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Abstract 

Since 2008 both Handelsbanken and DnbNOR have offered the Bull funds on the Oslo stock 

exchange. These are funds whose shares trade like stocks on the stock exchange, and the fund 

provide investors with twice the daily return of the OBX-index. In order to do so, the fund 

managers utilize OBX-stock index futures contracts. Fund managers take long futures 

positions of twice the value of the fund to achieve the double exposure. To maintain the 

double exposure, fund managers must rebalance the fund at the end of each trading day. They 

do this by adjusting the number of futures contracts so that the exposure is always twice that 

of the funds value. The transaction costs associated with rebalancing is deducted from the 

value of the fund. This master thesis investigates if such transaction costs affect the 

performance of the Bull fund, and whether the magnitude of the transaction costs effect on 

performance might depend on the level of expected return and standard deviation of the 

benchmark stock index.    

 

Our results are based on data from simulation runs, using MATLAB. First, we compute and 

compare M-squared performance measures with and without transaction costs with the stock 

index as the benchmark. M-squared performance measures are computed for 6 time horizons 

ranging from daily to yearly. We find that the Bull fund generally underperforms the 

benchmark both with and without transaction costs, but that the underperformance is always 

greater with transaction costs. The M-squared performance, both with and without transaction 

costs, also show a decrease in performance for both higher values of the benchmark’s 

expected return and standard deviation. Comparing M-squared measures reveals that 

differences in performance become greater against higher values of the benchmark’s standard 

deviation. Difference in M-squared measures also shows a decrease in differences, for longer 

time horizons, against higher values of the benchmark’s expected return. Simulation data is 

also used to estimate expected returns and standard deviation, with 95% confidence intervals, 

for daily, weekly and monthly time horizons. Analysis shows that standard deviations are not 

significantly different for any of these time horizons, while the expected return of weekly and 

monthly time horizons are significantly reduced by transaction costs.  However, we are not 

able to explain the increase in M-squared difference against higher values of the benchmarks 

standard deviation and the decrease in M-squared differences for higher values of the 
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benchmark’s expected return, by analyzing the estimated expected returns and standard 

deviations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Acknowledgements 

I extend my sincerest gratitude to both my supervisors, Steen Koekebakker and Valeri 

Zakamouline. Thank you both for the guidance, help and (long) talks! Writing this master 

thesis has been one big learning experience and I really appreciate it. An extra thanks goes to 

Valeri Zakamouline for helping me with the models, constructing them and making sense of 

them. 

 

I would also like to thank Joakim Taaje of DnbNOR Kapitalforvaltning As. Thank you for the 

data and correspondence!   

 

 

  



vi 

 

Table of contents 
Chapter 1: Introduction ........................................................................................................................... 1 

Chapter 2: What is Leveraged Exchange traded funds? .......................................................................... 5 

2.1 LETFs in the Norwegian Market ................................................................................................... 5 

2.2 Futures contracts ............................................................................................................................ 5 

2.2.1 Stock index futures contracts and the investors who use them .............................................. 6 

2.2.2 Futures contract payoffs ......................................................................................................... 7 

2.2.3 How futures contracts are traded ............................................................................................ 9 

2.2.4 Marking-to-market and margin accounts ............................................................................. 10 

2.2.5 The role of the clearinghouse ............................................................................................... 12 

2.3 The design and mechanics of the Bull fund ................................................................................ 12 

2.4Attributes of the performance of the Bull fund ............................................................................ 13 

2.3.1 Other factors of the Bull funds performance ........................................................................ 15 

Chapter 3: Investment Transaction Costs .............................................................................................. 17 

3.1 Fixed transaction costs ................................................................................................................ 17 

3.2 Execution costs: ........................................................................................................................... 18 

3.2.1 Market Impact Costs............................................................................................................. 18 

3.2.2 Bid-Ask-Spread .................................................................................................................... 18 

3.2.3 Components of the bid-ask spread ....................................................................................... 20 

3.2.4 Liquidity and depth............................................................................................................... 21 

3.2.5 How the Bid-ask spread affects an investment ..................................................................... 22 

3.2.6 Market timing costs .............................................................................................................. 23 

3.2.7 Measuring Execution costs ................................................................................................... 23 

3.3 Opportunity costs ........................................................................................................................ 25 

3.3.1 Measuring Opportunity Costs ............................................................................................... 25 

3.4 Transaction costs trade-off .......................................................................................................... 25 

3.5 Transaction costs and the bull fund ............................................................................................. 28 

3.5.1 Fixed transaction costs of a bull fund ................................................................................... 28 

3.5.2 Variable transaction costs and the Bull fund. ....................................................................... 29 

Chapter 4: Theory .................................................................................................................................. 31 

4.1 The Theoretical Pricing Of Futures contracts.............................................................................. 31 

4.1.1 Pricing model of Forward Contracts .................................................................................... 32 

4.1.2 When are Forward prices equal to Futures prices? ............................................................... 35 

4.1.3 The theoretical Stock index Futures Price ............................................................................ 37 

4.1.4 Theoretical prices and the real world ................................................................................... 37 

4.2 How stock indexes move ............................................................................................................. 38 



vii 

 

4.2.1 Brownian motions ................................................................................................................ 38 

4.2.2 Geometric Brownian motion ................................................................................................ 39 

4.2.3 Log-normally distributed prices ........................................................................................... 40 

4.3 Performance measures ................................................................................................................. 41 

4.3.1 The Sharpe ratio ................................................................................................................... 42 

4.3.2 Deriving the Sharpe ratio ...................................................................................................... 42 

4.3.3 The M-squared Measure of Performance ............................................................................. 45 

4.3.4 Relating the performance measures to the Bull funds. ......................................................... 48 

Chapter 5: Other written work on LETFs .............................................................................................. 50 

Chapter 6: Research method .................................................................................................................. 52 

6.1 Assumptions about the stock index, futures contracts and the bull fund..................................... 53 

6.1.1 The model of a Bull fund without costs ................................................................................... 53 

6.1.2 The model of a Bull fund with costs .................................................................................... 54 

6.2 The parameter values ................................................................................................................... 55 

6.3 Running the MATLAB script ...................................................................................................... 57 

Chapter 7: Analysis of results ............................................................................................................... 60 

7.1 Performance analysis of U: without transaction costs ................................................................. 60 

7 .2 Performance analysis of V:With transaction costs ..................................................................... 62 

7.3 Comparison of U and V: The effect of transaction costs on performance. ................................. 62 

7.4 Analysis of expected returns ....................................................................................................... 64 

7.4.1 Analysis of daily expected returns ....................................................................................... 64 

7.4.2 Analysis of weekly expected returns .................................................................................... 65 

7.4.3 Analysis of Monthly expected returns. ................................................................................. 66 

7.5 Analysis of Standard deviations. ................................................................................................. 67 

7.5.1 Analysis of Daily standard deviations. ................................................................................. 67 

7.5.2 Analysis of Weekly Standard deviations .............................................................................. 69 

7.5.3 Analysis of Monthly standard deviations. ............................................................................ 70 

7.5.4 Analysis of estimated standard deviation of the benchmark. ............................................... 71 

7.6 Accounting for the Management fee. .......................................................................................... 72 

7.7 The effect of the risk-free rate on Expected returns .................................................................... 73 

7.8 Analysis summary: Discussion of results .................................................................................... 74 

Chapter 8: Conclusion ........................................................................................................................... 77 

8.1 Weaknesses of results and further research. ................................................................................ 81 

Chapter 9: Bibliography ........................................................................................................................ 82 

Appendix ............................................................................................................................................... 84 

 



viii 

 

List of Figures 
Figure 2.1-The payoff of a long futures position at maturity .................................................................. 8 

Figure 2.2-The payoff of a short futures position at maturity ................................................................. 9 

Figure 3.1-The bid-ask spread ............................................................................................................... 19 

Figure 3.2-Cost Trade-offs, Execution vs. Opportunity Costs .............................................................. 26 

Figure 4.1-Log-normal distributions ..................................................................................................... 41 

Figure 4.2-The investment opportunity set with a risky asset and a risk-free ....................................... 43 

Figure 4.3-The M-squared measure of portfolio B................................................................................ 47 

Figure 7.1- The relative performance of U over time............................................................................ 60 

Figure 7.2-The weekly relative performance of U. ............................................................................... 61 

Figure 7.3-The Daily M2V-values ........................................................................................................ 62 

Figure 7.4-Weekly M2D-values ............................................................................................................ 63 

Figure 7.5- The daily expected returns of U and V vs. σ. ..................................................................... 64 

Figure 7.6- V’s estimated weekly expected return vs. σ. ...................................................................... 65 

Figure 7.7-Estimated daily standard deviations of U and V vs. µ-values. ............................................ 67 

Figure 7.8-The effect of higher σ-values on the estimated standard deviations of U and V. ................ 68 

Figure 7.9-Estimates of weekly standard deviations of U and V vs. µ-values. ..................................... 69 

Figure 7.10-The weekly estimated standard deviations of S (double), U and V for µ=10% and µ=15%.

 ............................................................................................................................................................... 71 

Figure 7.11- Weekly expected return: U vs. V vs. S (double) for positive risk-free rate. ..................... 73 

Figure 7.12- Weekly expected return: U vs. V vs. S (double) for zero risk-free rate............................ 73 

 

List of Tables 
Table 2.1- The effect of volatility on the return of the Bull fund. ......................................................... 15 

Table 3.1-Management style versus Costs ............................................................................................ 28 

Table 6.1–Values of μ and σ ................................................................................................................. 56 

Table 6.2-Values of T and number of steps for each time horizon ....................................................... 56 

Table 7.1-The M-squared Measure of U: M2U ..................................................................................... 87 

Table 7.2-M-squared measure of V: M2V ............................................................................................ 87 

Table 7.3-Comparison of M-squared measures: M2U-M2V=M2D ...................................................... 88 

Table 7.4-Estimated daily expected returns of U and V. ....................................................................... 88 

Table 7.5-Estimated weekly expected returns of U and V. ................................................................... 89 

Table 7.6-Estimated monthly expected returns of U and V. ................................................................. 89 

Table 7.7-Estimated daily standard deviations of U and V. .................................................................. 90 

Table 7.8-Estimated weekly standard deviations of U and V. .............................................................. 90 

Table 7.9-Estimated monthly standard deviations of U and V. ............................................................. 91 

Table 7.10-Estimated daily, weekly and monthly double standard deviation of S. .............................. 92 

Table 7.11-Estimated daily expected returns with management fee and bid-ask spread. ..................... 93 

Table 7.12-Estimated daily expected return of S. ................................................................................. 93 

Table 7.13-Estimated daily expected return of U, V and estimated daily double expected return of S. 94 

 

file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679271
file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679273
file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679279
file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679281
file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679283
file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679284
file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679284
file:///C:/Users/Stian/Documents/Vår2010/selveoppgaven/final/Andreutkast.docx%23_Toc262679578


1 

 

Chapter 1: Introduction 

In 2008 both Handelsbanken and DnB NOR introduced the Bull ETFs on the Oslo stock 

exchange. These are so-called exchange traded funds [ETFs]; simply meaning that they are 

funds, managed by the institutions, whose shares trade on a stock exchange like stocks. As the 

“Bull” name indicates, these are funds for investors who have a positive market-sentiment. 

The object of both funds is to provide twice the daily return of the OBX stock index which is 

made up of the 25 most liquid stocks on the Oslo stock exchange. In order to achieve twice 

the daily return of the index, the funds utilizes OBX-index futures and take long futures 

positions worth twice the value of the fund, with the value of the fund mostly being made up 

of cash holdings. Similar funds have been offered in the American market since 2006, where 

they are referred to as Leveraged ETFs (Ferri, 2009). The leverage or “gearing-effect” offered 

by the Bull funds means that the double daily returns comes at the price of high volatility, 

double that the benchmark index. Both providers of the Bull fund in the Norwegian market 

have marketed their funds as high-risk investment objects, most suitable for short term 

investment horizons. Handelsbanken rates their fund’s risk profile as 5 out of 5 

(Handelsbanken kapitalforvaltning 2008) while Dnb NOR rates their Bull fund’s risk profile 

as 9 out of 10 (Dnbnor Kapitalforvaltning AS, 2008).  The way the Bull funds work is that if 

the daily return of the OBX-index is 1%, the return on the Bull fund will be 2%, and if the 

return of the OBX-index is -1%, then the return on the Bull fund is -2%. In order to always 

maintain a double exposure to the OBX-index, the Bull funds must be rebalanced at the end 

of each trading day: After the futures positions of the fund have been marked-to-market, the 

fund manager has to adjust the number of OBX-index futures contracts so that the exposure is 

once again twice that of the value of the fund.  

 

The daily rebalancing of the fund means that transaction costs accrue on a daily basis. These 

are costs which are deducted from the value of the fund and are spread equally among the 

outstanding shares, held by investors. The objective in this paper is therefore to investigate 

how transaction costs affect the performance of the Bull fund. Further we also investigate 

whether the magnitude of the effect of transaction costs on performance might vary with the 

levels of expected returns and standard deviations/volatility of the benchmark stock index. As 

previously stated, the volatility of a Bull fund is related to the volatility of the underlying 

benchmark. The volatility of the Leveraged ETFs is much discussed in the available research 
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papers on the topic, and high realized volatility is often showed to negatively affect returns 

(Avellaneda, & Zhang, 2009). Co (2009) models the return of a Leveraged ETF and shows 

how the return is negatively related to the realized volatility of the benchmark, while Hill & 

Foster (2009) finds that a Leveraged ETF has a higher probability of providing double the 

daily returns over a longer period of time if the volatility of the underlying benchmark is low. 

 

The research problems are formulated: 

 If any, what are the effects of transaction costs on the performance of a Bull fund? 

 If any, does the magnitude of such effects depend on the characteristics, i.e. the size of 

expected return and standard deviation, of the benchmark? 

 

To try to answer these problems we utilize MATLAB to run price path simulations of a 

benchmark stock index and two Bull funds; one with and one without transaction costs. The 

transaction costs are represented as the bid-ask spread of futures contracts and management 

fees. The data from the simulations are then used to compute M-squared performance 

measures for the two funds, using the underlying stock index as the benchmark. The data is 

also used to compute the estimated expected returns and standard deviations with 95% 

confidence intervals. All these performance measures and estimates are computed for 

different values of the annual expected return and annual standard deviation of the 

benchmark. The M-squared measures are calculated for daily, weekly, monthly, quarterly, 

semi-annual and annual time horizons, while the estimated expected returns and standard 

deviations are calculated for daily, weekly and monthly time horizons. In trying to answer the 

research problems we compare the M-squared measures, estimated expected returns and 

standard deviations of the fund with and without transaction costs. 

 

Because the Bull funds are marketed as short term investment vehicle we choose only to focus 

the analysis of estimated expected returns and standard deviations for short term investment 

horizons, i.e. daily, weekly and monthly. At the same time we choose to use the M-squared 

measures to capture any general trends from a daily time horizons up to an annual time 

horizon. 
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Analyzing the M-squared measures shows that the Bull fund actually underperforms the 

benchmark for all periods except daily, even without transaction costs. The negative 

performances generally increase for higher values of both expected return and standard 

deviation of the benchmark. The M-squared measures with transaction costs are negative for 

all time horizons, and also exhibits a general decrease in performance for higher values of the 

benchmark’s expected return and standard deviation.  

 

We find through the comparison of M-squared measures that the fund with transaction costs 

underperforms the fund without transaction costs for all time horizons and values of expected 

return and standard deviation. In comparing the estimated daily, weekly and monthly 

expected returns and standard deviations we find that transaction costs causes both the 

expected returns and standard deviations to decline, but that the decline in expected return is 

greater than the decline in standard deviation. This causes the daily, weekly and monthly M-

square measures to be less with transaction cost than without. However, the estimated daily, 

weekly and monthly standard deviations are not statistically significantly different with and 

without transaction costs. The weekly and monthly expected returns are all statistically 

significantly less with transaction costs, while the daily estimated expected returns are not 

significantly different.     

 

In trying to answer the second research problem our results are inconclusive. The difference 

between the M-squared measure without transaction costs and the M-squared measure with 

transaction costs increases for higher values of the benchmark’s standard deviation, for all 

time horizons. However, when we analyze and compare the estimated daily, weekly and 

monthly expected returns and standard deviations we find no clear connection with the 

increased M-square difference for these three periods. The monthly, quarterly, semi-annual 

and annual difference between the M-squared measures without and the M-squared measure 

with transaction cost show small declines in performance difference for higher values of the 

benchmark’s expected return. The analysis and comparison of estimated monthly expected 

returns and standard deviations offer no clear answer to why this might be. 
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The rest of this master thesis is organized in the following way: Chapter 2 gives an 

introduction to the Bull funds. The chapter explains how futures contracts work, how the Bull 

fund is constructed and attributes of the performance of the Bull fund. Chapter 3 gives a 

thorough review of investment transaction costs and how they affect investments. The end of 

the chapter deals with the actual transaction costs of the Bull fund. Chapter 4 contains the 

theory regarding futures pricing, assumptions of stock index movements and performance 

measures. Chapter 5 reviews the current papers and work written on leveraged ETFs and Bull 

funds. Chapter 6 outlines the methods and models used for simulations in detail. Chapter 7 

contains the analysis of results and chapter 8 contains the conclusion. Chapter 9 contains the 

bibliography. The Appendix contains the data from simulation runs stored in tables and the 

codes for the MATLAB scripts used for simulations.   
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Chapter 2: What is Leveraged Exchange traded funds? 

Leveraged Exchange traded funds [LETF] are basically funds whose shares trade like stocks 

on a stock exchange. The purpose of a LETF is to provide twice, (and sometimes three-times) 

the daily return of the benchmark index, at twice (or three-times) the daily volatility of the 

benchmark, making LETFs a risky investment asset. There are type main types of LETFs: 

The long and the short. The long LETF is designed to provide twice the daily return, as 

discussed above. The short LETF is designed to provide twice the opposite daily return of the 

benchmark index. This means that is the daily return of the benchmark is negative; the short 

LETF will have a positive daily return, twice the size of the negative daily return. 

 

2.1 LETFs in the Norwegian Market 

There are two providers of LETFs on the Oslo Stock Exchange [OSE]: Handelsbanken and 

DnB NOR. They both offer one long and one short LETF each. The long LETFs have been 

nicknamed Bull and the short ones are nicknamed Bear. The funds have traded on the OSE 

since 2008. These funds are all benchmarked to the OBX-total return index, and are designed 

to give twice or minus twice, the daily return of the index. The fund managers of both 

institutions exclusively use OBX-futures contracts, in order to achieve the designated daily 

returns.  The following section gives a general description of futures contracts. It is necessary 

in order to give a meaningful explanation of how the Bull fund works. 

 

2.2 Futures contracts 

Futures contracts are not assets themselves, but rather contracts for trading a certain asset in 

the future. By entering a futures contract, one can either agree to buy or sell an asset at some 

time in the future, for a price agreed upon today. That price is known as the futures price. 

Buying is known as going long and selling is known as going short, a futures contract. What 

makes futures contracts special is that they are standardized and that they trade on organized 

exchanges. The standardization of the futures contracts is drawn up by the exchange at which 

the futures contract trades. Standardization encompasses many elements with the most notable 

being, asset, contract size and time of delivery. Futures contracts are drawn up for many types 

of assets like agricultural products, oil, currencies, interest rates and stock indexes. The 

contract size describes the amount of the asset that is being traded for each contract. The time 

of delivery describes when the described amount of an asset is set to be delivered. This is also 
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known as the maturity- or delivery date of the futures contract. The delivery date of futures 

contracts are often quoted in months, with delivery taking place on a certain day, for example 

the third Friday of the month. Most futures contracts do not however go to delivery. Investors 

will in most cases close out their futures positions. If one has 10 long stock index futures 

position and wishes to close out, one would need to take 10 short positions in the same futures 

contract. This will mean that your obligations are nullified. Investors with short position close 

out by taking an offsetting number of long positions. Closing out is possible because all 

futures exchanges have a clearing house which monitors, matches and keeps track of all 

futures and obligations. Clearing houses are discussed in detail in its own section (Hull, 

2008).   

 

2.2.1 Stock index futures contracts and the investors who use them 

Stock index futures are futures contracts on the underlying portfolio of a stock index. The 

contract size of stock index futures is given as the futures price times a set multiple to quote 

the contract size in monetary terms. Stock index futures are settled in cash, rather than 

delivery of the underlying portfolio. Cash settlement is both more practical and cost efficient 

than actually making delivery of the underlying portfolio of stocks. This point becomes quite 

clear if one considers the time spent and transaction costs associated with buying and making 

delivery of all 500 hundred stocks that makes up the underlying portfolio of the S&P 500, for 

a single futures contract. 

 

Stock index futures have become popular because of the cost effective way it allows for 

exposure against stock indexes and for the ease of which positions can be close out. The 

popularity also means that investors do not have to worry about getting their futures positions 

matched, as there is always investors who wish to take the long or short position if the price is 

right. There are three types of investors that utilize futures contracts in general: Speculators, 

hedgers and arbitrageurs. Speculators will use stock index futures to gamble on the market 

movements. Through the use of futures they are able to time their entry and exit from the 

market in a cost effective and swift manner, far more superior than actually trading in the 

stocks of the underlying portfolio. Hedger use futures contracts to manage risk. Suppose an 

investor is holding the underlying portfolio of stocks that make up a stock index. The investor 

is bullish but expects a short term bear market in the following period. He has the option of 
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selling off his stock positions and placing the proceeds in risk-free assets. When the bear 

market is over he can then buy back his stock positions. However, this strategy comes at the 

expense of transaction costs. Hedging with stock index futures offers a more cost effective 

alternative. By holding his original stock portfolio and entering short stock index futures, the 

investor hedges his position against the fall in the market. His portfolio will be reduced in 

value, but the short positions futures will compensate for the loss. When the market turns 

again, the hedger can easily close out the short positions. Arbitrageurs use discrepancies 

between futures price and spot price of the underlying asset to earn risk-free profits. If the 

futures price is too high the arbitrageurs will take short stock index positions and at the same 

time buy the portfolio of stocks underlying the index. If the futures price is too low the 

arbitrageurs will take long futures positions and sell the stocks of the underlying portfolio. 

Arbitrageurs use program trading to execute coordinated trades. Program trading involves 

using computers for programming in trades that are sent and executed at the same time. Price 

discrepancies cannot be expected to last long so arbitrageurs are forced to act quickly (Bodie, 

Kane, & Marcus, 2008, p.821-826). In chapter 4 we will show how the theoretical futures 

price is derived under the condition of  no-arbitrage opportunities.    

 

2.2.2 Futures contract payoffs 

The payoff of any futures contract is linked with the spot price of the asset underlying the 

futures contract. At the delivery date of a futures contract the futures price must be equal to 

the spot price of the same asset. If this is not the cases then it is possible to buy or sell an asset 

at two different prices. Such conditions cannot be expected to last, as investors will jump on 

the opportunity to buy the asset at the lowest price and sell it at the highest price, until the two 

prices are equal. The convergence of futures and spot prices at maturity is called the 

convergence principle (Bodie, Kane, & Marcus, 2008, p.793).  

The payoff of a long and short position is demonstrated: 

The following notations are use: 

T = Delivery/maturity-date time T  

𝐹(𝑜 ,𝑇)= Futures price at time zero with maturity at time T 

𝑆𝑇  = 𝐹𝑇= Spot price at time T equal to futures price at time T 
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Payoff of long futures position at time T 

The payoff of a long futures position is given as: 

 𝑆𝑇 − 𝐹 0,𝑇  = 𝐿𝑜𝑛𝑔 𝑃𝑎𝑦𝑜𝑓𝑓         (2.1) 

Figure 2.1-The payoff of a long futures position at maturity 

 

Figure 2.1 shows the graphical illustration of the long futures payoff at maturity. 𝐹(0,𝑇)=100 

and 𝑆𝑇  goes from 75 to 140. For 𝑆𝑇 > 100 the payoff is positive and for 𝑆𝑇 < 100 the payoff 

is negative. If 𝑆𝑇 = 100 the payoff is equal to zero. If the futures contract in question is a 

stock index, the total payoff at maturity, will be: 

 𝑆𝑡𝑜𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 − 𝐹𝑢𝑡𝑢𝑟𝑒𝑠 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑝𝑟𝑖𝑐𝑒 ∗ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒($) = 𝑃𝑎𝑦𝑜𝑓𝑓 

Assume that: 𝑆𝑇=120 𝐹(0,𝑇)=100 and 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 250$ 

 120 − 100 ∗ 250$ = 5000$ 

 Payoff of a short futures position at time T 

The payoff of a short futures position is given as: 

 𝐹 0,𝑡 − 𝑆𝑇 = 𝑆𝑜𝑟𝑡 𝑃𝑎𝑦𝑜𝑓𝑓              (2.2) 
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Figure 2.2-The payoff of a short futures position at maturity 

 

Figure 2.2 illustrates the payoff of a short futures position at maturity. 𝐹(0,𝑇) = 100 and 𝑆𝑇  

goes from 75 to 140. For 𝑆𝑇 > 100 the short payoff is negative and for 𝑆𝑇 < 100 the payoff 

is positive. If 𝑆𝑇 = 100 the payoff is zero. The total payoff, at maturity, of a short stock index 

futures contract: 

 𝐹𝑢𝑡𝑢𝑟𝑒𝑠 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑝𝑟𝑖𝑐𝑒 − 𝑆𝑡𝑜𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 ∗ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 $ = 𝑆𝑜𝑟𝑡 𝑝𝑎𝑦𝑜𝑓𝑓 

Assume that: 𝑆𝑇=120 𝐹(0,𝑇)=100 and 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 250$ 

 100 − 120 ∗ 250$ = −$5000 

 

2.2.3 How futures contracts are traded 

Investors trade in futures contracts through brokers on the exchange. Brokers will seek to find 

other investors who are willing to take the opposite side of a contract. Today, matching of 

orders are often done with the help of electronics. Brokers simply input desired trades which 

are matched when a counterpart emerges. Because futures contracts are standardized; the only 

elements of negotiation are the futures price, and the number of contracts that an investors 

wishes to trade. When trades are matched, the futures price is effectively locked in. This is 

now the price which will be paid at the delivery date in the future (Hull, 2008).  
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2.2.4 Marking-to-market and margin accounts 

Because futures contracts are contracts for future trades, they are effectively agreements 

between two parties. In order to protect the parties from default on either side, both have to 

post margins on a margin account. Margins are a certain sum of money that futures investors 

have to post on their margin accounts. The margin accounts are kept by the investor’s broker. 

The margin account comes in to play at the end of a trading day, when all futures contracts are 

marked-to-market. The futures price of certain type of futures contracts reflects the supply 

and demand for the contract. As such, the futures price will often move away from the futures 

price for which a trade was matched. The price movement represents a gain for one party and 

a loss for the other. When a futures contract is marked-to-market, the futures prices is marked 

to the closing price, and the daily gains and losses of the two parties will be settled at their 

margin account. The party with an unfavorable price movement will have money deducted 

from his account while the party for which the price movement was favorable will have 

money deposited on his account. The exact amount for a single contract is equal to the 

difference between the futures price and the closing price times the contract size. When a 

contract is marked-to-market the next day, it is marked using the closing price from the day 

before against the current closing price. If the amount on the margin account falls beneath a 

limit, known as the maintenance margin, the broker will instruct the investor to deposit more 

funds. The extra funds deposited are known as the variation margin. If the investor fails to 

post a variation margin, the broker will close out the investor’s position. It must be noted that 

investors actually earn interest on their margin deposits, as such posting a margin does not 

represent a cost (Hull, 2008, p.26-27). The following example shows how marking-to-market 

works for a stock index futures contract. 

 

Example: Suppose the futures price of a matched stock index futures contract is 𝐹0 = 100 at 

time zero and that the multiple is 𝑀 = 𝑁𝑂𝐾 100. This means that the total contract size of 

one stock index futures contract is 𝐹0 ∗ 𝑀 = 100 ∗ 𝑁𝑂𝐾 100 = 𝑁𝑂𝐾 10.000. Assume that 

the brokers of the contract demands that the parties of the futures contract must post 10% to 

the total contract value as margin. This means that the long and short parties of the contract 

must post 10.000 𝑁𝑂𝐾 ∗ 10% = 1.000 𝑁𝑂𝐾 each per contract on their margin accounts. The 

maintenance margin per account is set to 600 𝑁𝑂𝐾. 
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At the end of day 1 the futures price has risen to 𝐹1 = 105 and the contract is marked-to-

market. This rise in the futures price represents a gain for the long party and a loss for the 

short party. The total gain of the long party is  𝐹1 − 𝐹0 ∗ 𝑀 =  105 − 100 ∗ 100 𝑁𝑂𝐾 =

500 𝑁𝑂𝐾. The total loss of the short party is  𝐹0 − 𝐹1 ∗ 𝑀 =  100 − 105 ∗ 100 𝑁𝑂𝐾 =

 −500 𝑁𝑂𝐾. The broker will therefore deposit 500 𝑁𝑂𝐾  on the margin account of the long 

party, bringing the total balance to 1.000 𝑁𝑂𝐾 + 500 𝑁𝑂𝐾 = 1.500 𝑁𝑂𝐾. At the same time 

the broker will also deduct 500 𝑁𝑂𝐾 from the short party’s margin account bringing the 

balance to 1.000 𝑁𝑂𝐾 − 500 𝑁𝑂𝐾 = 500 𝑁𝑂𝐾. The balance on the short party’s margin 

account is now below the maintenance margin. The short party is therefore instructed to post a 

variation margin or the broker will close out the short party’s futures position. The short party 

post a 500 𝑁𝑂𝐾 variation margin bringing the balance on his margin account back to 

500 𝑁𝑂𝐾 + 500 𝑁𝑂𝐾 = 1.000 𝑁𝑂𝐾. 

 

At the end of day 2 the stock index futures contract is once again marked-to-market. The 

futures price has gone down and is equal to 𝐹2 = 95 . This reduction of the futures price 

represents a loss for the long party and a gain for the short party. The total loss of the long 

party is  𝐹2 − 𝐹1 ∗ 𝑀 =  95 − 105 ∗ 100 𝑁𝑂𝐾 = −1.000 𝑁𝑂𝐾. The total gain of the short 

party is  𝐹1 − 𝐹2 ∗ 𝑀 =  105 − 95 ∗ 100 𝑁𝑂𝐾 = 1.000 𝑁𝑂𝐾. The short party will have 

the gain deposited to his margin account bringing the balance to 

 1000 𝑁𝑂𝐾 + 1000 𝑁𝑂𝐾 = 2000 𝑁𝑂𝐾 . The long party will have the loss deducted from 

his margin account, bringing the balance to  1.500 𝑁𝑂𝐾 − 1.000 𝑁𝑂𝐾 = 500 𝑁𝑂𝐾. The 

balance of the long party’s margin account is now below the maintenance margin. The long 

party will therefore have to post a variation margin if he does not want his broker to close out 

the long futures position. 

 

As previously stated, investors are free to close out their futures positions themselves, by 

taking offsetting futures positions. In the advent of closing out the gains or losses of a futures 

investor will be given by the difference between the futures price at investment and the 

futures price when the investor closed out times the contract size and the number of contracts 

(Hull,2008,p.21-22).   
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2.2.5 The role of the clearinghouse  

Every futures exchange has a designated clearinghouse. The role of the clearinghouse is to 

keep tabs on all traded futures contracts and to guarantee for the performance of both parties. 

A clearinghouse deals exclusively with members of the clearing house, known as clearing 

members. If a broker is not a member, he must channel his business through one of the 

clearing members (Hull,2008,p.28). Once a futures contract is matched, the clearing house 

becomes the intermediary between the two parties of a contract, making it the seller to the 

long position and buyer to the short position (Bodie, Kane, & Marcus, 2008,p.790). By 

placing itself in the middle it, the clearinghouse effectively guarantees for the performance of 

both clearing members. In order to guarantee for the performance of both parties, the 

clearinghouse demands that clearing members post a clearing margin. Like the margin-

account of the investor, the clearing margin is subject to adjustments of daily gains and losses. 

The amount to be posted as a clearing margin is equal to an original margin times the number 

of traded futures contracts. Broker who are not clearing members, must keep a margin 

account with clearing member it does business with (Hull,2008,p28-29). The adjustment of 

margin-accounts trickles down from clearing margin-accounts to the investor’s margin-

account held by the broker.     

 

2.3 The design and mechanics of the Bull fund 

The value of a Bull fund is given by the cash holding of the fund. The value per share of the 

fund is called the Net Asset Value [NAV]. The NAV at time 𝑡 is calculated by: 

𝑁𝐴𝑉𝑡 =
 𝑀𝑉𝑡+ 𝐼𝑡− 𝐾𝑡

 𝐴𝑡
       (2.3) 

𝑀𝑉𝑡  is the market value of the fund’s positions in financial instruments and cash holding at 

time 𝑡. 𝐼𝑡  is the accrued, but not mature earning of the fund, while 𝐾𝑡  is the debt of the fund 

and any accrued, but not matures costs at time 𝑡 . 𝐴𝑡  is the number of outstanding shares of 

the fund at time 𝑡.  The cash holdings of the fund earn the risk-free interest rate, which is 

considered as earnings, 𝐼𝑡 . Costs are management fees and transaction costs, associated with 

taking futures positions. The management fee is a percentage of the total value of the fund. It 

accrues on a daily basis and is deducted from the cash holdings of the fund. At its 

introduction, DnB NOR set the management fee of the Bull fund to 0.8% p.a. The transaction 
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costs are associated with the fund manager’s trading activity in stock index futures. They 

include broker commissions, fees and depot costs (Dnbnor Kapitalforvaltning AS, 2008). 

 

The fund manager takes long stock index futures positions worth, twice the value of  𝑀𝑉𝑡  , in 

order to achieve the double exposure to daily returns of the benchmark index. Part of the 

fund’s money is put up as margin. If the futures multiple is 100, the exposure of the Bull fund 

is given by Haga & Lindset (2009, p.4): 

 

𝐸𝑋𝑃𝑡 =
𝐹(𝑡 ,𝑇)∗100∗𝑁𝑡

𝐴𝑡∗𝑁𝐴𝑉𝑡
                                                                                 (2.4) 

 

Where 𝐹(𝑡 ,𝑇) is the price of a stock index futures contract that matures at time 𝑇. 𝑁𝑡  is the 

number the fund’s futures positions at time 𝑡.By rewriting (2.4), the number of futures 

contracts can be expressed as: 

 

𝑁𝑡 =
𝐸𝑋𝑃𝑡∗𝑀𝑉𝑡

𝐹 𝑡 ,𝑇 ∗100
   where  𝑀𝑉𝑡 = 𝐴𝑡 ∗ 𝑁𝐴𝑉𝑡                                           (2.5) 

 

The marking-to-market of futures contracts changes the NAV value at the end of every day. 

In order to maintain a double exposure the fund manager will therefore re-balance the fund 

after the total values of the fund has been calculated. This is done by either take more or 

closing out long futures positions, so that (2.4) is once again equal to 2.  

 

2.4Attributes of the performance of the Bull fund 

Twice the daily return does not mean that the return will be twice index return over a longer 

period of time. This is because the daily returns of the fund will be compounded. The holding 

period returns for periods longer than a day are most likely to diverge from twice the holding 

period return of the benchmark index. Hill & Foster (2009) shows how the compounded 
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return of a LETF over a two day period will differ from twice the compounded return of the 

benchmark: 

 

Example 1: Suppose the benchmark has a positive return daily return of 2% over a two day 

period. This means that the compounded return of the benchmark is   1,02 ∗ 1,02 − 1 ∗

100 = 4,04%, making the double of compounded return  4,04% ∗ 2 = 8,08%. Suppose the 

Bull fund perfectly replicates the twice the daily returns. The daily return of the Bull fund is 

therefore 4% each day. This makes the compounded return over the period equal to   1,04 ∗

1,04 − 1 ∗ 100 = 8,16% which is greater than twice the period return of the benchmark.  

 

Example 2: Now suppose that the benchmark has a negative daily return of −2% each day 

over a two day period. The compounded return of the period of the benchmark is   0.98 ∗

0.98 − 1 ∗ 100 =  −3,96%, meaning that twice the negative return over the period is equal 

to −3,96% ∗ 2 = −7,92% . The Bull fund successfully replicates twice the daily return of the 

benchmark, making the return per day equal to −4%. The compounded return over the period 

is thereby equal to   0,96 ∗ 0,96 − 1 ∗ 100 = −7,84% which is less than twice the holding 

period return of the benchmark. 

 

The reason for the difference in returns between the Bull fund and the benchmark is 

attributable to the daily rebalancing of the fund. In example 1, this means that the fund 

manager takes more long futures positions when the fund has a positive return after the first 

day. This amplifies the positive returns of the next day. In example 2, the fund manager closes 

out the futures positions after the loss of day 1. This reduces the loss of day 2. 

 

Both Handelsbanken and DnB NOR have marketed their Bull funds as high risk investment 

objects, and rightfully so. Consider the examples again, but suppose that the market turned the 

other way on the second day. This would mean that the losses of the second day would be 

amplified in example 1, and that the positive returns would be muffled in example 2. The 

volatility in the return of the benchmark can be shown to have negative effect on the value of 
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the bull fund. DnbNOR(2008) gives an example of how the volatility in daily returns over a 

three day period: 

 

Example 3: This example shows how the volatility negatively affects the return of a Bull 

fund over a short period of time. The example considers a three day period in which the return 

of the benchmark goes both up and down, but at the end of day three has a price equal to the 

price at the beginning of the period. The futures contract multiple is 𝑀 = 100, and the daily 

payoff from the futures positions are calculated as  𝐹𝑡+1 − 𝐹𝑡 ∗ 𝑀 ∗ 𝑁𝑡 . 𝑁𝑡  is calculated 

according to (2.5) so that the number of long futures contracts gives double the exposure of 

𝑀𝑉𝑡 . The results are given in table 2.1. The example shows how the volatility in the returns of 

the underlying reduces the value of the fund making the holding period returns negative, even 

though the holding period return of the benchmark is equal to 0%. 

  

Table 2.1- The effect of volatility on the return of the Bull fund. 

𝒕 0 1 2 3 

𝑭𝒕 100 102 104 100 

Payoff  1.600.000 1.631.400 -3.325.600 

𝑴𝑽𝒕 40.000.000 41.600.000 43.231.400 39.905.800 

𝑴𝑽𝒕 ∗ 𝟐 80.000.000 83.200.000 86.462.800 79.811.600 

𝑵𝒕 8000 8157 8314 7981 

𝑭𝒕+𝟏 − 𝑭𝒕

𝑭𝒕

 
 2% 1,96% -3,85% 

𝑴𝑽𝒕+𝟏 −𝑴𝑽𝒕

𝑴𝑽𝒕

 
 4% 3,92% -7,70% 

𝑭𝟑 − 𝑭𝟎

𝑭𝟎

    0% 

𝑴𝑽𝟑 −𝑴𝑽𝟎

𝑴𝑽𝟎

    -0,24% 

 

2.3.1 Other factors of the Bull funds performance 

The composition and construction of the benchmark index is also something that investors 

should make note of. Stock indexes are basically made up of an underlying hypothetical 

portfolio of stocks. The Bull funds traded at OSE are both benchmarked to the OBX-index. 

The OBX-index is total return index meaning that it treats the dividends paid on the stocks 
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that make up the index as reinvested. This means that the index measures the total return on 

the underlying portfolio. Indexes that do not treat dividends as reinvested are called price 

indexes, meaning that such indexes measures the capital gains or losses on the underlying 

portfolio, opposed to total return (Bacon 2008, p.40).  

 

Stock indexes also use different techniques for weighting the different stocks that make up the 

underlying portfolio. The OBX-index uses the most commonly used method: market-

capitalization weighting. This means that each stock is weighted according to its market-

capitalization relative to the total market-capitalization of all stocks included. The market-

capitalization of a stock is calculated as number of outstanding shares times the current 

market price. Sometime the number of shares that go into the calculation of the market-

capitalization will be adjusted. This is done when the number of total issued shares is higher 

than the number of shares that trade in marketplace. It is called adjusting for the free float. 

The market-capitalization will then reflect the number of shares trading (free float) and not 

the total amount. This is often the case when large portions of the total issued stocks are held 

by single entities like the government (Bodie, Kane, & Marcus, 2008, p.45). It is important to 

know the weighting scheme of an index in order to know which movements the index reflects 

and which stocks that have the greatest effect on the return. When indexes, like the OBX, use 

market-capitalization weighting, the biggest firms will have the biggest impact on the 

performance of the index. As of 23
rd

 of April 2010, there are three firms that make up over 

45% of the total value of the OBX-index. Statoil alone make up 25% of the total value of the 

index. This means that movements in the Statoil price will affect the return of the OBX-index 

much more than Royal Caribbean Cruises which only makes up 2,35% of the total market 

value of the portfolio (NewsWeb, 2010).  
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Chapter 3: Investment Transaction Costs 

 

According to Fabozzi (1998, p.338) investment transaction costs can be separated into fixed 

and variable costs:  

 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 = 𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 + 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠  

  

3.1 Fixed transaction costs 

The fixed components are brokerage commissions, taxes and fees that accrue when trades are 

carried out. They are assumed fixed even though such costs might differ between individual 

investors. This is because each investor knows the commissions, taxes and fees they face in 

the market. Brokerage commissions are paid to brokers for acting as middle men in the sale of 

securities. Profits made off of trades can be subject to taxation. Examples of fees are clearing 

fees, custodial fees and transfer fees. Clearing fees are charged by the clearing house for 

clearing derivatives. Clearing houses will charge the clearing member with this fee. The 

clearing members pass it on to the broker who further passes it on to the investor. Custodial 

fees are charged by institutions that hold investors' securities for safekeeping. Safekeeping 

means that institution holds investors securities, effectively reducing the risk of losing or 

having ones' securities stolen. Held securities are available for sale upon such request of the 

investor (Farlex Financial Dictionary, 2009). Investors are charged a transfer fee once a 

security is bought or sold as compensation for transfer of ownership. Fixed costs (Fabozzi, 

1998, p.338): 

 

𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 = 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑓𝑒𝑒𝑠 + 𝑡𝑎𝑥𝑒𝑠 

 

The variable component of transaction costs are execution costs and opportunity costs:  
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3.2 Execution costs: 

 Execution costs are the difference between the execution price, i.e. the price at which 

investors trade, and the price that would have been observed had the trade not been carried 

out. The execution costs are separated into market impact costs and market timing costs.  

  

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 = 𝑀𝑎𝑟𝑘𝑒𝑡 𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑜𝑠𝑡𝑠 + 𝑀𝑎𝑟𝑘𝑒𝑡 𝑡𝑖𝑚𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 

 

3.2.1 Market Impact Costs 

Market impact costs encompass the bid-ask-spread and any price movements attributable to 

the investor's trade. The market impact is also known as the price impact (Fabozzi, 1998, 

p.337). It refers to the impact buy or sell orders have one the price of a security. If the price 

movement is small then market impact costs will also be small. If price movements are big 

than market impact costs will also be considerable. The following section elaborates on the 

bid-ask spread, liquidity and depth, all linked with market impact costs. 

  

3.2.2 Bid-Ask-Spread 

The bid-ask-spread is the difference between prices at which a market-maker will sell (ask) or 

buy (bid) a security. The quoted prices are for immediate sale or purchase. By quoting these 

prices a market is created, hence the name market-maker. The ask price is always higher than 

the bid price. This means that if an investor buys one stock at the ask price and immediately 

sells it back at the bid price, he will have a loss equal to the bid-ask-spread. Formulated 

differently; if the fair price of a stock is equal to the average of the spread, investors take a 

loss equal to half the spread when either buying at the ask price or selling at the bid price 

(Bodie, Kane, & Marcus, 2008, p.318). 

 

In stock markets investor either place market orders or limit orders when they wish to buy or 

sell securities. When orders are completed they are said to be filled. Market orders are filled 

once a counter-offer to sell or buy is matched. The order is said to be filled at the current 

market price. Limit orders are orders to buy or sell a set amount of securities at a set price 

level or better. Investors placing a limit order to sell will sell the designated amount at a set 
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price or higher. Buyers will buy at set amount at a set price or lower. Market-makers exist 

because orders placed in the market are not always matched right away. They provide the 

service of immediacy by stating prices at which orders can be filled immediately.     

 

 

 

Figure 3.1-The bid-ask spread 

   

Source: Demsetz(1986) p.36 

 

Figure 3.1 further elaborates. The vertical axis denotes the price per share of 𝑋. The 

horizontal axis gives the number of shares X, traded per period in each sub-market, denoted as 

𝑋𝑖  .  𝑆𝑖  and 𝐷𝑖  represents the supply and demand of security X of investors who wishes to 

have their orders filled immediately. The intersection between the two gives 𝐸𝑖 .  𝐸𝑖  is the 

average price at which 𝑋𝑖  has and will be traded. However, investors cannot count on their 

orders being filled immediately. As such, 𝑆𝑖  and 𝐷𝑖  represents the market orders of supply and 

demand of security 𝑋𝑖  at any time regardless of the number of counter-market orders present 

in the market. 𝑆1𝑖  and 𝐷𝑖  represents the supply and demand of a market-maker who is willing 

to immediately fill counter-orders. At the intersection of 𝑆1𝑖  and 𝐷1𝑖  investors' market offers 

to buy is immediately filled at ask price 𝐴𝑖 . At the intersection of 𝐷1𝑖  and 𝑆𝑖  investors' market 

offers to sell security 𝑋𝑖  is immediately filled at bid price 𝐵𝑖 . The bid-ask spread is given by 

the difference between 𝐴𝑖  and 𝐵𝑖 . The spread is set to compensate the market maker for the 

cost of providing liquidity (Demsetz, 1968,p.36). The next section elaborates.  
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3.2.3 Components of the bid-ask spread 

The theories of the components of the bid-ask spread states that the width/size of the spread is 

determined by the costs and risk that the marker-maker bears by providing liquidity. Huang & 

Stoll (1997) reviews the most important research on the bid-ask spread in their introduction. 

The three main components that make up the cost and risk of the market-maker are believed 

to be: 

 

 Order cost 

 Information costs 

 Inventory handling costs 

  

The order cost is the cost of transacting when both accounting for expenses and fees as well 

as labor and communications costs (Stoll, 1978,p.1144) . The source of information costs is 

information asymmetries regarding valuable information of a security. Consider the case 

when a small number of investors possess information regarding a security that indicates that 

the current market price does not reflect the security's real value. They are able to take 

positions in the security to profit from their private information. Their profit is matched by the 

loss of the market-maker from filling the investors' orders. The market-maker is assumed to 

not be able to distinguish between investors who have private information (information 

traders) and those who do not have private information (liquidity traders). Because the 

market-maker is not able to discriminate between information- and liquidity-traders he is 

forced to compensate by widening the bid-ask-spread. In practice this means that liquidity 

traders carry the information costs by having their order filled at a wider bid-ask-spread 

(Stoll,1978,p.1144). 

 

Inventory handling costs relates to the fact that market-makers have to hold an inventory of 

the securities of which they trade. The two elements of the costs is price risk and opportunity 

costs. 
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Stoll (1978) models inventory holding costs on the assumption that the market-maker already 

has diversified portfolio in accordance with his level of risk aversion. By providing 

immediacy he takes on an inventory of securities that makes his total portfolio move out of 

line with his desired risk and return levels. This increases the price risk and reduces his total 

utility (p.1134). (Price risk is the risk that the price of the security might change in an 

unfavorable direction). To compensate for this the market-maker set the bid-ask-spread 

accordingly. The costs this represents for the investor is equal to the monetary compensation 

the market-maker demands for maintaining his utility level (p.1150). This means that acting 

as a market-maker induces opportunity costs that are compensate for by the size of the bid-

ask-spread.   

    

3.2.4 Liquidity and depth 

Market impact costs are connected with liquidity and depth. Liquidity describes the speed and 

at what level of cost, an asset can be bought or sold at its current market price. If an asset is 

traded at its market price, quickly and at low costs it is said to be liquid. The opposite 

liquidity is illiquidity. For securities, illiquidity means that investors are not able to quickly 

sell or buy securities without having to pay a cost (Amihud, & Mendelson, 1991,p.56). Such 

costs are represented as premiums or discounts over the current market price. In relation to the 

bid-ask spread this means that illiquid securities will have a wider spreads than liquid 

securities. A wide spread can be justified on the market-maker's part to compensate for the 

level of price risk. Because an illiquid security is hard to sell without resorting to highly 

discounted prices, chances are that it will be part of the market maker's inventory portfolio for 

a longer time. This means in turn that chance of price movements increase as time passes 

(Fabozzi,1998,p326).  

 

The depth is a measure of movements in the price of a security relative to the buy and sells 

orders placed on the security. If the price of a security has little movement for big orders then, 

that security is said to have a good depth. If the opposite is true, then that security is said to 

have a poor depth. A very poor depth will mean high market impact costs. Investors who 

trade in securities with poor depth will see unfavorable price changes as a result of their 

trading activities (Investopedia.com, 2010).        



22 

 

3.2.5 How the Bid-ask spread affects an investment 

A theoretical approach
1 

can be used to explain how the bid-ask spread affects the performance 

of an investment. Suppose an investor invests an amount 𝑆0 in an asset 𝑆. The bid-ask spread 

is measured as percent of the ask price, presented in decimal form. The transaction costs of 

the investment is given by half the bid-ask spread, 𝜆. The total transaction costs for the 

investor at time zero is 𝜆 ∗ 𝑆0. Because the investor pays half the bid-ask spread upon 

investment the total amount invested in the asset at time zero is 𝑆0 − 𝑆0 ∗ 𝜆 = 𝑆0 ∗  1 − 𝜆 . 

Later, at time 𝑇 the investors wishes to sell off his initial investment. The initial investment is 

now worth 𝑆𝑇 ∗  1 − 𝜆 .  When the investor sells off his investment he will do so at the bid 

price which is 𝜆 less than the fair market price. The transaction costs from the sale are 

therefore equal to 𝑆𝑇 ∗  1 − 𝜆 ∗ 𝜆 . The total amount received from the sale is given by 

𝑆𝑇 ∗  1 − 𝜆 − 𝑆𝑇 ∗  1 − 𝜆 ∗ 𝜆 = 𝑆𝑇 ∗ (1 − 𝜆)2. This means that the holding period return of 

the entire period can be written as: 

 

𝑟𝑆
∗ =  

𝑆𝑇∗(1−𝜆)2−𝑆0

𝑆0
           (3.1) 

 

The return on the asset 𝑆 for the period is given as 𝑟𝑆 . Utilizing the return the value of the 

entire investment at time 𝑇 can be rewritten 𝑆𝑇 = 𝑆0 ∗ (1 + 𝑟𝑠). Because 𝜆2 ≪ 𝜆 , the part 

(1 − 𝜆)2 can be approximated to (1 − 2𝜆). 2𝜆 is the entire bid-ask spread. Taking the last 

paragraph into consideration, (3.1) can be expressed as: 

 

𝑟𝑆
∗ = 𝑟𝑆 ∗  1 − 2𝜆 − 2𝜆         (3.2) 

 

Because the bid-ask spread affects the return of the initial investment, it will also affect the 

expected return and standard deviation of the investment: 

 

𝐸 𝑟𝑆
∗ = 𝐸 𝑟𝑆 ∗  1 − 2𝜆 − 2𝜆     Expected return 

                                                      
1
 Based on handout from supervisor Valeri Zakamouline: “Computation of M^2 Measure” 9

th
 April 2010 
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𝑆𝑡𝑑 𝑟𝑆
∗ = 𝜎𝑆 ∗  1 − 2𝜆       Standard deviation 

 

3.2.6 Market timing costs 

 The market timing costs encompasses all other price movements at the time of a trade not 

attributable to the actions of the investor (Fabozzi,1998,p.337).  

 

3.2.7 Measuring Execution costs 

The problem with measuring execution costs is that the true measure of the cost is not 

observable. Remember, the true measure is given as the difference between the execution 

price and the market price that would have been observed, had the investment not been 

carried out. A second problem is that execution prices depend on the supply and demand for 

the underlying security. This means that the execution price is influenced by the trading and 

the demand of liquidity of other investors (Collins, & Fabozzi, 1991,p.29). 

 

However, one can try to estimate the market impact cost. A general way of measuring market 

impact costs is to take the difference between the execution price and benchmark for the fair 

market price: 

 

𝐶𝑜𝑠𝑡 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒 − 𝐹𝑎𝑖𝑟 𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 

 

The fair market price is the price that would have prevailed in the market place had the 

investment not been executed (Collins, & Fabozzi, 1991,p.31).  

 

The benchmarks for the fair market value can be divided into three different groups, pretrade, 

post-trade and average-price. Using pretrade benchmarks means benchmarking the execution 

price to the price level of a security that prevailed prior to the execution of an investment in 

that security. Examples of possible benchmarks are the last price at which the security traded, 

previous night's closing price and the average of the bid-ask spread. The justification of using 
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pretrade benchmarks is that the only way of knowing the effect a trade has on the price is to 

consider the conditions prior to executing the trade. Critics argue that a pretrade benchmarks 

does not fulfill the requirement of being independent of the trade decision. This means that 

the investor can “game” the trade by structuring it in a way that apparently reduces the market 

impact costs (Collins, & Fabozzi, 1991,p.31) 

 

Using post-trade benchmarks means benchmarking the execution price to benchmarks 

subsequent of a trade. Unlike pretrade benchmarks, post-trade benchmarks are not subject to 

gaming. Examples of post-trade benchmarks are any prices following the trade or the price 

following the closing price. The important thing is to choose a benchmark that is not observed 

too long after the initial trade, in order to account for the influence of a executed trade 

(Collins, & Fabozzi, 1991,p.31). 

 

Average-price benchmarks establish a fair price benchmark, representative for a single trade 

day. Examples are the average of a security's high and low price or the trade-weighted 

average price (Fabozzi, 1998,p.342). The trade weighted average-price is calculated 

weighting each execution price by the number of shares bought at the price, relative to the 

total amount bought during the entire day of trading. The market impact cost is given as the 

difference between the trade weighted average-price and the buy price for each trade 

(Berkowitz, Logue, & Noser, 1988). Like the pretrade benchmarks these types of benchmarks 

are also subject to gaming. The trade weighted average price can be gamed by executing 

trades at the opening, closing and around large block trades. This means that investors 

following such a strategy will be reactive in their investing. They will exploit other investors 

demand for liquidity by investing at the same time as other investors execute large block 

orders. The results will never be better than mediocre. Average-price benchmarks are said to 

be put to better use as indicators of market timing costs. However, proponents of average-

price benchmarks argue that these benchmarks are superior because unlike other benchmarks, 

they reflect an equilibrium price (Fabozzi, 1998,p.342).    
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3.3 Opportunity costs 

Opportunity costs is measured as the difference between returns on desired investments and 

returns of the actual investment corrected for execution and fixed costs. It is the cost of not 

transacting, or not being able to transact in a desired manner. A simple way to think of it is 

instances where a portfolio manager is not able to acquire a certain stock with positive future 

returns (Fabozzi,1998,p338). The total return of the portfolio would have been greater in the 

future, had the investor been able to acquire the stock. The opportunity cost in this instance is 

the difference between the hypothetical portfolio returns including the stock, corrected for 

execution and fixed costs of buying the stock, and the actual portfolio returns.  

 

𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 − 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 − 𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡𝑠  

 

3.3.1 Measuring Opportunity Costs 

Obtaining a true measure of opportunity costs is practically impossible. Consider a stock 

investment strategy, with different investments in the same stock over a time horizon. The 

investor might observe perceived opportunities and decide to trade, only to fail (for whatever 

reason) to execute the desired trade in parts or as a whole. In order to measure the true 

opportunity costs one would have had to know what the performance of the stock return had 

been, had all the desired trades been executed at the desired times. However, by making the 

assumption that the observable performance of a security reflects the performance for which 

all investments are executable, one can measure an approximation of opportunity costs 

(Collins, & Fabozzi, 1991,p.29).  Collins & Fabozzi (1991) measures opportunity costs by 

observing the performance of a portfolio that represents an investor's desired holdings. The 

opportunity costs are given as the difference in return between the desired portfolio and the 

actual portfolio, corrected for execution and fixed costs . They measure execution costs as the 

difference between the average bid-ask spread when the decision to invest was made and the 

average bid-ask spread when the trade was actually executed (p.32).     

 

3.4 Transaction costs trade-off 

 Investors must consider all three cost elements. Changes in the fixed costs can influence 

execution costs and opportunity costs. Suppose commission rates are reduced. This changes 
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the risk-reward profile of the market-maker. To compensate the market-maker might widen 

the bid-ask spread, effectively increasing the execution costs of the investors. Execution costs 

can be reduced by postponing an investment until the market price is right. On the other hand, 

postponement of the investment can increase the opportunity costs, because delaying the 

investment means that it is possible to miss out on positive returns (Collins, & Fabozzi, 

1991,p.29-30). 

 

  

Source: (Collins, & Fabozzi, 1991,p.30) 

 

Figure 3.2 shows the trade-off between execution and opportunity costs. The vertical axis 

represents the cost per unit of security. The cost can be represented in currency or basis 

points. The horizontal axis gives the time periods running from 0. The time can be measured 

in minutes, hours or days. The execution cost is the falling gray line. It shows that execution 

costs are negatively correlated with time. The opportunity cost is represented by the 

increasing solid black line. It shows that opportunity costs are positively correlated with time. 

The red line illustrates the total costs, and “minimum costs” marks the best trade-off between 

execution and opportunity costs, for which the total costs are minimized.  Figure 3.2 only 

shows the general shapes of the costs. The actual shapes will vary depending on the style of 

management (Collins, & Fabozzi, 1991,p.30). 

Figure 3.2-Cost Trade-offs, Execution vs. Opportunity Costs 
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Table 3.1 relates investment styles to execution and opportunity costs. Value motivated 

management styles like Value and Growth are concerned with the long term returns for 

increases in the price and earnings respectively (Fabozzi,1998,p.281). The long-term 

investment horizon means that such investors have time to delay their investments until they 

feel the price is right. This means low execution costs. It also means that the opportunity cost 

can be expected to be low. Suppose an investor plans on investing in a security and to hold it 

for no less than three years. If he postpones the execution of his investment for one day, the 

possible return on the security, corrected for execution and fixed costs, for that one day will 

be the opportunity cost. When considering the investment horizon such costs become 

insignificant.  

 

Investors wishing to capitalize on private information are the aforementioned information-

traders. Earning surprise is a termed used for instances when the observed return on a 

security is out of line with its expected return, calculated by a security analysts 

(Fabozzi,1998,p.245). Information-trader is forced to make quick investments, because they 

do not know for how long the information will stay private. This means that the opportunity 

cost of not investing is high. It also means high execution costs: They will have their orders 

filled immediately by market-makers at the bid-ask-spread. If the depth of the stock is poor 

then large investments in the security in question will also drive the stock price in a 

unfavorably direction.  

 

Index Funds are benchmarked to stock indexes. This means that the object of the fund is to 

replicate the returns of the fund. To do this investment managers follow a passive investment 

strategy by investing in the portfolios that replicate the index return. Such portfolios must 

often be rebalanced to keep up with the benchmark from day to day. This means that the time 

element is very important and that opportunity costs are very high. Large-cap(italzation) 

stocks are often very liquid, thereby lowering the level of the execution costs. Small-cap 

stocks however, are often less liquid, meaning that execution costs can be expected to be 

higher.   
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Source:  Collins, & Fabozzi, 1991,p.30 

 

3.5 Transaction costs and the bull fund 

3.5.1 Fixed transaction costs of a bull fund 

The daily re-balancing of the bull fund means that fixed transaction costs occur on a daily 

basis. We showed in section 2.3 how these costs are deducted from the total value of the fund 

and are equally distributed among all of the fund’s issued shares. Both Handelsbanken and 

DnbNOR charge their funds with variable depot costs related to taking futures positions. 

Depot costs are paid to the depot-receiver (trans.). The depot-receiver has two main tasks: To 

keep and safeguard a fund’s financial assets (futures contracts) and to make sure that the fund 

managers manage the fund in accordance with the statues and agreements of the fund 

(Finanskomiteen, 2008). Both Handelsbanken and DnbNOR use in-house depot-receivers. 

The depot-receiver of Handelsbanken’s Bull fund is Svenska Handelsbanken AB, branch 

office Norway. Handelsbanken also charge their fund NOK 100 per transaction in financial 

instruments in addition to variable depot costs.  (Handelsbanken Kapitalforvaltning, 2008). 

The depot-receiver of DnbNOR’s Bull fund is DnB NOR Bank ASA. The prospect of 

DnbNOR’s Bull fund specifies that the depot cost is made up of three elements: NOK 2,5 in 

clearing fee per futures contract, NOK 400 per transaction to the depot-receiver and NOK 4 

per transaction in commercial papers to Oslo VPS. (Commercial papers are unsecured short-

term debt). The fund is in addition to this charged with commissions and banking fees 

stemming from the fund’s investment in futures contracts (Dnbnor Kapitalforvaltning 

AS,2008). 

 

Management Style Trading Motivation Liquidity Demands Execution Costs Opportunity Costs

Value Value Low Low Low

Growth Value Low Low Low

Earnings Suprise Information High High High

Index Fund Large-Cap Passive Variable Variable High

Index Fund Small-Cap Passive High High High

Table 3.1-Management style versus Costs 



29 

 

3.5.2 Variable transaction costs and the Bull fund. 

The Bull fund is affected by a bid-ask spread through the daily rebalancing. When the 

manager rebalances at the end of a trading day he must either go long more futures or close 

out long positions by taking short positions, and thus faces the bid-ask futures spread. 

Suppose one long position taken at the beginning of a trading day. The futures price is 𝐹0 

which lies in the middle of the bid-ask spread of the market maker. The bid-ask spread is 

measured as percent of the ask price, presented in decimal form.  Half a spread is 𝜆 and equal 

in both periods. This means that the ask price of the long futures is 𝐹0 ∗ (1 + 𝜆). When the 

futures position is closed out at time 1, it will be at 𝐹1 ∗ (1 − 𝜆), i.e. the bid price. The total 

long payoff is 

 

𝑝𝑎𝑦𝑜𝑓𝑓𝑙𝑜𝑛𝑔 = 𝐹1 ∗  1 − 𝜆 − 𝐹0 ∗ (1 + 𝜆) 

 

Rewritten 

 

𝑝𝑎𝑦𝑜𝑓𝑓𝑙𝑜𝑛𝑔 =  𝐹1 − 𝐹0 − 𝜆 ∗ (𝐹1 + 𝐹0)       (3.3) 

 

The payoff of short position at time zero that is closed out at time 1 is 

 

𝑝𝑎𝑦𝑜𝑓𝑓𝑠𝑜𝑟𝑡 =  𝐹0 − 𝐹1 − 𝜆 ∗ (𝐹0 + 𝐹1)       (3.4) 

 

The second term on the right of both (3.1) and (3.2) are the costs of the bid-ask spread equal 

to half a spread of the prices at time zero and 1. Both equations show how the size of the bid-

ask spread affects the payoff of single futures contracts.  
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Dnb NOR say that they rebalances their Bull fund at the futures market’s close
2
, with few 

exceptions, and adds that such exceptions are of little or no importance. Their futures orders 

are always filled by the market maker; Dnb NOR markets, which is obligated to quote bid and 

ask prices. Dnb NOR say that they do not consider the aspects of how and when their futures 

transactions might affect the futures price, i.e. market -impact and –movement costs. The 

exposure of the fund is in fact not twice the size of the fund’s assets. This is because the 

regulation of the fund prohibits the fund manager to take derivative positions of more than 

200% worth of the fund’s total value. Dnb NOR says that the futures positions are about 1,95 

times the total value of the fund. The level of exposure is to protect the fund from breaking 

the underlying regulations, which can happen if there are big market movements.        

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
2
 Joakim Taaje Global Valuation, Risk & Performance Investment Operations Services, DnB NOR 

Kapitalforvaltning AS. E-mail 6
th

 of May 2010 
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Chapter 4: Theory 

 

4.1 The Theoretical Pricing Of Futures contracts  

The theoretical pricing model of futures contracts is based off of the theoretical pricing model 

of Forward Contracts. Like futures contracts, forward contracts are contracts of trade of an 

underlying asset between two parties. The price is agreed upon today with delivery in the 

future. However, there are differences. Forward contracts trade in the over-the-counter 

market, usually between financial institutions and/or one of their clients. As such forward 

contracts are not subject to standardization. Contract specifications are drawn up and agreed 

upon by the trading parties themselves. This means for example that the maturity date of the 

contract will depend on the agreements of the two parties. Forward contracts are not marked-

to-market and they usually go to delivery (Hull, 2008.p.39).  

 

The Forward pricing models gives the theoretical prices in the absence of arbitrage. Arbitrage 

refers to trades that exploit price differences between markets for the same commodity. 

Traders who take advantage of such opportunities are called arbitrageurs. They will buy a 

commodity in the marketplace with the lowest price and sell it in the market with the highest 

price. In financial economics arbitrage refer to trades that yield a positive profit with no risk 

and a “zero-net investment strategy” (Bodie, Kane, & Marcus, 2008, Glossary G-1). In the 

absence of arbitrage, prices are at such levels that arbitrage trade is not possible. Under such 

conditions it follows from the law of one price that “assets (portfolios) with the same payoff 

must trade at the same price
3
”.       

 

The following section regards the theoretical pricing of futures contracts and is based off of 

Chapter 5 in Hull (2008) unless stated: 

  

 

                                                      
3
 Valeri Zakamouline :Absence of arbitrage condition in pricing of securities. Financial Forward and 

Futures contracts. Lecture at UiA. 
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4.1.1 Pricing model of Forward Contracts 
  

Assumptions: The following is true for some market participants: 

 They are not subject to any transactions costs when they trade. 

 They are subject to the same tax rate in all net trading profits. 

 They can borrow money at the same risk-free rate of interest as they can lend money.  

 They take advantage of arbitrage opportunities as they occur. 

The market participants in question are assumed to be big derivatives dealers that actively 

partake in arbitrage trade to lock in risk-free profits. It is this activity that influences the 

relationship between forward and spot prices.  

  

Notation for use in the model: 

𝑇  = Time until delivery date in a forward or futures contract (in years) 

𝑆0 = Price of the asset underlying the forward or futures contract today 

𝐹0 = Forward or futures price today 

𝑟   = Zero-coupon risk-free rate of interest per annum, expressed with continuous  

 compounding, for an investment maturing at the delivery date. 

         

There are two general expressions of the relationship between the forward and the spot price. 

One were the underlying asset pays no income and one where it does. If the underlying asset 

is a stock, dividends paid on that stock is an example of such income paid. The pricing model 

gives the forward price for which no arbitrage risk-free profits are possible. 
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No Income paying Investment Assets 

It can be shown that the relationship between the current spot price of the underlying asset 

and the current forward price is given by. (4.1) gives the forward price, when the underlying 

pays no income: 

𝐹0 = 𝑆0 ∗ 𝑒(𝑟∗𝑇)           (4.1) 

 

The basis for this relationship is given by arbitrage trade. (4.1) holds when there is no 

possibility of arbitrage risk-free profits. The following examples illustrate: 

  

Example: When𝐹0 < 𝑆0 ∗ 𝑒(𝑟∗𝑇). Both the current spot and forward price is $100, r=0.05 and 

T=1. Arbitrageurs will short sell the stock and receive $ 100 which will be lent out at r=0.05. 

At the same time they take a long forward position to buy back the stock, priced at $100 with 

delivery in one year. At maturity arbitrageurs will receive ($100*e(0.05*1)) $ 105.13 for the 

money lent out. They will use this to pay the forward price ($100)  and receive the stock 

which is turned back to the owner. The result is that they are left with a risk-free profit of 

($105.13-$100) $5.13.   

  

Example: When 𝐹0 > 𝑆0 ∗ 𝑒(𝑟∗𝑇). Assume the same spot price, interest rate and time to 

maturity and a forward price equal to $110. Arbitrageurs will now borrow $100 at r=0.05 to 

buy the stock in the market place for $100. At the same time they will take a short forward 

position to sell the stock in one year for $110. At maturity the stock will be sold and the 

arbitrageurs will receive $110. They will use this to pay off their loan, which at maturity 

stands at ($100*e(0.05*1)) $105.13. This means that they have earned a risk-free profit equal 

to ($110-$105.13) $4.87.  

  

Income paying Investment Assets 

Income paid on the underlying asset has to be accounted for when deriving the forward price. 

As pointed out, such income can be dividends paid on a stock or coupons payments made on a 
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bond. Expression (4.2) takes such payments into account by adjusting (4.1) to include the 

present value of such payments at maturity. (4.2) gives the current forward price, for an 

underlying asset that pays known income, for which there are no arbitrage opportunities : 

𝐹0 =  𝑆0 − 𝐼 ∗ 𝑒(𝑟∗𝑇)            (4.2) 

Where 𝐼 is the present value of known income. 

 

Note that 𝐼 is the present value of known income. This makes (4.2) applicable when future 

dividends payments on a stock is know in both size and payment date. The following 

examples give scenarios of arbitrage trade when market prices are not in line with (4.2). 

  

Example: Assume that the spot price of a stock is $100. The stock pays a dividend of $5 in 6 

months (T=0.5), and both size and maturity is known to all participants.  A forward contract 

with one year (T=1) is priced at $105 and the one year risk-free rate is 5% (r1=0.05) and the 6 

month risk-free rate per annum is 3% (r2=0.03). The present value of the dividends is thus 

($5*e(-0.03*0.5) ) $ 4.93. Arbitrageurs will buy the stock and take a short forward position. 

The stock purchase is financed with two loans. ($100-$4.93) $95.07 is borrowed at r1=0.05 

with maturity in one year, while the rest ($100-$95.07) $4.93 is borrowed at r2=0.03 p.a with 

maturity in 6 months. In 6 months the arbitrageurs will receive $5 in dividends. This will be 

used to pay off the 6 month loan which now stands at ($4.93*e(r2*0.5)) $5. At maturity of the 

forward contract in one year arbitrageurs will make delivery of the stock and receive $105. 

They will use some of this payoff to pay back their one year loan which now stands at 

($95.07*e(r1*1)) $99.94, thereby keeping the rest ($105-$99.94) $ 5.06 as a risk-free profit. 

 

Example: Assume that the spot price of a stock is $100 and that the stock pays a $5 dividend 

in 6 months (T=0.5). Maturity and size of the dividends is known to all market participants. 

The forward price of a contract with delivery, of the same stock, in 1 year (T=1) is $90. The 

risk-free one year rate is 5% (r1=0.05) and the risk-free 6 month rate is 3% p.a (r2=0.03). 

Arbitrageurs will now short sell the stock and simultaneously take a long forward position to 

buy the stock back in one year. (Note that when shorting stocks, investors are obligated to 

return any dividends paid on the stock to the owner of the stock.) The proceedings from the 
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short sell will be invested in two parts. $ 4.93 will be invested at r2=0.03 for 6 months and the 

remaining ($100-$4.93) $95.07 will be invested at r1=0.05 for one year. In 6 months the 

arbitrageurs will use the money invested at r2 to compensate the stock owner for dividends 

paid. The $4.93 invested at r2 is now equal to the dividends payment of ($4.93*e(r2*0.5)) $5. 

A time T=1, in one year, the investment at r1 is now worth ($95.07*e(r1*1)) $99.94. 

Arbitrageurs take delivery on the forward contract, they pay $90 and return the stock to its 

original owner. This means that they will be left with a risk-free profit equal to ($99.94-$90) 

$9.94.  

 

Known income payments can also be expressed in terms of yield. When the known income is 

expressed in terms of yield, it means that the income is expressed as a certain percentage of 

the asset's value at time of income payment. If the yield is measured with continuous 

compounding (4.1) can be altered to include such an income yield: 

 

𝐹0 = 𝑆0 ∗ 𝑒( 𝑟−𝑞 ∗𝑇)        (4.3) 

 

Where 𝑞 is the continuously compounded annual income yield. In line with (4.2) such yield is 

deducted (here) from the risk-free return. 

 

4.1.2 When are Forward prices equal to Futures prices? 

Hull (2008) p.125-126, provides proof that forward and futures prices are equal when interest 

rates are assumed to be constant. The proof is reproduced in the following section. The proof 

is based on two strategies that both give the same payoff. Following the law of one price and 

the absence of arbitrage two identical strategies that both give the same payoff must be 

equally valued: 

 

Scenario: Underlying asset is tradable in both forward and futures contracts. A futures 

contract matures in 𝑛 days. Interest rate per day is assumed to be constant and given by: 𝑟. 

The futures price at the end of day 𝑖 (0 < 𝑖 < 𝑛) is 𝐹𝑖  . The forward price at the end of day i 
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is 𝐺𝑖 . At maturity the futures price will be equal to the spot price of the underlying (see: The 

convergence property). 

 

Strategy 1:  This strategy involves an investment in a risk-free bond and long futures 

positions. At the end of day 0 invest 𝐹0 in a risk-free bond at 𝑟. At the same time take a long 

futures position of 𝑒𝑟  contracts . At the end of day 1 that long position is increased to 𝑒(𝑟∗2) 

contracts, at the end of day 2 it is increased to 𝑒(𝑟∗3) contracts. The relationship is given as: At 

the end of day i-1 increase position to 𝑒(𝑟∗𝑖). This continues until the end of day n-1.  

 

The profits from the futures positions of day i is given by: (𝐹𝑖 − 𝐹𝑖−1) ∗ 𝑒(𝑟∗𝑖). All 

profits/losses are assumed to be reinvested at 𝑟 with maturity at day n: 

 

  𝐹𝑖 − 𝐹𝑖−1 ∗ 𝑒
(𝑟∗𝑖) ∗ 𝑒𝑟∗(𝑛−𝑖)  =   𝐹𝑖 − 𝐹𝑖−1 ∗ 𝑒

 𝑟∗𝑖 + 𝑟∗𝑛 −(𝑟∗𝑖) =  𝐹𝑖 − 𝐹𝑖−1 ∗ 𝑒
(𝑟∗𝑛) 

 

At the end of day n the total value of the futures strategy is given by: 

 

  𝐹𝑛 − 𝐹𝑛−1 +  𝐹𝑛−1 − 𝐹𝑛−2 +. . + 𝐹1 − 𝐹0  ∗ 𝑒
(𝑟∗𝑛)=  𝐹𝑛 − 𝐹0 ∗ 𝑒

(𝑟∗𝑛)
  

 

Following that the futures price will equal the spot price of the underlying asset at maturity 

(𝑆𝑇) , the total value of strategy 1 (including the bond investment) is: 

𝐹0 ∗ 𝑒(𝑟∗𝑛) +  𝑆𝑇 − 𝐹0 ∗ 𝑒
(𝑟∗𝑛) = 𝑆𝑇 ∗ 𝑒(𝑟∗𝑛)

  

 

Strategy 2: This strategy involves investing in a risk-free bond and taking long forward 

positions. At the end of day 0 invest 𝐺0 in a risk-free bond at 𝑟. At the same time take a long 

forward position of 𝑒(𝑛∗𝑟) contracts at forward price 𝐺0. At maturity the payoff of the forward 

position combined with the bond can be presented as: 
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 𝐺0 ∗ 𝑒(𝑟∗𝑛) +  𝑆𝑇 − 𝐺0 ∗ 𝑒
(𝑟∗𝑛)=𝑆𝑇 ∗ 𝑒(𝑟∗𝑛) 

 

As demonstrated, both strategies yield the same payoff.  In the absence of arbitrage: 

𝐹0 = 𝐺0 

  

4.1.3 The theoretical Stock index Futures Price 

The relationship between the spot price of the futures prices is explained by the cost of carry. 

It is assumed that once a stock index futures contract is matched the short position will 

purchase the underlying portfolio and hold it until delivery. The purchase is financed with 

borrowed money at rate  𝑟,which represents a financial cost for the short position. However, 

any dividends (𝑞) received while holding the underlying portfolio represents an income. The 

net sum of (𝑟 − 𝑞) is called the cost of carry. The short position will demand compensation 

for such costs and the futures price is therefore adjusted (Collins, & Fabozzi, 1999,p.77 ).  

Assuming constant interest rates the current no-arbitrage theoretical price of a futures 

contract, on a stock index who's underlying portfolio pays a known dividends yield 𝑞 and 

matures at time 𝑇 , can be expressed as:  

𝐹0 = 𝑆0 ∗ 𝑒( 𝑟−𝑞 ∗𝑇)         (4.4) 

  

4.1.4 Theoretical prices and the real world 

The theoretical futures price is derived under assumption that cannot all be expected to hold in 

the real world. Collins & Fabozzi (1999,p.83) points to various reasons for why one single 

theoretical price might not be observed in the marketplace. First off, they assert that the fair 

value (theoretical) futures price is not observable as only one price but at a range prices, with 

upper and lower bounds. These bounds sets the arbitrage free perimeter and are the product of 

different cost (including transaction costs), differences between lending and borrowing rates 

and unstable cash flows. It is also important to point out that a fair price is not necessarily just 

one range of prices, but that each investor has his own fair price range. Each price range is 

said to be dependent on the investor's “execution capability,..cost structure,..current portfolio 

position and..cost of financing” (Collins & Fabozzi, 1999, p.83). The cost of financing will 

vary between investors due to differing credit ratings.  
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4.2 How stock indexes move 

The analysis in this paper is carried out by simulating movement paths for the price of a stock 

index. This is done under the assumption that the price of the stock index follows a 

continuous-time stochastic process. A continuous stochastic process is a random process 

followed by a variable, where changes in the value of the variable are uncertain and can 

happen at any time. The following section elaborates on the stochastic processes underlies the 

analysis in this paper. 

 

 4.2.1 Brownian motions 

A Brownian motion is a continuous-time stochastic process, also known as known as Wiener 

processes. The change in a Brownian motion for any time period is normally distributed with 

a mean zero and a variance equal to the length of the time period. Different changes will also 

be independent of one another. This means that a change that happens in the future will not be 

influenced by the changes that came before it. Such an attribute mirrors a weak-form market 

efficiency of the stock market. When a market is weak form efficient, all stocks will be priced 

so that the price reflects all historical data of the stock. We will now show the properties of a 

Brownian motion:          

Consider a variable 𝑍 that follows a Brownian motion. It will have these following properties: 

For a change in 𝑍 over a small period of time Δ𝑡 is given by: 

Δ𝑍 = 𝜀 Δ𝑡           (4.5) 

𝜀 is a randomly drawn number from a standard normally distribution:𝜀~𝑁(0,1). This means 

that the expected change, variance and standard deviation of ∆𝑍 are: 

𝐸 ∆𝑍 = 𝐸 𝜀 Δ𝑡 = 0 ∗  Δ𝑡 = 0     Expected change 

𝑉𝑎𝑟 Δ𝑍 = 𝑉𝑎𝑟 𝜀 Δ𝑡 = Δ𝑡 ∗ 𝑉𝑎𝑟 𝜀 = Δ𝑡   Variance 

𝑆𝑡𝑑 Δ𝑍 =  𝑉𝑎𝑟 Δ𝑍 =  Δ𝑡      Standard Deviation 

 

The changes in 𝑍 are assumed to be independent of one another. It can therefore be shown 

that the variance is over a period of time is equal to the length of the period, and that the 
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expected change of the period is zero. Consider a time period 𝑇 consisting of 𝑁 small equally 

sized time periods Δ𝑡 : 

 

𝑁 =
𝑇

Δ𝑡
            (4.6) 

 

The total change in value of 𝑍 over the period can be expressed as: 

  𝑍𝑇 − 𝑍0 =  𝜀𝑖 Δ𝑡𝑁
𝑖  .  

 

The expected change, variance and standard deviation is: 

𝐸 𝑍𝑇 − 𝑍0 = 𝐸  𝜀𝑖 Δ𝑡𝑁
𝑖  =   𝐸 𝜀1 + 𝐸 𝜀2 +. . +𝐸 𝜀𝑁  = 0𝑁

𝑖   Expected Change 

𝑉𝑎𝑟 𝑍𝑇 − 𝑍0 = 𝑉𝑎𝑟  𝜀𝑖 Δ𝑡𝑁
𝑖  = Δ𝑡 ∗  𝑉𝑎𝑟 𝜀1 +. . +𝑉𝑎𝑟 𝜀𝑁  = 𝑁 ∗ Δ𝑡 = 𝑇 Variance 

𝑆𝑡𝑑 𝑉𝑎𝑟[𝑍𝑇 − 𝑍0 ] =  𝑉𝑎𝑟[𝑍𝑇 − 𝑍0] =  𝑇                                              Standard Deviation 

(Hull, 2002, p.217-219) 

 

4.2.2 Geometric Brownian motion 

A geometric Brownian motion is a variable whose changes over time are given by: 

 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍          (4.7) 

 

𝑑𝑆 is the change in variable𝑆. 𝜇 and 𝜎 are constants and 𝑑𝑍 is a Brownian motion. For a small 

change in time, 𝑑𝑡, the expected rate of change in 𝑆 is given by𝜇𝑑𝑡. 𝜇 is the drift rate. The 

drift rate is the average increase in value per time unit in a stochastic process. The variance of 

the rate of change is given by 𝜎𝑑𝑡 . 𝜎 is the volatility of the process. The solution to (4.7) is: 
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𝑆𝑇 = 𝑆0 ∗ 𝑒( 𝜇−0.5𝜎2 ∗𝑇+𝜎∗𝑍𝑇)                                                                                               (4.8) 

 

By using (4.5) we re-write (4.8) as: 

 

𝑆𝑇 = 𝑆0 ∗ 𝑒( 𝜇−0.5𝜎2 ∗𝑇+𝜎∗ 𝑇∗𝜀)        (4.9) 

 

Were 𝜀 still is a random drawing form a standard normal distribution. (4.9) is the equation we 

use to simulate stock index movements. 𝑆𝑇  𝑎𝑛𝑑 𝑆0 are the stock index prices at time 𝑇 𝑎𝑛𝑑 0. 

𝜇 𝑎𝑛𝑑 𝜎 are the expected continuously compounded [cc] return and standard deviation. The 

exponentiated part of (4.9) calculates the return of the stock index for the period. A geometric 

Brownian motion is preferred over a standard Brownian motion because stock index prices 

have a log-normal distribution under a geometric Brownian motion. The log-normality means 

that the price of the stock index never can be less than zero (Back, 2005). 

 

4.2.3 Log-normally distributed prices 

A variable has a log-normal distribution if the natural logarithm of the same variable is 

normally distributed. In the instance of stock indexes this means that the index prices will be 

log-normally distributed if the cc return is normally distributed: 

𝑅(0,𝑇) = 𝑙𝑛  
𝑆𝑇

𝑆0
                          (4.10)  

 

𝑅(0,𝑇) is the normally distributed cc return over the period 0 to time 𝑇. It is equal to the 

exponentiated part of (4.9). By taking the exponential of both sides: 

𝑒𝑅(0,𝑇) =
𝑆𝑇

𝑆0
  

 

This can be re-written as 
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𝑆𝑇 = 𝑆0 ∗ 𝑒𝑅(0,𝑇)                    (4.11) 

 

Thus 𝑆𝑇  can never be negative because of the exponentiation of the cc return. The typical 

shapes of log-normally distributions are given in figure 4.1: 

Figure 4.1-Log-normal distributions 

 

The log-normal density function Source: Matworks.com (2010) 

Figure 4.1 shows the log-normal distribution for two associated normal distributions, 𝑁 0,1  

and 𝑁(0,1.5), both with a mean equal to 0, and standard deviations = 1 and 1.5. The graphs 

are constructed based on MATLAB scripts from Matworks.com (2010). Both these log-

normal distributions are for positive values of X, and both are skewed to the right. The latter 

is also a feature of log-normal distribution. For stock prices this means that extremely high 

prices far away from the mean and are unlikely to observe. The single “humps” in the log-

normal distributions, means that the distributions are unimodal. They occur to the left of the 

mean (McDonald, 2006, p.593-594). 

 

4.3 Performance measures 

The following section describes the performance measures, Sharpe ratio and the M-squared 

measure, which are used, to evaluate the performance, in the analysis part of this paper.   
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4.3.1 The Sharpe ratio 

The Sharpe ratio is a popular performance measure often used to evaluate and rank the 

performance of investment managers. The Sharpe ratio measures the trade-off between 

expected excess return and the risk of the excess return, on a risky investment. The risk is 

measured as the standard deviation of the excess returns. The excess return is the difference 

between the expected return on a risky investment and the risk-free expected return on a risk-

free investment. It is also known as the risk premium. (4.12) gives the Sharpe ratio in its 

general form (Bodie, Kane, & Marcus, 2008,p.139): 

 

𝑆𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑖𝑠𝑘  𝑝𝑟𝑒𝑚𝑖𝑢𝑚

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑟𝑖𝑠𝑘  𝑝𝑟𝑒𝑚𝑖𝑢𝑚
                 (4.12) 

  

4.3.2 Deriving the Sharpe ratio 

Suppose an investor has chosen the composition of a risky portfolio that he wants to invest in. 

The next step for him is to decide the portion of his investment budget, 𝑦, that he wants to 

invest in the risky portfolio,𝑝 , and the portion (1 − 𝑦) that he wants to invest in a risk-free 

asset. 𝑦 +  1 + 𝑦 = 1. The return on the risky portfolio is denoted 𝑟𝑝 , the expected return is 

denoted 𝐸 𝑟𝑝  and the standard deviation (risk) of returns is denoted 𝜎𝑝 . The return on the 

risk-free asset is denoted 𝑟𝑓 . Because it is risk-free the standard deviation of the risk-free asset 

is equal to zero. 

 

𝑟𝑐 = 𝑦 ∗ 𝑟𝑝 +  1 − 𝑦 ∗ 𝑟𝑓                 (4.13) 

 

(4.13) give the return of the complete portfolio, denoted 𝑟𝑐 . The complete portfolio is 

comprised of 𝑦 parts of the risky portfolio and (1 − 𝑦) parts of the risk-free asset. Taking the 

expected return on the complete portfolio gives: 

 

𝐸 𝑟𝑐 = 𝑦 ∗ 𝐸 𝑟𝑝 +  1 − 𝑦 ∗ 𝑟𝑓  
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Rewriting it: 

 

𝐸 𝑟𝑐 = 𝑟𝑓 + 𝑦 ∗ (𝐸 𝑟𝑝 − 𝑟𝑓)                 (4.14) 

 

(4.14) give the expected return on the complete portfolio. 𝑟𝑓  is the base rate of return. The 

section 𝑦 ∗ (𝐸 𝑟𝑝 − 𝑟𝑓) is the expected risk premium, depending on the portion 𝑦 invested in 

the risky portfolio and the expected risk premium, (𝐸 𝑟𝑝 − 𝑟𝑓), of the risky portfolio.  It is 

the expected excess return over the expected risk-free return. Because investors are risk 

averse they demand a positive risk premium in order to invest in a portfolio.  

 

𝜎𝑐 = 𝜎𝑝 ∗ 𝑦          (4.15) 

 

(4.14) give the standard deviation of the complete portfolio. It is equal to the standard 

deviation of the risky portfolio times the portion 𝑦 invested in the risky portfolio. This makes 

the standard deviation of the complete portfolio proportional to the portion 𝑦 invested in the 

risky portfolio. By including a risk-free asset in the complete portfolio total standard deviation 

is thereby reduced. 

 

    

 

 

 

Figure 4.2-The investment opportunity set with a risky asset and a risk-free 
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Source: Bodie, Kane, & Marcus(2008) page.179 

Figure 4.2 plots the characteristics of the complete portfolio in an expected return/standard 

deviation plane, for different values of 𝑦. The risky portfolio, marked P, has an expected 

return, 𝐸 𝑟𝑝 = 15% and a standard deviation 𝜎𝑝= 20%. The risk-free asset, marked F, has an 

expected return, 𝑟𝑓= 5%. The Risk premium is given by: 𝐸 𝑟𝑝 − 𝑟𝑓= 10%. If the investor 

decides to invest all his funds in the risky portfolio, then 𝑦=1.  Such a complete portfolio will 

have the same expected return and standard deviation as the risky portfolio. If the investor 

decides to invest all his funds in the risk-free asset then 𝑦= 0, and the complete portfolio will 

have an expected return equal to 𝑟𝑓  and zero standard deviation. For values of 𝑦 between 1 

and 0, the complete portfolio will lie on the blue line between F and P. The blue line is known 

as the Capital Allocation line.  As 𝑦 increases from zero toward one, the complete portfolio 

will move from F to P. This means that bigger and bigger portions will be invested in the 

risky portfolio. Following (4.14) and (4.15), both the expected return and standard deviation 

of the complete portfolio will also increase for higher values of 𝑦. The slope of the Capital 

allocation line is marked in figure 4.2 as S. It is derived by first rearranging (4.15): 

 

𝑦 =
𝜎𝑐

𝜎𝑝
                     (4.16) 

 

Substituting it into (4.14): 

 

𝐸 𝑟𝑐 = 𝑟𝑓 +
𝜎𝑐

𝜎𝑝
∗ (𝐸 𝑟𝑝 − 𝑟𝑓)         

 

Rearranging: 

 

𝐸 𝑟𝑐 = 𝑟𝑓 +
(𝐸 𝑟𝑝  −𝑟𝑓)

𝜎𝑝
∗ 𝜎𝑐                   (4.17) 
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(4.17) is the expected return of the complete portfolio. 𝑟𝑓  is the intercept and (𝐸 𝑟𝑝 − 𝑟𝑓) 𝜎𝑝  

is the slope of the capital allocation line. The slope is actually the Sharpe ratio: 

 

𝑆 =
(𝐸 𝑟𝑝  −𝑟𝑓)

𝜎𝑝
                    (4.18) 

 

The slope gives the excess return to standard deviation, and is therefore called the reward-to-

variability-ratio, or the Sharpe ratio. The Capital allocation line gives the expected return of 

the complete portfolio as a function of 𝑟𝑓   plus its standard deviation times the Sharpe ratio of 

the risky portfolio. The Capital allocation line gives all the combinations of expected return 

and risk available to all investors. The presentation of the capital allocation line in the 

expected return/standard deviation plane is called the investment opportunity set. (Bodie, 

Kane, & Marcus, 2008,p.177-179).  

 

It must be noted that the Sharpe ratio will vary systematically with the time horizon of the 

investment. This is because the continuously compounded return grows at a constant rate 

proportional to time while the standard deviation grows slower, at the square root of time. 

This means that the Sharpe ratio grows for longer investment horizons, at the rate of the 

square root of time(Bodie, Kane, & Marcus, 2008,p.154). 

  

4.3.3 The M-squared Measure of Performance 

When ranking investment performance by the Sharpe ratio, we rank portfolios by their excess 

return relative to the risk of the excess return. Consider two risky portfolios, A and B. The 

Sharpe ratio of portfolio A, 𝑆𝐴, is 0.8 and the Sharpe ratio of portfolio B,𝑆𝐵 is 0.7. This 

implies that portfolio A has a better reward-to-volatility than portfolio B. However, what does 

the (0.8-0.7) 0.1 difference in Sharpe ratio imply? What is the economical interpretation of 

this difference? The M-squared measure of performance sheds light on this difference by 

comparing the returns of an adjusted portfolio with the benchmark portfolio. The adjusted 

portfolio is a combination of a risky portfolio and a risk-free asset, which gives the adjusted 

portfolio a standard deviation equal to the standard deviation of the benchmark portfolio.  
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Consider portfolios A and B once more. Suppose that portfolio A is a market index and that 

portfolio B is a risky portfolio that is benchmarked to A. The expected return and standard 

deviation of portfolio A is 𝐸 𝑟𝐴  and 𝜎𝐴. The average return and standard deviation of risky 

portfolio B is 𝐸 𝑟𝐵  and 𝜎𝐵. The expected return on a risk-free asset is denoted 𝑟𝑓 . The portion 

of the risky portfolio in the adjusted portfolio C is given by: 

𝑎 =
𝜎𝐴

𝜎𝐵
                      (4.19)  

 

Meaning that the portion invested in the risk-free asset is: 

(1 − 𝑎)                      (4.20) 

 

The Expected return on the adjusted portfolio C is 

𝐸 𝑟𝐶 =  1 − 𝑎 ∗ 𝑟𝑓 + 𝑎 ∗ 𝐸 𝑟𝐵           

Or 

𝐸 𝑟𝐶 = 𝑆𝑅𝐵 ∗ 𝜎𝐴 + 𝑟𝑓                   (4.21) 

 

Were 𝑆𝑅𝐵 is the Sharpe ratio of risky portfolio B 

 

The M-squared measure of performance is given as: 

𝑀2 = 𝐸 𝑟𝑐 − 𝐸 𝑟𝐴                   (4.22) 

 

By substituting (4.21) for the expected return of C and rewriting, 𝑀2 is expressed as: 

𝑀2 =  𝑆𝑅𝑐 − 𝑆𝑅𝐴 ∗ 𝜎𝐴                   (4.23) 
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𝑆𝑅𝐴 is the Sharpe ratio of benchmark market index A. 

Figure 4.3-The M-squared measure of portfolio B 

 

Source: Bodie, Kane, & Marcus(2008) page.856 

Figure 4.3 shows portfolio A and B plotted in an expected return/standard deviation plane. 

The risk-free return,𝑟𝑓  = 5%. Portfolio A has an Expected return, 𝐸 𝑟𝐴  = 21% and a standard 

deviation, 𝜎𝐴= 20%. The Sharpe ratio of portfolio A, following (4.18) 

:𝑆𝑅𝐴 = (21% − 5%) 20%  = 0.8. The red capital allocation line of portfolio A is referred to 

as the Capital Market line, because portfolio A is the market index. Portfolio B has an 

expected return, 𝐸 𝑟𝐵 = 26% and a standard deviation, 𝜎𝐵= 30%. The Sharpe ratio of 

portfolio B, following (4.18): 𝑆𝑅𝐵 = (26% − 5%) 30% =0.7. The blue line in figure 4.3 is 

the capital allocation line of portfolio B. The capital market line of portfolio A lies above the 

portfolio B's capital allocation line, because portfolio A has a higher slope/Sharpe ratio 

relative to portfolio B. Point C in figure 4.3 marks the expected return and standard deviation 

of the adjusted portfolio C. Following (4.19) and (4.20), portfolio C is composed of 𝑎 =

(20%/30%) = 2/3 of the risky portfolio B and  1 − 𝑎 = (1 − 2/3) =  1/3 part risk-free 

asset. The standard deviation is thus equal to that of portfolio A, 20%. The expected return, 

𝐸 𝑟𝑐  of adjusted portfolio C is computed using (4.21):  0.7 ∗ 20% + 5% = 19%. The M-

squared measure of portfolio B is thereby given, utilizing (4.22): (19%-21%) = -2%. This is 

marked in figure 4.3 as the horizontal gap between A and C (Bodie, Kane, & Marcus, 

2008,p.855-856). 
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4.3.4 Relating the performance measures to the Bull funds. 

The Sharpe ratio of a Bull fund can be shown to be equal to the Sharpe ratio of the underlying 

stock index. Suppose a stock index has an expected return, 𝐸 𝑟𝑠  and a standard deviation, 𝜎𝑠 . 

The risk-free rate is 𝑟𝑓 . This means that the Sharpe ratio of the stock index is: 

 

𝑆𝑅𝑠 =
𝐸 𝑟𝑠 − 𝑟𝑓

𝜎𝑠
 

 

Suppose there is a Bull fund that benchmarks to the stock index. Suppose that the fund is 

designed to yield 𝑦 the expected return of the stock index at 𝑦 the standard deviation of the 

stock index. The expected return of the Bull fund is thereby given by (4.14):  

𝐸 𝑟𝐵 =  𝑟𝑓 + 𝑦 ∗ (𝐸 𝑟𝑠 − 𝑟𝑓). The standard deviation is given by (4.15): 𝜎𝐵 = 𝑦 ∗ 𝜎𝑠. 

The Sharpe ratio of the Bull fund can thereby be written as: 

 

𝑆𝑅𝐵 =
𝐸 𝑟𝐵 − 𝑟𝑓

𝜎𝐵
 

Substitute the full terms of 𝐸 𝑟𝐵  and 𝜎𝐵 into 𝑆𝑅𝐵: 

𝑆𝑅𝐵 =
(𝑟𝑓 + 𝑦 ∗  𝐸 𝑟𝑠 − 𝑟𝑓 − 𝑟𝑓

𝑦 ∗ 𝜎𝑠
 

The 𝑟𝑓s and 𝑦s zeros out: 

𝑆𝑅𝐵 =
𝐸 𝑟𝑠 − 𝑟𝑓

𝜎𝑠
= 𝑆𝑅𝑠 

This means that the theoretical 𝑀2 measure of the Bull fund is: 

𝑀𝐵
2 =  𝑆𝑅𝐵 − 𝑆𝑅𝑆 ∗ 𝜎𝑠 

𝑀𝐵
2 =  𝑆𝑅𝑠 − 𝑆𝑅𝑠 ∗ 𝜎𝑠 

𝑀𝐵
2 = 0 
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In theory the Sharpe ratio of a Bull fund and the underlying stock index should be identical 

which in turn means that theoretically, the M-squared measure should be equal to zero. 
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Chapter 5: Other written work on LETFs 

 

This chapter presents studies and analysis regarding LETFs. Although LETFs are a fairly new 

financial creation, there is a fair amount of working papers and research notes written on the 

subject.  A lot of the topics concern the LETFs’ ability to yield double returns, how returns 

are over longer periods of time and what factors that affects the realized return. 

 

 Co (2009) models the value of a LETF and shows how the value is negatively affected by the 

volatility of the underlying index. Co compares the variance related loss to the gamma loss of 

options. The author shows how the variance causes losses with an example of a perfectly 

“hedged” portfolio of a long and short LETF. The portfolio suffers losses over time. The size 

of the losses is positively correlated with the volatility of the underlying benchmark.  

 

Hill & Foster (2009) studies the effect of compounding returns of LETFs and the daily return 

for different periods of time, ranging from two days to six months. The authors find that there 

is a high probability that LETFs can deliver double daily returns over longer periods of time. 

The probability is said to be greater for shorter periods of time and low values of index 

volatility.   

 

Haga and Lindset (2009) analyze the Bull and Bear funds offered by Handelsbanken and 

DnbNOR. The paper analyzes the performance of the funds using both simulations and 

empirical data. Haga and Lindset show how higher values the risk-free rate negatively affects 

the returns of the funds, and that the effects become greater over time. They also run 

regressions on the empirical data, and analyze if the funds indeed provide double and minus 

double returns relative to the benchmark. They find that both providers’ funds have failed to 

give an exact double or inverse double return, but that both providers have come close, with 

Handelsbanken funds coming closest. The paper points out that the futures exposure of the 

funds are big enough to achieve the double exposure and  speculates that this might be due to 

the transaction costs involved with rebalancing the funds.  
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Lu, Wang, & Zhang (2009) study the long term performance of both long and short leveraged 

ETF.  Based on empirical data, of LETFs offered by Proshare, Lu, Wang and Zhang study the 

performance of LETFs for different time horizons. They find that both long and short 

leveraged ETFs can be expected to provide the investor with twice the return of the 

benchmark for investment periods no greater than one month. The analysis reveals that for 

longer holding periods the short LETFs returns diverge significantly from its objective of 

twice the inverse return of the benchmark for periods equal to a quarter of a year or greater. 

The long LETF returns show a divergence from double returns for a yearlong investment 

period. The article concludes that the returns of the LETFs are negatively affected by the 

quadratic variation and auto variation over a holding period, the latter having the biggest 

impact. Both quadratic variation and auto variance are products of the length of the time 

period and variance.  

 

Avellaneda & Zhang (2009) presents a pricing model for LETFs. The pricing model connects 

the value of a LETF to the value of an underlying index or corresponding ETF. The model 

links the return of the LETF to the return of the underlying and the realized variance of the 

underlying. The paper argues that a LETF return is mainly affected by realized variance of the 

underlying. Avellaneda & Zhang validates the model by testing it against empirical data of a 

total of 56 funds. They also purpose a dynamic hedging strategy involving LETFs for 

replicating the returns of the underlying index or ETF, and conclude that such a strategy is 

foremost reserved for active traders.    
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Chapter 6: Research method 

 

In Chapter 7 we analyze the performance of a bull fund with and without transaction costs, 

and also try to determine any impacts the transaction costs may have on the performance. This 

is done by simulating the performance of an underlying stock index, a bull fund without 

transaction costs and a bull fund with transaction costs, using a MATLAB script. The analysis 

is a simplification and transaction costs are represented only by the bid-ask spread. (See 

chapter 3.5 for a overview of all transaction costs related with the rebalancing of the Bull 

fund.)  The bull fund with transaction costs is called V and bull fund without transaction costs 

is called U. The index is named S. The performance of the two funds are benchmarked to S 

and measured using the M-squared measure, which is calculated by the script. The script is 

run for different time horizons, and values of annual expected return (µ) and annual standard 

deviation (σ) of S. The performance analysis is carried out for different values of annual 

expected return and annual standard deviation of S, in order to determine the impact of such 

values on the performance of both U and V. The values of U and V are then compared in 

order to analyze how transaction costs might affect the bull fund’s performance under 

different values of expected return and standard deviation. All M-squared measures for every 

run is stored in tables which are organized after the time horizon, expected return and 

standard deviations of S, for which the script was run. There are three tables in total: Table 

7.1 contains the M-squared measures of U, named M2U. Table 7.2 contains the M-squared 

measures for V, named M2V. Table 7.3 contains the difference between M2U and M2V, 

named M2D. 

 

An analysis of the expected return and standard deviation of U and V is also carried out to see 

if it is possible to explain some of the results from the M-squared analysis. Expected returns 

standard deviations are estimated for U and V for daily, weekly and monthly time horizons 

and different values of µ and σ. The estimated expected returns are calculated with a 95% 

confidence interval [CI] and are assumed to have a student t-distribution. The estimated 

expected returns with 95% CIs of U and V are compared to see if there are significant 

differences. The standard deviations are also estimated with 95% CIs and compared. The 

estimated standard deviations are assumed to have a chi-squared distribution. In comparison 

of both estimated expected returns and standard deviations, the criteria for significant 
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differences is that the 95% CIs do not overlap. The results from simulations are stored in 

tables and referenced in the analysis section. 

 

 In addition, simulations are also run to analyze the effect of the risk-free rate on expected 

returns, the effect of the management fee on the expected returns as well as a comparison of 

the estimated standards deviations of U and V to the estimated double standard deviation of S. 

All results are stored in tables which are referenced in the respective analysis sections.  

 

6.1 Assumptions about the stock index, futures contracts and the bull fund 

The Stock index is assumed to follow a geometric Brownian motion. The index price 𝑆𝑇 , at 

time 𝑇 is given by (4.9). The cc return, 𝑅, of the stock index over a small time period,∆𝑡, is 

given by the exponentiated expression of (4.9): ( 𝜇 − 0.5𝜎2 ∗ ∆𝑡 + 𝜎 ∗  ∆𝑡 ∗ 𝜀). The index 

price at time 1 can therefore be expressed as: 

𝑆1 = 𝑆0 ∗ 𝑒𝑅1           (6.1) 

The futures contracts are priced according to (4.4). It is assumed that the there is no dividend 

paid, so 𝑞 = 0. The futures price of a contract at time zero, with delivery at time T is therefore 

given as: 

𝐹(0,𝑇) = 𝑆0 ∗ 𝑒𝑟∗𝑇          (6.3) 

The futures price for the next day, day 1, is given as: 

𝐹(1,𝑇) = 𝑆1 ∗ 𝑒𝑟∗(𝑇−∆𝑡)        (6.4) 

By substituting 𝑆1with (6.1) and rewriting 𝑆0 = 𝐹(0,𝑇) 𝑒𝑟∗𝑇 , (6.4) becomes: 

𝐹(1,𝑇) = 𝐹(0,𝑇) ∗ 𝑒
(𝑅1−𝑟∗∆𝑡)                                                                                       (6.5) 

 

6.1.1 The model of a Bull fund without costs 

The value of U at day 1 is given as: 
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𝑈1 = 𝑈0 ∗ 𝑒𝑟∗∆𝑡 + 2 ∗ 𝑈0 ∗
𝐹 1,𝑇 −𝐹(0,𝑇)

𝐹(0,𝑇)
      (6.6) 

 

The first part on the right side considers the fact that the fund is made up of cash and that a cc 

risk-free interest rate is earned daily on the cash holdings. The second part on the right side 

reflects the double daily returns of the futures contracts. The returns on the futures contracts 

are multiplied by 2, which is in turn multiplied by the value of the fund at the beginning of the 

period. Substituting (6.5) into (6.6) gives: 

 

𝑈1 = 𝑈0 ∗ (𝑒𝑟∗∆𝑡 + 2 ∗ (𝑒𝑅1−𝑟∗∆𝑡 − 1))         (6.7) 

 

The expected return of 𝑈 at time 𝑛 can be expressed: 

𝐸 𝑈𝑛  = 𝑈0 ∗  1 +  2µ − 𝑟 ∆𝑡 𝑛  

 

The derivation of the expected return is given in the appendix. The model for 𝑈 and the 

derivation of both the model and the expected return is based on Haga & Lindset(2009).  

What is important to notice (,what Haga and Lindset show in their paper,) is how the risk-free 

return affects the expected return of the Bull fund 𝑈. As long as the risk-free rate is positive, 

the expected return of the fund cannot be expected to be twice the size of the expected return 

of the benchmark. The effect of a positive interest rate also becomes greater for longer time 

periods.     

 

6.1.2 The model of a Bull fund with costs 

The model of V builds on the U model with two additional assumptions: First the fund is 

charged daily with a management fee. Second, the fund is rebalanced daily and is therefore 

charged with transaction costs, represented by the bid-ask spread of futures contracts. The 

value of the fund after the management fee has been deducted, but before rebalancing is: 
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𝑉1
∗ = 𝑉0 ∗  𝑒𝑟∗∆𝑡 + 2 ∗  𝑒𝑅1−𝑟∗∆𝑡 − 1  ∗ (1 −  𝑒𝑓∗∆𝑡 − 1 )     (6.8) 

 

The management fee is represented by 𝑓, in the last part of the right side. The management 

fee is assumed to be cc every day, before rebalancing. After the management fee has been 

deducted the fund manager needs to rebalance the number of futures contract, so that the 

holdings are twice the size of the value of the fund: 

 

𝑁1 =
2∗𝑉1

∗

𝐹(1,𝑇)
            (6.9) 

𝑁1 is the number of futures contracts needed for a double exposure. 

 

𝑑𝑁 = 𝑎𝑏𝑠(𝑁𝑡+1 − 𝑁𝑡)        (6.10) 

 

(6.10) give the change in total amount of futures contracts after rebalancing. The number is 

absolute.  𝑁𝑡  is the number of futures contracts at the beginning of the day 𝑡. 

 

𝑉1 = 𝑉1
∗ − (𝑑𝑁 ∗ 𝑠𝑝𝑟𝑒𝑎𝑑 ∗ 𝐹 1,𝑇 )/2                                                                      (6.11) 

 

(6.11) is the value of the fund after both deducting the management and half the bid-ask-

spread. The value of the bid-ask-spread is calculated by the second term on the right side. 

 

6.2 The parameter values 

The MATLAB script is run for different values of annual expected return and annual standard 

deviation of S, for different time horizons. The annual expected return is referred to as 𝝁  and 

the annual standard deviation is referred to as 𝝈. Table 6.1 contains all the values of 𝝁 and 𝝈 

for which the simulation is run. The simulation is run for every pair of 𝝁 and 𝝈. 
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Table 6.1–Values of μ and σ 

𝝁 10% 15% 20% 30% 

𝝈 20% 25% 30% 40% 

 

The time periods considered are daily, weekly, monthly, quarterly, semi-annual and annual. 

Simulations are run for each of these time horizon, for every pair of 𝝁 and 𝝈. Note that it is 

only the M-squared measures that are estimated for all these time horizons. The time horizon 

is denoted by 𝑻. 𝑻 measures time in units of years. The number of steps per time horizon is 

denoted 𝒏. The simulation assumes that the year consists of 250 trading days. This means that 

the number of steps per time horizon is given by 𝟐𝟓𝟎 ∗ 𝑻 = 𝒏. Table 6.2 gives the values of 𝑻 

and the number of steps for each time horizon. 

 

Table 6.2-Values of T and number of steps for each time horizon 

  Daily Weekly Monthly Quarterly Semi-annual Annual 

T 0,004 0,02 0,08 0,24 0,5 1 

n 1 5 20 60 125 250 

 

The value of the whole bid-ask spread is set to 0,316%. The number is derived from OBX-

futures spread data available on OSE homepage www.oslobors.no. The data is for the futures 

contract OBX0D which had delivery date in April of 2010. The spread data has 120 

observations bid and ask prices running from 12
th

 of October 2009 to the 9
th

 of April 2010. 

The spread of each observation is calculated as the average price of the bid and ask prices 

divided by the ask price. The designated spread value is the average of all these calculated 

spreads.   

 

Because this paper’s objective is to determine the effect of the transaction costs, the 

management fee is set to 0%. However, in section 7.6 an analysis of the effect of management 

fee is carried out. The management fee 𝑓, is then set to 0,8% per annum. At their inceptions, 

both Bull funds from Handelsbanken (Handelsbanken kapitalforvaltning, 2008) and DnbNOR 

Dnbnor (Kapitalforvaltning AS,2008), had a management fee equal to 0,8% per annum. 

http://www.oslobors.no/
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Other values include the start value of S, U and V and the risk-free rate. The start value of all 

three is set to 100. The risk free rate, r is set to 5% p.a. with the exception of simulations runs 

for the analysis in section 7.7 were the risk-free rate is also set to r= 0%, and weekly 

estimated expected returns for both values of r  are compared to determine the effect of the 

risk-free rate.    

 

6.3 Running the MATLAB script 

The MATLAB script, used to compute M2U, M2V and M2D, and estimate expected returns 

and standard deviations is given in its entirety in the appendix. The part of the script is 

constructed to simulate the price/value paths of S, U and V, over a time horizon, with a given 

number of steps n. One simulation simulates one path for each of S, U and V. The number of 

paths simulates is set to m. Longer time horizons means more steps, which in turn commands 

more computer power in order to simulate. Because of this, the number of simulated paths 

differs between some of the time horizons. Daily simulations were run 7 million times. 

Weekly simulations were run 3 million times. For monthly measures the simulation was run 

0,9 million times.  Quarterly simulation were run 0,3 million time, semi-annual were run 0,1 

million times and annual simulations were run 0,08 million times. The computer on which the 

script was run was “stress-tested” for different amounts m to find the highest possible number 

of simulations that was possible to run given the computer power.   

Script 6.1-The code used to run simulations of paths 

for j=1:m 

    for i=1:n 

        R=((mu-0.5.*sigma.^2).*dt+sigma.*sqrt(dt).*randn);  %Stock index return per period dt 

        S(j,i+1)=S(j,i).*exp(R);                            %Price path of stock index 

        F(j,i+1)=S(j,i+1).*exp(r.*(T-i.*dt));               % Futures price path 

        Vt = V(j,i)*( exp(r*dt)+M*(exp(R-r*dt)-1) )*(1-(exp(f*dt)-1));  %Value of V  

                                                                        %less management fee 

         

        N(j,i+1) = M*Vt/F(j,i+1);                           %Number of contracts per period 

        dN = abs( N(j,i+1)-N(j,i) );                        %Change in number of contracts 

        U(j,i+1) = U(j,i)*(exp(r*dt)+M*(exp(R-r*dt)-1));    %Value of U per period 

        V(j,i+1) = Vt-dN*spread*F(j,i+1)/2;                 %Value of V less spread and 

                                                            %management fee per period 

     

    end 

 

Script 6.1 shows the excerpt of the MATLAB script that is used to simulate one path for each 

of S, U and V. The description of each line is given by the text at the right side in green color. 

They are the presented models in chapter 6.1. After the simulations have been run once, the 
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script calculates the period return of S, U and V, and stores these returns in a matrix.  This is 

repeated for the number of simulations m. 

 

Script 6.2 –Code for calculating returns and storing them 

RS = (S(j,end)/S(j,1)-1);   %Calculates the return of the stock index 

    RV  = (V(j,end)/V(j,1)-1);  %Calculates the return of V 

    RU = (U(j,end)/U(j,1)-1); %Calculates the return of U 

  

    G(1,j)= RV;                 %Matrix that stores the return of V 

    G(2,j)= RU;                 %Matrix that stores the return of U 

    G(3,j)= RS;                %Matrix that stores the return of the stock index 

    G(4,j)=RS*2;                %Matrix stores twice the return of S 

 

Script 6.2 shows the part of the script that calculates and stores the return for a single 

simulation. Description of each line is given by the right side green text. After the simulations 

have been run m times the program computes the expected return and standard deviation of S, 

U and V for the time horizon using the stored return data. 

Script 6.3-Code for computing M-squared measures. 

meanRV = mean(G(1,:));            %Calculates Expected return of V 

meanRU = mean(G(2,:));          %Calculates Expected return of U 

meanRS = mean(G(3,:));          %Calculates Expected return of index 

  

stdRV = std(G(1,:));            %Calculates the standard deviation of V 

stdRU = std(G(2,:));            %Calculates the standard deviation of U 

stdRS = std(G(3,:));            %Calculates the standard deviation of index 

  

SharpeRV=(meanRV-(exp(r*T)-1))/stdRV;       %Calculates the Sharpe ratio of V 

SharpeRU=(meanRU-(exp(r*T)-1))/stdRU;       %Calculates the Sharpe ratio of U 

SharpeS=(meanRS-(exp(r*T)-1))/stdRS;        %Calculates the Sharpe ratio of index 

  

M2U=((SharpeRU-SharpeS).*stdRS)*100       %Calculates the M^2 of U 

M2V=((SharpeRV-SharpeS).*stdRS)*100       %Calculates the M^2 of V 

M2D=M2U-M2V                                %The difference between M2u and M2v 
 

Script 6.3 shows how the calculated returns and standard deviations are further used to 

compute the Sharpe ratio of S, U and V. The Sharpe ratios are in turn used to compute the M-

squared measures of U and V, M2U and M2V, with S as the benchmark. MD2 is calculated 

as the difference between M2U and M2V.  

 

Script 6.4-Code for calculating estimated expected return and standard deviations. 

[Vmean, Vstd, Vlowbnd, Vupbnd] = meanstd(G(1,:));    %Estimates V's expected return w/95% CI 

[Umean, Ustd, Ulowbnd, Uupbnd] = meanstd(G(2,:));    %Estimates U's expected return w/95% CI 

[Smean, Sstd, Slowbnd, Supbnd] = meanstd(G(4,:));    %Estimates S's double expected return 

w/95% CI 

  

[stdRV, lowStdRV, upStdRV] = stdconf(G(1,:)) ;   %Estimates V's standard dev. w/95% CI 

[stdRu, lowStdRu, upStdRu] = stdconf(G(2,:));    %Estimates U's standard dev. w/95% CI 

[stdRS, lowStdRS, upStdRS] = stdconf(G(4,:));    %Estimates S's double standard dev. w/95% CI 
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Script 6.4 shows the final part of the MATLAB script that is used to estimated expected 

returns and standard deviations, with 95% CIs, for U, V and double that of S. The meanstd.m 

and stdconf.m are functions. Both these functions are given in the appendix.  

 

Because this analysis considers four values of both 𝝁 and 𝝈 and six different time horizons 

the script is run a total of 4 ∗ 4 ∗ 6 = 96 times.  

 

The main MATLAB script was authored with the help and guidance of supervisor Valeri 

Zakamouline. He is the sole author of the two function scripts meanstd.m and stdconf.m.   
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Chapter 7: Analysis of results 

 

7.1 Performance analysis of U: without transaction costs 

The M2U values in table 7.1 are all negative apart from the daily values which are all equal to 

zero. This implies that the daily Sharpe ratios of U are equal to the Sharpe ratios of the 

benchmark no matter the µ- and σ-values. There is of course a possibility that the M2U-

values actually vary with the different µ- and σ-values, but that the changes are so small that 

the numbers are rounded up or down during simulations.  

 

Figure 7.1- The relative performance of U over time. 

 

µ=15% and σ=20% 

Figure 7.1 shows the general trend of the M2U values over time. The shape of the curve in 

figure 7.1 is the same over time for all µ- and σ-values. However, one cannot compare M2U-

values between time horizons. It is rational that, for instance, the expected return for weekly-

period is less than the monthly return. As such it is intuitive that the difference between 

adjusted expected return and expected return of the benchmark has a greater nominal value, 

when the time horizon is longer. However, one can conclude that the performance of U is 

negative for all other time horizons than daily, and that the nominal value between time 

horizons becomes more negative for longer periods. 
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Figure 7.2-The weekly relative performance of U. 

 

All values of µ and σ. 

All weekly M2U-values in table 7.1 show a clear trend for higher µ-values: The weekly 

performance declines for higher values of µ, regardless of the value of σ. However, the effect 

of different σ-values is more ambiguous. Figure 7.2 illustrates U’s weekly values for all the 

four different µ-values and how the σ affects the performance. For the two highest values of 

µ, 30% and 20%, the performance shows a clear trend of decline with higher σ-values. 

However for the lowest two µ-values, 10% and 15%, the trend does not follow. For µ=10% 

the M2U-values are constant at -0,0001% for all σ-values except at σ=30%, where M2U=-

0,0002%. For µ=15%, the M2U-values show a clear trend for higher σ-values up until 

between σ=30% and σ=40%, where the M2U-value increases.  It should be noted that the 

performance at σ=40%, is worse than those of σ=20% and σ=30%.  

 

U’s performance for monthly, quarterly, semi-annual and annual time horizons all show the 

same two trends with respect to µ and σ. The performance deteriorates for both higher values 

of µ and σ.  
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7 .2 Performance analysis of V: With transaction costs 

The M2V-values in table 7.2 are all negative, regardless of time horizon and µ- and σ-values. 

The daily M2V-values are all negative, but appear only to be negatively affected by greater 

values of σ. Paired with any value of µ, the M2V-values becomes increasingly negative with 

higher σ-values. However, the daily M2V-values appear to be unaffected by different µ-

values, as there are no changes in M2V-values for different µ-values paired with any value of 

σ.   

 

Figure 7.3-The Daily M2V-values 

 

All µ- and σ-values. 

Figure 7.3 shows how all the daily M2V-values are only affected by the value of σ. The daily 

performance declines for higher σ-values, but are all unaffected by the µ. For weekly, 

monthly, quarterly, semi-annual and annual time horizons the M2V-values are negatively 

affected by both higher values of σ and µ.  

 

7.3 Comparison of U and V: The effect of transaction costs on performance. 

The M2D-values in table 7.3 are all positive. This means that the performance of U is greater 

than the performance of V for all time horizons and values of µ and σ. The daily differences 

in performance appear to only be affected by the value of σ. The difference in performance 

becomes greater for higher σ-values, meaning that the relative performance of U becomes 

increasingly better (or less worse) than that of V. This is intuitive from the analysis of daily 
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performance of U and V. U’s daily performance appears unaffected by both µ and σ, while 

V’s daily performance was only (negatively) affected by higher σ-values. 

The weekly performance difference shows a clear trend of increasing with greater values of σ. 

However the impact of µ-values is more ambiguous.  

 

Figure 7.4-Weekly M2D-values 

 

All values of µ and σ. 

It appears that the decreases in performance for both U and V are nominally equal for higher 

values of µ, in some instances. This explains why the M2D-values appear to be constant for 

higher µ-values.  

 

Monthly, quarterly, semi-annual and annual M2D-values all show similar trends for higher σ-

values. The difference in performance becomes bigger for higher σ-values. However, the 

difference in performance, for the same time horizons, shows a small decrease for higher 

values of µ. Keeping in mind that both U and V both have decreasing performance for higher 

µ-values, the effect of higher µ-values on the difference in performance suggests that the 

decrease in performance for V is relatively smaller than the decrease in performance of U. 
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7.4 Analysis of expected returns 

In this section the estimated expected returns of U and V are compared for a daily, weekly 

and monthly time horizon. The estimated expected returns are also analyzed for the different 

values of σ and µ, in order analyze if differences in such values have any impact on the 

performance of U and V.  

 

7.4.1 Analysis of daily expected returns 

The estimated daily expected return of U and V are given in table 7.4.  

 

 

 

 

The estimated daily expected returns of both U and V do not seem to follow any clear trend 

with regards to different σ-values, as all four diagrams in figure 7.5 shows. The 95% CI of 

U’s estimated expected returns all overlap for any value of σ in all of the four diagrams. This 

is also the case for all 95% CI of V’s estimated expected return. This means that different σ-

values do not seem to have a significant effect on the estimated daily expected returns of 

either U or V: We cannot say that the daily estimated expected returns of either fund become 

significantly greater or less for different σ-values. 
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Figure 7.5- The daily expected returns of U and V vs. σ. 
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The effect of µ-values is clearer. The estimated expected returns of both U and V become 

significantly higher as the value of µ increases. This trend holds for all values of σ. 

 

When comparing the daily estimated expected returns of U with the corresponding estimated 

expected returns of V, we observe that U has the greatest estimated expected return for any 

pair of µ and σ. However, we also see that the 95% CIs of the expected returns of U and V 

overlap for any pair of µ and σ. The analysis of the daily estimated expected returns therefore 

shows that there are no significant difference in estimated expected return between U and V. 

 

7.4.2 Analysis of weekly expected returns 

The weekly estimated expected returns of U and V are given in tables 7.5. The weekly 

estimated expected returns of both U and V do not appear to follow any clear trends with 

regards to different σ-values. U’s estimated expected returns are not significantly different for 

different values of σ. This holds all µ-values. For V’s estimated expected returns, there is only 

one instance where the estimated expected return is significantly different than the other 

expected returns:  

 

Figure 7.6- V’s estimated weekly expected return vs. σ. 

 

Figure 7.6 shows how the estimated expected return at σ=40% is significantly less than the 

estimated expected return for all the other three values of σ, when paired with µ=15%. Other 

than this exception, there are no other cases of V’s estimated expected return being 

significantly different for different values of σ, paired with any µ-value.  
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Like the daily estimated expected returns of U and V, both funds’ estimated expected returns 

become significantly greater for higher µ-values.  

 

When comparing the estimated expected returns of both funds the data shows that the 

estimated expected return of U is greater than the corresponding expected return of V, and 

that none of the 95% CI overlap for any pair of µ and σ. This means that for a weekly time 

period, all estimated expected returns of U are significantly greater than the corresponding 

estimated expected returns of V. 

 

7.4.3 Analysis of Monthly expected returns. 

The monthly estimates for U and V’s expected returns are given in table 7.6.  U’s estimated 

expected return show no significant difference for different σ-values paired with any value of 

µ. The effect of σ-values on U’s estimated expected return does not seem to follow any 

readable trend. The effects of different µ-values, shows that U’s estimated expected return 

becomes significantly greater for increased µ-values, for any σ-value. 

 

V’s monthly estimated expected return show some instances of being significantly different 

for different σ-values. When paired with µ=10%, the estimated expected return at σ=40% is 

significantly less than the estimated expected return at both σ=20% and σ=25%. When paired 

with µ=30%, the estimated expected return at σ=40% is significantly less than σ=20%. 

Aside from these aforementioned exceptions all other estimated expected returns do not differ 

significantly with difference in σ, paired with any µ-values. The effect of different µ-values 

show that V’s monthly estimated expected return increases significantly for higher µ-values, 

no matter the value of σ. 

 

The estimated expected return of U is greater than the corresponding estimated expected 

returns of V for any pair of σ and µ. None of the 95% CI overlap, meaning that the monthly 

estimated expected returns of U are significantly greater than the monthly estimated expected 

returns of V. 
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7.5 Analysis of Standard deviations. 

In this section we analyze and compare the estimated standard deviations of U and V for 

different values of µ and σ, in order to uncover how such values affects the standard 

deviations of the two funds. The estimated standard deviations of U and V are compared to 

determine if there are any significant differences between the two. 

 

7.5.1 Analysis of Daily standard deviations. 

The estimates for daily standard deviations of U and V, with 95% CI, for different values of µ 

and σ are given in table 7.7.  

 

  

 

 

 

 

 

 

 

 

 

                      Figure 7.7-Estimated daily standard deviations of U and V vs. µ-values. 
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Figure 7.7 shows the estimated daily standard deviations of U and V against all µ-values 

paired with all σ-values. The effect of µ-values on U’s estimated daily standard deviation 

show for the most part no clear trend. For µ=10%, µ=15% and µ=20% the trends are 

different for different σ-values. However, for all σ-values, U’s estimated daily standard 

deviation is highest for µ=30%. There does not appear to be any significant difference in U’s 

estimated standard deviation for different µ-values, as they all overlap when paired with any 

σ-value. The only exception is for σ=40%, where the 95% CIs of U’s estimated standard 

deviations for µ=10% and µ=30% do not overlap. 

 

The estimated daily standard deviations of V do not appear to follow any clear trend with 

regards to different values of µ. All of the 95% CIs overlap with the exception of the 95% CI 

of µ=10% and µ=30%, paired with σ=40%, which shows that the estimated standard 

deviation at µ=30% is significantly higher than for µ=10%.  

 

Figure 7.8-The effect of higher σ-values on the estimated standard deviations of U and V. 

 

The effect of higher σ-values on both U’s and V’s estimated standard deviations, for µ=10% 
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deviation of V, for any pair of σ and µ. However, we also observe that all of the 95% CIs of 

U’s and V’s standard deviations overlap, meaning that the difference are not significant. 

 

7.5.2 Analysis of Weekly Standard deviations 

The estimates of the weekly standard deviations of U and V are given in table 7.8.  

 

 

    

 

Figure 7.9 shows the estimated weekly standard deviations of U and V against the µ-values, 

paired with all four values of σ. The estimated weekly standard deviations of both U and V 
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increases are significant as none of the 95% CIs of estimated standard deviations overlap for 

higher µ-values. This holds for both U and V.  For σ=30% there is an overlapping of 95% CIs 
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Figure 7.9-Estimates of weekly standard deviations of U and V vs. µ-values. 
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µ=20%.  In all four cases displayed in figure 7.9 the estimated standard deviations of both U 

and V at µ=30% are significantly greater than the estimated standard deviations for the three 

lower µ-values. 

 

The effect of increased σ-values is the same on the weekly estimated standard deviations as it 

is on the daily estimated standard deviations: The estimated standard deviations of both U and 

V grows for higher σ, and none of the 95% CIs intervals between σ-values overlap, meaning 

that the estimated standard deviations of both U and V increase significantly for higher σ-

values. 

 

The estimated weekly standard deviations of U are all a little higher than the corresponding 

standard deviations of V. However, like the daily estimates, the 95% CI of U’s and V’s 

estimated standard deviations all overlap, indicating that the difference in estimated weekly 

standard deviations are not significant. 

 

7.5.3 Analysis of Monthly standard deviations. 

The estimated monthly standard deviations of U and V with 95% CIs are given in tables 7.9.  

 

The estimated monthly standard deviations of U all show an increase in value with higher µ-

values. This trend holds for all four values of σ. The increase in U’s estimated monthly 

standard deviations for higher µ-values is significant, as none of the 95% CIs overlap. The 

trend is the same for estimated monthly standard deviations of V. All estimated standard 

deviations increase significantly for higher values of µ, regardless of the value of σ. 

 

The effect, on estimated standard deviations of U and V for higher σ-values are the same on 

the daily and weekly values: The estimated standard deviations increase significantly for 

higher values of σ. 
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The estimated monthly standard deviations of U are all a little greater than the corresponding 

standard deviations of V, however, like the daily and weekly standard deviations, all 95% CIs 

overlap between corresponding estimated standard deviations of U and V, meaning that the 

difference is not significant. 

 

7.5.4 Analysis of estimated standard deviation of the benchmark. 

The estimated standard deviation of twice the expected return of the benchmark, S, is given in 

table 7.10, for a daily, weekly and monthly time horizon. Because the M-squared measure 

also depends on the standard deviation of the funds, it is of interest to research how the 

estimated standard deviations of the benchmark are compared with the corresponding 

estimated standard deviations of U and V.  The daily double estimated standard deviations of 

S, in table 7.10, are compared with the corresponding values of U and V in table 7.4. On a 

daily basis the estimated standard deviations of S are all a little small than the values of U and 

V. However, all 95% CIs, between S, U and V, overlap indicating that the differences are not 

significant. 

The estimated weekly double standard deviations of S are compared with the corresponding 

values for U and V in table 7.5. The weekly values of S compared with the corresponding 

values of U and V shows that, the estimated double weekly standard deviations of S are all 

smaller than the values of U and V, for any pair of σ and µ. These differences are for the most 

part significant. The differences that are not significant happen for low values of both σ and µ.  

 

The diagram to the left in figure 7.10 shows how the estimated double standard deviations of 

S is not significantly different from the corresponding values of U and V, for µ=10% and 

Figure 7.10-The weekly estimated standard deviations of S (double), U and V for µ=10% and 

µ=15%. 
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µ=15%, when paired with σ=20%. The diagram to the right shows the estimated double 

standard deviation of S is not significantly less than the corresponding values for U and V, for 

µ=10% paired with σ=25%, 

 

The monthly estimated standard deviations of U and V are given in table 7.6. Comparing 

these estimated standard deviations with the benchmarks shows that the benchmark has a 

significantly smaller double estimated standard deviation, than the two funds for all values of 

µ and σ, as its 95% CIs do not overlap with the corresponding 95% CIs of the two funds.  

 

The data in table 7.10 shows that for all three time horizons the estimated double standard 

deviation becomes greater for higher σ-values. It also shows that the estimated double 

standard deviation generally becomes greater for higher µ-values, for all three time horizons. 

There are two exceptions; one for a daily and one for a weekly time horizon. The daily 

happens between µ=15% and µ=20% for σ=25% and the weekly happens between µ=15% 

and µ=20% for σ=30%. In both cases the estimated double standard deviation decreases a 

bit, but these decreases are very small.  

 

7.6 Accounting for the Management fee. 

At the inception of both Bull funds, both Handelsbanken and DnbNOR set the management 

fee to 0,8% per annum of the total value of the funds. While the management fee is 

represented per annum, it is deducted on a daily basis from the funds’ assets. It is therefore of 

interest to research if the daily deductions affects the performance of the fund significantly. 

Table 7.11 contains the daily expected returns with 95% CI of a fund that both accounts for 

the bid-ask spread and the management fee of 0,8 per annum. The fund is called V*. The 

simulations are run for the same four values of both µ and σ. When we analyzed the impact of 

transaction costs on the daily estimated expected returns we found that the estimated expected 

returns of U and V did not differ significantly. However when we compare the daily estimated 

expected returns of U, in table 7.4, with the daily estimated expected returns V*, we see that 

the estimated expected returns are significantly different. All daily estimated expected returns 

of V* are less than the corresponding estimated expected returns of U, and none of the 95% 
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CI overlap. The combined effect of both transaction costs and the management fee seems 

therefore, on a daily basis, to reduce the estimated expected return significantly. 

 

7.7 The effect of the risk-free rate on Expected returns 

In the presentation of our model in chapter 6 we showed how the expected return of the Bull 

fund is negatively affected by a positive risk-free rate. Because the basis of the analysis in this 

paper is to compare the fund with and without transaction costs, it is of interest to determine 

the possible effect the risk-free rate might have on our results. 

Figure 7.11- Weekly expected return: U vs. V vs. S (double) for positive risk-free rate. 

 

Figure 7.11 compares the weekly estimated expected returns of the two funds to twice the 

expected return of the benchmark for µ=10%, r=5% and all four values of σ. The data for the 

benchmark S, is given in table 7.12. As previously uncovered, the weekly estimated expected 

returns of V is significantly less than those of U, but both funds’ estimated expected return is 

also significantly less than twice the expected return of the benchmark, as shown in figure 7.8. 

Figure 7.12- Weekly expected return: U vs. V vs. S (double) for zero risk-free rate. 
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Figure 7.12 compares the weekly estimated expected returns of U and V with twice the 

estimated expected return of S, for µ=10% and r=0%. The data of all three funds are given in 

table 7.13. As the figure clearly illustrates, the estimated expected returns of U and twice that 

of S, are now almost equal for all four σ-values. All of the 95% CI overlap, indicating that 

there is no significant difference between the estimated expected return of U and twice that of 

S. At the same time, the estimated expected returns of V are significantly less than those of U 

(and S), with no overlapping 95% CI. The level of the risk-free rate does there not influence 

the conclusions of significant difference between the estimated expected returns of U and V. 

 

7.8 Analysis summary: Discussion of results 

First, it is important to address the shortcomings of the M-squared measures. The measures 

are unlike; the estimated expected returns and standard deviations, not presented in 

confidence intervals. The expected returns and standard deviations that go into the 

computations of the M-squared measures are only point estimates. Therefore when trying to 

explain the negative performance of both U and V, we can only consider the point estimates 

of expected returns and standard deviation, and not whether these are significantly different 

from one another or the corresponding values of the benchmark. It also means that it is 

impossible to tell whether decreases in performance for higher µ- and σ-values are actually 

significant.  

 

Remember from chapter 4.3.4 that it was shown that the M-squared measure of a Bull fund 

would be equal to zero if the fund delivered twice the expected return of the benchmark at 

twice the standard deviation of the benchmark. In our analysis we have seen that, apart from 

U’s daily performance, both U and V have a negative performance relative to the underlying 

benchmark, for all other time horizons. The effect of a positive risk-free rate in chapter 7.7 

explains part of this underperformance, as a positive risk-free rate decreases the expected 

returns of U and V, while the expected return of the benchmark remains unchanged. The 

second contributor to underperformance on the Bull funds’ part appears to be the level of the 

estimated standard deviations. When the estimated standard deviations of the funds were 

compared to that of twice the estimated standard deviations of the benchmark, in chapter 

7.5.4, both funds had greater estimated standard deviations compared with the benchmark. 

This was the case for all three periods considered. 
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The analysis of estimated expected returns and standard deviations offers no clear cause to 

why the weekly and monthly performance of U and V, generally deteriorates for higher µ- 

and σ-values. Consider the σ-values first. None of the two funds’ estimated expected returns 

show any clear trends with regards to different σ-values on a weekly and monthly basis. 

However, both funds have significantly increases in their estimated standard deviation for 

higher σ-values. One possible explanation might be that the funds’ estimated standard 

deviations grows bigger for higher σ-values compared with the estimated standard deviations 

of the benchmark. As previously stated, double the estimated standard deviations of the 

benchmark are significantly lower than those of the funds’ for a weekly and monthly period. 

Another possible explanation can be related to the actual way of which the M-squared 

measure is calculated. Consider the M-squared measure of U to be given by (4.23): 

 

𝑀𝑈
2 =  𝑆𝑅𝑈 − 𝑆𝑅𝑆 ∗ 𝜎𝑆 

 

If the differences in Sharpe ratios between U and S are actually constant for regardless of σ-

value, then the M-squared measure of U will only be driven by the size of the σ. To relate this 

to our analysis, it can mean that the negative difference between Sharpe ratios of U and S are 

in fact constant for higher σ-values, then nominal increase in negative performance is in fact 

only driven by σ(𝜎𝑆). Therefore, without the possibility of confidence intervals it is hard to 

tell if the actual performance deteriorates for higher σ-values. 

 

However, the calculation procedure of the M-squared measure does not imply that 

increases/decreases can occur for constant differences in Sharpe ratios, for different µ-values. 

The estimated standard deviations of U and V all show a significant increase for increases in 

the µ-value, as do the estimated double standard deviation of the benchmark. It is therefore 

possible that greater increase in estimated standard deviations on the funds’ part is to blame 

for the decrease in performance, i.e. M-squared measure, for higher µ-values. 

 

In section 3.2.5 it is shown how the bid-ask spread theoretically affects both the expected 

return and standard deviation of an investment. Based on the analysis and comparison of the 
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estimated expected returns and standard deviations of the two funds, this theory seems to 

hold. The estimated expected returns of V are less than the corresponding estimated expected 

returns of U. As the analysis shows, these differences are not significant on a daily basis, but 

on a weekly and monthly basis, the estimated expected returns of V are significantly less than 

those of U. The analysis and comparison of estimated standard deviations are also in line with 

the theory. The estimated standard deviations of V are less than those of U. However none of 

these differences are significant. The result from comparison of these estimated values helps 

to explain the positive M2D-values, i.e. why U outperforms V in all instances. The bid-ask 

spread causes the relative difference in expected returns to be greater than the relative 

difference in standard deviations, resulting in V’s performance being worse than that of U.  

 

However, explaining why the difference in performance, M2D, becomes greater for higher σ-

values is hard based on the analyzed data at hand. The calculation of the M2D-values might 

also suffer under the same flaws as the other M-squared measures, when different σ-values 

are considered. By taking the difference between the M-squared measures of U and V, the 

M2D-values are calculated: 

 

𝑀2𝐷 =  𝑆𝑅𝑈 − 𝑆𝑅𝑆 ∗ 𝜎𝑆 −  𝑆𝑅𝑉 − 𝑆𝑅𝑆 ∗ 𝜎𝑆 =  𝑆𝑅𝑈 − 𝑆𝑅𝑉 ∗ 𝜎𝑆 

 

Again, based on the calculation it is in fact possible that the differences between Sharpe ratios 

are constant for σ-values, so that it is only the size of the σ that determines the M2D-value. 

 

The cause of the small decrease in monthly M2D-values for increased µ-values is also hard to 

establish. The monthly estimated expected return and standard deviation of U and V show 

significant increases for higher µ-values. There are many possible explanations for this. One 

possibility is that the estimated standard deviation of V grows less than the estimated standard 

deviation of U. Another possibility is that the estimated expected return of V grows more than 

the estimated expected return of U. A third possibility is that the estimated return of V grows 

bigger, while the estimated standard deviation grows slower. The possibilities are many. 
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However, without confidence intervals it is hard to say whether this decrease in M2D-values 

for higher µ-values is in fact significant.  
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Chapter 8: Conclusion 

This master thesis set out to investigate how the transaction costs associated with the daily 

rebalancing might affect the performance of Bull fund, and whether the magnitude of such 

effects might depend on the size of expected returns and standard deviations of the Bull 

fund’s benchmark. In order to research such questions, simulations of price paths of a 

benchmark stock index and two Bull funds, one with and one without transaction costs, have 

been carried out for different time horizons and values of the benchmark’s annual expected 

return and annual standard deviation. The results from such simulations have then been used 

to compute and estimated M-squared measures for the two Bull funds using the underlying 

stock index as a benchmark. In order to probe the M-squared results, simulation runs have 

also been used to estimate expected returns and standard deviations with confidence intervals 

for some of the selected time horizons, i.e. daily, weekly and monthly. The results for the Bull 

fund with and without transaction costs have been compared in order to uncover differences 

and to check if such difference are statistically significant. Analysis have also been done to 

compare the estimated standard deviations of the two funds relative to twice that of the 

benchmark, as well as the impact of the risk-free rate and the management fee on the expected 

returns of the funds. 

 

The results from analyzing the M-squared measures show that the Bull fund underperforms 

the benchmark for all time horizons except daily, even without transaction costs. The results 

from the M-squared analysis also show that the performance generally becomes increasingly 

negative for higher values of the benchmarks expected return and standard deviation, both 

with and without transaction costs. The negative performance with transaction costs are 

always more negative than without transaction costs.     

 

Problem 1: 

The results of the analysis seem offer some explanation of the first research question: 

 If any, what are the effects of transaction costs on the performance of a Bull fund? 
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The comparison of the M-squared measures shows that the Bull fund with transaction costs 

has a poorer relative performance to the benchmark, compared with the fund without 

transaction costs, for all time horizons and values of annual expected return and standard 

deviation of the benchmark. This means that the transaction costs affects the Sharpe ratio of 

the fund negatively, causing the Bull fund to have lower reward-to-variability. The analysis of 

the daily, weekly and monthly estimated expected returns and standard deviations shows two 

things: One, the estimated expected returns of the Bull fund with transaction costs are all 

lower than the corresponding estimated expected returns of the Bull fund without transaction 

costs. Two, the estimated standard deviations of the Bull Fund with transaction costs are 

always lower than the corresponding estimated standard deviations of the Bull fund without 

transaction costs. It seems therefore that transaction costs reduce both the expected return and 

standard deviation of the Bull fund, and that the relative reduction in expected returns are 

greater than the relative reduction of standard deviation. This causes M-squared measure to 

worsen relative to that of the fund without transaction costs. Note however, that the 

differences in estimated standard deviations are not statistically significant for any of the three 

aforementioned time horizons. The differences in estimated expected returns show that the 

estimated expected returns for weekly and monthly time horizons are statistically significantly 

different, while the daily differences are not.  We therefore conclude that the transaction costs 

over daily, weekly and monthly time periods do not significantly affect the standard deviation. 

However, transaction costs do significantly reduce the expected returns over weekly and 

monthly time horizons, but not for a daily time horizon.  

 

The results would indicate that investors that hold a Bull fund for longer than a day will have 

the expected return of his investment affected by the transaction costs. However, investors 

must also be aware of the management fee that is deducted from the fund’s values on a daily 

basis. The results in Chapter 7.6 shows how the estimated daily expected return is 

significantly lower compared with a fund with no costs, when both the bid-ask spread and 

management fee is considered. Positive risk-free rates will affect the expected return 

negatively, but as the results in Chapter 7.7 shows, the weekly differences in expected returns 

will still be significant, even for a zero risk-free rate.     
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Problem 2: 

The second research problem: 

 If any, does the magnitude of such effects depend on the characteristics, i.e. the size of 

the expected return and standard deviation, of the benchmark? 

The differences in M-squared measures show that the differences in relative performance 

increases for higher values of the benchmark’s standard deviation. This would indicate that 

transaction costs worsen the performance for higher values of the benchmarks standard 

deviation.  However, comparing the estimated daily, weekly and monthly expected returns 

and standard deviations of the two funds against higher values of the benchmark’s standard 

deviation offers no clear explanation to what might cause these differences. Higher values of 

the benchmark’s expected returns seem to affect the differences in M-squared measures for 

monthly, quarterly, semi-annual and annual time horizons. The difference in performance 

between the two funds show small declines for increased values of the benchmark’s expected 

return. This would indicate that the effect of transaction costs are reduced for higher values of 

the benchmark’s expected return. Comparing the monthly estimated expected returns and 

standard deviation of the two funds for different values of the benchmark’s expected return, 

offer no clear explanation as to why differences in relative performance is reduced for higher 

values of the benchmark’s expected return. The analysis regarding the second research 

problem is therefore inconclusive. Possible explanations are discussed in Chapter 7.8. 

 

While no clear cause is found for the increase in relative performance difference between the 

two funds, comparing the estimated standard deviations of the two funds to twice the 

estimated standard deviation of the benchmark offers some explanation as to why both funds 

underperforms the benchmark. The results from Chapter 7.5.4 shows that the estimated 

standard deviations of both funds are significantly higher than twice the estimated standard 

deviation of the benchmark for weekly and monthly time horizons. The daily estimated 

standard deviations for the two funds are also higher than double the estimated standard 

deviation of the benchmark, but these differences are not significant. 
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8.1 Weaknesses of results and further research. 

The results acquired in this master thesis are based on simulation runs, which is turn is based 

on simplifications. The transaction costs associated with the rebalancing of a Bull fund also 

encompasses brokerage fees, clearing fees and depot costs. The size of the spread might also 

be subject to change depending on the factors presented in Chapters 3.2.2-3.2.4. The spread 

size used in our simulations is an average based on the data available at Oslo stock 

exchange’s home page. However, the order books on stock index futures at Oslo stock 

exchange are closed, so the data for intraday trades are not available to the public.  

 

The method applied to investigating the research problems might not be the optimal, as the 

analysis is inconclusive with regards to research problem 2. In the discussion in Chapter 7.8 

we show how it might be possible that the M-squared measure is only driven by the increase 

in the standard deviation of the benchmark. Another aspect is that comparing the M-squared 

measures of the Bull fund with and without costs, means comparing four different variables: 

The expected returns of both funds, and the standard deviations of both funds. If say, varying 

the standard deviation of the benchmark has an effect on all these variables, it can be hard to 

determine the effect transaction costs might have on the fund.  

 

In retrospect, a possible alternate method could be a direct comparison of Sharpe ratios of the 

two funds as well as to the benchmark, with supplementary comparisons of the estimated 

expected returns and standard deviations of the funds relative to the estimated expected 

returns and standard deviations of the benchmark.    
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Appendix 

Deriving the expected return of a Bull fund without costs: 

The expected value of the Bull fund (6.7) at day 1 can be expressed as: 

 

𝐸 𝑈1 = 𝑈0 ∗ (𝑒𝑟∗∆𝑡 + 2 ∗ 𝑒 µ−𝑟 ∗∆𝑡 − 2) 

 

Where µ is the expected return of the benchmark. The expression in the parenthesis is the 

growth factor. It can be approximated as: 

𝑒𝑟∗∆𝑡 + 2 ∗ 𝑒 µ−𝑟 ∗∆𝑡 − 2 ≈ 1 + 𝑟 ∗ ∆𝑡 + 2 1 +  µ − 𝑟 ∗ ∆𝑡 − 2 = 1 +  2 ∗ µ − 𝑟 ∗ ∆𝑡 (1) 

 

The expected return of the Bull fund at day 𝑛 can be written: 

𝐸 𝑈𝑛  = 𝑈0 𝑒
𝑟∗∆𝑡 + 2 ∗ 𝑒 µ−𝑟 ∗∆𝑡 − 2 

𝑛
                  (2)  

 

By combining (1) with (2), the Expected return at day 𝑛 can be expressed as: 

𝐸 𝑈𝑛  ≈ 𝑈0 ∗  1 +  2µ − 𝑟 ∗ ∆𝑡 𝑛  

(Haga&Lindset, 2009) 
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MATLAB SCRIPT FOR RUNNING SIMULATIONS AND ESTIMATING 

PERFORMANCE MEASURES, EXPECTED RETURNS AND STANDARD 

DEVIATIONS. 

clc,clear,clear all,close all 

  

r=0.0;             %The cc risk-free rate 

f=0.00;            %The cc management fee of a Bull fund  

spread=0.00316;     %Futures price spread 

T=1;            %Length of period measured in years 

n=T*250;            %Number of steps in a single simulated path  

m=70000;          %Number of simulations 

mu=0.10;            %CC expected return of the stock index 

sigma=0.30;         %Standard deviation of the stock index 

dt=T./n;            % Size of each timeperiod 

M=2;                % Bull fund multiple 

t=dt:dt:T;          %Time horizon 

  

S0=100;             %Index price at time 0 

V0=100;             %Value of Bull fund at time 0 

S=zeros(m,n);       %Matrix reserved for Index prices 

V=zeros(m,n);       %Matrix reserved for Bull fund values   

F=zeros(m,n);       %Matrix reserved for Futures' prices 

N=zeros(m,n);       %Matrix reserved for number of futures contracs 

  

  

S(1:m,1)=S0;        %Assigns the value S0 as the index price at time 0 

V(1:m,1)=V0;        %Assigns the value V0 as V's value at time 0 

F(1:m,1)=S0.*exp(r.*T);             %Assigns the futures price at time 0 

U(1:m,1)=V0;                       %Assigns V0 as U's value at time 0 

N(1:m,1)=(M.*V(1:m,1))./F(1:m,1);   %Assigns the number of contracts at time 0 

G=zeros(7,m);    %Matrix that stores returns and end value of fund 

  

for j=1:m 

    for i=1:n 

        R=((mu-0.5.*sigma.^2).*dt+sigma.*sqrt(dt).*randn);  %Stock index return per period dt 

        S(j,i+1)=S(j,i).*exp(R);                            %Price path of stock index 

        F(j,i+1)=S(j,i+1).*exp(r.*(T-i.*dt));               % Futures price path 

        Vt = V(j,i)*( exp(r*dt)+M*(exp(R-r*dt)-1) )*(1-(exp(f*dt)-1));  %Value of V  

                                                                        %less management fee 

         

        N(j,i+1) = M*Vt/F(j,i+1);                           %Number of contracts per period 

        dN = abs( N(j,i+1)-N(j,i) );                        %Change in number of contracts 

        U(j,i+1) = U(j,i)*(exp(r*dt)+M*(exp(R-r*dt)-1));    %Value of U per period 

        V(j,i+1) = Vt-dN*spread*F(j,i+1)/2;                 %Value of V less spread and 

                                                            %management fee per period 

     

    end 

    RS = (S(j,end)/S(j,1)-1);   %Calculates the return of the stock index 

    RV  = (V(j,end)/V(j,1)-1);  %Calculates the return of V 

    RU = (U(j,end)/U(j,1)-1); %Calculates the return of U 

  

    G(1,j)= RV;                 %Matrix that stores the return of V 

    G(2,j)= RU;                 %Matrix that stores the return of U 

    G(3,j)= RS;                %Matrix that stores the return of the stock index 

    G(4,j)=RS*2;                %Matrix stores twice the return of S 

     

end 

  

% computations of expected returns and std. deviations of returns 

meanRV = mean(G(1,:));            %Calculates Expected return of V 

meanRU = mean(G(2,:));          %Calculates Expected return of U 

meanRS = mean(G(3,:));          %Calculates Expected return of index 

  

stdRV = std(G(1,:));            %Calculates the standard deviation of V 

stdRU = std(G(2,:));            %Calculates the standard deviation of U 

stdRS = std(G(3,:));            %Calculates the standard deviation of index 

  

SharpeRV=(meanRV-(exp(r*T)-1))/stdRV;       %Calculates the Sharpe ratio of V 

SharpeRU=(meanRU-(exp(r*T)-1))/stdRU;       %Calculates the Sharpe ratio of U 

SharpeS=(meanRS-(exp(r*T)-1))/stdRS;        %Calculates the Sharpe ratio of index 

  

M2U=((SharpeRU-SharpeS).*stdRS)*100       %Calculates the M^2 of U 
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M2V=((SharpeRV-SharpeS).*stdRS)*100       %Calculates the M^2 of V 

M2D=M2U-M2V                                %The difference between M2u and M2v 

  

  

[Vmean, Vstd, Vlowbnd, Vupbnd] = meanstd(G(1,:));    %Estimates V's expected return w/95% CI 

[Umean, Ustd, Ulowbnd, Uupbnd] = meanstd(G(2,:));    %Estimates U's expected return w/95% CI 

[Smean, Sstd, Slowbnd, Supbnd] = meanstd(G(4,:));    %Estimates S's double expected return 

w/95% CI 

  

[stdRV, lowStdRV, upStdRV] = stdconf(G(1,:)) ;    %Estimates V's standard dev. w/95% CI 

[stdRu, lowStdRu, upStdRu] = stdconf(G(2,:));     %Estimates U's standard dev. w/95% CI 

[stdRS, lowStdRS, upStdRS] = stdconf(G(4,:));     %Estimates S's double standard dev. w/95% CI 

 

 

MATLAB FUNCTION: meanstad.m 
 
function [amean, astd, lowbnd, upbnd] = meanstd(x, dt) 

  

% Function [amean, astd, lowbnd, upbnd] = meanstd(x, dt) or 

%          [amean, astd, lowbnd, upbnd] = meanstd(x) 

% The function calculates the (annualized) mean of x, standard 

% deviation of x, and 95% cofidence interval for mean value of x 

% Input: x - vector , dt - time interval 

% Output:  

% (1) amean - (annualized) mean, 

% (2) astd - (annualized) standard deviation 

% (3) lowbnd - lower bound of the 95% confidence interval for amean 

% (3) upbnd  - upper bound of the 95% confidence interval for amean 

% If you call [amean, astd, lowbnd, upbnd] = meanstd(x) then it is assumed 

% that dt = 1 

% If you do not need lower and upper bounds, just call  

% [amean, astd] = meanstd(x, dt) 

  

if nargin < 2           

    dt = 1;             % if we supply only one argument 

end 

  

amean = mean(x)/dt;     % mean / annual mean    

  

s = std(x);             % standard deviation 

  

astd = s/sqrt(dt);      % std / annual std 

  

n = length(x);          % get the length of vector x 

err = s/sqrt(n)/dt;     % calculate std. error 

  

lowbnd = amean - 1.96*err; 

upbnd  = amean + 1.96*err; 

 

 

MATLAB FUNCTION: stdconf.m 
 
function [astd, lowbnd, upbnd] = stdconf(x) 

  

astd = std(x);                      %Calculates standard deviation of x 

n = length(x);                      %Number of observations 

v = var(x);                         %Calculates variance of x 

lowbnd = sqrt((n-1)*v/chi2inv(0.975, n-1));%Calculates lower bound of 95% CI 

upbnd = sqrt((n-1)*v/chi2inv(0.025, n-1)); %Calculates Upper bound of 95% CI 
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Table 7.1-The M-squared Measure of U: M2U 

M2U Daily Weekly Monthly  Quarterly Semi-Annually Annually 

T 0,004 0,020 0,080 0,240 0,500 1,000 

µ=10% 
     

  

σ=20% 0,0000% -0,0001% -0,0019% -0,0162% -0,0708% -0,2843 % 

σ=25% 0,0000% -0,0001% -0,0020% -0,0200% -0,0974% -0,3577 % 

σ=30% 0,0000% -0,0002% -0,0035% -0,0247% -0,1159% -0,4347 % 

σ=40% 0,0000% -0,0001% -0,0043% -0,0439% -0,2172% -0,7270 % 

              

µ=15%             

σ=20% 0,0000% -0,0002% -0,0052% -0,0454% -0,2086% -0,8333% 

σ=25% 0,0000% -0,0003% -0,0062% -0,0538% -0,2437% -1,0566% 

σ=30% 0,0000% -0,0005% -0,0068% -0,0666% -0,3064% -1,2336% 

σ=40% 0,0000% -0,0004% -0,0094% -0,1075% -0,4035% -1,7769% 

              

µ=20%             

σ=20% 0,0000% -0,0005% -0,0096% -0,0915% -0,3934% -1,6525% 

σ=25% 0,0000% -0,0007% -0,0115% -0,1029% -0,4823% -1,9306% 

σ=30% 0,0000% -0,0009% -0,0126% -0,1207% -0,5522% -2,2273% 

σ=40% 0,0000% -0,0012% -0,0180% -0,1756% -0,7010% -2,9728% 

              

µ=30%             

σ=20% 0,0000% -0,0012% -0,0230% -0,2207% -1,0037% -4,0752% 

σ=25% 0,0000% -0,0015% -0,0265% -0,2453% -1,1029% -4,4860% 

σ=30% 0,0000% -0,0016% -0,0289% -0,2769% -1,2356% -5,1369% 

σ=40% 0,0000% -0,0021% -0,0374% -0,3520% -1,5635% -6,3708% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 

Table 7.2-M-squared measure of V: M2V 

M2V Daily Weekly Monthly  Quarterly Semi-Annually Annually 

T 0,004 0,020 0,080 0,240 0,500 1,000 

µ=10% 
     

  

σ=20% -0,0016% -0,0080% -0,0337% -0,1113% -0,2676% -0,6730 % 
σ=25% -0,0020% -0,0100% -0,0417% -0,1384% -0,3414% -0,8362 % 
σ=30% -0,0024% -0,0120% -0,0511% -0,1662% -0,4059% -0,9939 % 

σ=40% -0,0032% -0,0159% -0,0675% -0,2304% -0,5940% -1,4318 % 

              

µ=15%             

σ=20% -0,0016% -0,0082% -0,0369% -0,1394% -0,4001% -1,2030% 

σ=25% -0,0020% -0,0102% -0,0458% -0,1707% -0,4818% -1,5083% 
σ=30% -0,0024% -0,0124% -0,0542% -0,2065% -0,5887% -1,7691% 

σ=40% -0,0032% -0,0163% -0,0724% -0,2915% -0,7707% -2,4531% 

              

µ=20%             

σ=20% -0,0016% -0,0085% -0,0411% -0,1842% -0,5808% -2,0035% 
σ=25% -0,0020% -0,0106% -0,0509% -0,2185% -0,7138% -2,3628% 
σ=30% -0,0024% -0,0128% -0,0599% -0,2588% -0,8281% -2,7345% 

σ=40% -0,0032% -0,0170% -0,0808% -0,3576% -1,0598% -3,6156% 

              

µ=30%             

σ=20% -0,0016% -0,0091% -0,0543% -0,3110% -1,1808% -4,3914% 
σ=25% -0,0020% -0,0115% -0,0656% -0,3850% -1,3231% -4,8761% 
σ=30% -0,0024% -0,0135% -0,0758% -0,4115% -1,4971% -5,5945% 

σ=40% -0,0032% -0,0179% -0,0996% -0,5295% -1,9042% -6,9516% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 
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Table 7.3-Comparison of M-squared measures: M2U-M2V=M2D 

M2D Daily Weekly Monthly  Quarterly Semi-Annually Annually 

T 0,004 0,020 0,080 0,240 0,500 1,000 

µ=10% 
     

  

σ=20% 0,0016% 0,0079% 0,0318% 0,0951% 0,1968% 0,3887% 

σ=25% 0,0020% 0,0099% 0,0397% 0,1184% 0,2440% 0,4785% 

σ=30% 0,0024% 0,0118% 0,0476% 0,1415% 0,2900% 0,5592% 

σ=40% 0,0032% 0,0158% 0,0632% 0,1865% 0,3768% 0,7048% 

              

µ=15%             

σ=20% 0,0016% 0,0080% 0,0317% 0,0940% 0,1915% 0,3697% 

σ=25% 0,0020% 0,0099% 0,0396% 0,1169% 0,2381% 0,4517% 

σ=30% 0,0024% 0,0119% 0,0474% 0,1399% 0,2823% 0,5355% 

σ=40% 0,0032% 0,0159% 0,0630% 0,1840% 0,3672% 0,6762% 

              

µ=20%             

σ=20% 0,0016% 0,0080% 0,0315% 0,0927% 0,1874% 0,3510% 

σ=25% 0,0020% 0,0099% 0,0394% 0,1156% 0,2315% 0,4322% 

σ=30% 0,0024% 0,0119% 0,0473% 0,1381% 0,2759% 0,5072% 

σ=40% 0,0032% 0,0158% 0,0628% 0,1820% 0,3588% 0,6428% 

              

µ=30%             

σ=20% 0,0016% 0,0079% 0,0313% 0,0903% 0,1771% 0,3162% 

σ=25% 0,0020% 0,0100% 0,0391% 0,1397% 0,2202% 0,3901% 

σ=30% 0,0024% 0,0119% 0,0469% 0,1346% 0,2615% 0,4576% 

σ=40% 0,0032% 0,0158% 0,0622% 0,1775% 0,3407% 0,5808% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 

Table 7.4-Estimated daily expected returns of U and V. 

U Low Estimate High V Low Estimate High 

Daily T=0.004   U   Daily T=0.004   V   

µ=10% 
  

  µ=10% 
  

  

σ=20% 0,0585% 0,0604% 0,0622% σ=20% 0,0553% 0,0572% 0,0591% 
σ=25% 0,0569% 0,0592% 0,0616% σ=25% 0,0529% 0,0552% 0,0576% 
σ=30% 0,0560% 0,0588% 0,0617% σ=30% 0,0512% 0,0541% 0,0569% 
σ=40% 0,0554% 0,0591% 0,0629% σ=40% 0,0490% 0,0528% 0,0565% 

                

µ=15%       µ=15%       

σ=20% 0,0969% 0,0987% 0,1006 % σ=20% 0,0937 % 0,0955% 0,0974% 
σ=25% 0,0993% 0,1016% 0,1039 % σ=25% 0,0953 % 0,0976% 0,1000% 
σ=30% 0,0992% 0,1020% 0,1049 % σ=30% 0,0944 % 0,0973% 0,1001% 
σ=40% 0,0966% 0,1004% 0,1041 % σ=40% 0,0903 % 0,0940% 0,0978% 

                

µ=20%       µ=20%       

σ=20% 0,1367% 0,1411% 0,1429% σ=20% 0,1360% 0,1379% 0,1392% 
σ=25% 0,1379% 0,1402% 0,1426% σ=25% 0,1339% 0,1362% 0,1386% 
σ=30% 0,1360% 0,1388% 0,1417% σ=30% 0,1312% 0,1341% 0,1369% 
σ=40% 0,1374% 0,1411% 0,1449% σ=40% 0,1310% 0,1348% 0,1385% 

                

µ=30%       µ=30%       

σ=20% 0,2174% 0,2193% 0,2211% σ=20% 0,2142% 0,2161% 0,2179% 
σ=25% 0,2197% 0,2221% 0,2244% σ=25% 0,2157% 0,2181% 0,2204% 
σ=30% 0,2191% 0,2220% 0,2248% σ=30% 0,2144% 0,2172% 0,2200% 
σ=40% 0,2161% 0,2198% 0,2236% σ=40% 0,2097% 0,2134% 0,2172% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 
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Table 7.5-Estimated weekly expected returns of U and V. 

U Low Estimate High V Low Estimate High 

Weekly T=0.02   U   Weekly T=0.02   V   

µ=10% 
  

  µ=10% 
  

  

σ=20% 0,2885% 0,2950% 0,3014% σ=20% 0,2726% 0,2790% 0,2854% 

σ=25% 0,2936% 0,3016% 0,3097% σ=25% 0,2736% 0,2816% 0,2897% 

σ=30% 0,2907% 0,3004% 0,3100% σ=30% 0,2667% 0,2764% 0,2860% 

σ=40% 0,2807% 0,2936% 0,3064% σ=40% 0,2487% 0,2616% 0,2744% 

                

µ=15%       µ=15%       

σ=20% 0,4923% 0,4987% 0,5052% σ=20% 0,4763% 0,4827% 0,4891% 

σ=25% 0,4929% 0,5009% 0,5089% σ=25% 0,4728% 0,4809% 0,4889% 

σ=30% 0,4947% 0,5043% 0,5140% σ=30% 0,4707% 0,4803% 0,4900% 

σ=40% 0,4741% 0,4870% 0,4998% σ=40% 0,4421% 0,4549% 0,4678% 

                

µ=20%       µ=20%       

σ=20% 0,6959% 0,7023% 0,7088% σ=20% 0,6798% 0,6863% 0,6927% 

σ=25% 0,6926% 0,7006% 0,7087% σ=25% 0,6725% 0,6806% 0,6886% 

σ=30% 0,6863% 0,6959% 0,7056% σ=30% 0,6622% 0,6719% 0,6815% 

σ=40% 0,6917% 0,7046% 0,7176% σ=40% 0,6596% 0,6726% 0,6855% 

                

µ=30%       µ=30%       

σ=20% 1,0958% 1,1023% 1,1088% σ=20% 1,0797% 1,0862% 1,0926% 

σ=25% 1,0927% 1,1008% 1,1088% σ=25% 1,0725% 1,0806% 1,0887% 

σ=30% 1,0938% 1,1035% 1,1132% σ=30% 1,0696% 1,0793% 1,0890% 

σ=40% 1,0924% 1,1054% 1,1183% σ=40% 1,0602% 1,0732% 1,0861% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 

Table 7.6-Estimated monthly expected returns of U and V. 

U Low Estimate High V Low Estimate High 

Monthly T=0.08   U   Monthly T=0.08   V   

µ=10% 
  

  µ=10% 
  

  

σ=20% 1,1663% 1,1901% 1,2138% σ=20% 1,1018% 1,1255% 1,1492% 
σ=25% 1,1736% 1,2033% 1,2331% σ=25% 1,1164% 1,1460% 1,1557% 

σ=30% 1,1545% 1,1902% 1,2259% σ=30% 1,0930% 1,1227% 1,1524% 

σ=40% 1,1310% 1,1788% 1,2266% σ=40% 1,0021% 1,0499% 1,0976% 

                

µ=15%       µ=15%       

σ=20% 2,0090% 2,0248% 2,0487% σ=20% 1,9358% 1,9597% 1,9836% 
σ=25% 1,9926% 2,0225% 2,0525% σ=25% 1,9113% 1,9412% 1,9712% 
σ=30% 2,0051% 2,0411% 2,0771% σ=30% 1,9076% 1,9436% 1,9745% 

σ=40% 2,0038% 2,0520% 2,1002% σ=40% 1,8738% 1,9220% 1,9701% 

                

µ=20%       µ=20%       

σ=20% 2,8351% 2,8592% 2,8833% σ=20% 2,7695% 2,7936% 2,8177% 
σ=25% 2,8209% 2,8510% 2,8812% σ=25% 2,7390% 2,7691% 2,7992% 
σ=30% 2,8051% 2,8414% 2,8776% σ=30% 2,7068% 2,7430% 2,7793% 

σ=40% 2,8066% 2,8552% 2,9038% σ=40% 2,6756% 2,7242% 2,7727% 

                

µ=30%       µ=30%       

σ=20% 4,4710% 4,4955% 4,5200% σ=20% 4,4042% 4,4287% 4,4532% 

σ=25% 4,4606% 4,4913% 4,5219% σ=25% 4,3773% 4,4079% 4,4386% 
σ=30% 4,4567% 4,4935% 4,5304% σ=30% 4,3568% 4,3936% 4,4304% 

σ=40% 4,4136% 4,4630% 4,5123% σ=40% 4,2806% 4,3299% 4,3792% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 
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Table 7.7-Estimated daily standard deviations of U and V. 

stdU Low Estimate High stdV Low Estimate High 

Daily T=0.004   U   Daily T=0.004   V   

µ=10% 
  

  µ=10% 
  

  

σ=20% 2,5287% 2,5300% 2,5313% σ=20% 2,5285% 2,5298% 2,5312% 

σ=25% 3,1623% 3,1640% 3,1656% σ=25% 3,1622% 3,1638% 3,1655% 

σ=30% 3,7943% 3,7963% 3,7983% σ=30% 3,7941% 3,7961% 3,7981% 

σ=40% 5,0582% 5,0608% 5,0635% σ=40% 5,0579% 5,0605% 5,0632% 

                

µ=15%       µ=15%       

σ=20% 2,5300% 2,5313% 2,5327 % σ=20% 2,5298 % 2,5312% 2,5325% 

σ=25% 3,1629% 3,1645% 3,1662 % σ=25% 3,1627 % 3,1643% 3,1660% 

σ=30% 3,7953% 3,7973% 3,7992 % σ=30% 3,7950 % 3,7970% 3,7990% 

σ=40% 5,0603% 5,0629% 5,0656 % σ=40% 5,0600 % 5,0626% 5,0653% 

                

µ=20%       µ=20%       

σ=20% 2,5299% 2,5312% 2,5326% σ=20% 2,5297% 2,5310% 2,5323% 

σ=25% 3,1619% 3,1635% 3,1652% σ=25% 3,1616% 3,1633% 3,1649% 

σ=30% 3,7943% 3,7963% 3,7983% σ=30% 3,7940% 3,7960% 3,7980% 

σ=40% 5,0629% 5,0655% 5,0682% σ=40% 5,0625% 5,0652% 5,0678% 

                

µ=30%       µ=30%       

σ=20% 2,5301% 2,5314% 2,5328% σ=20% 2,5298% 2,5311% 2,5324% 

σ=25% 3,1641% 3,1657% 3,1674% σ=25% 3,1637% 3,1654% 3,1670% 

σ=30% 3,7973% 3,7993% 3,8013% σ=30% 3,7969% 3,7989% 3,8009% 

σ=40% 5,0638% 5,0665% 5,0691% σ=40% 5,0634% 5,0660% 5,0687% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 

Table 7.8-Estimated weekly standard deviations of U and V. 

stdU Low Estimate High stdV Low Estimate High 

Weekly T=0.02   U   Weekly T=0.02   V   

µ=10% 
  

  µ=10% 
  

  

σ=20% 5,6702% 5,6747% 5,6793% σ=20% 5,6691% 5,6737% 5,6782% 
σ=25% 7,0915% 7,0972% 7,1028% σ=25% 7,0900% 7,0957% 7,1014% 
σ=30% 8,5085% 8,5153% 8,5221% σ=30% 8,5065% 8,5133% 8,5201% 
σ=40% 11,3705% 11,3796% 11,3887% σ=40% 11,3671% 11,3762% 11,3853% 

                

µ=15%       µ=15%       

σ=20% 5,6806 % 5,6852 % 5,6897 % σ=20% 5,7695% 5,6840% 5,6886% 
σ=25% 7,1056 % 7,1113 % 7,1170 % σ=25% 7,1040% 7,1097% 7,1154% 
σ=30% 8,5342% 8,5411% 8,5479% σ=30% 8,5321% 8,5389% 8,5457% 
σ=40% 11,3805% 11,3896% 11,3987% σ=40% 11,3769% 11,3860% 11,3987% 

                

µ=20%       µ=20%       

σ=20% 5,6907% 5,6952% 5,6998% σ=20% 5,6894% 5,6940% 5,6985% 

σ=25% 7,1183% 7,1240% 7,1297% σ=25% 7,1166% 7,1223% 7,1280% 
σ=30% 8,5411% 8,5480% 8,5548% σ=30% 8,5389% 8,5457% 8,5525% 
σ=40% 11,3975% 11,4066% 11,4158% σ=40% 11,3938% 11,4030% 11,4121% 

                

µ=30%       µ=30%       

σ=20% 5,7097% 5,7143% 5,7188% σ=20% 5,7082% 5,7128% 5,7173% 
σ=25% 7,1398% 7,1455% 7,1513% σ=25% 7,1379% 7,1436% 7,1493% 
σ=30% 8,5776% 8,5845% 8,5913% σ=30% 8,5751% 8,5819% 8,5888% 

σ=40% 11,4504% 11,4596% 11,4688% σ=40% 11,4465% 11,4556% 11,4648% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 
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Table 7.9-Estimated monthly standard deviations of U and V. 

stdU Low Estimate High stdV Low Estimate High 

Monthly T=0.08   U   Monthly T=0.08   V   

µ=10% 
  

  µ=10% 
  

  

σ=20% 11,4775% 11,4943% 11,5111% σ=20% 11,4700% 11,4867% 11,5035% 

σ=25% 14,3586% 14,3796% 14,4007% σ=25% 14,3471% 14,3680% 14,3891% 

σ=30% 17,2877% 17,3129% 17,3383% σ=30% 17,2712% 17,2964% 17,3217% 

σ=40% 23,1289% 23,1627% 23,1965% σ=40% 23,0998% 23,1336% 23,1674% 

                

µ=15%       µ=15%       

σ=20% 11,5646% 11,5815% 11,5985% σ=20% 11,5568% 11,5736% 11,5906% 

σ=25% 14,4771% 14,4982% 14,5194% σ=25% 14,4651% 14,4863% 14,5075% 

σ=30% 17,3884% 17,4138% 17,4393% σ=30% 17,3716% 17,3969% 17,4224% 

σ=40% 23,3011% 23,3352% 23,3693% σ=40% 23,2716% 23,3056% 23,3396% 

                

µ=20%       µ=20%       

σ=20% 11,6407% 11,6577% 11,6747% σ=20% 11,6326% 11,6496% 11,6666% 

σ=25% 14,5911% 14,6124% 14,6338% σ=25% 14,5789% 14,6002% 14,6215% 

σ=30% 17,5066% 17,5322% 17,5578% σ=30% 17,4894% 17,5150% 17,5406% 

σ=40% 23,5341% 23,5685% 23,6030% σ=40% 23,5040% 23,5383% 23,5728% 

                

µ=30%       µ=30%       

σ=20% 11,8382% 11,8555% 11,8728% σ=20% 11,8294% 11,8467% 11,8640% 

σ=25% 14,8124% 14,8341% 14,8558% σ=25% 14,7995% 14,8211% 14,8428% 

σ=30% 17,7986% 17,8246% 17,8506% σ=30% 17,7806% 17,8066% 17,8326% 

σ=40% 23,8490% 23,8839% 23,9188% σ=40% 23,8180% 23,8528% 23,8877% 

r=0.05, 𝒇 = 𝟎, spread=0.00316 
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Table 7.10-Estimated daily, weekly and monthly double standard deviation of S. 

 

r=0.05, 𝒇 = 𝟎, spread=0.00316 
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Table 7.11-Estimated daily expected returns with management fee and bid-ask spread. 

V* Low Estimate High 

Daily T=0.004       

µ=10% 
  

  

σ=20% 0,0508% 0,0526% 0,0545% 

σ=25% 0,0518% 0,0541% 0,0565% 

σ=30% 0,0482% 0,0510% 0,0538% 

σ=40% 0,0474% 0,0511% 0,0549% 

        

µ=15%       

σ=20% 0,0926% 0,0945% 0,0963% 

σ=25% 0,0901% 0,0925% 0,0948% 

σ=30% 0,0869% 0,0897% 0,0925% 

σ=40% 0,0840% 0,0877% 0,0915% 

        

µ=20%       

σ=20% 0,1309% 0,1328% 0,1346% 

σ=25% 0,1308% 0,1332% 0,1355% 

σ=30% 0,1299% 0,1327% 0,1356% 

σ=40% 0,1262% 0,1300% 0,1337% 

        

µ=30%       

σ=20% 0,2116% 0,2135% 0,2153% 

σ=25% 0,2102% 0,2125% 0,2149% 

σ=30% 0,2069% 0,2097% 0,2125% 

σ=40% 0,2051% 0,2088% 0,2126% 

r=0.05, 𝒇 = 𝟎.𝟎𝟎𝟖, spread=0.00316 

 

 

Table 7.12-Estimated daily expected return of S. 

S, r=5% Low Estimate High 

Weekly T=0.02       

µ=10% 
  

  

σ=20% 0,3914% 0,3978% 0,4042% 

σ=25% 0,3925% 0,4005% 0,4085% 

σ=30% 0,3901% 0,3998% 0,4094% 

σ=40% 0,3958% 0,4087% 0,4215% 
r=0.05, 𝒇 = 𝟎, spread=0.00316 
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Table 7.13-Estimated daily expected return of U, V and estimated daily double expected return of S. 

r=0% Low Estimate High 

Weekly T=0.02 
  

  

µ=10%   V   

σ=20% 0,3796% 0,3860% 0,3924% 

σ=25% 0,3777% 0,3857% 0,3938% 

σ=30% 0,3640% 0,3737% 0,3833% 

σ=40% 0,3524% 0,3653% 0,3782% 

        

µ=10%   U   

σ=20% 0,3956% 0,4020% 0,4084% 

σ=25% 0,3977% 0,4057% 0,4138% 

σ=30% 0,3880% 0,3977% 0,4073% 

σ=40% 0,3844% 0,3973% 0,4102% 

        

µ=10%   S   

σ=20% 0,3953% 0,4018% 0,4082% 

σ=25% 0,3973% 0,4053% 0,4134% 

σ=30% 0,3878% 0,3974% 0,4070% 

σ=40% 0,3840% 0,3969% 0,4097% 
r=0.05, 𝒇 = 𝟎, spread=0.00316 

 


