0) then the Fourier transform of the

autocorrelation function is found and it will be defined as the spectral distribution function.

Definition 2.4.5 (The Spectral distribution function). Given {xt}, a zero-mean stationary

time series with a well defined autocovariance function, then the Fourier transform of the

autocorrelation function ρ(s) gives the relationship

f(ω) =
1

2π

∞
∑

s=−∞
e−iωsρ(s) (2.4.9)

where f defined as the spectral density of {xt}.

By using the inverse Fourier transform the autocorrelation function can be recovered.

As noticed in Equation (2.4.9), the spectral distribution function behaves like a probability

distribution - it is positive and integrates to one

ρ(0) = 1 =

∫ π

−π
f(ω)dω.

2.4.2 Spectral density of AR and MA processes

As previously mentioned, the spectral representation of a process is an assessment of the

variance contribution for a given frequency. It will briefly be shown how the spectral densities

of white noise, AR and MA processes are constructed. Note that the following results are

widely known in most of the literature regarding time series analysis [12] and therefore, only

the results will be presented since this chapter is purely for enlightenment. Understanding

how simple processes are represented in the spectral domain plays a role in understanding

methods for more advanced processes later described. The following computations can be

found in [12].
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White noise

It has been shown that for white noise εt γ(0) = σ2
ε and γ(s) = 0. Along these lines,

S(ω) =
1

2π

∞
∑

s=−∞
γ(s)eiωs = γ(0) = σ2

ε . (2.4.10)

In the case of white noise all frequencies contribute the same to the variance.

Autoregressive processes

Determining the spectral density of an AR(p) process can be done by applying a linear filter

S(ω) =
σ2

2π

∣

∣

∣

∣

∣

1−
p
∑

k=1

φke
−iωs

∣

∣

∣

∣

∣

2 . (2.4.11)

For AR(1),

S(ω) =
σ2

2π{1 + φ2
1 − 2φ1 cos(ω)}

(2.4.12)

and AR(2)

S(ω) =
σ2

2π{1 + φ2
1 + φ2

2 − 2φ1[1− φ2] cos(ω)− 2φ2 cos(ω)}
. (2.4.13)

For AR processes the value of φ determines whether the spectral density is defined by

high frequencies (negative φ) or low frequencies (positive φ) as seen in Figure 2.1a.

Moving average processes

As with AR, the MA processes are converted through a linear filter

S(ω) =
σ2

2π

∣

∣

∣

∣

∣

q
∑

j=0

θje
−iωj

∣

∣

∣

∣

∣

2

(2.4.14)

For MA(1),

S(ω) =
σ2

2π
{1 + θ21 + 2θ1 cos(ω)} (2.4.15)

and MA(2)

S(ω) =
σ2

2π
{1 + θ21 + θ22 + 2[θ1 + θ1θ2] cos(ω) + 2θ2 cos(2ω)}. (2.4.16)

As for AR processes, the MA spectral density is shaped by the values of θ. For positive

values, the majority of the spectral density will lie in the low frequency area and vice versa.
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Figure 2.1: Spectral densities for AR and MA processes.
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Chapter 3

Long range dependence

This chapter will cover the background for long range dependence (LRD) and introduce some

new processes which inhibit LRD properties. A connection will be made between series with

short range correlations and long range correlations by investigating the autocorrelations and

the spectral densities.

Long range dependence as a feature of time series is believed to have its beginning in the

late 1960’s where the phenomenon was studied by Mandelbrot and his colleagues [41, 46].

This engagement was triggered by a series of observations that were made by Hurst [28, 27]

in the 1950’s and had not yet been properly explained. This was not the first encounter of

such an anomalous feature of a time series. In the 1940’s Kolmogorov [33, 34] did research

on turbulence and observed similar attributes in the data studied.

3.1 Motivation for studying long range dependence

The reasoning for studying processes with long memory is that the dependence structure

plays an important role in the modeling of both economic and financial data. A definition

commonly used by authors is that long range dependent processes are defined as stochastic

processes with an autocorrelation function that is decaying slowly as a power law summed

to infinity. This slow decay is antithetical to the quick and exponential that was found in

the processes of Chapter 2.

One of the appealing features of examining memory effects in time series is that it can

be described by only one parameter - the Hurst exponent. Processes with a Hurst expo-

nent equal to 0.5 are either an independent process or a short-term dependent process [9].

Throughout the literature on the subject, there are differences in naming conventions. For

H < 0.5 the process exhibits negative correlations and is observed to be long-range dependent

with negative correlations [21]. In the seminal work of Beran [9] the case of H < 0.5 is termed
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short-range dependent, however Mandelbrot and Van ness [46] call it an anti-persistent pro-

cess. Further on, Peters [58] uses the term pink noise which stems from signal processing in

physics. In the case of H > 0.5 the process is shows positive correlations and is said to be

long-range dependent [9]. Palma [56] uses the term long-memory whereas Mandelbrot and

van Ness [46] refers to it as a persistent process. Finally, Peters refers to this type of behavior

as “black noise” and long range correlations are used by Peng [57].

Before further introducing the notion of long memory a set of relationships should be pre-

sented: where H is the self-similarity parameter, also named the Hurst exponent or the scaling

type of memory H d = H − 1/2 D = 2−H

short memory = 1/2 = 0 3/2
anti-persistence < 1/2 < 0 < 3/2
persistence > 1/2 > 0 > 3/2

Table 3.1: Relationship between estimators.

exponent, d is the differencing parameter and D is the closely related fractal dimension. Note

that the fractal dimension D is independent of the Hurst exponent as it is measuring the

roughness of the surface [44]. D is a local property opposed to d and H which is are global

properties. However, for Gaussian and closely related processes, the relationship D = 2−H

is assumed to be valid [48].

3.1.1 Definitions of long range dependence

A number of different definitions for long memory exist. For instance, Guegan [24] surveyed

the literature concerning the definition of the concept of long range dependence, which re-

sulted in 11 separate definitions. It will in this case be presented some of the definitions seen

in the works of Robinson [62] and Beran [9] will be presented. First definitions of long range

dependence in the time domain and the spectral domain are given as follows:

Definition 3.1.1 (Long range dependence [62]). A stochastic process {xt}∞t=−∞ with a auto-

covariance function γ(0) possesses long range dependence if and only if

∞
∑

s=−∞
γ(0) =

{

0 anti-persistent long range dependence

∞ persistent long range dependence
(3.1.1)

Definition 3.1.2 (Long range dependence [62]). A stochastic process {xt}∞t=−∞ with a spectral
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density S(ω) possesses long range dependence if and only if

lim
S→0

S(ω) =

{

0 anti-persistent long range dependence

∞ persistent long range dependence
(3.1.2)

On the contrary, by Definition 3.1.2, it can be said that a stochastic process {xt}∞t=−∞

has short memory if

0 < S(0) <∞.

Two more definitions will be given which differ from the first two introduced. These defini-

tions describe the ultimate behavior of the autocorrelations as they move towards infinity.

Definition 3.1.3. The stationary process {xt}∞t=−∞ possesses long range dependence if the

following holds

lim
j→∞

ρ(j)

cρj2H−2
= 1 (3.1.3)

where H ∈ (0, 1) and cρ > 0 is a constant.

An equivalent condition exists in the frequency domain since if the autocorrelations of a

process is known, then the spectral density is also known. This was shown in Chapter 2.

Definition 3.1.4. The stationary process {xt}∞t=−∞ possesses long range dependence if the

following holds

lim
ω→0

S(ω)

cSj1−2H
= 1 (3.1.4)

where H ∈ (0, 1) and cS > 0 is a constant.

These two definitions determine only the rate of convergence, not the absolute size, and

do not specify the correlations for any fixed lag. They essentially say that if the correlations

demonstrate slow decay then long memory is apparent. This slow decay can be somewhat

difficult to detect in practice [62]. Combining the Equations (3.1.3) and (3.1.4), the following

relationship can be established.

Proposition 2. Let S(ω) be the spectral density function of a stationary process and ρ(s)

the autocorrelation function. Then

lim
j→∞

ρ(j) ∼ cρj
2H−2 ⇔ lim

ω→0
S(ω) ∼ cSω

1−2H (3.1.5)

for H ∈ (0, 1) and cs and cρ is positive constants.

If the autocorrelation function behaves like a power-law at large lags, then by Equa-

tion (3.1.5), the spectral density is expected to have the same behavior for very small fre-

quencies. It can be inferred that the spectral density diverges at small frequencies.
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3.2 Stationary processes with long range dependence

Here, a few processes will be introduced that will later be used in the robustness analysis

of the estimators of long range dependence. As opposed to Chapter 5, where models with

short memory are introduced, these processes will have features that make them long range

dependent.

3.2.1 Self-similar processes

A self-similar process is said to resemble itself across a wide range of time scales. Kolmogorov

wrote a paper in 1941 [33] that for the first time introduced self-similar processes in a theo-

retical setting. It was not until 1968 was this concept brought into statistics by Mandelbrot

and van Ness [46]. First, let {xt}Tt=0 be a weakly stationary time series with autocorrelation

function ρ(s). Further on, a new time series is denoted as

x
(m)
t =

1

m

tm
∑

τ=(t−1)m+1

xτ , t = 1, 2, . . . , [T/m] (3.2.1)

where x
(m)
t is the sequence obtained by averaging the original series {xt} by non-overlapping

blocks of size m > 1 which describe the level of aggregation. Exact self-similarity can then

be defined.

Definition 3.2.1 (Exact Self-Similarity). A strictly stationary process {xt} is self-similar if

xt =d m
1−Hx

(m)
t ∀ t,m (3.2.2)

where =d means equality in distribution.

Given the self-similar process {yt} with the property yt =d t
Hy1 and y0 = 0. The in-

crement process is defined as xt = yt − yt−1 with variance σ2 = E[(yt − yt−1)
2] = E[y21] and

s < t. Then the covariance of the increment process can be computed in the manner where

s is subtracted

E[(yt − ys)
2] = E[(yt−s − y0)

2] = σ2(t− s)2H

and when not subtracting s, simply expanding the polynomial gives

E[(yt − ys)
2] = E[y2t ] + E[y2s ]− 2E[ytys] = σ2t2H + σ2s2H − 2γ(s).
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Solved for the autocovariance function γ(s) it results in

γ(s) =
1

2
σ2{t2H − (t− s)2H + s2H}. (3.2.3)

Based on the fact that yt is self-similar, the covariances Cov[x1, xs+1] of the increment process

{xt} is obtained (see [9])

γ(k) =
1

2
σ2{(s+ 1)2H − 2s2H + (s− 1)2H} (3.2.4)

for s ≥ 0. The correlations is given as ρ(s) = γ(s)
σ2

. The equality found in Equation (3.2.2)

is rather stringent and will only be used to introduce the concept of self-similarity. An

assumption regarding self-similarity of a stochastic processes in terms of the autocorrelations

will be made.

Definition 3.2.2 (Exact Second-Order Self-Similarity). A stationary time series {xt} is

exactly second-order self-similar with self-similarity parameter H if, for all m

ρ(m)
s = ρ(s) =

1

2

{

(s+ 1)2H − 2s2H + |s− 1|2H
}

, s ≥ 0, (3.2.5)

where ρ
(m)
s is the autocorrelation function of x

(m)
t .

Definition 3.2.3 (Asymptotic Second-Order Self-Similarity). A stationary time series {xt}
is exactly second-order self-similar with self-similarity parameter H if

lim
m→∞

ρ(m)
s ∼ ρ(s). (3.2.6)

Thus, the process {xt} is second-order self-similar if the aggregated process {x(m)
t } is

equal or becomes indistinguishable in terms of their corresponding autocorrelation functions.

Finally, a process {xt}t∈R has stationary increments if

x(t+ s)− x(s) =d x(t)− x(0). (3.2.7)

Fractional Gaussian noise(FGN) and the related fractional Brownian motion (FBM),

which is an integrated version of FGN, will be covered. In addition the fractional ARIMA is

used to model processes that are containing a long memory FI component in addition to the

MA and AR part.
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(c) Sample path of a FBM(H = 0.8).

Figure 3.1: Fractional Brownian motion sample paths.

3.2.2 Fractional Brownian motion

Brownian motion [9]

Let B(t) be a stochastic process with continuous sample paths and such that

i) B(0) = 0 almost surely,

ii) B(t) has independent increments

iii) E[B(t)−B(s)] = 0,

iv) V[B(t)− B(s)] = σ2|t− s|.

Then B(t) is called a Brownian motion.

Brownian motion (BM) can be given a fractal component and it becomes the fractional

Brownian motion denoted by BH(t) or FBM(H). It was introduced by Kolmogorov [33]
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but this representation and its name was given by Mandelbrot and van Ness [46]. As this

thesis aims to investigate processes with long range dependence, it is natural to discuss the

properties of fractional Brownian motions.

Fractional Brownian motion [46]

A process is called a fractional Brownian motion BH(t) if it follows the conditions

i) BH(0) = 0 and E[BH(0)] = 0,

ii) V[BH(t)] = σ2|t|2H ,

iii) V[BH(t)−BH(s)] = σ2|t− s|2H and

iv) Cov[BH(t), BH(s)] =
σ2

2
(|t|2H + |s|2H − |t− s|2H).

See [56] for proofs.

Excluding the trivial cases of H = 0 and H = 1 there will in the following only be focused

on the interval 0 < H < 1 for the case of fractional Brownian motions. Note that for H = 0.5

the FBM equals the Brownian motion with i.i.d. increments. The FBM is defined as standard

fractional Brownian motion if V[BH(1)] = 1, E[(BH(t))] = 0 and

Cov[BH(t), BH(s)] =
1

2
{t2H + s2H − (t− s)2H}

for H ∈ (0, 1). Some observations can be made from these assumptions. It is possible to

say something about the distribution of the standard fBm from the fact that the variance is

given as

V[BH(t)] = Cov[BH(t), BH(t)] = t2H .

The probability distribution is given as

BH(t) ∼ N (0, t2H)

and for any positive constant,

BH(ct) ∼ N (0, c2Ht2H).

By Equation (3.2.2)

BH(ct) ∼ c2HBH(t)

the fractional Brownian motion is known as a self-similar process with index H and exhibits

long range dependence in the sense that it is persistent for 1
2
< H < 1 processes and
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anti-persistent for 0 < H < 1
2
. Distinctions can be made regarding the different fractional

Brownian motions by examining their respective autocovariance functions γ. In the anti-

persistent case of 0 < H < 1/2, the covariance of two adjacent increments is negative and

the consecutive increments in the FBM sample path will move in opposite directions. This

leads to a spiky sample path. For persistent sequences with 1/2 < H < 1 the case is the

opposite. The covariance between the adjacent increments are positive and the sample path

will have a smooth appearance. Finally, forH = 1/2, the FBM reduces to a BM. In Figure 3.1

this behavior is shown.

3.2.3 Fractional Gaussian noise

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

Frequency − ω

S
p

e
c

tr
a

l d
e

n
si

ty
 −

 S
(ω

)

 

 
FGN

H=0.9

FGN
H=0.7

FGN
H=0.5

Figure 3.2: Spectral densities for a set of FGN processes.

The process referred to as fractional Gaussian noise is the increment process of the

fractional Brownian motion introduced above.

Fractional Gaussian noise

Given the fractional Brownian motion BH(t), the increment process given as

zt = BH(t+ 1)−BH(t) (3.2.8)

where H ∈ (0, 1) and t ∈ T. The discrete time process {zt} is defined as fractional Gaussian

noise with corresponding properties

i) E[zt] = 0,
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ii) {zt} is stationary for H ∈ (0, 1),

iii) V[zt] = E[BH(1)]
2,

As observed in Figure 3.2, the FGN has a pole at frequency ω = 0 for high intensities of long

range dependence, which is in coherence with Definition 3.1.2.

3.2.4 ARFIMA

The following class of models is an extension of the ARIMA models introduced earlier.

Recall that the ARIMA(p,d,q) from Equation (3.2.9) were restricted in terms of d as it could

only take integer values. The autoregressive fractional integrated moving average process, or

ARFIMA, differs from ARIMA by the fact that d ∈ R.

ARFIMA

Using the lag operator introduced earlier, the ARFIMA(p,d,q) can be presented as

φ(L)p(1− L)dxt = θ(L)qεt for d ∈ (−0.5, 0.5) . (3.2.9)

It is also possible to operate with a d outside this space, however the model will lose its

invertibility and stationarity [9].

The ARFIMA model consists of a class of fractionally integrated processes analogous to

the integrated processes defined earlier in Definition 2.2.2. The random walk encountered

above was an integrated process, however in terms of fractional integration a different struc-

ture is prevailing:

(1− L)dxt = εt (3.2.10)

where d ∈ R as opposed to d ∈ N is seen in Definition 2.2.2. The rationale behind the frac-

tionally integrated processes is that an integrated process such as (3.2.10) can be integrated

a fractional number of times and still maintain stationarity. Thus, a nonstationary process

with d = 1.4 can be differenced once to obtain d = 0.4, which would make it stationary. Tak-

ing a closer look at the difference operator (1−L)d provides an insight on how the fractionally

integrated processes work. The Taylor expansion for d ∈ R is presented as

(1− L)d =1− dL+
1

2!
d(d− 1)L2 − 1

3!
d(d− 1)(2− d)L3 + . . .

