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1. Introduction

In this paper | will present a one-sector real bess cycle (RBC) model, and see how the
complexity and the structure behind a dynamic sietib general equilibrium (DSGE) model.
The motivation of this paper is to learn how thes®lels work. One reason for this
motivation is that these models are beginning todseral in different decision making
processes in economics. Especially central barkasing DSGE models in their decisions
making process. Since the central banks are usesgttypes of models, this thesis will see in
short terms on how these models have developedRB@&model that will be presented in
this paper comes from Ruge-Murcia (2007). Sincérakpart of the model is analyzed
numerically much of the underlying structure isded. Is my goal to ravel some of the
underlying structure that is important for the urstiending on the complexity of the

likelihood function.

Maximum likelihood estimation (MLE) is often usedh@&n DSGE models are estimated.
There is also three other methods: Generalizedodeshmoments, simulated method of
moments and the indirect procedure proposed byhSit#93). Ruge-Murcia (2007) uses all
these methods and compares them. | will preserdlthiee preparation behind the likelihood
function so we can be able to use MLE. To use MiLEhe Ruge-Murcia (2007) model we
have to estimate values for an unknown paramekes.i$ done with a technique called
Kalman filter. In this paper | will outline an imtuction to this technique, and also connect it
with our specific case. When presenting this maaalytically we will easily see how
complex these models are. The main result forgaper is that it reveals the DSGE model
interdependency of the structural variables inrg wen-linear wayThe maximum likelihood
function presented in Ruge-Murcia (2007) seemgysaiaight forward due to the notation he
uses, but the likelihood depends on the struchasmeters in a very complex way. | will
present five additional results to the Ruge-Mu(Ri@07) article. The first four results are
needed for computing the likelihood function intjgsuctural parameters. For the sake of
readability the proof for the additional resultayh been organized in an appendix. The text
will then not be so interrupted with mathematiogbressions. Major bulk of work went into
the analytical proofs. Still they are organize@ppendix for the readability.

The paper will be organized as follow: Section & wutline the historic background for

DSGE models and also some facts about these m&#=ison 3 will present the model of
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Ruge-Murcia with the additional proofs and resuisction 4 describes the MLE in general
and for this model. In this section | will also pide a short sketch of the Kalman filter.

Section 5 contains the conclusion part.

2. The Background for DSGE models

DSGE stands for “dynamic stochastic general equilib” model and it is a modern
macroeconomic model. This is a long-term generailiegum model, and is derived from
microeconomic principals. These models play an mamb role for economist and actors that
are interesting in analyzing monetary policies atae&roeconomic perspective. Many central
banks including Norway is already using these tygfaaodels in their decision making

procesS

One aspect of these models is that it includesoomeore random shocks. This is where the
stochastic element is included in the model. Batlse of the fluctuation over time and
randomness these models are more difficult to aispdople with little mathematic
background. One typical feature of DSGE modelbas the behavior of the different
economic agents is modeled explicitly and foundedtwice-theoretic assumptions. What's
making DSGE models singular are because they as&att number of structural shocks to

generate predictions about a large number of obbérwariables.

The DSGE model that will be presented later in paper is a typical earlier DSGE model.
Here it will be more focus on the supply side, hseait will contain a technology shock that
affects the firms. These models have feature flwamew classical macro view and are often
called “real business cycle” models, because g&simed that the economy have perfect
competition and fully flexible prices.

2.1 The Beginning
In 1936 J.M. Keynéspublished a monograph that revolutionized thekiihinon economy,

and especially macro economy. He provided a mdaeldould be used to give a better

understanding of macro economy, and how differetitigs would affect the economy. Even

! See for example Bank of England (2004) and Fenton\urchison (2006)
?Keynes, J.M. (1936)The General Theory of Emplyment, Interest, and Maacmillan. London
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in the late 1970s and 1980s central banks werengebn the Keynesian paradigm. But in the
late 60s a famous economist called Milton Friedm@ued against Keynes, and tried to start
a new revolution in macroeconomic thinking. Thisswiae start of the monetarist. The biggest
discussions between Keynes and the monetaristevamenow they interpret interest
sensitivity and monetary policy. According to Kegrmaonetary policy will not help, because
the additional money will simply be absorbed byestors with no noticeable effect on
interest rate. Fiscal policy, on the other handl, work really welf. The monetarist thinks

that monetary policy has an effect, but the pofi@aker is however not very good at timing
monetary policy. Under monetarist assumptions Ffisolicy is unable to influence
employment and outplitThis is the main cause monetarists are agaiadtéynesians
thinking.

In 1961 John Muth published an article that arginredl the modeling of expectations wasn’t
good enough. Muth proposed that: expectationsegimey are informed predictions of future
events, are essentially the same as the prediaiicthe relevant economic thedrjuth
formulated hypothesis that claimed that the econgemerally does not waste information,
and the formulation of the expectations dependsifpaly on the structure of the entire
system describing the economy. The two main corigsrom his study of expectations
data can be summarized: The average expectati@rsimdustry is quite accurate, and

reported expectations seems to underestimate thal @hange that takes place.

Then Robert E. Lucas in 1976 presented a radicaheey of thinking in econometric
models. He used Muths (1961) thinking about ratierpectations in his discussion, and
argued that the popular macroeconomic models timatamist were using at that time was
totally useless. In evaluation the effect of diéierr type of economic policy they could not be
used. He meant that older standard models do nmhrsaveral important characteristics of
econometric practice. By adding a new general strachat includes stochastic parameters,
the models will be much closer to these charadiesisThe work of Lucas convinced many in
the game that using rational expectations wouldiredarge adjustment in the models they
already were using, and that it will deliver difet theoretical outcomes. This also led to
more micro based macroeconomic models. He argudvin have to look at the structure of
the model, not just the parameter value. The metihatdoften was used is to look at historical

* Heijdra, B.J. and F. van der Ploeg (2002): The Bations of Modern Macroeconomics, page 20
*Heijdra, B.J. and F. van der Ploeg (2002): The Bations of Modern Macroeconomics, page 23
> J. Muth: Rational Expectations and the Theory iéePMovments, page 316
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data, look after correlations and then try to folaieia function that fits this data. The new
way of thinking was to try and formulate functidios a representative agent that can include
expectations. Both on the supply- and demand ditteececonomy. We can summarize the
Lucas critique like this: If the structure of a nebds affected by political methods of

operations, then it will be useless to analyze gharin the same methods of operations

2.2 Evolution

After the Lucas critique there has been a largeldgwment in these types of models. New
ways of solving and estimate complicated matherakfimctions gives us more
opportunities. But the idée behind DESG models eady can find back in the 1970s.
According to the Norwegian DSGE model NEMO (Brubalkisebg, Maih, Olsen and
@stnor 2006) the new DEGE models also contains sdene Keynesian aspects in the short-
run. This because they have two additional featiNesinal rigidities and Monopolistic
competition. New Keynesian economists argued tb@t@my contained imperfect
competition, and because of this there are alskysfirices. There were also many new
Keynesian economists argued and used very rigicesvd@ecause of these two additional
features the model acts in a different way. Ev¥eéhdre are nominal rigidities in the short
run, the prices and wages are assumed to be fijigted in the long run. Monetary policy
can affect the economy in the short run, but inlding run it can only affect nominal

variables.

Rational expectation policy models was introducethe 1980s, this gave the macroeconomic
models ha deeper insight in important economicalds, like exchange rate overshooting.
Macroeconomic models that where developed in tteell880s and 1990s were focusing on
rational expectations, but also trying to use mmoiero-based relationships in modeling the
different agents. These models were often calladbesiness-cycle models where prices
were fully flexible (Kydland and Prescott 1982).eBle models developed, and an important
improvement was that they started to include sayma bf normal inertia. To find an exact
date when DSGE models came is quite difficult. Betlast ten years the DSGE models
development is quite enormous. In 1992 BernankeBdinder presented a model that tried to
see how monetary policy affects the real econorhys fiad already been done in an IS-LM

view, not in a more structural micro based setthigre they try to measure the effects of a

® Mork, K.A. (2008): Modeller og pengepolitik€amfunnsgkonomena. 1, page 12
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policy change by modeling a policy shock that cdugédneasured. One catch is that they
isolate the direct measure of Federal Reserveypdwait does not become completely
stochastic. Leeper and Sims (1994) presented andgrgeeneral equilibrium model. They
thought there model was a potential competitohéostandard I1S-LM based models. This
model has many shocks and stochastic elementsedidy has many elements of a modern
DSGE model, for example: different agents are ekptimodeled. There are people who
identify Rotemberg and Woodford (1997) as the stha New Keynesian DSGE model.

They try to derive a complete structural modelrieveer the Lucas critique. They use an
optimization-based approach, and have a variablmémetary policy shock. They also use
monopolistic competition. If you go through this debwe can see elements that are used in
later articles. An example of this is the use af@etary policy shock. Other articles that
modify this are Rotemberg and Woodford (1999) aatl 2000). An important article for the
development of today’s DSGE models is Christianoh&baum and Evans (2001). They use
both Leeper and Sims (1994) and Rotemberg and VBab@£997) as a starting point. Their
model tries to prevent a large rise in marginat efi®r an expansionary shock to monetary
policy. They seek to understand the observed aldréihavior in inflation and persistence in
aggregate quantities. The model GEM (Bayoumi wasistance 2003) uses the CEE (2001)
model as a starting point. But making it more in&tional, not just focusing so much one US.
Another model that uses CEE (2001) very much istSiewed Wouters (2003). They focus on
the euro area. They add more shocks to their maddlalso they have even more specified
functions for the different agents in the econoiftyis model is often used when different
central banks formulate their DSGE models. In 2C08&stiano, Eichenbaum and Evans
(CEE) took their old model an added some more eogbwork and test. They try to answer
the question: Can models with moderate degree mimad rigidities generate inertial

inflation and persistence output movements in resp@o a monetary policy shock? Their
answer is yes. Belaygorod and Dueker (2005) use QB8E5) article, but focus more on the
central banks with using inflation targeting. Thragan that the promise of estimated DSGE
models is that one can take the parameter estin@testhem into the underlying optimizing
model, and perform welfare calculations. This iy \walicymakers should know the benefits
of interest rate smoothing. They try to get a skeagpecification of interest rate smoothing
into a DSGE model. The NEMO model used in the etfank of Norway is estimated using
techniques proposed in Bayoumi (2003) and Smet3\maters (2003).
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The use of models in monetary policy decisionsngartant. A model cannot give us the
correct answer. But they are very helpful for teatcal-banks. Norway uses these models as a
guideline for where the economy is heading in titare. It is important to take into
consideration that different models have diffeqgmperties. Many central-banks use many
different models. In Holmsen, Nicolaisen and Raigdlé2007) paper they recommend not
using just one model for the monetary policy analyi$ is of course important that a decision
is not just based on the output from the modetsgheral economic theory and experience
from other countries is also important input inezidion making process. Models are a good
tool for helping us to understand different aspetthie economy. But they always have to
continuing their development, so that they couldrimge accurate. This will make decisions a
lot easier.

According to Mork (2008) models that the centratkbaf Norway uses have to give us the
most correct picture on how important economicatalas like inflation will be affected by
different political decisiorfs He means that the only way to achieve this iasigg totally
structured models. These models have to explieitis representative agent’s behavior,
expectations and decisions as a starting poinimfaortant part is to get information and do
the calculations over time. DSGE models have ab¢hproperties. DSGE models need to
continue their development even further becausgdhe not perfected. A model will never
be perfect, and obvious reason is that it is imipéss$o predict the future. But models like
DSGE is today’s future models. The application emterpretation of different models
requires a sound understanding of the structufidrdnces between models. In the rest of this
thesis | will present, a prototype DSGE model amdllistudy and reveal its structural

complexity.

3. The Model

The model | am going to use was first presente@ bl Hansen in 1985. This is a one-sector
RBC model with indivisible labor. The more speciersion comes from Ruge-Murcia
(2007).

" Mork, K.A. (2008): Modeller og pengepolitikamfunnsgkonomena. 1, page 12
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3.1 Households

The representative agent will maximize the expebtetime utility function.
Ee ) B (In(e) + (1 - )
i=t

Herep € (0, 1) is the discount facta,is the consumptiony is hours worked ang is a

utility weight.  can be interpreted as a parameter that regulagesgént valuing of spare
time (1 — n). If this parameter is high then spare time is lyiglalued for the agent, and the
opposite for a low value. In this economy the papiah growth is zero, and the size and time
endowment are normalized to one. The budget const@ansist the agent’s income on the
right-hand side and the expenditure on the lefdhside.

Ct + xt == tht + Ttkt

Herex; is investmentyy, it the real wager; is the real rental rate of capital, ands the capital
stock. The right-hand side includes wa@esy) and rents received from selling labor and
renting capital to firms(rik). This is allocated into the two left-hand side i@bles
consumption and investment. The amount of investm@aetimet increases the capital stock at

timet+1.
keyr = (1= 8)ke + x;

The parameted € (0, 1) is the depreciation rate. In addition te transversality conditioit

is necessary to have some first-order condition@ated with the optimal choice of o and

ki. The transversality condition fixes the behavibrsome variables in the far future. We
work backwards by fixing the future values and tbempute backwards to our state of time.
The first-order conditions have to be fulfilledwk are going to maximize the utility function.

In Ruge-Murcia (2007) he presents these two:

1/ce = BE((1/cep1) (L + 1e4q — 6) (1)
Yer = wy. (2
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To find these equations Hansen (1985) use a fumcatled Bellman’s equation. The Bellman
equation is a technique that can be used to fiedssary conditions for an optimization
problem. The man behind this technique if RichaetirBan. The Bellman equation is also
called dynamic programming equation. This is a wesgful technique when we are dealing
with a dynamic optimization problem. This is smimr case, because we have movement in
every time t. It is a recursive technique workiragkward. The backward recursion technique
always solves the original problem if a solutioiiseX. For a good introduction to the
Bellman equation | recommend reading Sargent (t®@pter 1). Equation (2) is not that
complicated to find. Since it is not lagged, youldgust form a one-period Lagrange

function and solve fot; andn:. This is because the condition has to hold inyeperiod.
L(ce,me, A) = :BEt(ln(Ct) + ¥ - nt)) — Aweng + ek — ¢ — x¢)

Then find the partial derivatives forandn:.

dL 1
a—ct—ﬁEt<C—t>—ﬂ.= 0

JdL

a—nt: —ﬁEtl/)-}'ﬂ.Wt = 0
oL

ﬁ: weng + 1k — ¢ — Xt

Here we can see that there are some expectatioatopleft. But; applied to a constant

like w is just the constant himself. Singes know in time t1/c is predetermined. The
expectation in time t of a predetermined variahlame t, will turn out be a constant. So there
are non difficulties with expectations sign. Aftee Lagrange multiplien\j is eliminated we

will get the last first-order condition (2).

3.2 Firms

In this economy there is only one good, and thizdgs produced by perfectly competitive
firms. The representative firm rents labor and tziiom the agent and combines them using

® Sargent, T.J. (1987): