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1. Introduction 
 
 
In this paper I will present a one-sector real business cycle (RBC) model, and see how the 

complexity and the structure behind a dynamic stochastic general equilibrium (DSGE) model. 

The motivation of this paper is to learn how these models work. One reason for this 

motivation is that these models are beginning to be central in different decision making 

processes in economics. Especially central banks are using DSGE models in their decisions 

making process. Since the central banks are using these types of models, this thesis will see in 

short terms on how these models have developed. The RBC model that will be presented in 

this paper comes from Ruge-Murcia (2007). Since central part of the model is analyzed 

numerically much of the underlying structure is hidden. Is my goal to ravel some of the 

underlying structure that is important for the understanding on the complexity of the 

likelihood function.  

 

Maximum likelihood estimation (MLE) is often used when DSGE models are estimated. 

There is also three other methods: Generalized method of moments, simulated method of 

moments and the indirect procedure proposed by Smith (1993). Ruge-Murcia (2007) uses all 

these methods and compares them. I will present the all the preparation behind the likelihood 

function so we can be able to use MLE. To use MLE in the Ruge-Murcia (2007) model we 

have to estimate values for an unknown parameter. This is done with a technique called 

Kalman filter. In this paper I will outline an introduction to this technique, and also connect it 

with our specific case. When presenting this model analytically we will easily see how 

complex these models are. The main result for this paper is that it reveals the DSGE model 

interdependency of the structural variables in a very non-linear way. The maximum likelihood 

function presented in Ruge-Murcia (2007) seems really straight forward due to the notation he 

uses, but the likelihood depends on the structural parameters in a very complex way. I will 

present five additional results to the Ruge-Murcia (2007) article. The first four results are 

needed for computing the likelihood function in just structural parameters. For the sake of 

readability the proof for the additional results, have been organized in an appendix. The text 

will then not be so interrupted with mathematical expressions. Major bulk of work went into 

the analytical proofs. Still they are organized in appendix for the readability.   

 

The paper will be organized as follow: Section 2 will outline the historic background for 

DSGE models and also some facts about these models. Section 3 will present the model of 
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Ruge-Murcia with the additional proofs and results. Section 4 describes the MLE in general 

and for this model. In this section I will also provide a short sketch of the Kalman filter. 

Section 5 contains the conclusion part.  

 

2. The Background for DSGE models 

 

DSGE stands for “dynamic stochastic general equilibrium” model and it is a modern 

macroeconomic model. This is a long-term general equilibrium model, and is derived from 

microeconomic principals. These models play an important role for economist and actors that 

are interesting in analyzing monetary policies at a macroeconomic perspective. Many central 

banks including Norway is already using these types of models in their decision making 

process1. 

 

One aspect of these models is that it includes one or more random shocks. This is where the 

stochastic element is included in the model. But because of the fluctuation over time and 

randomness these models are more difficult to use for people with little mathematic 

background. One typical feature of DSGE models is that the behavior of the different 

economic agents is modeled explicitly and founded on choice-theoretic assumptions. What’s 

making DSGE models singular are because they use a small number of structural shocks to 

generate predictions about a large number of observable variables. 

 

The DSGE model that will be presented later in this paper is a typical earlier DSGE model. 

Here it will be more focus on the supply side, because it will contain a technology shock that 

affects the firms. These models have feature from the new classical macro view and are often 

called “real business cycle” models, because it’s assumed that the economy have perfect 

competition and fully flexible prices. 

 

2.1 The Beginning  

 

In 1936 J.M. Keynes2 published a monograph that revolutionized the thinking on economy, 

and especially macro economy. He provided a model that could be used to give a better 

understanding of macro economy, and how different policies would affect the economy. Even 

                                                           
1
  See for example Bank of England (2004) and Fenton and Murchison (2006)  

2
 Keynes, J.M. (1936). The General Theory of Emplyment, Interest, and Money. Macmillan. London  
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in the late 1970s and 1980s central banks were relying on the Keynesian paradigm. But in the 

late 60s a famous economist called Milton Friedman argued against Keynes, and tried to start 

a new revolution in macroeconomic thinking. This was the start of the monetarist. The biggest 

discussions between Keynes and the monetarists where on how they interpret interest 

sensitivity and monetary policy. According to Keynes monetary policy will not help, because 

the additional money will simply be absorbed by investors with no noticeable effect on 

interest rate. Fiscal policy, on the other hand, will work really well3. The monetarist thinks 

that monetary policy has an effect, but the policy maker is however not very good at timing 

monetary policy. Under monetarist assumptions fiscal policy is unable to influence 

employment and output4. This is the main cause monetarists are against the Keynesians 

thinking.  

 

In 1961 John Muth published an article that argued that the modeling of expectations wasn’t 

good enough. Muth proposed that: expectations, since they are informed predictions of future 

events, are essentially the same as the predictions of the relevant economic theory5. Muth 

formulated hypothesis that claimed that the economy generally does not waste information, 

and the formulation of the expectations depends specifically on the structure of the entire 

system describing the economy. The two main conclusions from his study of expectations 

data can be summarized: The average expectations in an industry is quite accurate, and 

reported expectations seems to underestimate the actual change that takes place.  

 

Then Robert E. Lucas in 1976 presented a radical new way of thinking in econometric 

models. He used Muths (1961) thinking about rational expectations in his discussion, and 

argued that the popular macroeconomic models that economist were using at that time was 

totally useless. In evaluation the effect of different type of economic policy they could not be 

used. He meant that older standard models do not match several important characteristics of 

econometric practice. By adding a new general structure that includes stochastic parameters, 

the models will be much closer to these characteristics. The work of Lucas convinced many in 

the game that using rational expectations would require large adjustment in the models they 

already were using, and that it will deliver different theoretical outcomes. This also led to 

more micro based macroeconomic models. He argued that we have to look at the structure of 

the model, not just the parameter value. The method that often was used is to look at historical 

                                                           
3
 Heijdra, B.J. and F. van der Ploeg (2002): The Foundations of Modern Macroeconomics, page 20 

4
 Heijdra, B.J. and F. van der Ploeg (2002): The Foundations of Modern Macroeconomics, page 23 

5
 J. Muth: Rational Expectations and the Theory of Price Movments, page 316 
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data, look after correlations and then try to formulate a function that fits this data. The new 

way of thinking was to try and formulate functions for a representative agent that can include 

expectations. Both on the supply- and demand side of the economy. We can summarize the 

Lucas critique like this: If the structure of a model is affected by political methods of 

operations, then it will be useless to analyze changes in the same methods of operations6.  

 

2.2 Evolution 

 

After the Lucas critique there has been a large development in these types of models. New 

ways of solving and estimate complicated mathematical functions gives us more 

opportunities. But the idée behind DESG models we already can find back in the 1970s. 

According to the Norwegian DSGE model NEMO (Brubakk, Husebø, Maih, Olsen and 

Østnor 2006) the new DEGE models also contains some New Keynesian aspects in the short-

run. This because they have two additional features: Nominal rigidities and Monopolistic 

competition. New Keynesian economists argued that economy contained imperfect 

competition, and because of this there are also sticky prices. There were also many new 

Keynesian economists argued and used very rigid wages. Because of these two additional 

features the model acts in a different way.  Even if there are nominal rigidities in the short 

run, the prices and wages are assumed to be fully adjusted in the long run. Monetary policy 

can affect the economy in the short run, but in the long run it can only affect nominal 

variables.    

 

Rational expectation policy models was introduced in the 1980s, this gave the macroeconomic 

models ha deeper insight in important economical issues, like exchange rate overshooting. 

Macroeconomic models that where developed in the late 1980s and 1990s were focusing on 

rational expectations, but also trying to use more micro-based relationships in modeling the 

different agents. These models were often called real-business-cycle models where prices 

were fully flexible (Kydland and Prescott 1982). These models developed, and an important 

improvement was that they started to include some form of normal inertia. To find an exact 

date when DSGE models came is quite difficult. But the last ten years the DSGE models 

development is quite enormous. In 1992 Bernanke and Blinder presented a model that tried to 

see how monetary policy affects the real economy. This had already been done in an IS-LM 

view, not in a more structural micro based setting. Here they try to measure the effects of a 

                                                           
6
 Mork, K.A. (2008): Modeller og pengepolitikk. Samfunnsøkonomene, nr. 1, page 12 
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policy change by modeling a policy shock that could be measured. One catch is that they 

isolate the direct measure of Federal Reserve policy, so it does not become completely 

stochastic. Leeper and Sims (1994) presented a dynamic general equilibrium model. They 

thought there model was a potential competitor to the standard IS-LM based models. This 

model has many shocks and stochastic elements. It already has many elements of a modern 

DSGE model, for example: different agents are explicitly modeled. There are people who 

identify Rotemberg and Woodford (1997) as the start of a New Keynesian DSGE model.  

 

They try to derive a complete structural model to answer the Lucas critique. They use an 

optimization-based approach, and have a variable for monetary policy shock. They also use 

monopolistic competition. If you go through this model we can see elements that are used in 

later articles. An example of this is the use of a monetary policy shock. Other articles that 

modify this are Rotemberg and Woodford (1999) and Gali (2000). An important article for the 

development of today’s DSGE models is Christiano, Eichenbaum and Evans (2001). They use 

both Leeper and Sims (1994) and Rotemberg and Woodford (1997) as a starting point. Their 

model tries to prevent a large rise in marginal cost after an expansionary shock to monetary 

policy. They seek to understand the observed inertial behavior in inflation and persistence in 

aggregate quantities. The model GEM (Bayoumi with assistance 2003) uses the CEE (2001) 

model as a starting point. But making it more international, not just focusing so much one US. 

Another model that uses CEE (2001) very much is Smets and Wouters (2003). They focus on 

the euro area. They add more shocks to their model, and also they have even more specified 

functions for the different agents in the economy. This model is often used when different 

central banks formulate their DSGE models. In 2005 Christiano, Eichenbaum and Evans 

(CEE) took their old model an added some more empirical work and test. They try to answer 

the question: Can models with moderate degree of nominal rigidities generate inertial 

inflation and persistence output movements in response to a monetary policy shock? Their 

answer is yes. Belaygorod and Dueker (2005) use CEE (2005) article, but focus more on the 

central banks with using inflation targeting. They mean that the promise of estimated DSGE 

models is that one can take the parameter estimates, plug them into the underlying optimizing 

model, and perform welfare calculations. This is way policymakers should know the benefits 

of interest rate smoothing. They try to get a sharper specification of interest rate smoothing 

into a DSGE model. The NEMO model used in the central bank of Norway is estimated using 

techniques proposed in Bayoumi (2003) and Smets and Wouters (2003). 
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The use of models in monetary policy decisions is important. A model cannot give us the 

correct answer. But they are very helpful for the central-banks. Norway uses these models as a 

guideline for where the economy is heading in the future. It is important to take into 

consideration that different models have different properties. Many central-banks use many 

different models. In Holmsen, Nicolaisen and Røisland (2007) paper they recommend not 

using just one model for the monetary policy analysis. It is of course important that a decision 

is not just based on the output from the model(s). General economic theory and experience 

from other countries is also important input in a decision making process. Models are a good 

tool for helping us to understand different aspects of the economy. But they always have to 

continuing their development, so that they could be more accurate. This will make decisions a 

lot easier.     

 

According to Mork (2008) models that the central bank of Norway uses have to give us the 

most correct picture on how important economic variables like inflation will be affected by 

different political decisions7. He means that the only way to achieve this is by using totally 

structured models. These models have to explicit use the representative agent’s behavior, 

expectations and decisions as a starting point. An important part is to get information and do 

the calculations over time. DSGE models have all these properties. DSGE models need to 

continue their development even further because they are not perfected. A model will never 

be perfect, and obvious reason is that it is impossible to predict the future. But models like 

DSGE is today’s future models. The application and interpretation of different models 

requires a sound understanding of the structural differences between models. In the rest of this 

thesis I will present, a prototype DSGE model and I will study and reveal its structural 

complexity.   

 

3. The Model 

 

The model I am going to use was first presented by G. D Hansen in 1985. This is a one-sector 

RBC model with indivisible labor. The more specific version comes from Ruge-Murcia 

(2007). 

 

 

                                                           
7
 Mork, K.A. (2008): Modeller og pengepolitikk. Samfunnsøkonomene, nr. 1, page 12 
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3.1 Households  

 

The representative agent will maximize the expected lifetime utility function.  

 

�� � �����
��� 	ln��� + ��1 − ���� 

 

Here β ∈ (0, 1) is the discount factor, ct is the consumption, nt is hours worked and ψ is a 

utility weight. ψ can be interpreted as a parameter that regulates the agent valuing of spare 

time (1 – nt). If this parameter is high then spare time is highly valued for the agent, and the 

opposite for a low value. In this economy the population growth is zero, and the size and time 

endowment are normalized to one. The budget constraint consist the agent’s income on the 

right-hand side and the expenditure on the left-hand side.  

 � + �� = ���� + ���� 
 

Here xt is investment, wt it the real wage, r t is the real rental rate of capital, and kt is the capital 

stock. The right-hand side includes wages (wtnt) and rents received from selling labor and 

renting capital to firms (r tkt). This is allocated into the two left-hand side variables 

consumption and investment. The amount of investment at time t increases the capital stock at 

time t+1. 

  ���� = �1 − ���� + �� 
 

The parameter δ ∈ (0, 1) is the depreciation rate. In addition to the transversality condition it 

is necessary to have some first-order condition associated with the optimal choice of ct, nt and 

kt. The transversality condition fixes the behavior of some variables in the far future. We 

work backwards by fixing the future values and then compute backwards to our state of time. 

The first-order conditions have to be fulfilled if we are going to maximize the utility function. 

In Ruge-Murcia (2007) he presents these two: 

 1 �⁄ = �����1 ���⁄ ��1 + ���� − ��                                      (1)                                                

  �� = ��.                                                           (2) 
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To find these equations Hansen (1985) use a function called Bellman’s equation. The Bellman 

equation is a technique that can be used to find necessary conditions for an optimization 

problem. The man behind this technique if Richard Bellman. The Bellman equation is also 

called dynamic programming equation. This is a very useful technique when we are dealing 

with a dynamic optimization problem. This is so in our case, because we have movement in 

every time t. It is a recursive technique working backward. The backward recursion technique 

always solves the original problem if a solution exists8.  For a good introduction to the 

Bellman equation I recommend reading Sargent (1987 chapter 1). Equation (2) is not that 

complicated to find. Since it is not lagged, you could just form a one-period Lagrange 

function and solve for ct and nt. This is because the condition has to hold in every period.  

 ���, �� , !� = ���	ln��� + ��1 − ���� − !����� + ���� − � − ��� 

 

Then find the partial derivatives for ct and nt.  

 "�"� = ��� # 1�$ − ! = 0 

"�"�� = −���� + !�� = 0 

"�"! = ���� + ���� − � − �� 
 

Here we can see that there are some expectation operators left. But Et applied to a constant 

like ψ is just the constant himself. Since ct is know in time t, 1/ct is predetermined. The 

expectation in time t of a predetermined variable in time t, will turn out be a constant. So there 

are non difficulties with expectations sign. After the Lagrange multiplier (λ) is eliminated we 

will get the last first-order condition (2). 

 

3.2 Firms 

 

In this economy there is only one good, and this good is produced by perfectly competitive 

firms. The representative firm rents labor and capital from the agent and combines them using 

                                                           
8
 Sargent, T.J. (1987): Dynamic Macroeconomic Theory. Havard University Press, page 18 
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the constant returns to scale technology. This is a Cobb-Douglas function that includes a 

technology shock, where labor and capital is perfect substitutes.   

 &� = '���(����( 

 

Here α ∈ (0, 1), yt is the output and zt is a technology shock. The technology shock follows the 

exogenous stochastic process  

 )�'��� = *)�'� + +��� 

 

where ρ ∈ (-1, 1) and εt is the random element. This random element can be interpreted as 

innovation in technology next period. It is assumed that this element is independently, 

identically and normally distributed (i.i.d.N) with zero mean and variance σ2. The level of 

input is chosen such that the firms maximize their profit and equates the marginal product of 

labor (capital) to the real wage (rental rate). This procedure happens in every period. The 

equilibrium for this economy is the sequence of prices {wt, rt }-�.∞  and allocations {ct, nt, xt, 

kt+1 yt }-�.∞   such that firms maximize profits, agents maximize utility, and all markets clear9.      

 

3.3 Linearization of the Model 

 

It can be showed that this economy converges to a steady state. A common strategy to solve 

DSGE models is to determinate a steady state and move the whole system to this deterministic 

steady state, in a next step we linearize the first-order condition and constraints by means of a 

first-order Taylor series expansion around the deterministic steady state. Often this 

deterministic steady state is origin. This process can contain complicated math, Ruge-Murcia 

(2007) gives this linearization in percentage deviation from its steady state10.  Since these are 

given in percentage deviation it is not that difficult to check whether the central equations are 

right or not. Because we could use this combination,  

 

ln��� ≈ � −  =  ̂� 
 

                                                           
9
 Ruge-Murcia F.J (2007):  Methods to estimate dynamic stochastic general equilibrium models. page 2602 

10
 Ruge-Murcia F.J (2007):  Methods to estimate dynamic stochastic general equilibrium models. page 2634 
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where the parameter without subscript are the steady state values and the variable with the hat 

denotes the percentage deviation from steady state. For the two first-order conditions it is 

important to remember that wt is equal to the marginal product of labor, and r t is equal the 

marginal product of capital. First we start with the first-order condition. Remember that: 

 ���� = 2'���������(����������(. 
 

To rewrite equation (1) is not that straight forward as it seems. The rule I am going to use can 

be found in Mood, Graybill and Boes (1974)11. This rule is stated in the following way: 

 

� #45$ ≈ 6768 − 1689 :;<�4, 5� + 6768= >?��5�. 
 

Here µx and µy describes the expectations for X and Y. Our covariance is equal to zero to that 

term can be zeroed out. The last term is a little more difficult to interpret. But because µy 

raised to the third will be a very lager number, we will get a small number divided by a large 

number. This will go towards zero. If our data sample is large then Var(Y) also will go 

towards zero. So we can rewrite (1) into this:   

  1� = ��1 − �� + ������������ . 
 

After some manipulations we end up with an equation that is easy to work with if we are 

going to find the linearized function of this first-order condition. 

  ����� = ���1 − �� + ��������� 
 

Then we take the log to this equation and insert the log of r t+1. 

 �� ln ��� = @A B − @A C +B @A D + ln � + ��2 − 1��� ln ���� + ��1 − 2��� ln ���� + ��� ln '��� 

 

This equation has the same structure as presented in Ruge-Murcia (2007). The part which has 

been typed in bold face will disappear when we determine the steady state equilibrium to 

                                                           
11

 Mood, A.M., F.A. Graybill and D.C. Boes (1974): Introduction to the Theory of Statistics, 3th , page 181 
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origin. I will discuss how this is done later one in this paper. Then the second one starts with 

equation (2), and substitute wt with the marginal product of labor.      

 �� = �1 − 2�'�����(�����( 

 

Here the right-hand side has been substituted with the marginal product of labor. Then take 

the log to this function and solve for ln nt. 

 ln � = ln {�1 �⁄ ��1 − 2�'�����(�����(} ln �� = �F D⁄ ��@A�F G⁄ � + @A�F − D�� + �1 2⁄ � ln '� + ln �� − �1 2⁄ � ln � 
 

We can see that this has the same structure as given in the Ruge-Murcia (2007) article. The 

part that is written in fat will disappear when we move the steady state to origin. This is 

because we do not have a fixed point in origin. Comparing for the product function. 

 ln &� = ln�'�����(������(� ln &� = ln '� + 2 ln �� + �1 − 2� ln �� 
 

The meaning of these equations is that they form a dynamic system that determines the path 

for output, hours worked, technology shock, capital, consumption and investment. If we not 

linearize the model it will be very difficult, if not impossible to estimate the model. After 

some manipulations Ruge-Murcia (2007)12 presents these linearized equations in equation (3).  

 

     H �I�����̂���J =  K H�I�̂� J + L'̂�    (3) 

 

K = M?�� ?�9?9� ?99N = H1 + �O/�1 − O� −��1 + 2O − 2�/�2 − 2O�0 2/�Q + 2 − 2Q� J 
L = HR�R9J = H �/�2 − 2O�Q*/�Q + 2 − 2Q�J 

 

According to Ruge-Murcia (2007) the ς = αβ(k/n)α-1, k/n = ((1/β + δ – 1)/α)1/(α-1) is the steady-

state capital-labor ratio, γ = 1 – δ(k/n)1-α is the steady-state consumption-output ratio. All the 

variables that do not have a time subscript are the steady state values. If we will use this 

                                                           
12

 Ruge-Murcia F.J (2007):  Methods to estimate dynamic stochastic general equilibrium models. Page 2602 
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model for calculations, the A matrix has to be converted into a matrix that only includes the 

structural parameters. This is done by inserting the equations for ς, γ and k/n, after some 

manipulations the result of this is quite easy.  

 

Result 1: 

If ς = αβ(k/n)α-1, k/n = ((1/β + δ – 1)/α)1/(α-1) , γ = 1 – δ(k/n)1-α  and matrix A and B holds, then 

matrix A and B can be written in this way: 

 

                              K = S1 + TU�V��( + � − �W − 10 �TXU�YZT�[ �W���V�
\  L = S �W + � − 1

]^ TYZT�W_TYZT�W���(�
\.  

 

Proof for result 1: See appendix A 

 

These types of model are moving around the steady state in all kind of different directions and 

are difficult to read. What Ruge-Murcia (2007) has done, is that he has made equations that 

tells us on how fare from the steady state equilibrium these movements are. This has been 

done in percentage deviations. To understand equation (3) a bit more we could look at a more 

general example. This example can be found in Shone (1997 page 180), but I going to modify 

it so it will be closer to the case in the Ruge-Murcia article. Suppose we have a nonlinear 

system of equations, 

    ���� = `���, &�� &��� = a���, &�� 

 

where we have just one period time lag. In order to be able to investigate the stability 

properties of this nonlinear system in the neighborhood of the steady state, the steady state 

have to exist for this system. Another important condition is that f and g have to be continuous 

and differentiable. The steady state (x, y) exist if it satisfies these conditions.  

  � = `��, &� & = a��, &� 

 

If these conditions are fulfilled then we can use a Taylor expansion in the steady sate (x, y). 

12 
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 ���� − �� = "`��, &�"��
�� − �� + "`��, &�"&�

&� − &&  

&��� − && = "`��, &�"� �� − �� + "`��, &�"&�
&� − &&  

 

And let:           

?�� = "`��, &�"�� , ?�9 = "`��, &�"&�  

?9� = "a��, &�"�� , ?99 = "`a��, &�"&� . 
 

If we let ŷt = (yt – y)/y which is the percentage deviation from the steady state, then the 

system can be written like this:   

 

H�b���&b���J = M?�� ?�9?9� ?99N H�b�&b�J. 
 

This gives us the same structure as equation (3). The structure is just a first-order linear 

system. If we replace xt with kt and yt with ct you can see that this is almost the same as 

equation (3). We have now transformed the nonlinear system into a tractable linear system. 

We are transforming the system such that the linear system has the same qualitative properties 

in a neighborhood around the steady-state as the nonlinear system.  

To find a solution for the system (3) is not straight forward because it includes expectations. 

There are many methods for solving linear differences models with rational expectation. The 

method I am going to use was first presented by Blanchard and Kahn (1980). This is also the 

method that Ruge-Murcia (2007) uses. This technique requires that we first compute the 

eigenvalues and eigenvectors for matrix A. But since we are in a situation where we only have 

one predetermined and one non-predetermined variable we do not need the eigenvectors to 

compute the solution13. The eigenvalues and eigenvector are presented in result 2.   

 

Result 2: 

If the form of matrix A that Ruge-Murcia (2007) presents holds, then we get two eigenvalues 

noted as λ1 and λ2: 

                                                           
13

 Blanchard, O.J. and C.M. Kahn (1980): The solution of linear difference models under rational expectations. 
Page 1309 
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 !� = ?99 = 2/�Q + 2 − 2Q� !9 = ?�� = 1 + �O/�1 − O�. 
 

We can observer that | λ1| < 1 and | λ2| > 1. The eigenvector V can be noted like this: 

 

                                       > = c− dTedTT�dee 11 0f = g− �Y�TX[hZ[�[Z[h�� YhTZh�^ [iX[Z[i_ 11 0j.  
 

Proof for result 2: See appendix B. B.1 describes the eigenvalue and B.2 the eigenvector. 

 

The solutions we get from the Blanchard and Kahn approach is given in equation (4) and (5).  

  

                                                  �I��� = ?���I� + ?�9̂� + R�'̂�                       (4)                                             

                                                          ̂� = klm�I� + kln'̂�                     (5) 

 

Here ϕck and ϕcz are combinations of eigenvalues and eigenvectors of the matrix A. These 

parameters depend on the structural parameters in a nonlinearly way. These equations have 

been printed in the Ruge-Murcia (2007), but the author does not reveal the nature of their 

functional dependency. I provide a result (Result 3) which exhibits the full complexity of the 

dependency of ϕck and ϕcz on the structural parameters δ, α and β. 

 

Result 3: 

If the matrix A that Ruge-Murcia gives us holds, and that the Blanchard and Kahn (1980) 

method hold. Then ϕck and ϕcz are equal to these equations. 

 

klm = ?99 − ?��?�9  

kln = ?99�?99 − ?���?��?�9 − 1 

 

Proof for result 3: See appendix C. 
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The state variables of this system are the capital stock kt and technology shock zt. The 

observable variables (yt, nt, ct) are the variables that will be used to estimate the model. We 

can then form a model using the linearized equations. 

             

                                              o� = g&b��b�̂� j = pq� = gk8m k8nkrm krnklm kln j H�I�'̂� J        (6) 

 

Here the state- and observable variables are written in percentage deviation from the steady 

state. The vector Φ is nonlinear functions of the structural parameters, and ξt is a 2 × 1 vector 

that contains our state variables. This equation (6) is the state-space representation of the 

model. This model uses the predetermined level of capital and one exogenous shock as the 

input. If this input is multiplied by Φ it provides us with predictions about our endogenous 

observables: output, consumption and hours worked. The matrix Φ can be presented in the 

way Result 4 shows us.  

 

Result 4: 

If the condition &b�, �b� and equation (5) that Ruge-Murcia (2007)14 presents holds then we 

have this result.  

p = gk8m k8nkrm krnklm kln j =
stt
tu1 + #1 − 12$ klm 12 + #1 − 12$ kln

1 − 12 klm 12 − 12 klnklm kln vww
wx
 

 

Proof for result 4: See appendix D. 

 

4. Estimation method 

 

4.1 Maximum likelihood: General theory 

 

The estimation method that is often used to solve DSGE models is called Maximum 

Likelihood (ML). The principle of maximum likelihood provides a means of choosing an 

asymptotically efficient estimator for a parameter or a set of parameters15. The general result 

                                                           
14

 Ruge-Murcia F.J (2007):  Methods to estimate dynamic stochastic general equilibrium models. Page 2634 
15

 Green, W.H (2003): Econometric Analysis. Pearson Education International. 5th edition page 470 
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is that the ML estimator is a stationary point of the likelihood function. In our model there are 

many parameters that need to be estimated. These parameters are collected in the q × 1 vector 

θ. The observables (y, c, n) are then used to estimate θ. Then we can write the probability 

density function as f(x | θ) where x is the data that is observed. After observing n random 

draws from the density f(x | θ) that are assumed to be independent and identically distributed 

(iid), we can determine the likelihood of the occurrence of the sample as the product of 

individual densities: 

 

`��y , �y��, … , ��||� = } `���||� = ��||��y
��� . 

 

The probability of the occurrence of a sample is given by this likelihood function. The 

maximum likelihood estimate of θ is the value for which this sample is most likely to have 

been observed; that it is the value of θ that maximizes ��||�� = 7̀~,7~ZT,…,�T��y , �y��, … ��||�16. Finding maximum likelihood estimates can be 

split into two parts. One is to find the likelihood function, second is to find the values of θ that 

maximizes the likelihood function. It is often easier to work with the log of the likelihood 

function, because it avoids technical problems when finding the first order conditions. The 

maximum of a function f(x) is the same as the maximum of ln f(x). This gives us a sum of T 

expressions involving the log of the densities over time.  

 

ln ��||�� = ln } `���||�y
���  

ln ��||�� = � ln `���||�y
���  

 

An important aspect is that maximum likelihood estimators are consistent, asymptotically 

normally distributed, and therefore efficient among estimators that have these properties. This 

is the case if MLE satisfies certain standard regularity conditions (see Green 2003 5th edition 

page 473 for these conditions). A drawback to this technique is that the density of the 

observed variable has to be known. That is one has to be able to give a detailed specification 

                                                           
16

 Hamilton, J.D (1994): Time Series Analysis. Princeton University Press, page 117 
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of the data generating process.  

  

4.1.1 Maximum likelihood: For our model 

 

The representation of the system (6) has to have a state and an observation equation. To find 

the state equation we use (4) and (5). If we substitute (5) into (4) we will find �I��� described 

by �I� and '̂�. The other state variable move from time t to t+1 are already described by the 

linearization. Then we have: 

 

H�I���'̂���J = H?�� + ?�9klm ?�9kln + R�0 * J H�I�'̂� J + H 0+���J. 
 

Which can be formulated in another way, where F is a 2 × 2 matrix and vt is a 2 × 1 vector. 

This will be the state equation.  

 

                                                           q��� = �q� + <���                    (7) 

 

To be able to us ML estimation we have to rewrite equation (6) by adding an extra variable. 

 

                                                        �� = ℎo� = ℎ�q� = �q�         (8) 

 

This is our observation equation. Here we have just multiplied equation (6) with vector h. 

This vector can be interpreted as a selection vector. We do this because when we estimate 

DSGE models with MLE there cannot be more observables then structural shocks. In our 

model we just have one structural shock, so we can only estimate with one observable at each 

time. The selection vector will be an 1 × 3 vector, so if this vector is like this (0,1,0) we are 

estimating using hours worked nt alone.  

 

Let all the parameters of the model be denoted in the q × 1 vector θ. The past observations of 

xt can be collected in אt-1. At time t-1 we use אt-1 as a basis for the forecast of ξt noted as q������, and the mean square error for this forecast is Pt|t-1. If we take the assumption that 

technology innovation is normal distributed we get this: 
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`���|ℵ���; |� = �	�q��|���, ���|������. 
 

Here we have used a result that is often used for any constant. If we let L be our constant in 

this example: 

 4~�	6, ��|���� → �4~�	�6, ���|������. 
 

Here L´ denotes the transpose of L. Then we can start the ML estimation.   

 |��� = ?�a�?� ��|�. 
           {|} 
 

Have to find the log likelihood function. Since we assume normal distribution we can use the 

general form of the normal distribution as a starting point.  

 

`��|6, �9� = 1�√2� ���/9[�7���e/�e] 
 

Here the mean is µ and σ is the standard deviation. A large sample date is preferred because 

we are assuming normal distribution. So when we take the log to the standard normal 

distribution function and take into consideration that our sample is large we get this function. 

  

ln ��6, �9� = − �2 ln�2�� − �2 ln �9 − 12 � c��� − 6�9�9 fr
���  

 

Since the mean and variance is given earlier we just have to insert it in. We change n to T 

which is equal to the sample size and insert our mean and variance. We will then get the log 

likelihood function. Here L(θ) denotes the log likelihood function.  

 

��|� = − �2 ln�2�� − �2 ln����|������ − 12 �	�� − �q��|���������|����������� − �q��|����y
���  

 

Since we do not have a value for ξ we need an estimated a value for ξ. The technique that can 

be used is called Kalman filtering. Since we have only one shock in this model we cannot use 

18 
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all the observables when we are estimating. We can use just one. To solve this problem we 

have three options. The first is of course to estimate one observable at each time. The 

seconded alternative will be to add an error term to the observation equation of the state-space 

representation of the model, and the last option is to add more structural shocks. As mention 

earlier the ML estimator under standard regulation condition is consistent and asymptotically 

normal. I our case we have 

 √��|��� − |� → ��0, �ℑ/�����. 
  

Green (2003 5th edition page 478) has sketched a proof, a good proof for this outline. Here we 

have an unbiased estimator, our µ = 0. If we look at the variance term we can observe that a 

lager T that means a lager data sample, we get a smaller variance. In mathematical terms: 

When T → ∞ then (ℑ / T)-1 → 0. We can interpret θ as the true value of the parameter vector, 

and ℑ = -E(∂2L(θ)/ ∂ θ ∂ θ ´) as the information matrix. When computing this we can use the 

Hessian, this is just a matrix of second derivatives.  

 

The likelihood function that is mention earlier in the text looks quite easy. But it is in fact a 

very complex function of the structural parameters. In Result 5 I present this complex 

likelihood function. Since we have three observables there will be three likelihood functions. 

They will approximately give us the same estimation results, but there will be some 

differences. This has been demonstrated in the cause of Ruge-Murcia (2007) in the 

numerically results. In result 5 I just present one of these three equations. That is the one 

when we set the selection vector h to be equal to (1,0,0). Then we are estimating using &b�. To 

find the other two equations we have to set the selections vector h to (0,1,0) and (0,0,1). 

According Ruge-Murcia (2007) the α and δ can be fixed then θ will be equal to (β, ρ, σ). In 

result 5 we can see p11, p12, p21 and p22, they are only the variance that comes from the kalman 

filter. The estimated values from the Kalman filter are ����|���� and '̃��|����. It we take a look at 

the function result 5 gives us it can be difficult to see connection to the parameters ρ and σ. 

We can find σ in the pxx and ρ are hidden in estimated value for '̂�. We can also find ρ in the F 

matrix.    
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4.2 Kalman filter 

 

Kalman filtering technique was developed by R.E. Kalman (Kalman R.E. 1960, Kalman R.E. 

and R.S. Bucy 1961). This technique was in the beginning just used by control engineers and 

other physical scientists, and one of the main reasons for this is that the Kalman article was 

first printed in an engineering journal. Kalman filter technique is a mathematical estimation 

technique that can be used to tracking, prediction or forecasting. Of course with these 

applications statisticians and economist could use this technique. Especially statisticians who 

are interested in linear regression models and time series analysis. The Kalman filter is an 

algorithm for sequentially updating a linear projection for the system17. It is a recursive 

technique using information from the past. One of the main advantages with this technique is 

that it is quite easy to use. 

 

To get a better understanding of the Kalman filter I would describe the concept in a little more 

technical aspect. If we observe yt-1, yt-2,…, yt-T and let this be our data. This data can be in 

vector or scalar. We assume the yt depends on the variable τt. This is an unobservable 

variable, and is the state vector/variable. It is important to notice that if yt and τt are vectors, 

the dimension of τt is independent form yt . The relationship between these two is linear:  

 &� = ���� + <� . 
 

This is the observation equation. The connection between τt and τt-1 can be written like this: 

  �� =  ����� + ��. 
 

This is the state equation also known as the system equation. It’s called system equation 

because it’s not fixed, but moves over time like a dynamic system. Ft and Gt in our case is 

known, but there are methods to estimate this through data, see Hamilton (1994, Chapter 

13.4). The observation error vt and the system equation error wt are both assumed to be 

normal distributed with mean zero and a known variance. They are also assumed to be 

independent of each other. Kalman filter is a recursive technique, and the mean squared error 

(MSE) for each of these forecast in matrix notation (this because it is closer to our case) can 

be written like this:  

                                                           
17

 Hamilton, J.D (1994): Time Series Analysis. Princeton University Press, page 372 
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��|��� ≡ � M	�� − �̃�|����	�� − �̃�|�����N. 
 

Here the tilde denotes the expected value. The recursive procedure starts at �̃�|.. We focus on 

time t-1, where t = 1,2,…,T and we use ore observed data up to time t-1. First we have to set a 

starting value for �̃ and for P. With them given �̃�|. and P1| 0, the next step is then to calculate 

same type of values to the next period. This process is continued on. In general terms we can 

write it like this: Given �̃�|��� and Pt|t-1 the goal is to calculate �̃���|� and Pt+1|t. When we have 

these results they can easily be inserted in our starting equations.  

 

This explanation of the Kalman filter is obtained by reading Meinhold and Singpurwalla 

(1983) and Hamilton (1994 chapter 13). For future understanding of the Kalman filter I 

recommend you to read both. Hamilton (1994) is very close related to the Ruge-Murcia 

(2007) article. In this paper equation (7) is the state equation and (8) is the observation 

equation. In our model the Kalman filter recursion will be set to q��|. = ��q�� = �0,0�′ and 

��|. = ��q�q���.  

 

5. Conclusion 

 

In this paper I have presented the Ruge-Murcia (2007) model in more analytical way. The five 

results that have been presented in this paper are all important to see the underlying structure 

of this model. It is also easier to understand how the model works, and how the different 

agents are connected. If we use the first four results we can find the likelihood function, and 

we get a very complex equation. To estimate the DSGE model, we need to maximize the 

likelihood. This requires partial differentiation of the function. This will be a very difficult to 

do analytical. DSGE models are already affecting us, because central banks are using them in 

monetary policy decisions, but the models that the central banks are even more complicated. 

They are more precise in their formulation of the different agents in the economy. The Ruge-

Murcia (2007) model together with the additional results, are a good model when it comes to 

understanding how DSGE models work. In the Ruge-Murcia (2007) model there are different 

important agents that are not modeled, example is the government. Since these models are so 

complex it will maybe difficult to do the calculation with many agents. So these DSGE 

models are best when we focus on a small part of the economy. DSGE models and the model 

are complex and very detailed models. Since these models will be used in the future, it is 
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important to understand their underlying structure. It will then be easier to interpret estimation 

results from different DSGE models. Practical economical work involving the DSGE 

modeling approach is barely feasible without the intensive use of numerical techniques.    

 

Appendix A: Proof for Result 1 

 

A.1: For a11 we have this combination: 

 

?�� = 1 + �O1 − O. 
Then we insert γ = 1 – δ(k/n)1-α . 

 

?�� = 1 + ��1 − ��� �⁄ ���(�1 − �1 − ��� �⁄ ���(� 

= 1 + ����/����( − �9��/����(���/����(  

= 1 + 1��/����( − � 

 

Then we insert k/n = ((1/β + δ – 1)/α)1/(α-1). 

 

?�� = 1 + 1���1 �⁄ + � − 1� 2⁄ �� (��⁄ ���( − � 

= 1 + 1��1 �⁄ + � − 1� 2⁄ ��� – � 

?�� = 1 + 1� + � − 12 − � 

 

A.2: For a12 we have: 

 

?�9 = −��1 + 2O − 2�2 − 2O . 
Insert γ = 1 – δ(k/n)1-α . 
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?�9 = −��1 + 2�1 − ��� ����(⁄ � − 2�2 − 2�1 − ��� ����(⁄ �  

= −� − 2� + 2�9�� ����(⁄ + 2�2��� ����(⁄  

= − �2��� ����(⁄ + 2�9�� ����(⁄2��� ����(⁄  

= − 12�� ����(⁄ + � 

 

Insert k/n = ((1/β + δ – 1)/α)1/(α-1). 

 

?�9 = − 1�1 �⁄ + � − 1��� + � 

= − #1� + � − 1$ + � = − 1� − 1 

 

A.3: The equation for a22 is given in the following way: 

 

?99 = 2Q + 2 − 2Q. 
Insert ς = αβ(k/n)α-1 . 

 

?99 = 22��� ��(��⁄ + 2 − 29��� ��(��⁄   
 

Here in this case it is easier to focus on the denominator first. We can express the 

denominator in the following way. 

 ��� ��(�� + 1 − 2��� ��(��⁄⁄  

 

Insert k/n = ((1/β + δ – 1)/α)1/(α-1).  

 

� ¤1 �⁄ + � − 12 ¥ + 1 − ��1 �⁄ + � − 1� 

1 + ��� − 1�2 + ��1 − �� 
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Then we have this result 

 

?99 = 11 + ��� − 1�2 + ��1 − �� 
 

A.4: For b1 we are given this combination: 

 

R� = �2 − 2O. 
Insert γ = 1 – δ(k/n)1-α . 

 

R� = �2 − 2�1 − ��� ����(⁄ � 

= 12�� ����(⁄  

 

Then insert k/n = ((1/β + δ – 1)/α)1/(α-1). 

 

R� = 1��1 �⁄ + � − 1�/2��� 

= 1� + � − 1 

 

A.5: The last one, b2 is given: 

 

R9 = Q*Q + 2 − 2Q. 
Insert ς = αβ(k/n)α-1 . 

 

R9 = *2���/��(��2��� ��(��⁄ + 2 − 29���/��(�� 

 

Eliminate α and insert k/n = ((1/β + δ – 1)/α)1/(α-1). 
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R9 = *� #1 �⁄ + � − 12 $
� #1 �⁄ + � − 12 $ + 1 − 2� #1 �⁄ + � − 12 $ 

= * + *��� − 1�21 + ��� − 1�2 − ��� − 1�  

= * + *��� − 1�1 + ��� − 1� − 2��� − 1� 

= *� − 1 + *�1� − 1 + � − 2� 

= * ^ 1� − 1 + �_1� − 1 + ��1 − 2� 
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Appendix B: Proof for Result 2 

 

B.1: For the eigenvalues 

 

The eigenvalues of the matrix A are obtained by solving |A - λI| = 018. Then we can write our 

situation like this: 

 ¦^?�� ?�9?9� ?99_ − ! ^1 00 1_¦ = 0. 
 

Then we have to find the determinant and set it equal to zero: 

 �?�� − !��?99 − !� − ?�9?9� = 0 !9 − !�?�� + ?99� + ?��?99 − ?�9?9� = 0 !9 − !§ + ¨ = 0 

 

As we can see this is a polynomial equation, and we could use a standard polynomial formal 

to solve our problem. I us this one: 

λ�,9 = −R ± √R9 − 4?2? . 
For our problem we get: 

 

!�,9 = 12 ^§ ± ¬§9 − 4¨_ 

!�,9 = 12 #�?�� + ?99� ± ¬�?�� + ?99�9 − 4�?��?99 − ?�9?9��$. 
 

Here there is important to remember that a21 = 0. We get this from the matrix A. Then the 

result can be written in the following way: 

 

!�,9 = 12 #�?�� + ?99� ± ¬�?�� − ?99�9$ 

!� = 12 ��?�� + ?99� − �?�� − ?99� = ?99 

                                                           
18

 Shone R. (1997): Economic Dynamics. Cambridge University Press, page 159 
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!9 = 12 ��?�� + ?99� + �?�� − ?99� = ?�� 

 

Is important to remember that we assume p2 - 4q ≥ 0. 

 

B.2: For the eigenvector 

 

If we denote the eigenvector as > = [<T , <e] we have these two combinations: 

 �K − λ�®�<T = 0 �K − λ9®�<e = 0. 
 

Then we just solve these equations. 

 

H^?�� ?�9?9� ?99_ − #?99 00 ?99$J c<�T<9Tf = M00N 
c�?�� − ?99�<�T + ?�9<9T?9�<�T f = M00N 

 

If we fix <9T equal to 1 and solve <�ewe get the last necessary result we need to form the 

eigenvector. We know that a21 is equal to zero. So the last element of this vector will always 

be zero.  

 

                                                            <T = c− dTedTT�dee1 f  
 

The second eigenvector have the same procedure. 

  

H^?�� ?�9?9� ?99_ − #?�� 00 ?��$J c<�e<9ef = M00N 
c ?�9<9e?9�<�e + �?99 − ?���<9ef = M00N 

 

Since we know that a21 is equal to zero, we can fix <�e to 1 and still it will fulfill the 

condition. There is no other solution to <9e than setting it equal to 0. Then we get this result. 
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 <e = M10N 
 

This give us the eigenvector that has been presented in Result x. If we would like to check if 

this vector is correct we could solve the combination D=V-1AV, where matrix D is the 

eigenvalue matrix. 

 

                          >��K> = c0 11 dTedTT�deef M?�� ?�9?9� ?99N c− dTedTT�dee 11 0f = H?99 00 ?��J  
 

It is important to remember that a21 is equal to zero.  
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(9) 

Appendix C: Outline for equation (4) and (5). Proof for result 3 

 

The solution presented by Blanchard and Kahn (1980) page 1309 is the starting point. We 

have that matrix A is 2 × 2, and | λ1| < 1 and | λ2| > 1. The solution is given like this: 

 �I� = �I. `;� ¯ = 0 

�I��� = !��I� + R�'̂� + 6 � !9������'̂���|Ω�� `;� ¯ > 0,�
��.  

̂� = ?�9��[�!� − ?����I� +  6 � !9������'̂���|Ω��] `;� ¯ ≥ 0.�
��.  

 

Here 6 = �!� − ?���!� − ?�9!9. Then we insert the eigenvalues and do the computations.  

 

̂� = ?�9��[�?99 − ?����I� + 6 � ?��������'̂���|Ω��]�
��.  

̂� = ?99 + ?��?�9 �I� + ?�9��6[?11−1��'b¯|Ω¯� + ?11−1−1��'b¯+1|Ω¯� + ?11−2−1��'b¯+2|Ω¯� + ⋯ ] 

 

Here Ωt is all the information we have available at time t. One of our main assumptions is that ��'̂���|Ω�� is equal to zero. This means that at time t we don’t expect any technology shock 

to accrue in the future. Another important thing to remember it that the information we have 

available at time t, includes '̂�. If we take these assumptions into consideration we get a much 

easier equation to work with. 

 

̂� = ?99 + ?��?�9 �I� + ?�9��6[?����'̂� + ?������ ∗ 0 + ?���9�� ∗ 0 + ⋯ ] 
= ?99 + ?��?�9 �I� + 1?�9 # 6?�� '̂�$ 

= ?99 + ?��?�9 �I� + �?99 − ?���?99 − ?�9?��?�9?�� '̂� 
= ?99 + ?��?�9 �I� + #�?99 − ?���?99?�9?�� − 1$ '̂� 

̂� = klm�I� + kln'̂� 
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�I��� = ?99�I� + R�'̂� + 6 � ?��������'̂���|Ω���
��.  

= ?99�I� + R�'̂� + 6[?������'̂�|Ω�� + ?��������'̂���|Ω�� + ?���9����'̂��9|Ω�� + ⋯ ] 
 

We have the same reasoning as above in this case.  

 �I��� = ?99�I� + R�'̂� + 6[?����'̂� + ?������ ∗ 0 + ?���9�� ∗ 0 + ⋯ ] 
= ?99�I� + R�'̂� + 6?�� '̂� 

 

We can rewrite (9) and get an equation that could be replace 
�dTT '̂�.  

 6?�� '̂� = ?�9̂� − �?99 − ?����I� 
 

This gives us the final result. 

 �I��� = ?99�I� + R�'̂� + ?�9̂� − �?99 − ?����I� = ?���I� + ?�9̂� + R�'̂� 
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Appendix D: Proof for Result 4 

 

Given equation (5) and these two linearized equations from Ruge-Murcia (2007)19: 

 &b� = 2�I� + �1 − 2��b� + '̂� 
�b� = − 12 ̂� + �I� + 12 '̂� 

 

We insert equation (5) in �b�  
 

�b� = − 12 	klm�I� + kln'̂�� + �I� + 12 '̂� 
= − 12 klm�I� − 12 kln'̂� + �I� + 12 '̂� 
= #1 − 12 klm$ �I� + #12 − 12 kln$ '̂�. 

 

Then we can insert this into  &b�  
 

&b� = 2�I� + �1 − 2� H#1 − 12 klm$ �I� + #12 − 12 kln$ '̂�J + '̂� 
= 2�I� + #1 − 12 klm − 2 + klm$ �I� + #12 − 12 kln − 1 + kln$ '̂� + '̂� 
= �I� − 12 klm�I� + klm�I� + 12 '̂� − 12 kln'̂� + kln'̂� 
= #1 + #1 − 12$ klm$ �I� + #12 + #1 − 12$ kln$ '̂�. 

 
 

 

 

 

 

 

 
                                                           
19

 Ruge-Murcia F.J (2007):  Methods to estimate dynamic stochastic general equilibrium models. Page 2634 
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Appendix E: Proof for result 5 

 

We are going to estimate the likelihood function with using &b�, the h vector is (1,0,0). To this 

gives us the following xt:   

�� = [1 0 0] g&b��b�̂� j = &b� . 
 

The H matrix will be looking like this. 

 

� = [1 0 0] gk8m k8nkrm krnklm kln j = [k8m k8n]. 
 

Then we can compute the variance HPt|t-1H’. In the outline of this variance Pt|t-1 is just a 2 

× 2 matrix. The values for this matrix come from the kalman filter. So we just use standard 

notation for a 2 × 2 matrix.   

 

���|����� = �k8m k8n� M§�� §�9§9� §99N Hk8m
k8n

J = �k8m k8n� H§��k8m + §�9k8n
§9�k8m + §99k8n

J 

= k8m	§��k8m + §�9k8n� + k8n�§9�k8m + §99k8n� 

= §��k8m9 + �§�9 + §9��k8mk8n + §99k8n9
 

 

The likelihood function that are given: 

 

��|� = − �
2 ln�2�� − �

2 ln����|������ − 1
2 �	�� − �q��|���������|����������� − �q��|����

y

���
. 

 

If we then insert the variance and H matrix we get this result. 

 

��θ� =

− y
9 ln�2�� − y

9 ln ^§11k&�
2 + 	§12 + §21�k&�k&' + §22k&'

2 _ − 1
2 ∑ #8b·�^k&����¯|¯−1�+k&''̧�¯|¯−1�_$

2

§11k&�
2 +	§12+§21�k&�k&'+§22k&'

2
����   

 

Form result 4 we have a combination for k8m and k8n. If we insert them we get the following 

result. 
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��θ� = − y9 ln�2�� − y9 ln  #§�� ^1 + ^1 − �(_ klm_9 + �§�9 + §9�� #^1 + ^1 − �(_ klm_ ^�( +
^1 − �(_ kln_$ + §99 ^�( + ^1 − �(_ kln_9$ −
�9 ∑ ¤8b·�#^��^��T[_¹º»_m� �·|·ZT��^T[�^��T[_¹º¼_ņ�·|·ZT�$¥e

½TT^��^��T[_¹º»_e��½Te�½eT�#^��^��T[_¹º»_^T[�^��T[_¹º¼_$�½ee^T[�^��T[_¹º¼_e����   

 

If we then use result 2 that explains the A matrix in just structural parameters and insert them 

into result 3 which gives us the combinations behind klm and kln, we have the following 

combinations.   

 

1 + ^1 − �(_ klm = 1 + ^1 − �(_
¾
¿À

TTXU�YZT�[ XU�TZY��Á��TUXYZT[ �VÂ
�TU�� Ã

ÄÅ = 1 +
¾
¿¿À

�(���Æ TTXU�YZT�[ XU�TZY��Á��TUXYZT[ �VÂÇ
�(^TU��_ Ã

ÄÄÅ  

 

�( + ^1 − �(_ kln = �( + ^1 − �(_
¾
¿¿À

TTXU�YZT�[ XU�TZY�ÆÈ TTXU�YZT�[ XU�TZY�É�Á��TUXYZT[ �VÂÇ
Á��TUXYZT[ �VÂ^�TU��_ − 1

Ã
ÄÄÅ = 9( +

^1 − �(_
¾
¿¿À

TTXU�YZT�[ XU�TZY�ÆÈ TTXU�YZT�[ XU�TZY�É�Á��TUXYZT[ �VÂÇ
Á��TUXYZT[ �VÂ^�TU��_ Ã

ÄÄÅ − 1  

 

If we insert these combinations into the likelihood function we get our final result. 
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