+
(−1)k

k!
d(d− 1) . . . (d− k + 1)Lk

=

∞
∑

k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk
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where Γ(x) =
∫∞
0
tx−1e−tdt , x ∈ R+ is the Gamma function. The simple representation

above can be represented as ARFIMA(0,d,0) and in terms of moving average it is given as

xt =

∞
∑

k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
εt−k. (3.2.11)

The ARFIMA(0,d,0), ARFIMA(d) noise or FI(d), exhibits persistence for 0 < d < 0.5 and

anti persistence for −0.5 < d < 0. For ARFIMA(p, 0, q), or ARMA(p,q), the process has

short memory as only the ARMA part remains. It is possible for d to take on values outside

the interval given here but the process will no longer be stable. In fact, the ARFIMA process

is stationary for d < 1
2
and invertible for d > −1

2
.

3.3 Examination of autocorrelations II

The earlier examination of autocorrelations in Section 2.3 displayed that they were expo-

nentially decaying for the processes given there, which is the definition of short memory. In

the previous section, processes that allegedly possess long range dependence were presented.

Previously it has also defined long range dependence as slowly decaying autocorrelations (in

terms of time domain) such as in Definition 3.1.1. In the following, the respective autocorre-

lation functions will briefly be examined.

Fractional Brownian motion

The autocorrelations is given as

ρ(s) =
1

2
{(s+ 1)2H − 2s2H + (s− 1)2H} (3.3.1)

where s ≥ 0. This is the definition of the autocorrelation of an exact second order self-similar

process defined in Equation (3.2.5). In order to assess the dependence of the fractional

Brownian motion it is necessary to investigate the asymptotic behavior of ρ(s) which can be

obtained by Taylor series expansion. By factoring out s2H from Equation (3.3.1) it can be

written as

ρ(s) =
s2H

2

{

(

1− 1

s

)2H

− 2 +

(

1 +
1

s

)2H
}

.

The expression can be reparameterized by denoting {·} as h(x) and get

ρ(s) =
s2H

2
h

(

1

s

)

26



where h(x) = {(1−x)2H−2+(1+x)2H}. In order to acquire the Taylor series the derivatives

of first and second order are found, respectively

∂h

∂x
= 2H{(1− x)2H−1 − (1 + x)2H−1}

and
∂2h

∂x2
= 2H(2H − 1){(1− x)2H−2 + (1 + x)2H−2}

The Taylor series expansion is written as

h(x− x0) = h(x) = h(0) + x
∂h

∂0
+
x2

2

∂2h

∂0
+ . . .

When substituting for ∂h
∂x

and for ∂2h
∂x2

the first non zero term of h(x) is found

h(x) =
x2

2
2H(2H − 1)

and ρ(s) becomes
s2H

j
h

(

1

s

)

= s2H , H(2H − 1)
1

s2

and when s goes to infinity

lim
s→∞

ρ(s) ∼ H(2H − 1)s2H−1. (3.3.2)

It is now appropriate to say something about the correlations in the limit. For H ∈ (1/2, 1)

the correlations decay so slowly that

∞
∑

s=−∞
ρ(s) = ∞. (3.3.3)

For H = 1/2 the correlations asymptotically go to zero; the observations of the increment

process is uncorrelated. For H ∈ (0, 1/2) the correlations are summable

∞
∑

s=−∞
ρ(s) <∞. (3.3.4)

As follows, for H ∈ (0, 1/2) the process has short range dependence, for H = 1/2 the

observations are uncorrelated and for H ∈ (1/2, 1) the process has long range dependence.

Fractional Gaussian noise

Recall that the fractional Gaussian noise process from (3.2.8) is the increment process of the
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fractional Browninan motion and exhibits the same properties as a differenced FBM.

ARFIMA

Knowing that an ARFIMA(p,d,q) model can represent both short-run correlations in its AR

and MA parts and long-run correlations in the FI part, the interesting case in this context

is the ARFIMA(0,d,0) process defined as

(1− L)dxt = εt.

This process has an infinite autoregressive and moving average representation by Equa-

tion (3.2.11) as

xt =

∞
∑

s=0

Γ(s+ d)

Γ(d)Γ(s+ 1)
εt−s. (3.3.5)

As the white noise εt is independent when t 6= s the autocovariance function γ(s) must be

given as [9]

γ(s) =
Γ(1− 2d)Γ(s+ d)

Γ(d)Γ(1− d)Γ(s+ 1− d)
. (3.3.6)

and corresponding autocorrelation function

γ(s)

γ(0)
= ρ(s) =

Γ(1− d)Γ(s+ d)

Γ(d)Γ(s+ 1− d)
. (3.3.7)

By the use of Stirling’s formula Γ(s+c1)
Γ(s+c2)

≈ sc1−c2 (3.3.7) can be approximated as

lim
s→∞

ρ(s) = cs2d−1

where c = Γ(1−d)
Γ(d)

and d ∈ (0, 0.5). When d lies in the interval 0 < d < 0.5 the autocorrela-

tions will decay hyperbolically at the rate of s2d−1 and the underlying process is long range

dependent.
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Figure 3.3: Autocorrelation functions of FGN(H) and ARFIMA(0,d,0) for different levels of
H and d.
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Chapter 4

Estimators of long range dependence

Thus far it has been shown that fractional Gaussian noise, fractional Brownian motion and

ARFIMA models can be used to model long range dependence. In the ARFIMA(p,d,q)

process, the measurement of persistence is given as the differencing operator d ∈ (−0.5, 0.5)

where long range dependence occurs in the interval 0 < d < 0.5. For the fractional Gaussian

noise, the level of dependence is measured by the Hurst exponent H ∈ (0, 1) and persistence

is found when 0.5 < H < 1. In Table 3.1 the relationship between these parameters is given.

In this chapter the problem of estimating the intensity of long range dependence in time series

will be addressed. It is worth noting that there is a common estimation procedure among

the estimators, including some of the LRD estimators that are not used in this context. The

common regime is as follows:

i) A numerical property, say F , of the time series is computed as a function of the order

δ, i.e. F (δ),

ii) a power law describing the asymptotic behavior, such as F (δ) ∼ δa, as the value δ goes

to zero or infinity is derived,

iii) where the exponent a is a function of the fractal exponent H ,

iv) and finally, H is estimated by regression where the lowest values of F (δ) ∼ δa are

emphasized.

4.1 Estimators

As was mentioned in the introduction to this chapter, the estimators of LRD introduced here

follow a common procedure which is categorized with respect to each estimator in Table 4.1.

30



Estimator Property Series Power law Scheme

R/S (R/S)τ : Rescaled range τ - lag τH τ → ∞
Periodogram I(ωj): Periodogram ω - frequency ω−2d ω → 0
Higuchi L(m): Length of curve m - blocks m−D m → ∞
DFA F(l): Fluctuation l -block size lH l → ∞
Gen. Hurst Kq(τ): q-eth moment τ - lag τqH(q) τ → ∞
Agg. Variance x

(m)
t : Agg. process m - block size m2H−2 m → ∞

E.L. Whittle I(ωk): Periodogram ω - frequency ω−2d ω → 0

Table 4.1: Categorization of the main features of the LRD estimators.

In the following the procedure for each estimator and its known finite sample properties

is introduced.

4.1.1 Rescaled range

First of all the widely used and pioneering method known as the rescaled range, or simply

R/S analysis, will be introduced. The method was first developed by Harold E. Hurst in 1951

[28] in relation to a hydrological context. He was managing a reservoir and his assignment

was to determine an ideal design such that the dam would never dry out or flood. To his

aid he had records of previously observed river discharges and when designing the model,

he noticed that the amount of rainfall would follow a random walk. Mandelbrot and Wallis

[41] introduced two terms that would describe the weather conditions. One of which being

observations that were distributed according to heavy tails, namely the Noah effect. Long

memory observations were associated with the term Joseph effect. The latter refers to the

biblical story of Joseph who claimed that seven years of prosperity (heavy rainfall) would be

followed by seven bad years.

Given a time series, {xt}Tt=1 let {zt}τt=1 be the logarithmic returns given by zt = ln[xt+1/xt]

and the sample mean z̄ = 1/τ
∑τ

t zt where τ is the time range. The so called R/S statistic

is given as [9]

(R/S)τ def

=
1

sτ

[

max
1≤t≤τ

τ
∑

t=1

{zt − z̄} − min
1≤t≤τ

τ
∑

t=1

{zt − z̄}
]

. (4.1.1)

The expression in the brackets are usually called the range which is scaled by the standard

deviation sτ defined as

sτ
def

=

[

1

τ

τ
∑

t=1

{zt − z̄}
]1/2

(4.1.2)

Using this analysis, Hurst found out that the rescaled ranges would follow a power law [48, 71]
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similar to

E[(R/S)τ ] ∼ cτH .

By OLS regression in a log-log plot, the Hurst exponent can be found from the equation

log(R/S)τ = log(c) + H log(τ). For a FARIMA or a fractional Gaussian noise, process the

rescaled range statistic is behaves like a power law such as τH as τ → ∞.

Statistical properties

In the survey carried out by Taqqu et. al [71], 9 estimators of long range dependence were

tested in a simulated study. When applied to FGN and ARFIMA, the rescaled range (RS or

R/S) method was overestimating given a low true H and underestimating given a high true

value of H . In addition, the method displays an increasing variance for increasing values of

true H . This behavior is also seen in other studies [35, 70, 73, 7]. Further on, in the extension

of [71], a series of estimators were studied again [70], but in this context of heavy tailed

distributions. The R/S method was shown to be robust against heavy tailed distributions

and it was shown to be sensitive towards short range dependency in the underlying process.

This is confirmed in the study by Kristofuek [36]. The R/S statistic has been shown to be

biased for small samples of τ [16] in coherence with the study by Weron [73] which recognized

that for an increasing sample size, the R/S method approximated the true Hurst exponent.

4.1.2 Periodogram method

The periodogram method introduced by Geweke-Porter and Hudak [22] utilizes the peri-

odogram which is the sampling analogy of the spectral density S(ω) introduced in Equa-

tion (2.4.4). This method aims to estimate the Hurst exponent by fitting a slope in the

spectral domain. Given a stationary time series {xt}, the periodogram I(ω) is an estimator

for the spectral density function S(ω) and is defined by Equation 4.1.3

Ŝ(ωj) = I(ωj) =
1

2π

∣

∣

∣

∣

∣

n
∑

t=1

(xt − x̄n)e
itωj

∣

∣

∣

∣

∣

2

=
1

2π

n−1
∑

k=−(n−1)

γ̂(k)eikωj (4.1.3)

with corresponding Fourier frequencies ωj = 2πj/n and j = 1, . . . ,M , M = [(n−1)/2] being

the integer part. The sample covariances γ̂(k) is defined as [11]

γ̂(k) =
1

n

n−|k|
∑

t=1

(xt − x̄n)(xt+|k| − x̄n) (4.1.4)

where the sample averages are given as x̄. The periodogram (or GPH) estimator is found

by considering the behavior of the spectral density which is given as c|ω|1−2H for ω → 0 and
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OLS regression gives

log I(ωj) ≃ log c− 1− 2H log ωj + εj (4.1.5)

for a frequency ω close to zero and where c ≥ 0.

Statistical properties

It can be shown that the periodogram is an asymptotically unbiased estimator of the spectral

density [9],

lim
T→∞

E[I(ω)] = S(ω). (4.1.6)

Based on the fact that the behavior of the spectral density of a stationary time series is given

S(ω) ∼ csω
1−2H for ω → 0 as in Equation (3.1.4), the estimate of H is acquired by fitting

a line trough the periodogram in a log-log plot. The periodogram has a theoretical slope

of −2d or 1 − 2H and since the ω1−2H behavior is only valid for low frequencies, it is only

necessary to utilize the lowest 10% of the observations [37] and [71].

Geweke and Porter-Hudak [22] deduced the following relationship (under a set of argu-

ments)
√
M(Ĥ −H) ∼ N

(

0,
π2

6

)

(4.1.7)

which was later shown to hold for stationary, Gaussian, zero-mean processes with H ∈ (0, 1)

[63]. In terms of finite sample properties Rea et al. [60] displayed that the periodogram

estimator was unbiased for FGN series and gave more precise estimates for longer series

which also were the results of Taqqu et al. [71]. In other studies it has been shown that the

periodogram estimator is robust to different sampling distributions as well as being insensitive

to the presence of short range correlations [70]. Weron [73] found out that for small samples

the periodogram method would underestimate the true H .

4.1.3 Higuchi method

In the paper Approach to an Irregular Time Series on the Basis of the Fractal Theory by

Higuchi [69], a procedure for determining the fractal dimension D = 2 −H of a self similar

process was introduced. See also the survey by [71] for more coverage.

This method aims to determine the long range dependence of a time series {xt}Tt=0 by

using its partial sums z(t) =
∑t

j=1 xt, such as converting a fractional Gaussian noise into a

fractional Brownian motion. Subsequently, the normalized length of the curve is found as

L(m) =
T − 1

m3

m
∑

j=1

[

T − j

m

]−1 [(T−j)/m]
∑

k=1

∣

∣z(j + km)− z(j + (k − 1)m)
∣

∣, (4.1.8)
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where T is the length of the underlying time series and m is the block sizes. Further on,

E[L(m)] ∼ cHm
−D

where D = 2−H . Finally, plotting ln(L(m)) against m gives a slope of D = 2−H . In this

case, ln(L(m)) is the dependent variable and m is the independent variable.

Statistical properties

Rea et al. [60] discovered in their finite sample study that the Higuchi method exhibited bias

towards underestimating H independent of the Hurst exponent. Further on, for a H closer to

one, the confidence intervals were increasing. In Taqqu et al. [71] the method were unbiased

for the true H for both FGN and ARFIMA with increasing MSE for increasing levels of H .

4.1.4 Detrended fluctuation analysis

This method was proposed by Peng et al. [57] in their studies of long range dependence in

DNA sequences. Given a time series {xt}Tt=1, the detrended fluctuation analysis is composed

of five steps. First, a new time series is generated

yt =

t
∑

k=1

xk (4.1.9)

which is the partial sums of the underlying time series. The time series {yt}Tt=1 is non-

stationary. Secondly, the time series is divided into [n/l] non-overlapping blocks where [·]
is the integer part. Thirdly, a least square line is fit for each block. The fourth step is to

detrend the partial sums {yt} in the manner

zt = yt − ylt

where ylt is the adjusted fit for each block. Finally, the root mean squared fluctuation is for

each l ∈ {4, 5, . . . , g(n)} given as

F(l) =

√

√

√

√

1

ñ

ñ
∑

t=1

z2t (4.1.10)

where ñ = [M ∗ l] ≤ n (the maximum multiple of l) with M = [n/l]. It has been proven [25]

that g(n) = [n/10] is an optimal choice. In a log-log plot, the linear relationship

F(l) ∼ cDFAl
H
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as (4.1.10) increases with the block size l. The scale of long range dependence can then be

found by regressing ln(F (l)) on ln(l).

Statistical properties

Along with the rescaled range method, the detrended fluctuation method (DFA) is one of the

most used methods for estimating the amount of long range dependence in data. Moreover,

Taqqu et al [71] showed that the DFA, although consistent for increasing values of H , under-

estimates the true Hurst exponent which is being diagnosed in the same article. In addition,

this negative attribute has also been demonstrated in [70] and [51]. These articles executed

the method on series with influence from short memory data and it appeared to be sensitive

to such interference.

Further on, in the study by Crato et. al [53] it was proven that, given εt ∼ i.i.d N (0, σ2)

in the regression model, the DFA method is a minimum variance unbiased and consistent

estimator for H . DFA has also been shown to be sensitive to short range dependence When

applied to heavy tailed data, the DFA method has precise estimates in terms of expected

values but has wide confidence intervals making it difficult to make statements regarding the

statistical conclusions.

4.1.5 Generalized Hurst exponent

This procedure was proposed by Barabasi and Vicsek [3], and was brought to light in recent

history by Di Matteo et. al [49]. It is based on the scaling behavior of the q-th order moments

of the increment process from the underlying process {xt}. The method serves as a tool for

detecting scaling behaviors as seen in [42]. The generalized Hurst exponent (GHE) has also

been used to identify the level of development in a market [48, 50].

The scaling properties of a time series are given in terms of the statistic Kq(τ) which is

defined as [49]

Kq(τ) =
1

T − τ

T−τ
∑

τ=0

|X(t+ τ)−X(t)|q (4.1.11)

where T is the length of the time series and Kq(τ) scales as

Kq(τ) ∼ cτ qH(q).

On the basis of this scheme, it is possible to make statements regarding the underlying

processes. In fact, two separate observations can be made which is determined by the scaling

behavior of the process. A process can be observed for which the H(q) = H - the Hurst

exponent - is a constant independent of the moments of the process q. This is known as a
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unifractal process. In this case, the process is exclusively described by the Hurst exponent

and is self-similar [40]. The fractional Brownian motion BH(t) with H 6= 1
2
and the ordinary

Brownian motion B(t) with H = 1
2
are both unifractal processes. The other observation is

when H(q) is not constant and depends on q. The process is then known as multifractal

and q ∗H(q) scales differently for separate order of moments q. For q = 1 the scaling of the

absolute increments |xt+τ − xt| is described by H(1). In the context of detecting long range

dependence it is essential to consider the autocorrelations of the increments which is the case

for the second order of moments q = 2. The Hurst exponent then can be estimated from the

relationship K2(τ) ∼ cτ 2H(2) and will correspond to the H estimates from the other methods.

In particular, the estimate of H(q) can be found by regressing Kq(τ) on τ . In the analysis of

Chapter 5 H(q = 2) will be utilized.

Given the relationship Kq(τ) ∼ cτ q∗H(q), the intensity of LRD is estimated as the slope

of q ∗ H(q) versus q in a plot. One will also in such a plot observe whether the process is

exhibiting unifractality or multifractality if the relationship is linear or non-linear respectively.

In the robustness assessment, this will be used to reveal some of the features of the data.

In the unique case of q = q∗ where q∗H(q∗) = 1 it was pointed out by Mandelbrot [42]

that Kq∗(τ) scales linearly. Given that qH(q) is a monotonic growing function for q, then all

Hq(τ) with q < q∗ will scale slower than the time scale τ and for q > q∗ scale faster. It is

said that q∗ is the scaling threshold value and it is observed that

H(q = 1) = H(q = 2) = H(q = q∗).

Statistical properties

In the study by Barunik and Kristoufek [7] it was shown that the GHE q = 2 estimator is

robust to heavy tails in the underlying process. In the same study it was observed that GHE

with q = 2 was outperforming R/S and DFA in terms of variance and bias.

It is also tested on random walks in [49] where it was found to be unbiased for q = 2, i.e.

when the scaling properties of the autocorrelation function is examined.

In the works of Barunik et al. [6], the above is confirmed and in addition it reveals that

the GHE method gives weakly biased results for ARFIMA signals. However, for fractional

Gaussian noise and ARFIMA the estimates are equal for GHE(q = 1 = 2 = 3) when the

innovations come from a normal distribution. Also, when short range dependence is present

the GHE will give a small upward bias. In the same article it is shown that GHE(q = 2)

is insensitive to heavy tails and GHE(q = 1) and GHE(q = 3) gives biased results under

such conditions. In the study by Souza et al. [65] it was confirmed that GHE is insensitive

to outliers as it is not dealing with min and max data.
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4.1.6 Aggregated variance

The aggregated variance method is seen in the works of Beran [9] and more recently in Taqqu

et. al. [71]. It follows from the self-similarity property of the time sample process. Recall

from Equation(3.2.1) that the aggregated process is given as

x
(m)
t =

1

m

tm
∑

τ=(t−1)m+1

xτ , t = 1, 2, . . . , [T/m]

for consecutive values of the block size m. Assuming (asymptotical) self-similarity, recall

from Equation (3.2.2) that x
(m)
t is equal in distribution to mH−1xt and the variance of the

aggregated series and the ordinary series is related as V[x
(m)
t ] = m2H−2V[xt]. The sample

variance of the aggregated series in Equation (3.2.1) is

̂
V[x

(m)
k ] =

1

T/m

T/m
∑

t=1

(x
(m)
t )2 −





1

T/m

t=1
∑

T/m

x
(m)
t





2

. (4.1.12)

The Hurst exponent estimate is found by plotting
̂
V[x

(m)
k ] against x

(m)
t in log-log plot. In

other words, the estimate of H is found by linear regression where
̂
V[x

(m)
k ] is the dependent

variable and x
(m)
t is the independent variable. If the estimated variances are equal to their

true values then all of the points would lie on a straight line with slope 2H − 2. In practice

there will be small deviations from this slope and it is estimated by fitting a straight line

through the points. The slope of this line is then accepted as the estimate of H . For a process

with short range or no dependence the slope of 2H − 2 in the log log plot should be equal to

1.

Statistical properties

It is pointed out by Beran [9] that this approach is very naive due to the fact that the

estimator in Equation (4.1.12) is biased in the presence of non-zero correlations, which is

the case for long range dependence. Beran also points out that this bias disappears for large

[T/m], for instance if the number of observations T is large and the block sizes m are small.

However, this happens very slowly for processes with long range dependence and it can be

stated that

lim
[T/m]→∞

E

[

̂
V[x

(m)
k ]

]

∼ V[x
(m)
k ]{1− c[T/m]2H−2}

where c is a constant. When the process is persistent i.e. H > 1/2 and c is positive, then
̂
V[x

(m)
k ] results in a underestimation of V[x

(m)
k ] and thus H as well. As shown in research

conducted by Taqqu et al. [71] this underestimation is increasing for larger values of H . The
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finite sample study by Rea et al. [60] confirms this for a range of sample sizes.

4.1.7 Whittle approximation

Whittle’s estimator is a maximum likelihood estimator originating from the fact that the

periodogram I(ω) of a covariance stationary process behaves as

I(ωk) ∼ eS(ωk)
−1

(4.1.13)

for large samples of T . The Whittle approximation assumes that there is a functional form for

I(ω) and the goal is to minimize a set of parameters based on this. The traditional Whittle

estimator requires a specification of the expected functional form, such as fractional Gaussian

noise or ARFIMA, thus making misspecifications a threat. The local Whittle estimator [63]

and [37] only assumes a functional form for the spectral density at frequencies close to zero.

An exact form of the local Whittle estimator has been proposed by Philips and Shimotsu

[64] which is the estimator that will be used in the analysis later.

Local Whittle estimator

In the paper Gaussian semiparametric estimation of long-range dependence [63], it is sug-

gested by Robinson, by using the local Whittle estimator, that a Gaussian semiparametric

estimator can be used to determine the intensity of long range dependence. This procedure

relies on the fact that the spectral density can be approximated at zero frequency by the

relationship S(ω) ∼ Gω−2d as seen in Equation (3.1.4).

By using the relationship in Equation (4.1.13), its likelihood function for the whole sample

is computed as

L{I(ω)|G, d} =
m
∏

k=1

1

S(G,d)(ωi)
exp{− I(ωk)

S(G,d)(ωk)
}.

The log-likelihood is found as

lnL =

m
∑

k=1

{

− lnSθ(ωk)−
I(ωk)

Sθ(ωk)

}

(4.1.14)

where θ = (G, d) is the parameter vector. The relationship in (4.1.14) is also known as the

Whittle likelihood. As the functional form in Equation (4.1.13) is only assumed at frequencies

close to zero, the log-likelihood in the neighborhood of ω ≈ 0 must be computed. It is given

as the objective function [37]

lnL ∼
m
∑

k=1

{

ln(Gω−2d
k ) +

I(ωk)

Gω−2d
k

}

(4.1.15)
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with corresponding likelihood equation

∂ lnL
∂G

=

m
∑

k=1

{

1

G
− I(ωk)

G2ω−2d
k

}

= 0. (4.1.16)

Solved for G gives

Ĝ =
1

m

m
∑

k=1

{

I(ωk)

ω−2d
k

}

which is inserted into (4.1.15) yielding

lnL = m ln Ĝ− 2d
m
∑

k=1

ln(ωk) +m2.

Subsequently, its minimization with respect to d is equal to [62]

argmin
Ĝ,d

L = ln Ĝ− 2d

m

m
∑

k=1

ln(ωk) +m

which can be given as [63]

d̂LW = argmin
d

{

ln

(

1

m

m
∑

k=1

I(ωk)

ω−2d
k

)

− 2d

m

m
∑

k=1

ln(ωk)

}

.

Exact local Whittle estimator

As an extension of the local Whittle estimator the exact local Whittle estimator (ELW)

[64] has been proposed as an alternative that does not rely on differencing of tapering [72]

and seemingly offers a general procedure for estimating the level of long range dependence.

The exact local Whittle objective function is almost deduced in the same manner as above

yielding the Whittle likelihood

lnL ∼
m
∑

k=1

{

ln(Gω−2d
k ) +

I∆dχ(ωk)

G

}

(4.1.17)

However, the term I(ωk)

Gω−2d
k

is replaced with
I
∆dx

(ωk)

G
, which is the periodogram of the fractionally

differenced series (1− L)d = xt (ARFIMA noise) cohering to the true parameter. The ELW

estimator is

d̂ELW = argmin
d

{

ln ξ − 2d

m

m
∑

k=1

lnωk

}
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where ξ is the averaged periodogram

ξ = Ĝ(d) =
1

m

m
∑

k=1

I∆dx(ωk).

Statistical properties

As the intention is to use the ELW estimator only its properties are presented here. It was

shown that the ELW estimator yields consistent results and have d̂ELW ∼ N (0, 1
4
) limit

distribution [64] for d ∈ (−1
2
, 1), thus including the nonstationary case of d ∈ (1

2
, 1) [72].

4.2 Statistical properties of the estimators

As mentioned in Chapter 1, a broad field of research has been conducted on long range

dependence in recent years but only a small part of this research is aimed at investigating

finite sample properties of he estimators. In the following, the finite sample properties of the

proposed estimators will be summarized.

R/S PER HIG DFA GHE AV ELW

Unbiaseda N Y Y Y Y N Y
Small sample biasb Y Y N N N Y N
Consistentc N N N Y Y N Y
Heavy-tail biasd N N - N N N N
Short-memory biase Y N Y Y N Y N

Table 4.2: Finite sample properties of the estimators.

In Table 4.2 a list of attributes describing the finite sample properties for each estimator

is given. The unbiasedness (a) is based on the estimation of FGN and ARFIMA(0,d,0) series

as in [71], [70], [7] and [73]. For the GHE estimator the unbiasedness is based on [6] for series

with H = 0.5. The unbiased measure is this context based on a single sample size. The bias

of ELW is given in [64]. For small sample bias (b), the properties are largely based on [60],

[7] and [73]. Again, the estimators were tested on Brownian motions with H = 0.5. For ELW

it is based on [64] and for GHE [7]. Regarding the consistency (c) of the estimators see [60]

and [35]. The consistency was based on having smaller MSE for increasing sample sizes. In

[5] this is also covered. For DFA see [53]. The heavy tailed bias (d) and the short memory

bias (e) is for most of the estimators covered in [70] and [36]. For the GHE estimator see [6]

and [65], and [4] for ELW.
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Chapter 5

Finite sample properties

In this chapter two types of long range dependent series will be generated: fractional Gaussian

noise and autoregressive fractionally integrated moving average noise (the difference of an

ARFIMA signal) with corresponding known properties. Afterward the estimators are applied

to the series for different levels of intensity of LRD and sample sizes in order to establish

their finite sample properties.

5.1 Data generating processes

In order to construct a controlled environment, it is crucial to know the data generating

process. Here, the algorithms for generating sample paths of long range dependent processes

will be introduced. The processes that were introduced earlier are fractional Brownian mo-

tion, fractional Gaussian noise and ARFIMA. These algorithms rely on the discrete Fourier

transforms introduced in Chapter 2. The (inverse) discrete Fourier transform is computed

by the algorithm known as the (inverse) fast Fourier transform which requires the length of

the time series to be a power of 2 in order to be efficient. Computational efficiency will be

denoted by O(·) which measures the evolution of an algorithm in terms of complexity. For

example, an algorithm with complexity O(cn) will increase exponentially for larger data sets.

5.1.1 Fractional Gaussian noise

This part aims to generate stationary long memory processes which are a realization {xt}Nt=1

of the underlying process {Xt}Nt=1. The methods are said to be exact in that the quality of

the generations rely on the white noise generator (Matlab function randn), specifically the

one featured in Matlab [47]. The fractional Gaussian noise is simulated by the two separate

methods corresponding to their level of persistence. For H ∈ (0, 1/2), Lowen’s circulant
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method [39] was utilized. For H ∈ (1/2, 1), a circulant matrix embedding method [9, 18] is

used. See also Taqqu et al. [5].

Lowen’s circulant method

The method for generating a fractional Brownian motion BH(t), t = 0, . . . , T forH ∈ (0, 1/2)

is given in [39, 5]. The contrasting feature of this method to other methods lies in the periodic

autocorrelation function defined as

ρ̃(n) =

{

2−1{1− (n/N)2H} for 0 ≤ t ≤ N

ρ(2N − n) for N < n ≤ 2N.
(5.1.1)

is periodic of n with period 2N . The autocorrelation function ρ̃(n) is real, nonnegative,

symmetric and thus the Fourier transform exhibits the same features for all n [39]. It is

therefore clear that the discrete Fourier transform Fn serves as a discrete spectral density S

and will be defined as

Fn = S(ω) =

2N−1
∑

n=0

ρ̃(n) exp
{

πi
ωn

N

}

.

Given the random variables

Gi(ω) ∼ i.i.d.N (0, 1), ω = 1, . . . , N − 1

then a function with period 2N can be defined

X(k) =























0 for ω = 0,
√

S(ω)
2

{G1(ω) + iG2(ω)} for ω = 1, . . . , N − 1,
√

S(ω)ε for ω = N,

X∗ (2N − ω) for ω = N + 1, . . . , 2N − 1

(5.1.2)

where ε is Gaussian white noise as in Equation (2.2.1) and X∗(·) is the complex conjugate

of X(·). The inverse discrete Fourier transform is computed using the inverse fast Fourier

transform from (2.4.4) as

x(n) =
1

2N

2N−1
∑

ω=0

X(k) exp
{

πi
ωn

N

}

for n = 0, . . . , 2N − 1. (5.1.3)

Bardet et al. [5] shows that x(n) is stationary, Gaussian, zero mean and periodic of 2N

computed as

x(n) =
1√
2N

(y(n)− ν) (5.1.4)
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where y is a normally distributed an has the correlation function ρ̃ and ν is a zero mean,

Gaussian random variable dependent on y. Then, by (5.1.4) the fractional Brownian motion

is defined

BH(n) =
√
2N {x(n)− x(0)}

Lastly, the fractional Gaussian noise is given as

z(n) = BH(n)−BH(n− 1) (5.1.5)

Circulant matrix embedding

The method proposed by Davies and Harte [18] generates FGN H ∈ (0.5, 1) and aims to

embed the covariance matrix Σ in the circulant matrix C. The method was later refined by

Wood and Chan [75] and Dietrich and Newsam [20] where theM-vector was chosen as 2N−1.

In addition to Beran [9] Dieker and Mandjes [19] give a different view of the algorithm.

The rationale behind the method is that a circulant matrix can easily be diagonalized

by the DFT which skips matrix computations and drastically shortens the computational

complexity from O(n2) to O(n logn). This decrease in complexity stems from the fact that

most FFT softwares take advantage of a ’power-of-two’ algorithm. Efficient computations

take place for N = 2k + 1 or M = 2N − 1 which will be utilized here. For this procedure,

γ(k) is defined as an slight alteration of the relationship in Equation (3.2.4)

γ(k) =
σ2

2N2H

{

(k + 1)2H − 2k2H + (k − 1)2H
}

. (5.1.6)

The algorithm starts with defining an N -vector as

Λk =



































γ(0)

γ(1)
...

γ(N − 1)

γ(N)

γ(N + 1)
...

γ(2N − 1)



































(5.1.7)
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where Λk
def

= γ(k) and the discrete Fourier transform of Λk is given as

Fp =

p−1
∑

k=0

Λk exp

{

−2πi
nk

p

}

(5.1.8)

for n = (0, . . . , p − 1). As follows, a N -vector is simulated as Z = Up + iVp for 1 ≤ p.

Accordingly a set of independent random variables distributed as Up ∼ N (0, 1) and Vp ∼
N (0, 1) is defined

Z0 = Up

Zp =
1√
2
{Up + iVp}

ZN = Up

Z2N−p =
1√
2
{U2N−p − iV2N−p}

where i =
√
1. Further on the inverse fast Fourier transform is performed on

√

FpZp as

xk =
1√
2N

2N−2
∑

p=0

√

FpZp exp

{

πi
pk

N

}

. (5.1.9)

To make it more clear the process {xk}2N−1
k=0 can be separated into the Fourier transform of

the cases [17]

zk =































√

Fk

2N
Uk for k = 0,

√

Fk

4N
(Uk + iVk) for k = 1, . . . , N − 1,

√

Fk

2N
Uk for k = N,

√

Fk

4N
(U2N−k − iV2N−k) for k = N + 1, . . . , 2N − 1,

(5.1.10)

Finally the fractional Gaussian noise is produced as the real part of the first N coordinates

of xk.

5.1.2 ARFIMA

The following procedures are described by Stoev and Taqqu [68] and implement the fast

Fourier transform to current well known methods for generating FARIMA sample paths.
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The model defined in Equation (3.2.9) is reiterated as

φ(L)p(1− L)dxt = θ(L)qεt (5.1.11)

where d ∈ R. In Kokoszka and Taqqu [32] the fractionally integrated part in (5.1.11) is

defined by

(1− L)−dεt =
∞
∑

j=0

ajεt−j (5.1.12)

with corresponding coefficients aj from the Taylor expansion

a0 = 1, aj =
Γ(j + d)

Γ(d)Γ(j + 1)
j ≥ 1. (5.1.13)

As the procedure applies a lowpass filter which in its simplest form is

given as

y(t) = x(t) + x(t− 1) for t = 1, . . . , T.

which in this case where the AR and MA parts are filtered on the fractional

differencing term in (5.1.12) gives the expression

ζ(n) = a(n) +

p
∑

j=1

θjζ(n− j)−
q
∑

k=1

φkb(n− k) (5.1.14)

where n = 1, . . . , N . Using (5.1.13) the series can be represented as [32]

xt =

∞
∑

j=0

ζjεt−j =

t
∑

j=−∞
ζt−jεt. (5.1.15)

It is now apparent that the moving average coefficients ζj exhibit long range dependence

as conducted by the exponent d as ζj ∼ jd−1 for j → ∞ and then the decay is observed
∑∞

j |ζj| = ∞.

The algorithm by Stoev and Taqqu [68] approximates (5.1.15) as a truncated moving

average representation

xt ≈ x′t
def

=
N−1
∑

j=0

ζjεt−j (5.1.16)

for n = 1, . . . , N − 1. Next, a set of periodic functions are defined in order to utilize the fast
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Fourier transform algorithm. First ζ̃ is defined as

ζ̃t =

{

ζj for j = 0, . . . , N − 1,

0 for j = N, . . . , 2N
(5.1.17)

where ζ̃j+t(2N)
def

= ζ̃j for j = 0, 1, . . . , 2N − 1 making ζ̃j 2N -periodic. Another 2N -periodic

function is defined as

ỹj+t(2N)
def

= εj for j = 0, 1, . . . , 2N − 1. (5.1.18)

Then the discrete Fourier transform of the periodic series is computed as

Zn =

2N−1
∑

n=0

ζ̃j exp

{

−πinj
N

}

(5.1.19)

and

Yn =

2N−1
∑

n=0

εj exp

{

−πinj
N

}

(5.1.20)

As follows, by (5.1.16), the relationship

x′(t) =d

2N−1
∑

j=0

ζ̃j ỹn−j (5.1.21)

states equality in distribution for n = 0, 1, . . . , N − 1. Finally the inverse discrete Fourier

transform of the product (ζ̃ ỹ)t
def

= ζ̃tỹt is yields the sample path of the ARFIMA process

zt =
1

N

N−1
∑

n=0

(ζ̃ ỹ)t exp

{

πi
nj

N

}

for j = 0, 1, . . . , N − 1. (5.1.22)

5.2 Properties of the estimators

Though a series of finite sample property studies have been performed which concentrate on

length [55, 73], non-Gaussian innovations [36] and short memory [70] none of these look at

the baseline case for pure LRD series in the same comprehensive manner as here.

The rest of this chapter is devoted to establishing the baseline features of the estimators

when presented with pure LRD signals.
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5.2.1 Biasedness and standard deviation of the estimators

In order to assess the bias, standard deviation and mean squared error of the estimators

a simulation study were performed on fractional Gaussian noise and ARFIMA noise type

signals. The analysis was done on time series of different length and different intensity of

long memory reflected in the Hurst exponent. FGN(H) and ARFIMA(0, H − 1/2, 0)1,

H ∈ {0.1, 0.2, . . . , 0.9} for lengths of N = 2j for j ∈ {6, 7, . . . , 14} was generated. At each

level of H and sample size N , r = 1000 replications of both signals was generated.

Three measures will be used in the plots to describe the performance of the estimators;

bias, standard deviation and mean squared error. Bias is defined as

B(Ĥ) = E[Ĥ ]−H (5.2.1)

the standard deviation

σ̂ =

(

1

r − 1

r
∑

i=1

(Ĥi − E[Ĥi])
2

)
1
2

(5.2.2)

and mean squared error (MSE)

MSE(Ĥ) =
1

r

r
∑

i=1

(Ĥi −Hi)
2 (5.2.3)

where r is the number of replications. The mean squared error MSE(Ĥ) is equal to the

variance V[Ĥ] if B(Ĥ) = 0, but not otherwise. For proof see Equation A.1.1.

As the analysis is looks at the performance of the estimators at different lengths a few

terms describing the behavior is introduced. Firstly, asymptotic unbiasedness will be defined

as

Bn(Ĥn) = lim
n→∞

E[Ĥn]−H (5.2.4)

where Ĥn means that the estimator is based on a sample size n. Secondly, if the estimator Ĥ

approaches the true value H as the sample size increases it is said to be a consistent estimator

of H . Formally, the estimator Ĥ is said to be consistent if the probability P that the absolute

value of the difference Ĥ −H is less than δ > 0, an arbitrarily small value, approximates to

1,

lim
n→∞

P{|Ĥ −H| < δ} = 1. (5.2.5)

A sufficient condition for consistency is that the bias Bn and the variance σ2 tend to zero

asymptotically (see Greene [23]). It is clear that the consistency property is a large sample

1ARFIMA noise which is the differenced ARFIMA series.
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property whereas unbiasedness can hold for any sample size.

In order to compare the performances each plot of a measure, the same axes and reference

lines are inserted at bias B(Hn)± |0.02| and at standard deviation σ = 0.05.

The plots including the standard deviations are included in Appendix A.2 as including

them here would be excessive. However, as mentioned, the MSE are explained by B2 + σ2

and therefore explains the standard deviation to a certain degree. See Appendix A.

5.2.2 Results

The graphical presentation below give an idea of how the estimators perform under conditions

that are unaffected by noise. These results serve as a baseline case for each estimator and

some general remarks can be made:

• All of the estimators’ biases are equal or lower with increasing time series length.

• All of the estimators’ standard deviation are asymptotically decreasing for increased

time series length.

• For most of the estimators the intensity of long range dependence have little effect on

the standard deviation, although in general the standard deviation is lower for a smaller

value of H .

• There is almost always a difference in the estimators’ performance on FGN versus

ARFIMA type signals in terms of bias.

• The estimators relying on the periodogram have MSE’s that are independent of the

level of LRD intensity.

In the following discussion the main observations are discussed. In terms of referencing figures

the scheme is as follows: Estimator - Figure (Bias), (MSE), (Standard deviation)

where the pairs in the parentheses are referred to as FGN and ARFIMA noise respectively.

See Figure 5.1 for a legend that is commmon for all the plots in this chapter.

Rescaled range - Figures (5.2a,5.5a),(5.2b,5.5b),(A.1a,A.1b)

The RS method suffers from from a heavy bias for small N which persist to a smaller degree

for bigger N . It overestimates for intensity levels H ∈ (0.1, 0.6), and underestimates for

H = {0.8, 0.9}. For intensity levels H = {0.7, 0.8} the estimates are within the ”boundaries”

at ±0.025 for N > 28. Another observation from the simulations is that there is a pattern

in the standard deviations ; for lower values of H , the standard deviation is lower. All of

this holds for both FGN and ARFIMA except that the bias is for ARFIMA signals larger
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for H ∈ (0.1, 0.3) and the estimates for H = 0.6. Comparing the MSE plot for FGN and

ARFIMA this is confirmed. The heavy bias contributes to the MSE and the method is biased

for H ∈ (0.1, 0.3).

Periodogram - Figures (5.2c,5.6a),(5.2d,5.6b),(A.2a,A.2b)

The periodogram method also suffers from bias at small values of N , but is asymptotically

unbiased for large N for all levels of H (for both FGN and ARFIMA) except H ∈ {0.1, 0.2}
for FGN signals. In particular, at N > 210 the bias of the estimates are less than ±0.025

for all levels of H except H ∈ {0.1, 0.2}. This method has the largest standard deviation

among all estimators for large N but is independent of LRD intensity and is converging

rapidly towards a low level. Given the asymptotic unbiasedness and the converging MSE

and standard deviations this method seems to be consistent in the limit except for H = 0.1.

This can be seen in the MSE plot where the MSE for H = 0.1 stands out .

Higuchi - Figures (5.2e,5.6c),(5.2f,5.6d),(A.2c,A.2d)

Given a FGN series, the Higuchi is performing well. Although all the estimates are within

the ±0.025 boundary at N > 28 it slightly underestimates the true value of H at all levels.

At length N > 210 and H /∈ {0.9} the estimates are unbiased. It is also observed that the

standard deviation is lower for a low intensity of LRD, especially for H ∈ {0.1, 0.2}. The

MSE for H = 0.1 is one of the smallest for any intensity of LRD for any estimator.

For a ARFIMA series the story is different. Despite that the standard deviations are

approximately the same the estimates are far more biased. For a low intensity of LRD it

overestimates and for a high value of LRD it underestimates which persists for increasing

sample sizes. Although it is close to unbiased for H ∈ {0.4, 0.5, 0.6} at large sample sizes it

is far from the performance given a FGN series.

Detrended Fluctuation - Figures (5.2e,5.6e),(5.3b,5.6f),(A.2e,A.2f)

For fractional Gaussian noise, the detrended fluctuation analysis shows convergence towards

an asymptotically unbiased estimate for increasing N but it over- and underestimates the

true value of H for low and high levels of LRD. Only at length N = 212 are all of the

estimates within the reference lines. For ARFIMA, this pattern is also seen except the bias is

larger when there is strong antipersistence in the time series. For both signals, the standard

deviation depends on the intensity of LRD where it is smaller for lower values of H . It has

also one of the lowest standard deviations compared to all of the methods. In terms of MSE

the DFA method reveals itself to be one of the best estimators for all levels of H given a

FGN series. The MSE’s are the same for ARFIMA with exception of H = 0.1.

Generalized Hurst - Figures (5.2e,5.7a),(5.3d,5.7b),(A.3a,A.3b)

This estimation is performed with the generalized Hurst exponent for the second moment
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of the incremental process, i.e. GHE(q = 2). When estimating FGN series the method is

asymptotically unbiased forN > 210 and all intensities of LRD except H ∈ {0.1, 0.2, 0.3}. As
the standard deviation is converging towards zero as N gets larger, this method is consistent

for FGN signals with H ∈ (0.4, 0.9). For ARFIMA the results are poor in terms of bias. For

any level of LRD intensity there is biasedness which is characterized by underestimating the

high intensity and vice versa. Given low levels of H , the bias shows no sign of asymptotic

improvement, but for high levels of H the estimates tend to underestimate. Despite this

difference in bias, the standard deviations are the smallest of all estimators and the estimator

seems to be consistent. The deviations are all in the range (0.01, 0.02) for N14 and even for

short series the deviations are small.

Aggregated variance - Figures (5.3e,5.7c),(5.3f,5.7d),(A.3c,A.3d)

The estimates is for this method is almost always underestimating the true value of H at

small sample sizes, except for H ∈ {0.1, 0.2}. Apart from this underestimation the method

seems to be asymptotically unbiased for N > 212 for H ∈ (0.3, 0.7) and for large samples the

standard deviations is converge to zero. As follows this method is consistent for large N and

H ∈ (0.3, 0.7). The standard deviations are at large sample sizes independent of H and they

reach a low level at N = 211. In the MSE plot, it is confirmed that the estimator performs

well for H ∈ (0.3, 0.7)

Exact local Whittle - Figures (5.4a,5.7e),(5.4b,5.7f),(A.3e,A.3f)

The estimator are close to unbiased for all levels of H , except H ∈ (0.1, 0.3) given a FGN

series. For large sample sizes, the same levels are asymptotically unbiased. This is reflected

in the MSE plot where H = 1 is separated from all the other MSE’s. In fact, it has nearly

double the MSE for small sample sizes. For ARFIMA series all the estimates have a small

bias (±0.02) for series shorter than N = 29. For N > 29 the series is asymptotically unbiased.

When estimating both types of series, the estimates are consistent as the standard deviation

go to zero for increasing sample sizes.
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Figure 5.1: Color legend for different intensity levels of long range dependence.
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Rescaled Range Method - FGN

7 8 9 10 11 12 13 14

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

B
ia

s

Length of series − N = 2
j

(a) Bias

7 8 9 10 11 12 13 14

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Length of series − N = 2
j

(b) MSE

Periodogram Method - FGN
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Higuchi Method - FGN
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Figure 5.2: Bias and MSE for estimated FGN series.
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Detrended Fluctuation Method - FGN
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Generalized Hurst Method - FGN
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Aggregated Variance Method - FGN
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Figure 5.3: Bias and MSE for estimated FGN series.
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Exact Local Whittle Method - FGN
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Figure 5.4: Bias and MSE for estimated FGN series.

Rescaled Range Method - ARFIMA(d+0.5)
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Figure 5.5: Bias and MSE for estimated ARFIMA noise series.
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Periodogram Method - ARFIMA(d+0.5)
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Higuchi Method - ARFIMA(d+0.5)
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Detrended Fluctuation Method - ARFIMA(d+0.5)

7 8 9 10 11 12 13 14

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

B
ia

s

Length of series − N = 2
j

(e) Bias

7 8 9 10 11 12 13 14

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Length of series − N = 2
j

(f) MSE

Figure 5.6: Bias and MSE for estimated ARFIMA noise series.
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Generalized Hurst Method - ARFIMA(d+0.5)
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Aggregated Variance Method - ARFIMA(d+0.5)
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Exact Local Whittle Method - ARFIMA(d+0.5)
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Figure 5.7: Bias and MSE for estimated ARFIMA noise series.
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Chapter 6

Robustness assessment

This chapter aims to evaluate the effects of applying a heavy tailed noise to FGN and

ARFIMA noise. First the noise is described and then the corruptive effects on LRD se-

ries are described. Finally, the performance of the estimators under corrupted signals is

evaluated.

6.1 Corruption of the LRD series

Research has shown that observed financial time series will have properties different than

those of fractional Brownian motion or ARFIMA signals [15]. It is often observed that

returns will have a large portion of its realizations close to zero and have outliers [43] and

[10]. Such a distribution is similar to what is seen in the Student’s t distribution. In the

following segment the performance of the estimators under the influence of a noise coming

from a t distribution will be examined.

Student’s t distribution

The Student’s t probability distribution is given as

f(x; ν) =
Γ
(

ν+1
2

)

Γ
(

ν
2

)

1√
νπ

1
(

1 + x2

ν

)
ν+1

2

(6.1.1)

where Γ(·) is the Gamma function and ν is the degrees of freedom. For low values of ν the

distribution will have heavy tail whereas it approximates the normal distribution as ν → ∞.

As seen in Figure 6.1b for values of ν < 10 the variance gets large and will have extreme

outliers for ν ≈ 2 which is not applicable in this context. Also, when comparing a normal

distribution with a t distribution the difference in tails is apparent as in Figure 6.1a.
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Figure 6.1: Comparison of Student’s t pdf. and normal pdf.

Moment N (µ, σ2) T (ν)

Mean µ 0 for ν > 1 o.w. undefined
Variance σ2 ν

ν−2
, ∞ for 1 < ν ≤ 2 o.w. undefined

Skewness 0 0 for ν > 3 o.w. undefined

Kurtosis 3 3(ν−2)
ν−4

for ν > 4 o.w. undefined

Table 6.1: Comparison of Student’s t and normal distribution.
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Figure 6.2: Corrupting two FBM series with T(ν = 4) and α = 0.6.

When using the information from Table 6.1 a t distribution T (4) will have mean 0, variance

2, skewness 0 and an undefined kurtosis. In Matlab, when generating 214 random numbers

from a normal- and t distribution the minimum and maximum values were [−3.87, 3.76] and

[−18.45, 10.32]. These numbers confirm that the t distribution has heavy tails compared to

the normal distribution.

6.1.1 Corrupting a series

The previously generated time series (FGN, ARFIMA) all have standard deviations equal to

one. When adding random variables from a heavy-tailed t distribution, the combined time

series will inherit some of these properties as well. A corrupted series will be a mix of a LRD

series denoted LRD(H) where LRD are either FGN or ARFIMA, and a noise series denoted

T(ν) which is a t distributed noise with ν degrees of freedom. The corrupted signal C will be

defined by its components and the value of the signal strength variable α which determines

the proportion of noise and LRD series. The relationship is given as

C(α,H, ν)t = αLRD(H)t + (1− α)T (ν)t (6.1.2)

where LRD(H) is the long range dependent time series with fractal exponent H and T is

the series of Student t random variables with ν degrees of freedom. The factor α will be

named the mixing factor. The term signal regarding the LRD series will be used as opposed

to noise which has been defined as Student t random variables. The partial sums of adding

noise to a persistent series as opposed to a antipersistent series can be seen in Figure 6.2.

Also observed, are the corrupted series in Figures 6.2a and 6.2b have a appearance closer to
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an independent series compared with the FBM.

6.1.2 Signal-to-noise ratio

In evaluating the corrupted series, it would be worthwhile to state something about the

relationship between the signal and the noise. The signal-to-noise ratio (SNR) describes the

portion of variance in the signal to the portion of variance in the noise. The signal-to-noise

ratio is the relationship between the signal power (PS) and the noise power (Pψ) defined as

SNRα =
αPS

(1− α)Pψ
. (6.1.3)

where α ∈ (0, 1) is the mixing factor determining the allocation of noise and signal. In

the case of a zero mean stationary stochastic process, its power is given as the value of the

correlation function γ(s) at the origin which is equal to its variance yielding the relationship

SNRα =
α2V[S]

(1− α)2V[ψ]
. (6.1.4)

In the literature on signal processing it is common to denote the SNR in terms of decibels

(dB). Throughout the thesis all SNR’s will be denoted in decibels and the transformation

from nominal value to dB is

10 log10(SNRα) = SNR(dB)α. (6.1.5)

As seen in Figure 6.3 a t distributed noise with ν = 3, degrees of freedom leads to corrupted

series which are dominated by the noise in terms of variance. For a higher degree of freedom

ν = 4 the SNR are more evenly distributed among the different mixing factors (as the variance

of the noise and the signal are more equal). Figure 6.3 is based on the mean SNR for 1000

corrupted series. The intensity of LRD does not change the variance of the process in the

generators used here so it is constant at variance σ2 = 1. Throughout the corruption study

the preferred added noise is T (ν = 4) with average signal-to-noise ratio SNR ∈ (0, 38) for

α ∈ (0.6, 1).

6.1.3 Adding a noise

Previously the noise component in Equation (6.1.1) has been introduced. Beneficial to de-

scribing the performance of the estimators under different levels of noise four plots were

made. The estimation was performed on a corrupted series of altering mixture of LRD signal
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Figure 6.3: Average signal-to-noise ratio based on 1000 series of C(α,H, ν) for varying α and
different degrees of freedom ν.

and heavy tailed signal represented by Student t random variables. The results are seen in

Figure 6.4 and Figure 6.5 where it is clear that there are differences between the estimators

in the ability to deal with noise. The estimators ability do deal with noise will be addressed

later in the chapter as 6.4 and Figure 6.5 is meant for illustrative purposes. The figures are

also based on the same results that will be covered next.

An experiment was carried out where the aim was to measure the estimators sensitiv-

ity to noise by applying them to the corrupted series C(α,H, ν) for different sample sizes.

The experiment was performed at levels of α ∈ {1, 0.9, . . . , 0.6}, for intensities of LRD

H ∈ {0.1, 0.2, . . . , 0.9} and for sample sizes N j for j ∈ 8, 10, 12, 14. For each estimate 500

replications was estimated. The results are given in Appendix A.2. In the results are com-

mented in the next section and summarized in terms of breakdown points in Table 6.2 and

Table 6.3

6.1.4 Breakdown points

It is possible to visually detect a breakdown point of an estimator by using the tables in

Appendix A.2. By arbitrarily setting a limit for which the estimates of the corrupted series

are deviating from the estimates of the uncorrupted series, it is possible to determine the

breakdown at this limit. The finite breakdown point of an estimator is formally defined as

the minimal fraction of deviant observations rendering the estimate meaningless [26]. In
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Figure 6.4: Mean estimates of H based on 500 replications for different levels of α ∈ (0, 1].
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Figure 6.5: Mean estimates of H based on 500 replications for different levels of α ∈ (0, 1].
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this thesis the measure of robustness is given in terms of α, for which the estimates deviate

increasingly from the uncorrupted series. In the context of Equation 6.1.2 a breakdown point

with a high α (small portion of noise) suggests that the estimator is sensitive to the changes

in the observations. On the other side, an estimator which breaks down at a low level of α

(large portion of noise) will be less sensitive to the changes in the observations. Thus, an

estimator breaking down at low levels of α is said to have a high breakdown point and vice

versa. Intuition tells that a estimator cannot have a breakdown point higher than α = 0.5.

For a corrupted series with α < 0.5 the portion of noise is larger than the portion of original

signal and it makes it unobtainable to separate the signal and the noise. In terms of the

problem under scrutiny the breakdown point can in this case be given as the relationship

BP (α) = |Ĉ(1, H, 4)− Ĉ(α,H, 4)| ≤ ϕ (6.1.6)

where Ĉ is the estimate of the corrupted series with a constant LRD intensity H , mixing

factor α and where ϕ is a arbitrary value. In other words, for a given H , the breakpoint

BP (α) is the level of mixing where the bias adjusted estimate deviate more than the arbitrary

value ϕ. In the analysis below, the boundary for breakdown is set at ϕ = 0.035.

In Table 6.2 and Table 6.3 the breakdown points for the estimators at each length for

both FGN and ARFIMA signals of varying LRD intensity, separated by persistent and anti-

persistent series, is compiled. The general observation is that the estimators break down

earlier at lower intensities of LRD; they are more sensitive to noise as the value of H goes

down. There is rarely any notable difference in breakdown points between the FGN and

ARFIMA signals except for the case of H = 0.2 where all estimators except the ELW break

down earlier for FGN signals. Also, for persistent LRD signals, the breakdown points are

more affected by the sample size than for anti-persistent signals. It was decided not to include

the changes in standard deviations for Ĉ since they are outside of the scope of this discussion.

The only pattern in the changes of standard deviation is that the standard deviations were

larger for smaller samples, which is also known from the baseline case.

Rescaled range - Corrupted

The RS method has the one of the smallest deviations from the pure LRD signal for increasing

levels of α among the estimators, i.e. it has robust properties. This is seen for all lengths N

and for both LRD signals. This observation is opposing what is known about the estimators

robustness which is given in Chapter 4. By looking at Table A.1 - A.8 the deviations are

almost always the lowest which hold for different sample sizes. Also, the RS estimator shows

little or no change in robustness for different sample sizes but it is more sensitive to the type

of LRD signal than the other estimators.
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Periodogram - Corrupted

The periodogram is ranked at the bottom in terms of robustness among the estimators. It

is only showing signs of robust properties in the persistent case at H ∈ {0.6, 0.9} which is

only at large sample sizes. This is shown in Table 6.3. Also by looking at Table A.1 - A.16

it also shows that the deviations stand out from the rest. In the anti-persistent case, the

periodogram breaks down at α-levels generally higher than the others but is invariant of the

type of LRD signal underlying the estimation.

Higuchi - Corrupted

As with the periodogram estimator the Higuchi estimator shows weaknesses in terms of

robustness in the case of anti-persistent series. Although it seems to break down earlier than

the other estimators in this case, the difference is not as significant as with the periodogram

estimator. In the case of persistent series, the estimator performs the best compared to the

rest, in terms of smallest deviation for increasing levels of α. In particular, the Highuchi

estimator has the most instances of breakdown points at α < 0.6 given H ≥ 0.6. In addition,

the estimator shows little sensitivity with respect to the length of the time series and to the

type of LRD signal.

Detrended Fluctuation Analysis - Corrupted

The DFA method correlates with the Higuchi method in terms of breakdown points; it

breaks down early for the anti-persistent series and shows robustness tendencies in the case

of persistent series. The method breaks down at α < 0.6 for all lengths and both LRD signals

given H = 0.6 as the intensity of LRD. For all the other persistent series, i.e. LRDH > 0.6,

the lowest breakdown point of the estimator is α = 0.6. The DFA method is sensitive to the

sample sizes but is unaffected by the type of LRD series.

Generalized Hurst - Corrupted

The GHE method has the lowest breakdown points in terms of α for the anti-persistent series.

It has the highest breakpoint at α = 0.8 for LRD series with H = 0.1 which is exclusive in

comparison with the other estimators. For the persistent LRD series, the breakdown points

of this method are generally higher compared to the ones with the lower breakpoints. There

are also few instances where the breakpoint is less than α = 0.6. The breakdown points of

the GHE estimator are insensitive to the type of LRD series and the sample sizes.

Aggregated variance - Corrupted

The aggregated variance estimator shows signs of breaking down at a high level of α given

anti-persistent series of LRD signals. The breakdown points are mediocre relative to the rest

of the estimators. For persistent series, the estimator has breakdown points that are among
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the lowest for all levels of H ≥ 0.6. The AV method is insensitive to sample sizes and LRD

signal type in the anti-persistent case but for persistent LRD series it is sensitive to sample

sizes in terms of breakdown point.

Exact local Whittle - Corrupted

When estimating corrupted anti-persistent series, the exact local Whittle estimator gives the

poorest results in terms of breakdown point, compared to all the other estimators. It breaks

down for every level of LRD intensity and sample size at a level of α equal to or larger

than the other estimators. Opposing the results from the anti-persistent signals, presented

with corrupted persistent signals the breakdown points all are at level with the others. In

particular, the breakdown points are all at α . 0.6 for both FGN and ARFIMA signals at

The ELW estimator is insensitive to type of LRD signal and sample size.

6.1.5 A closer look at breakdown levels

Taking a closer look at Table 6.2 and 6.2 it is apparent that the persistence is a deciding

factor regarding the breakdown of the estimator. When estimating a corrupted LRD series

with H = 0.1 all of the the estimators break down at levels of α > 0.8 as opposed to the

estimation of a LRD series with H = 0.6 where all estimators break down at α < 0.6.

It was shown in Chapter 5 that, in general, the estimators perform worse for series with

high level of anti-persistence than for series with heavy persistence when no noise is added.

As the t distributed noise used here is independently distributed, and therefore has no

memory, its theoretical intensity of LRD is equal to the one of a LRD(H = 0.5) series. When

estimating a LRD(H = 0.5) series mixed with a LRD(H 6= 0.5) series the expected result is

that the estimate is reflected in the portion of the series that are mixed. For a large portion

of LRD(H = 0.5) the estimates will be close to 0.5 and vice versa. This is not the result

in this study. If it was then the breakdown point for C(α, 0.3, 4) and C(α, 0.7, 4) would be

equal as for C(α, 0.1, 4) and C(α, 0.9, 4). Figure 6.6 justifies the statement that in general,

the performance is worse when estimating a corrupted anti-persistent series.

The difference in breakdown levels can easily be seen when comparing the plots in Fig-

ure 6.6. Given 500 replications for 25 levels1 of α the estimates were applied to corrupted

series C(α,H, 4). Then the series was adjusted for its uncorrupted estimate at α = 1 by

subtracting the estimate at α = 0.1 from the entire series, i.e. the breakdown point BP (α) is

computed. The series were multiplied by −1 so that deviations appear as negative numbers

which represents the breakdown in a better way. The axes are different in this case to aid

the identification of each estimate. Comparing Figure 6.6 with the results in the previous

1As only 25 levels of α was computed, excluding α = 0, the first point of each plot is at α = 100/25 = 4.
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RS PER HIG DFA GHE AV ELW

Breakdown point in terms of α.

FGN(H = 0.1)
ARFIMA(d = -0.4)

28
0.8 0.9 0.9 0.8 0.8 0.9 0.9
0.8 0.9 0.8 0.8 0.8 0.8 0.9

210
0.9 0.9 0.9 0.9 0.8 0.9 0.9
0.8 0.9 0.9 0.8 0.8 0.9 0.9

212
0.9 0.9 0.9 0.9 0.8 0.9 0.9
0.8 0.9 0.9 0.9 0.8 0.9 0.9

214
0.9 0.9 0.9 0.9 0.8 0.9 0.9
0.9 0.9 0.9 0.9 0.8 0.9 0.9

FGN(H = 0.2
ARFIMA(d = -0.3

28
0.8 0.9 0.8 0.8 0.8 0.8 0.9
0.7 0.8 0.8 0.8 0.7 0.8 0.9

210
0.8 0.9 0.8 0.8 0.8 0.8 0.9
0.8 0.8 0.8 0.8 0.8 0.8 0.9

212
0.8 0.9 0.9 0.9 0.8 0.9 0.9
0.8 0.8 0.8 0.8 0.8 0.8 0.9

214
0.9 0.9 0.9 0.9 0.8 0.9 0.9
0.8 0.8 0.8 0.9 0.8 0.8 0.9

FGN(H = 0.3)
ARFIMA(d = -0.2)

28
0.7 0.8 0.8 0.7 0.8 0.8 0.8
0.7 0.8 0.8 0.7 0.7 0.8 0.8

210
0.7 0.8 0.8 0.8 0.7 0.8 0.8
0.7 0.8 0.8 0.7 0.7 0.8 0.8

212
0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.7 0.8 0.8 0.8 0.7 0.8 0.8

214
0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.8 0.8 0.8 0.8 0.7 0.8 0.8

FGN(H = 0.4)
ARFIMA(d = -0.1)

28
0.6 0.8 0.6 0.6 0.6 0.6 0.6
• 0.7 0.6 0.6 0.6 0.6 0.7

210
0.6 0.7 0.7 0.6 0.6 0.7 0.7
• 0.7 0.7 0.6 0.6 0.6 0.7

212
0.6 0.7 0.7 0.7 0.6 0.7 0.7
0.6 0.7 0.7 0.7 0.6 0.7 0.7

214
0.7 0.7 0.7 0.7 0.6 0.7 0.7
0.6 0.7 0.7 0.7 0.6 0.7 0.7

Table 6.2: Breakdown points where the breakpoint is set as a deviation larger than 0.035
from the pure signal. For example, a breakdown at 0.6 means that the estimator broke down
in the interval α ∈ (0.6, 0.7). The symbol • indicates a breakdown level at α < 0.6.
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RS PER HIG DFA GHE AV ELW

Breakdown point in terms of α.

FGN(H = 0.6
ARFIMA(d = 0.1)

28
• 0.6 • • 0.6 • 0.6
• 0.6 • • • • •

210
• 0.6 • • 0.6 • •
• 0.6 • • • • •

212
• • • • 0.6 • •
• 0.6 • • 0.6 • •

214
• • • • 0.6 • •
• 0.6 • • 0.6 • •

FGN(H = 0.7
ARFIMA(d = 0.2)

28
0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6 0.6 0.6 0.6

210
0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6 0.6 0.6 0.6

212
0.6 0.6 0.6 0.6 0.7 0.6 0.6
0.6 0.6 0.6 0.6 0.6 0.6 0.6

214
• 0.6 0.6 0.6 0.7 0.6 •
• 0.6 0.6 0.6 0.6 0.6 •

FGN(H = 0.8)
ARFIMA(d = 0.3)

28
0.7 0.7 0.6 0.7 0.7 0.6 0.7
0.6 0.7 0.7 0.7 0.7 0.7 0.7

210
0.6 0.7 0.6 0.7 0.7 0.6 0.6
0.6 0.6 0.6 0.6 0.7 0.6 0.6

212
0.6 0.6 • 0.6 0.7 0.6 0.6
0.6 0.6 • 0.6 0.6 • 0.6

214
• 0.6 0.6 0.6 • • •
• 0.6 • 0.6 0.6 • •

FGN(H = 0.9)
ARFIMA(d = 0.4)

28
0.7 0.7 0.6 0.7 0.7 0.6 0.7
0.6 0.7 0.6 0.7 0.7 0.6 0.7

210
0.6 0.7 0.6 0.7 0.7 0.6 0.7
0.6 0.7 • 0.7 0.7 • 0.6

212
0.6 0.6 • 0.7 0.7 0.6 0.6
• 0.6 • 0.6 0.6 • •

214
• 0.6 • 0.6 0.6 • 0.6
• • 0.6 0.6 • 0.6 •

Table 6.3: Breakdown points where the breakpoint is set as a deviation larger than 0.035
from the pure signal. For example, a breakdown at 0.6 means that the estimator broke down
in the interval α ∈ (0.6, 0.7). The symbol • indicates a breakdown level at α < 0.6.
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(a) BP (α) for C(α, 0.1, 4).
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(b) BP (α) for C(α, 0.9, 4).
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(c) BP (α) for C(α, 0.3, 4).
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(d) BP (α) for C(α, 0.7, 4).

Figure 6.6: Breakdown points BP (α) for different levels of α ∈ (0, 1].

section it can be seen that there is a pattern in the breakdown points when comparing the

anti-persistent C in Figures 6.6a and 6.6c with the persistent C in Figure 6.6d and 6.6b. In

the anti-persistent case the GHE method have a breakdown point distinctively higher than

the other estimators. On the contrary, the ELW method has the lowest breakdown point.

This is the case for both anti-persistent series. In the persistent case the periodogram per-

forms well in estimating both of the corrupted, persistent, series as opposed to the GHE and

HIG which comparatively breaks down sooner than the other estimators. In addition, it can

be observed that the differences in breakdown levels are smaller for a persistent series. In

Figure 6.6 the comparison displays this. For the antipersistent series the estimators are more

separated in terms of breakdown.
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Asym. Unbiased Unbiased Small N bias Consistent

RS H ∈ {0.7} N Y H ∈ {0.7}
PER H ∈ (0.5, 0.7) H ∈ {0.5} H /∈ {0.5} H ∈ (0.5, 0.7)∗
HIG H ∈ (0.1, 0.8) H ∈ (0.1, 0.2)* H /∈ (0.1, 0.2)∗ H ∈ (0.1, 0.3)∗
DFA H ∈ (0.5, 0.6)∗ N* Y* H ∈ (0.5, 0.6)
GHE H ∈ (0.1, 0.7) H ∈ (0.2, 0.3)∗ H /∈ (0.2, 0.3) H ∈ (0.1, 0.7)
AV H ∈ (0.1, 0.3) N Y H ∈ (0.1, 0.3)∗
ELW H ∈ (0.3, 0.9) H ∈ (0.6, 0.8) N H ∈ (0.3, 0.9)

Table 6.4: Results contributing to the known finite samples, given a FGN signal.
A ∗ indicates a difference from previous research.

Asym. Unbiased Unbiased Small N bias Consistent

RS H ∈ {0.7} N Y H ∈ {0.7}
PER H ∈ (0.5, 0.7) H ∈ {0.5} H /∈ {0.5} H ∈ (0.5, 0.7)∗
HIG H ∈ (0.4, 0.7) H ∈ {0.4} H /∈ {0.4} H ∈ (0.4, 0.7)∗
DFA H ∈ 0.5 N* Y* H ∈ {0.5}
GHE H ∈ {0.5} N* Y* H ∈ {0.5}
AV H ∈ (0.4, 0.5) N Y H ∈ (0.4, 0.5)*
ELW H ∈ (0.1, 0.9) N* N H ∈ (0.1, 0.9)

Table 6.5: Results contributing to the known finite samples, given a ARFIMA signal.
A ∗ indicates a difference from previous research.

6.1.6 Comparison with previous research

In Table 4.2 the known finite sample properties of the estimators were listed. As mentioned

in Chapter 4, some of the finite sample properties in this table are based on restricted

experiments such as few replications of each series or small sample sizes. However, a refined

summary of finite sample properties are presented in Table 6.4.

In Table 6.4 the results are based on FGN series and in Table 6.5 the results are based on

ARFIMA series. The differences between previous results and the ones from this experiment

are marked with a ∗. In Table 6.4 it can be seen that the differences that are found from

previous research stems from the fact that the study performed in this thesis covered 9 levels

of LRD intensity and different sample sizes. When measuring consistency it was always the

case , given a H , that a asymptotically unbiased estimator was also consistent. Mainly the

differences from previous research was from the fact that these levels of LRD intensity had

not been studied before. The results from the DFA method is contradicting what is found

in [7] where DFA was shown to be unbiased. In Table 6.5 the same argumentation holds for
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the differences in previous research regarding the consistency of the estimators. In addition

to DFA, the results from the GHE method contradicts the ones found in [6].

6.2 Fractality of a time series

”The notion of fractality, or scaling, is an assessment further describing a sequence in terms

of distributions and functions of rescaling” [15]. As many of the concepts introduced in

this thesis, fractality is adapted from physics into other disciplines including economics and

finance [48].

Remark 5. In [45] fractality a process X(t), t ∈ {−∞,∞} is defined as fractal if

X(ct) =d c
H(c)X(t) (6.2.1)

for a positive constant c and for a non-negative, random function H(c) where =d is repre-

senting equality in distribution. The following relationship can be stated

H(c) =

{

H Unifractal

H(q) Multifractal
(6.2.2)

In other words if H(q) is dependent on the q− eth moment then the process is said to exhibit

multifractality.

It has been proven [6] that FGN and ARFIMA(0,d,0) are unifractal by the use of the

generalized Hurst exponent, i.e. H(q = 1) = H(q = 2) = H(q = 3) = H . It has also been

shown [31] that there are two sources of multifractality in time series; the first is due to heavy

tailed density functions such as a Levy distribution and the second is caused by differences in

the correlations of the small and large fluctuations, such as AR noise. This is the case when

extreme events are correlated on a different level than the regular events and the data may

come from a finite moment distribution such as a Gaussian distribution. In the case of two

sources of multifractality, a shuffling of the data will weaken the effects since it is dissolving

the long range correlations.

In terms of the estimators introduced here, it is only possible to use the general Hurst

exponent in order to display the fractality of a time series.

To visualize the fractal evolution of a time series (or any other sequence) it is necessary

to compare the estimated intensity of long range dependence H(q) for a range of q which

represents the order of the moment. This is done by using the generalized Hurst exponent.

In Figure 6.7 the relationship is linear. The fact that H(q) = H for all q renders the series

70



0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

H
u

rs
t 

e
xp

o
n

e
n

t 
 −

 q
 H

(q
)

Order of moments  − q

 

 
Original series
Shuffled series

(a) FGN(H=0.3) and its shuffled series.
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(b) FGN(H=0.7) and its shuffled series.

Figure 6.7: Fractality qH(q) as a function of q for two FGN series.

unifractal. In both cases the fractality can be explained by a single variable. Notice also

how the shuffled series appear (blue line); it has a slope equal to white noise or a Brownian

motion.

6.2.1 Fractality of the corrupted series

As mentioned, research [31] has shown that multifractality can be caused by two features of

the series: heavy tails and/or short range correlations between small and large fluctuations.

Naturally, as the original series has been corrupted by a heavy tailed signal, it is necessary

to investigate for multifractality. In order to decide the source of multifractality the general

Hurst method will be used to display the Hurst exponent for different order of the moments.

By plotting qH(q) versus q the fractality will reveal itself: if the relationship is linear, the

underlying series is unifractal. If it is a non-linear relationship, the underlying signal is

multifractal. By comparing the series to a shuffled version of itself one can decide if the

fractality stems from heavy tails or short range correlations in the fluctuations. A shuffled

series should have no correlation and a non-linear relationship in this case indicates that the

multifractality is explained by heavy tails. When there is difference between the shuffled and

original series, this difference is explained by the correlations. In Figure 6.8, the fractality

of six different corrupted series are estimated. It is clear that the more corrupted a series

is, the stronger are the degree of multifractality. By comparing Figures 6.8a - 6.8c and in

Figures 6.8d - 6.8f this can be seen. Another observation that can be made from Figure 6.8 is

that the anti-persistent series are more affected by the noise corruption in that they deviate

more from the unifractal case. For the series C(0.6, 0.2, 4) in Figure 6.8a, the shuffled series

and the original series has a similar slope for q ∈ (0, 1.5). On the other hand, C(0.6, 0.8, 4)
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(a) C(0.8, 0.2, 4)
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(b) C(0.8, 0.4, 4)
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(c) C(0.8, 0.8, 4)
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(d) C(0.6, 0.2, 4)
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(e) C(0.6, 0.4, 4)
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(f) C(0.6, 0.8, 4)

Figure 6.8: Fractality of corrupted FGN series with different H and α.

in Figure 6.8c the original series exhibit a clear deviation from the shuffled series for nearly

all q’s, which is what is seen in the unifractal case. As the slope of the original and shuffled

series in Figure 6.8a are similar, it suggest that the corrupted series is more similar to the

noise than the original anti-persistent series. If the series would have been unaffected by the

noise its slope would be equal to 0.2. This effect is not as strong in Figure 6.8c where the

original series still has the appearance of a persistent series at α = 0.6. This leads back to

the discussion in Section 6.1.5 where it was explained that the expected slope of the noise

was equal to H = 0.5.
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Chapter 7

Empirical application

As a concluding exhibition, the estimators are applied to a set of financial time series to

display some of their applications. The purpose of this section is to show some of the

similarities between the corrupted signal C and the empirical data. In the application, six

different financial time series are studied which all are derived from the Federal Reserve

Economic Data - FRED website [54]. The data was retrieved at May 23.

DJIA The Dow Jones Industrial Average. The series ranges from 1896-05-26 to 2012-05-23

and has a sample size of N = 29070. The series contains daily values.

SP500 Standard and Poors 500 Index. The series contains daily values from 1957-01-02 to

2012-05-23. Sample size N = 13947

NORUS Norway / U.S. Foreign Exchange Rates. The series contains daily units of NOK

to one USD. The series ranges from 1971-01-04 to 2012-05-18. Sample size N = 10387

SWEUS Sweden / U.S. Foreign Exchange Rates. Daily units of SEK to one USD. The

series ranges from 1971-01-04 to 2012-05-18 and has N = 10387 data points.

DGS05 5-Year Treasury Constant Maturity Rate. Daily units in percentages. The data set

ranges from 1962-01-02 to 2012-05-23 and has N = 13147 points.

DGS10 10-Year Treasury Constant Maturity Rate. The set contains daily percentage values

from 1962-01-02 to 2012-05-23 and has a sample size of N = 13147.

The returns are computed as rt = pt−pt−1 in the case of bonds as they are given in percentages

and use logarithmic returns Rt = log(pt)− log(pt−1) for the other instruments.

From Table 7.1 it is clear that the returns of the empirical data deviate significantly from

the normal distribution by comparing the four moments. Recall the moments of a normal

73



Mean Variance Skewness Kurtosis

DJIA 1.9688e-04 1.3435e-04 -0.8342 27.5420
SP500 2.4676e-04 9.8579e-05 -1.1459 36.1686
DGS05 7.2088e-05 1.7143e-04 -0.6674 28.9857
DGS10 9.9751e-05 1.1827e-04 -0.7163 24.8114
NORUS 8.9838e-05 1.0780e-04 -0.8220 29.1261
SWEUS 1.0719e-04 1.0865e-04 -0.6780 30.5526

Table 7.1: Moments of the returns rt or Rt of empirical data.

distribution and t distribution in Chapter 6. By the transformation of rt and Rt the data has

zero mean and stationarity is assumed. Accordingly, the data is suitable for the estimators

of long range dependence.

7.1 Estimation

By using 1000 estimates based on FGN(H = 0.5) and ARFIMA(d = 0) noise for lengths

matching the financial series, it was possible to create confidence intervals for the short range

dependent case of H = 0.5. By comparing this with the estimated intensity of LRD for the

financial data it is possible to state whether or not the series is long range dependent. When

estimating 1000 FGN(H = 0.5) series, the densities for the estimators resulted in Figure

7.1. This is the same result as seen in Chapter 5 but presented differently.
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Figure 7.1: Kernel density estimates of FGN(H = 0.5) (white noise).
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RS PER HIG DFA GHE AV ELW

DJIA 0.5656 0.4713 0.5187 0.4732 0.4496 0.4977 0.4830
SP500 0.5742 0.4685 0.5287 0.3733 0.4390 0.5149 0.5081
DGS05 0.5902 0.5673 0.5626 0.5265 0.5456 0.5293 0.5290
DGS10 0.5616 0.5367 0.5396 0.5242 0.5346 0.5208 0.5124
NORUS 0.5419 0.5191 0.5404 0.5037 0.4871 0.5321 0.5253
SWEUS 0.5779 0.5245 0.5636 0.5146 0.4958 0.5338 0.5579

Table 7.2: Estimates for financial data. Bold numbers are significantly different at level 0.95
from FGN(H = 0.5) based on confidence intervals from 1000 samples.

In Table 7.2 the estimates for each series are given. The bold numbers denote a deviation

from a standard Brownian motion. The statements of deviation are based on the confidence

interval for 1000 estimates of FGN(H = 0.5) series for each estimator and at corresponding

sample sizes to the financial data. In this case, when employing the entire data set in the

estimation, there are a few instances where there are evidence for persistence. The empirical

series with the most instances of deviation from a Brownian motion is the 10-year and the 5-

year treasury bonds. It is also worthwhile noting that the RS and HIG estimator is constantly

estimating high numbers opposed to the other estimators have estimates that are suggesting

both anti-persistence and persistence.

7.1.1 Multifractality of financial time series

As introduced in Remark 5, the fractality of a series describes the correlation of the moments

of the series’ increments. For instance, the second moment, q = 2, of the increments is

the autocorrelation function which is used by the estimators to estimate the intensity of long

range dependence. In Chapter 6, the fractality of the corrupted series was given which turned

out to be multifractal. By comparing Figure 6.8 and Figure 7.2, one can detect similarities.

In Figure 6.8, the series C(0.8, H, 4) are all displaying different levels of multifractality since

the relationship between qH(q) and q is non-linear. The same series C(0.8, H, 4), in Figure

6.8, are displaying a point q∗ where the slope is changing. This is also the case for the

empirical series in Figure 7.2 where the relationships are all non-linear and the slope has a

kink at q∗ = 3.

In the plots of Figure 7.2, the blue line represents the shuffled data. In the unifractal

case qH(q) is linear and the slope represents the intensity of LRD - the Hurst exponent H .

Also in the unifractal case the blue lines would all have a slope of 0.5 as it is estimating

shuffled and independent data. However, when taking a closer look at the plots in Figure 7.2

there are clear evidence of multifractality in all of the series as qH(q) is non-linear. This was
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(a) DJIA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

1.5

2

2.5

3

H
u

rs
t 

e
xp

o
n

e
n

t 
 −

 q
 H

(q
)

Order of moments  − q

 

 

Original series
Shuffled series

(b) SP500
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(c) DGS05

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

1.5

2

2.5

3

H
u

rs
t 

e
xp

o
n

e
n

t 
 −

 q
 H

(q
)

Order of moments  − q

 

 

Original series
Shuffled series

(d) DGS10
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(e) NORUS
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Figure 7.2: Multifractality of financial instruments.

also seen in Figure 6.8. As mentioned earlier, there are there two sources of multifractality:

short range dependence and heavy tails. The shuffled series removes any correlation and the

multifractality is solely explained by heavy tails. The case for all of the financial time series

is that the shuffled series has a curve that is more “bent” than the original one. According to

the statements regarding the multifractality of a series, the observation in Figure 7.2 suggests

that the shuffled series have a higher degree of fractality than the original. The original series

differs from the shuffled one due to its correlations.

7.2 Link between the corrupted and empirical series

As mentioned earlier in this chapter, financial data do not have the same properties as frac-

tional Brownan motion or ARFIMA processes, which are unifractal processes. The returns of

financial data have most of its values close to zero and have outliers and are multifractal. In

this section, the similarity of corrupted signals and empirical data will briefly be discussed.

A comparison between Figure 7.2 and Figure 6.8 will be made, which depicts the fractality

of the empirical and simulated data respectively. Here, the correlations of the q-eth order

moments will be used as a measure of comparing a corrupted series and a financial time

series. It is possible through visual examination to state that there are similarities between
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the two. The pattern in the empirical data shows that q∗ ≈ 3 represents a kink in qH(q).

The same can be said about the antipersistent series in Figure 6.8 where the graphs between

the original and shuffled series differ at q∗ ≈ 3.

Based on the plots in Figure 7.2 and Figure 6.8 it can be concluded that a similarity in

the features of the corrupted and empirical series exists. As the fractality of a time series is

a vast research field that only has been briefly discussed here, it is not possible to make any

other statement regarding the similarities of the higher order moments.
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Chapter 8

Summary & outlook

In this thesis, a thorough approach to the notion of long range dependence in time series and

its estimation has been made. This approach is done with connection to financial time series

and how the estimators manage under the presence of a heavy tailed noise. The estimators

that were examined was the rescaled range analysis, periodogram regression, Higuchi method,

detrended fluctuation analysis, generalized Hurst exponent, aggregated variance and the

exact local whittle method. Two simulation studies and an empirical application was carried

out in order to gain knowledge of the behavior of estimators of long range dependence under

different conditions. The following topics have been carefully analyzed:

• how estimators perform on time series of different length and different intensities of

long memory given a pure signal,

• how estimators perform when time series of different length and different long range

dependence intensity are corrupted with a heavy-tailed noise with varying level of

corruption and,

• how the correlations of the higher order moments react to the corruption of heavy-tailed

noise.

The results from these experiments are summarized in the following:

The uncorrupted case

When presented with a pure long memory series, the findings in general are that for a

higher absolute value of d (i.e. levels of H deviating from the level of standard Brownian

motion / white noise H = 0.5) the estimates have a higher bias which is also noticeably

higher in smaller sample sizes. The standard deviations of the estimates are in few instances

independent of the intensity of long range dependence. When compared to previous research,

the the same results are found except for the case of generalized Hurst exponent and detrended
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fluctuation analysis. It was also discovered complements to previous research which was

due to the broadness of the experiment conducted here. The results in the experiments

here tell with more precision at which levels of H and sample sizes N the estimators are

asymptotically acquiring certain statistical properties. The estimators that displayed the

most satisfactory performances in terms of bias and standard deviation was the Higuchi

method, which was close to unbiased for all levels of H , and partially the generalized Hurst

method given a fractional Gaussian noise signal. Given an fractionally integrated noise the

exact local Whittle estimator was close to unbiased for all levels of H .

The corrupted case

The long range dependent signal was corrupted with signal-to-noise ratio [0, 38]. In general,

when the series are corrupted with a noise, the breakdown point is highly dependent on

the intensity of long memory. For lower intensities, namely the anti-persistent cases, the

breakdown of the estimators happens with only a small portion of noise added. For higher

persistent series the breakdown point of the estimators are all robust to changes in the

underlying series. For the highest level of persistence, the estimators only break down close

to the point where 50 percent of the signal is corrupted, which is the maximum breakdown

point an estimator can have. Differences were also found in the performance of the estimators

when presented with the same corrupted series. A pattern was found - the estimators which

performed well in the persistent case performed equally poor in the anti-persistent case. In

particular the generalized Hurst method performed well in the anti-persistent case and the

periodogram method in the persistent. The rescaled range method performed comparatively

well under both conditions.

Properties of the corrupted signal

When a long range dependent time series was corrupted with a heavy tailed noise, it had a

larger effect on the higher order moments of the correlations for anti-persistent series. When

comparing the corrupted anti-persistent series with empirical data similarities are found in

the higher order moments. In particular both the empirical series and the corrupted, anti-

persistent series had different fractality at moments higher than 3.

Combining the baseline properties and the robustness of the long memory estimators

in order to create a method for dealing with long range dependence under the influence

of heavy tails remains a task for future studies. Investigating difference in performance

between persistent and antipersistent corrupted series is also something that future research

could pursue.
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Appendix A

Proofs, tables and codes

A.1 Mean Squared Error

Theorem A.1.1. The mean squared error MSE(Ĥ) is equal to V[Ĥ ] + B2(Ĥ).

Proof.

MSE(Ĥ) =
1

r

r
∑

i=1

(Ĥi −Hi) = E[(Ĥ −H)2]

= E[(Ĥ − E[Ĥ ]) + (E[Ĥ ]−H)2]

= E{(Ĥ − E[Ĥ ])2 + (E[Ĥ ]−H)2 + (Ĥ − E[Ĥ ])(E[Ĥ −H ])}
= V[Ĥ] + B

2[Ĥ] + E[(Ĥ − E[Ĥ ])(E[Ĥ ]−H)]

= V[Ĥ] + B
2[Ĥ] + E[ĤE[Ĥ ]− (Ĥ)2 −HĤ + E[Ĥ ]]

= V[Ĥ] + B
2[Ĥ] + (E[Ĥ ])2 − (E[Ĥ ])2 −HE[Ĥ] +HE[Ĥ]

= V[Ĥ] + B
2[Ĥ]. (A.1.1)
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A.2 Tables with estimates of C

The tables containing the estimates of corrupted series C, such as in Table A.1 were computed

in the manner:













Ĉ1(1, H, 4) |Ĉ1(1, H, 4)− Ĉ1(0.9, H, 4)| . . . |Ĉ1(1, H, 4)− Ĉ1(0.6, H, 4)|
Ĉ2(1, H, 4) |Ĉ2(1, H, 4)− Ĉ1(0.9, H, 4)| . . . |Ĉ1(1, H, 4)− Ĉ2(0.6, H, 4)|

...
...

. . .
...

Ĉ7(1, H, 4) |Ĉ7(1, H, 4)− Ĉ7(0.9, H, 4)| . . . |Ĉ7(1, H, 4)− Ĉ7(0.6, H, 4)|













where Ĉi is estimate by estimator i. Each table consists of four arrays containing this infor-

mation for 4 different lengths. The use of absolute values is justified since all the deviations

are in the same direction - i.e. for H < 0.5 all the changes are positive and for H > 0.5 all

the changes are negative (as the LRD intensity of i.i.d. t distributed noise is equal to 0.5).

(Continued on next page.)
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FGN(H=0.1) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.2922 0.0258 0.0884 0.1636 0.2189 0.2497 0.0393 0.1262 0.1993 0.2508

PER 0.0461 0.1273 0.3167 0.4269 0.4863 0.0053 0.1463 0.3068 0.3985 0.4485

HIG 0.0963 0.051 0.1701 0.2753 0.3362 0.0977 0.0732 0.2083 0.3035 0.3587

DFA 0.1529 0.0336 0.1162 0.2005 0.2582 0.134 0.0648 0.1646 0.2432 0.2967

GHE 0.1053 0.0224 0.0933 0.1833 0.2543 0.0992 0.0273 0.1071 0.1962 0.2749

AV 0.0889 0.0508 0.1662 0.2596 0.3143 0.0959 0.0714 0.2056 0.2966 0.346

ELW 0.0158 0.1426 0.3041 0.4002 0.4448 0.0485 0.1741 0.3213 0.3931 0.4212

∆H N = 212 ∆H N = 214

RS 0.2181 0.0650 0.1674 0.2395 0.2813 0.1934 0.1052 0.2158 0.2735 0.3061

PER 0.0233 0.1516 0.3049 0.3915 0.4351 0.0302 0.1582 0.3068 0.3888 0.4327

HIG 0.0996 0.0948 0.2354 0.3218 0.3675 0.1000 0.1180 0.2614 0.3372 0.3756

DFA 0.1245 0.1006 0.2059 0.2746 0.3206 0.1182 0.1416 0.2432 0.3003 0.3393

GHE 0.0999 0.0283 0.1077 0.1999 0.2792 0.0997 0.0293 0.1086 0.2019 0.2811

AV 0.0985 0.0941 0.2325 0.3163 0.3589 0.1000 0.1182 0.2598 0.3323 0.3673

ELW 0.0755 0.2171 0.3396 0.3864 0.4064 0.0885 0.2571 0.3589 0.3879 0.4014

Table A.1: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(d = -0.4) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.3713 0.0158 0.0516 0.0845 0.1383 0.3135 0.0221 0.0667 0.1261 0.1751

PER 0.0434 0.0519 0.1734 0.2685 0.3408 0.0714 0.0712 0.1745 0.2742 0.3411

HIG 0.1670 0.0322 0.0977 0.1687 0.2407 0.1622 0.0368 0.1114 0.2032 0.2660

DFA 0.2340 0.0189 0.0663 0.1211 0.1787 0.2081 0.0310 0.0943 0.1612 0.2129

GHE 0.2082 0.0134 0.0539 0.1026 0.1615 0.2094 0.0120 0.0522 0.1123 0.1730

AV 0.1657 0.0267 0.0903 0.1545 0.2163 0.1606 0.0363 0.1109 0.1970 0.2548

ELW 0.0815 0.0593 0.1572 0.2410 0.3114 0.0956 0.0837 0.1931 0.2850 0.3370

∆H N = 212 ∆H N = 214

RS 0.2710 0.0301 0.0959 0.1625 0.2103 0.2358 0.0531 0.1412 0.2079 0.2476

PER 0.0928 0.0679 0.1745 0.2706 0.3310 0.0987 0.0720 0.1808 0.2696 0.3288

HIG 0.1590 0.0435 0.1353 0.2248 0.2819 0.1526 0.0560 0.1621 0.2467 0.3001

DFA 0.1891 0.0509 0.1329 0.2015 0.2448 0.1744 0.0811 0.1701 0.2313 0.2724

GHE 0.2103 0.0130 0.0531 0.1149 0.1750 0.2112 0.0125 0.0536 0.1142 0.1745

AV 0.1577 0.0431 0.1355 0.2225 0.2757 0.1520 0.0561 0.1622 0.2443 0.2942

ELW 0.1031 0.1086 0.2371 0.3149 0.3521 0.0999 0.1532 0.2805 0.3430 0.3753

Table A.2: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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FGN(H=0.2) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.3697 0.0124 0.0549 0.1065 0.1554 0.3290 0.0174 0.0716 0.1289 0.1728

PER 0.1291 0.0412 0.1401 0.2393 0.2912 0.1564 0.0479 0.1481 0.2293 0.2846

HIG 0.1950 0.0293 0.0968 0.1832 0.2364 0.1987 0.0340 0.1166 0.1962 0.2493

DFA 0.2395 0.0182 0.0697 0.1354 0.1837 0.2259 0.0288 0.0973 0.1585 0.2110

GHE 0.1974 0.0156 0.0589 0.1259 0.1840 0.1975 0.0176 0.0635 0.1323 0.1930

AV 0.1859 0.0306 0.0923 0.1732 0.2230 0.2000 0.0325 0.1138 0.1838 0.2356

ELW 0.1595 0.0393 0.1329 0.2217 0.2650 0.1849 0.0554 0.1625 0.2271 0.2708

∆H N = 212 ∆H N = 214

RS 0.2984 0.0276 0.0960 0.1559 0.1952 0.2735 0.0459 0.1269 0.1845 0.2172

PER 0.1684 0.0532 0.1518 0.2310 0.2749 0.1729 0.0573 0.1546 0.2298 0.2752

HIG 0.2000 0.0415 0.134 0.2102 0.2558 0.1994 0.0522 0.1510 0.2231 0.2638

DFA 0.2178 0.0459 0.1225 0.1849 0.2254 0.2126 0.0659 0.1509 0.2048 0.2416

GHE 0.1991 0.0167 0.0656 0.1335 0.1952 0.1998 0.0161 0.066 0.1335 0.1954

AV 0.1999 0.0414 0.1327 0.2059 0.2476 0.1989 0.0524 0.1499 0.2199 0.2582

ELW 0.1930 0.0793 0.1851 0.2463 0.2730 0.1950 0.1035 0.2109 0.2600 0.2816

Table A.3: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(d = -0.3) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.4239 0.0075 0.0222 0.0625 0.0935 0.3706 0.0114 0.0403 0.0854 0.1250

PER 0.1519 0.0340 0.0979 0.1755 0.2440 0.1829 0.0296 0.0947 0.1738 0.2357

HIG 0.2369 0.0251 0.0567 0.1189 0.1791 0.2352 0.0211 0.0703 0.1390 0.1979

DFA 0.2918 0.0145 0.0427 0.0858 0.1316 0.2704 0.0197 0.0610 0.1141 0.1627

GHE 0.2671 0.0117 0.0330 0.0738 0.1216 0.2705 0.0111 0.0355 0.0797 0.1301

AV 0.2335 0.0209 0.0512 0.1123 0.1628 0.2352 0.0197 0.0663 0.1309 0.1851

ELW 0.1848 0.0327 0.0861 0.1615 0.2214 0.1976 0.0371 0.1086 0.1802 0.2349

∆H N = 212 ∆H N = 214

RS 0.3261 0.0197 0.0629 0.1170 0.1589 0.2955 0.0276 0.0902 0.1461 0.1852

PER 0.1949 0.0342 0.1022 0.1784 0.2308 0.1991 0.0348 0.1066 0.1769 0.2289

HIG 0.2297 0.0271 0.0887 0.1604 0.2121 0.2261 0.0310 0.1040 0.1731 0.2231

DFA 0.2548 0.0286 0.0871 0.1439 0.1854 0.2443 0.0431 0.1114 0.1670 0.2036

GHE 0.2724 0.0094 0.0370 0.0838 0.1312 0.2729 0.0087 0.0383 0.0838 0.1326

AV 0.2286 0.0263 0.0873 0.1582 0.2067 0.2256 0.0309 0.1038 0.1711 0.2182

ELW 0.1977 0.0518 0.1393 0.2125 0.2545 0.1990 0.0695 0.1675 0.2305 0.2638

Table A.4: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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FGN(H = 0.3) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.4505 0.0036 0.0182 0.0499 0.0949 0.4095 0.0057 0.0301 0.0680 0.1044

PER 0.2572 0.0179 0.0665 0.1170 0.1754 0.2784 0.0093 0.0572 0.1133 0.1627

HIG 0.3015 0.0051 0.0411 0.0866 0.1367 0.3004 0.0102 0.0498 0.1026 0.1478

DFA 0.3291 0.0086 0.0371 0.0711 0.1130 0.3177 0.0101 0.0449 0.0862 0.1261

GHE 0.2966 0.0030 0.0308 0.0653 0.1079 0.2978 0.0071 0.0345 0.0746 0.1178

AV 0.2957 0.0013 0.0362 0.0802 0.1268 0.2960 0.0126 0.0494 0.1002 0.1430

ELW 0.2851 0.0090 0.0513 0.0992 0.1466 0.2904 0.0163 0.0636 0.1141 0.1563

∆H N = 212 ∆H N = 214

RS 0.3769 0.0137 0.0453 0.0842 0.1190 0.3560 0.0154 0.0570 0.0992 0.1309

PER 0.2847 0.0172 0.0667 0.1139 0.1585 0.2890 0.0177 0.0647 0.1159 0.1555

HIG 0.2990 0.0167 0.0617 0.1110 0.1557 0.3007 0.0171 0.0665 0.1181 0.1580

DFA 0.3125 0.0148 0.0585 0.0987 0.1360 0.3092 0.0227 0.0699 0.1148 0.1475

GHE 0.2992 0.0084 0.0359 0.0749 0.1188 0.2997 0.0085 0.0357 0.0761 0.1188

AV 0.2990 0.0162 0.0607 0.1085 0.1480 0.3008 0.0165 0.0651 0.1151 0.1516

ELW 0.2961 0.0206 0.0795 0.1256 0.1621 0.2987 0.0291 0.0894 0.1381 0.1687

Table A.5: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(d = -0.2) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.4708 0.0030 0.0225 0.0387 0.0640 0.4281 0.0093 0.0242 0.0532 0.0815

PER 0.2757 0.0060 0.0429 0.0932 0.1434 0.2826 0.0184 0.0497 0.0989 0.1446

HIG 0.3173 0.0048 0.0404 0.0721 0.1150 0.3145 0.0121 0.0387 0.0850 0.1262

DFA 0.3606 0.0071 0.0258 0.0531 0.0855 0.3434 0.0076 0.0300 0.0681 0.0984

GHE 0.3359 0.0046 0.0189 0.0473 0.0777 0.3401 0.0038 0.0223 0.0510 0.0848

AV 0.3065 0.0072 0.0404 0.0667 0.1085 0.3149 0.0097 0.0361 0.0783 0.1139

ELW 0.2936 0.0097 0.0451 0.0834 0.1320 0.2985 0.0157 0.0466 0.0948 0.1322

∆H N = 212 ∆H N = 214

RS 0.3914 0.0088 0.0343 0.0688 0.1021 0.3638 0.0147 0.0468 0.0871 0.1188

PER 0.2959 0.0138 0.0480 0.0987 0.1387 0.2978 0.0147 0.0511 0.1000 0.1380

HIG 0.3123 0.0126 0.0465 0.0941 0.1349 0.3102 0.0151 0.0531 0.1014 0.1402

DFA 0.3311 0.0121 0.0446 0.0848 0.1186 0.3246 0.0155 0.0555 0.0958 0.1290

GHE 0.3411 0.0054 0.0236 0.0540 0.0870 0.3414 0.0054 0.0240 0.0546 0.0878

AV 0.3110 0.0141 0.0466 0.0920 0.1297 0.3095 0.0155 0.0526 0.0997 0.1363

ELW 0.2964 0.0196 0.0631 0.1157 0.1530 0.2985 0.0235 0.0747 0.1248 0.1582

Table A.6: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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FGN(H=0.4) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.5178 0.0097 0.0092 0.0265 0.0422 0.4853 0.0024 0.0146 0.0274 0.0443

PER 0.3677 0.0021 0.0391 0.0494 0.0886 0.3869 0.0024 0.0224 0.0407 0.0684

HIG 0.3966 0.0011 0.0131 0.0336 0.0644 0.3977 0.0001 0.0186 0.0393 0.0655

DFA 0.4173 0.0002 0.0123 0.0283 0.0497 0.4106 0.0014 0.0143 0.0322 0.0540

GHE 0.3858 0.0057 0.0132 0.0297 0.0532 0.3952 0.0042 0.0159 0.0305 0.0529

AV 0.3873 0.0013 0.0120 0.0285 0.0542 0.3962 0.0002 0.0168 0.0377 0.0583

ELW 0.3840 0.0030 0.0205 0.0349 0.0680 0.3941 0.0042 0.0163 0.0418 0.0631

∆H N = 212 ∆H N = 214

RS 0.4583 0.0005 0.0133 0.0318 0.0502 0.4386 0.0037 0.0172 0.0390 0.0561

PER 0.3913 0.0049 0.0205 0.0440 0.0661 0.3949 0.0048 0.0194 0.0426 0.0644

HIG 0.3985 0.0012 0.0181 0.0412 0.0669 0.3989 0.0038 0.0197 0.0451 0.0669

DFA 0.4054 0.0026 0.0188 0.0376 0.0588 0.4042 0.0052 0.0211 0.0430 0.0628

GHE 0.3987 0.0034 0.0136 0.0321 0.0530 0.3997 0.003 0.0133 0.0322 0.0535

AV 0.3963 0.0027 0.0191 0.0406 0.0626 0.3981 0.0043 0.0198 0.0439 0.0638

ELW 0.3965 0.0006 0.0219 0.0427 0.0641 0.3973 0.0044 0.0240 0.0493 0.0677

Table A.7: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(d=-0.1) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.5345 0.0066 0.0006 0.0188 0.0304 0.4943 0.0006 0.0105 0.0225 0.0334

PER 0.3875 0.0029 0.0178 0.0430 0.0542 0.3920 0.0006 0.0153 0.0438 0.0658

HIG 0.4074 0.0036 0.0090 0.0310 0.0518 0.4023 0.0028 0.0141 0.0379 0.0575

DFA 0.4302 0.0023 0.0120 0.0269 0.0421 0.4191 0.0057 0.0100 0.0307 0.0502

GHE 0.4069 0.0010 0.0080 0.0226 0.0365 0.4144 0.0019 0.0103 0.0249 0.0416

AV 0.4002 0.0063 0.0112 0.0251 0.0413 0.3987 0.0046 0.0141 0.0342 0.0545

ELW 0.3896 0.0036 0.0138 0.0407 0.0579 0.3933 0.0037 0.0145 0.0388 0.0603

∆H N = 212 ∆H N = 214

RS 0.4628 0.0034 0.0139 0.0305 0.0454 0.4425 0.0046 0.0158 0.0344 0.0527

PER 0.3970 0.0047 0.0167 0.0419 0.0581 0.3988 0.005 0.0181 0.0385 0.0595

HIG 0.4034 0.0042 0.0160 0.0399 0.0597 0.4027 0.0044 0.0188 0.0405 0.0625

DFA 0.4138 0.0052 0.0158 0.0359 0.0517 0.4102 0.0063 0.0190 0.0386 0.0574

GHE 0.4167 0.0022 0.0103 0.0258 0.0423 0.4168 0.0031 0.0118 0.0263 0.0435

AV 0.4029 0.0033 0.0152 0.0361 0.0543 0.4027 0.0047 0.0187 0.0381 0.0581

ELW 0.3988 0.0037 0.0159 0.0426 0.0594 0.3983 0.0058 0.0237 0.0449 0.0651

Table A.8: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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FGN(0.6) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.6566 0.0016 0.0011 0.0015 0.0319 0.6386 0.0028 0.0045 0.0101 0.0257

PER 0.6238 0.0028 0.0083 0.0154 0.0532 0.6101 0.0035 0.0109 0.0173 0.0370

HIG 0.5923 0.0056 0.0086 0.0100 0.0290 0.5944 0.0005 0.0066 0.0113 0.0266

DFA 0.5979 0.0016 0.0066 0.0093 0.0338 0.5989 0.0019 0.0083 0.0152 0.0318

GHE 0.5701 0.0003 0.0064 0.0127 0.0378 0.5913 0.0004 0.0096 0.0195 0.0392

AV 0.5673 0.0051 0.0093 0.0089 0.0324 0.5815 0.0002 0.0067 0.0092 0.0252

ELW 0.5936 0.0023 0.0042 0.0023 0.0386 0.5928 0.0037 0.0077 0.0101 0.0275

∆H N = 212 ∆H N = 214

RS 0.6226 0.0024 0.0049 0.0082 0.0252 0.6158 0.0006 0.0063 0.0128 0.0281

PER 0.6019 0.0013 0.0042 0.0125 0.0345 0.6014 0.0014 0.0068 0.0169 0.0342

HIG 0.5966 0.0013 0.0065 0.0108 0.0281 0.5995 0.0001 0.0065 0.0142 0.0289

DFA 0.5981 0.0001 0.0072 0.0150 0.0319 0.5982 0.0004 0.0046 0.0150 0.0298

GHE 0.5971 0.0015 0.0091 0.0202 0.0411 0.5993 0.0017 0.0093 0.0219 0.0409

AV 0.5904 0.0010 0.0061 0.0109 0.0291 0.5964 0.0000 0.0064 0.0145 0.0305

ELW 0.5960 0.0009 0.0079 0.0107 0.0277 0.5991 0.0009 0.0067 0.0137 0.0291

Table A.9: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(d=0.1) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.6583 0.0059 0.0047 0.0141 0.0308 0.6340 0.0003 0.0041 0.0132 0.0238

PER 0.6141 0.0022 0.0003 0.0339 0.0405 0.6077 0.0036 0.0111 0.0212 0.0411

HIG 0.5851 0.0009 0.0071 0.0191 0.0336 0.5936 0.0009 0.0072 0.0161 0.0310

DFA 0.5871 0.0008 0.0065 0.0174 0.0286 0.5921 0.0006 0.0079 0.0179 0.0317

GHE 0.5584 0.0006 0.0070 0.0172 0.0315 0.5796 0.0011 0.0086 0.0181 0.0336

AV 0.5572 0.0018 0.0052 0.0171 0.0286 0.5808 0.0010 0.0053 0.0157 0.0313

ELW 0.5852 0.0021 0.0032 0.0220 0.0318 0.5946 0.0031 0.0077 0.0174 0.0342

∆H N = 212 ∆H N = 214

RS 0.6225 0.0008 0.0052 0.0128 0.0287 0.6142 0.0031 0.0052 0.0133 0.0281

PER 0.6030 0.0015 0.0068 0.0205 0.0383 0.6015 0.0029 0.0069 0.0194 0.0381

HIG 0.5958 0.0001 0.0067 0.0138 0.0302 0.5982 0.0022 0.0065 0.0147 0.0294

DFA 0.5930 0.0006 0.0074 0.0141 0.0317 0.5959 0.0019 0.0075 0.0155 0.0296

GHE 0.5857 0.0019 0.0077 0.0192 0.0352 0.5877 0.0020 0.0074 0.0196 0.0362

AV 0.5904 0.0002 0.0061 0.0143 0.0326 0.5960 0.0024 0.0068 0.0156 0.0308

ELW 0.5961 0.0013 0.0075 0.0140 0.0320 0.5998 0.0031 0.0081 0.0145 0.0284

Table A.10: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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FGN(H=0.7) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.7274 0.0001 0.0002 0.0152 0.0520 0.7164 0.0001 0.0061 0.0249 0.0533

PER 0.7452 0.0011 0.0016 0.0239 0.0855 0.7213 0.0011 0.0083 0.0255 0.0655

HIG 0.6855 0.0025 0.0091 0.0194 0.0508 0.6916 0.0006 0.0042 0.0169 0.0444

DFA 0.6988 0.0034 0.0106 0.0348 0.0703 0.6958 0.0035 0.0120 0.0270 0.0609

GHE 0.6596 0.0032 0.0089 0.0328 0.0672 0.6850 0.0015 0.0119 0.0337 0.0697

AV 0.6507 0.0017 0.0016 0.0245 0.0571 0.6702 0.0007 0.0047 0.0168 0.0474

ELW 0.7014 0.0028 0.0020 0.0314 0.0717 0.6961 0.0010 0.0037 0.0202 0.0539

∆H N = 212 ∆H N = 214

RS 0.7078 0.0034 0.0073 0.0184 0.0405 0.7016 0.0007 0.0020 0.0128 0.0349

PER 0.7098 0.0034 0.0105 0.0271 0.0588 0.7063 0.0033 0.0116 0.0273 0.0562

HIG 0.6977 0.0056 0.0076 0.0185 0.0377 0.6991 0.0015 0.0055 0.0167 0.0369

DFA 0.6969 0.0067 0.0112 0.0261 0.0525 0.6976 0.0021 0.0084 0.0224 0.0438

GHE 0.6947 0.0039 0.0144 0.0366 0.0700 0.6979 0.0033 0.0143 0.0364 0.0702

AV 0.6856 0.0059 0.0079 0.0195 0.0422 0.6919 0.0013 0.0058 0.0170 0.0375

ELW 0.6997 0.0057 0.0092 0.0186 0.0423 0.6993 0.0019 0.0050 0.0153 0.0344

Table A.11: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(d = 0.2) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.7180 0.0019 0.0118 0.0178 0.0462 0.7090 0.0032 0.0076 0.0213 0.0423

PER 0.7267 0.0046 0.0028 0.0277 0.0574 0.7147 0.0014 0.0105 0.0287 0.0579

HIG 0.6881 0.0051 0.0138 0.0329 0.0549 0.6872 0.0048 0.0036 0.0169 0.0386

DFA 0.6794 0.0030 0.0120 0.0309 0.0605 0.6794 0.0055 0.0063 0.0254 0.0488

GHE 0.6392 0.0018 0.0101 0.0291 0.0583 0.6659 0.0001 0.0107 0.0326 0.0589

AV 0.6443 0.0002 0.0103 0.0259 0.0511 0.6665 0.0028 0.0053 0.0203 0.0425

ELW 0.6882 0.0005 0.0053 0.0262 0.0545 0.6939 0.0024 0.0078 0.0267 0.0460

∆H N = 212 ∆H N = 214

RS 0.7017 0.0032 0.0037 0.0197 0.0398 0.7009 0.0002 0.0066 0.0153 0.0343

PER 0.7019 0.0010 0.0058 0.0258 0.0525 0.7009 0.0003 0.0110 0.0251 0.0523

HIG 0.6900 0.0067 0.0024 0.0157 0.0351 0.6959 0.0009 0.0063 0.0171 0.0350

DFA 0.6823 0.0042 0.0006 0.0177 0.0414 0.6904 0.0003 0.0075 0.0197 0.0416

GHE 0.6752 0.0002 0.0106 0.0310 0.0597 0.6798 0.0021 0.0123 0.0315 0.0614

AV 0.6777 0.0047 0.0006 0.0163 0.0370 0.6897 0.0003 0.0072 0.0169 0.0365

ELW 0.6933 0.0047 0.0003 0.0174 0.0391 0.6995 0.0005 0.0080 0.0157 0.0343

Table A.12: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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FGN(H=0.8) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.7921 0.0091 0.0170 0.0432 0.0681 0.7866 0.0042 0.0101 0.0272 0.0576

PER 0.8795 0.0218 0.0328 0.054 0.1099 0.8322 0.0067 0.0107 0.0386 0.0837

HIG 0.7736 0.0109 0.0004 0.0226 0.0419 0.7912 0.0021 0.0046 0.0244 0.0411

DFA 0.7873 0.0015 0.0158 0.0449 0.0932 0.7918 0.0036 0.0118 0.0403 0.0785

GHE 0.7341 0.0025 0.0156 0.0430 0.0846 0.7714 0.0046 0.0153 0.0445 0.0895

AV 0.7239 0.0014 0.0130 0.0284 0.0607 0.7527 0.0052 0.0066 0.0233 0.0484

ELW 0.8035 0.0084 0.0202 0.0440 0.0940 0.8019 0.0099 0.0089 0.0322 0.0668

∆H N = 212 ∆H N = 214

RS 0.7817 0.0002 0.0069 0.0153 0.0409 0.7839 0.0027 0.0019 0.0106 0.0274

PER 0.8135 0.0005 0.0124 0.0329 0.0708 0.8072 0.0022 0.0129 0.0331 0.0696

HIG 0.7936 0.0045 0.0068 0.0157 0.0326 0.7975 0.0003 0.0047 0.0149 0.0317

DFA 0.7902 0.0041 0.0093 0.0291 0.0585 0.7964 0.0037 0.0099 0.0282 0.0532

GHE 0.7837 0.0005 0.0156 0.0426 0.0875 0.7926 0.0038 0.0176 0.0453 0.0894

AV 0.7658 0.0046 0.0044 0.0143 0.0350 0.7799 0.0008 0.0049 0.0148 0.0324

ELW 0.7970 0.0061 0.0053 0.0181 0.0414 0.7998 0.0006 0.0061 0.0147 0.0320

Table A.13: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(d=0.3) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.7809 0.0000 0.0126 0.0275 0.0548 0.7796 0.0065 0.0094 0.0260 0.0516

PER 0.8669 0.0019 0.0027 0.0633 0.0948 0.8189 0.0015 0.0062 0.0307 0.0655

HIG 0.7785 0.0011 0.0055 0.0395 0.0577 0.7857 0.0029 0.0055 0.0219 0.0389

DFA 0.7695 0.0005 0.0133 0.0493 0.0832 0.7722 0.0011 0.0095 0.0303 0.0594

GHE 0.7163 0.0001 0.0112 0.0412 0.0731 0.7501 0.0024 0.0118 0.0363 0.0697

AV 0.7189 0.0014 0.0048 0.0372 0.0602 0.7451 0.0010 0.0040 0.0198 0.0391

ELW 0.7973 0.0066 0.0104 0.0535 0.0819 0.7927 0.0007 0.0040 0.0243 0.0507

∆H N = 212 ∆H N = 214

RS 0.7797 0.0007 0.0015 0.0150 0.0356 0.7863 0.0027 0.0043 0.0120 0.0263

PER 0.8078 0.0023 0.0061 0.0267 0.0628 0.8026 0.0021 0.0104 0.0281 0.0605

HIG 0.7903 0.0002 0.0040 0.0128 0.0325 0.7937 0.0018 0.0056 0.0132 0.0285

DFA 0.7834 0.0019 0.0090 0.0250 0.0502 0.7883 0.0015 0.0084 0.0214 0.0421

GHE 0.7664 0.0024 0.0117 0.0344 0.0711 0.7742 0.0028 0.0136 0.0357 0.0715

AV 0.7665 0.0001 0.0037 0.0143 0.0325 0.7797 0.0009 0.0057 0.0135 0.0278

ELW 0.7974 0.0009 0.0021 0.0135 0.0362 0.7994 0.0002 0.0038 0.0126 0.0263

Table A.14: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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FGN(H=0.9) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.8438 0.0049 0.0093 0.0439 0.0987 0.8391 0.0002 0.0047 0.0249 0.0682

PER 0.9715 0.0152 0.0083 0.0386 0.1171 0.9359 0.0034 0.0137 0.0506 0.1119

HIG 0.869 0.0006 0.0041 0.0225 0.0539 0.8803 0.0048 0.0047 0.0137 0.0388

DFA 0.8780 0.0036 0.0214 0.0653 0.1352 0.8865 0.0054 0.0250 0.0582 0.1100

GHE 0.7991 0.0032 0.0202 0.0554 0.1139 0.8445 0.0045 0.0230 0.0599 0.1161

AV 0.7825 0.0021 0.0045 0.0220 0.0675 0.8186 0.0027 0.0080 0.0222 0.0511

ELW 0.8942 0.0028 0.0164 0.0549 0.1169 0.9012 0.0005 0.0096 0.0375 0.0815

∆H N = 212 ∆H N = 214

RS 0.8502 0.0021 0.0040 0.0169 0.0458 0.8589 0.000 0.0005 0.0075 0.0225

PER 0.9186 0.0012 0.0206 0.0504 0.1059 0.9105 0.0051 0.0208 0.0533 0.1020

HIG 0.8878 0.0018 0.0021 0.0100 0.0315 0.8921 0.0015 0.0021 0.0088 0.0263

DFA 0.8906 0.0036 0.0175 0.0473 0.0867 0.8952 0.0047 0.0181 0.039 0.074

GHE 0.8648 0.0041 0.0221 0.0575 0.1124 0.8770 0.0047 0.0227 0.0574 0.1118

AV 0.8415 0.0003 0.0054 0.0175 0.0394 0.8580 0.0011 0.0061 0.0145 0.0323

ELW 0.9012 0.0002 0.0076 0.0251 0.0547 0.9031 0.0011 0.0064 0.0173 0.0379

Table A.15: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.

ARFIMA(0.4) corrupted with T(ν = 4)

∆H N = 28 ∆H N = 210

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6

RS 0.8368 0.0027 0.0147 0.0285 0.0496 0.8448 0.0038 0.0077 0.0214 0.0426

PER 0.9913 0.0035 0.0206 0.0544 0.0952 0.9445 0.0131 0.0209 0.0442 0.0808

HIG 0.8688 0.0045 0.0163 0.0240 0.0423 0.8707 0.0029 0.0016 0.0132 0.0257

DFA 0.8625 0.0056 0.0210 0.0473 0.0833 0.8729 0.0053 0.0177 0.0364 0.0654

GHE 0.7867 0.0044 0.0159 0.0363 0.0703 0.8303 0.0047 0.0152 0.0351 0.0692

AV 0.7865 0.0050 0.0122 0.0235 0.0425 0.8186 0.0041 0.0074 0.0174 0.0301

ELW 0.9058 0.0121 0.0266 0.0479 0.0848 0.9055 0.0119 0.0173 0.0287 0.0527

∆H N = 212 ∆H N = 214

RS 0.8521 0.0032 0.0014 0.0119 0.0225 0.8617 0.0003 0.0026 0.0044 0.0127

PER 0.9128 0.0010 0.0101 0.0258 0.0607 0.9047 0.0003 0.0100 0.0272 0.0599

HIG 0.8731 0.0034 0.0021 0.0081 0.0162 0.8765 0.0010 0.0029 0.0049 0.0144

DFA 0.8777 0.0016 0.0091 0.0249 0.0467 0.8841 0.0015 0.0064 0.0178 0.0391

GHE 0.8493 0.0004 0.0113 0.0307 0.0635 0.8624 0.0015 0.0112 0.0292 0.0628

AV 0.8394 0.0015 0.0030 0.0108 0.0194 0.8568 0.0010 0.0029 0.0065 0.0164

ELW 0.9002 0.0009 0.0049 0.0135 0.0269 0.9027 0.0002 0.0058 0.0112 0.0224

Table A.16: Differences in H estimates for different scaling factors α and lengths N . For
α = 1 the estimates of C(1, H, 4) are given, whereas for α = {0.6, 0.7, 0.8, 0.9} the difference
between C(α,H, 4) and C(1, H, 4) is given.
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A.3 Standard deviations of the estimates of C

Included are the standard deviations of the Ĉ(α,H, ν) estimates from Chapter 5.
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Figure A.1: Standard deviations of Ĥ estimates of a LRD series.
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Periodogram Method
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Higuchi Method
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Detrended Fluctuation Analysis
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Figure A.2: Standard deviations of Ĥ estimates of a LRD series.
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Generalized Hurst Exponent
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(a) FGN
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(b) ARFIMA noise

Aggregated Variance Method
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(c) FGN
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(d) ARFIMA noise

Exact Local Whittle Method
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(f) ARFIMA noise

Figure A.3: Standard deviations of Ĥ estimates of a LRD series.
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Spectral densities R[59] package longmemo based on programs written by Jan Beran. Found at R-
project.org [8]. See Table 2.1 and 3.2.

Rescaled range analysis Matlab[47] program by Chu Chen found at the File Exchange [14].

Periodogram method Matlab program program by Chu Chen found at the File Exchange[14].

Higuchi method Matlab program program by Chu Chen found at the File Exchange[14].

Detrended fluctuation analysis Matlab program program by Max Little found at the File Exchange [38].

Generalized Hurst exponent Matlab program program by Tomaso Aste found at the File Exchange [2].

Aggregated Variance Matlab program program by Chu Chen found at the File Exchange[14].

Exact local Whittle Matlab program program by György Inzelt found at the File Exchange [29].

Fractional Gaussian noise Matlab program program by Stilian Stoev and Yingchun Zhou found at the File
Exchange [67].

ARFIMA Matlab program program by Stilian Stoev found at the File Exchange [66].

t distributed noise Built in Matlab program trnd.

Table A.17: Programs used in this thesis.

A.4 Credits

Throughout the thesis a number of computations have been performed in different coding

environments. Most of the codes that are written by the author in connection with this thesis

are for ease of computation. It is possible to generate all of the results in this thesis without

the aid of these programs. Included are only the codes that are necessary to generate the

identical results. In Table A.17 the use of the main programs, which other authors have

written, is justified. Programs that perform standard tasks are not included as they are

common features to statistical programs. The table is in chronological order. Names in caps,

such as Matlab, are denoting the program used.
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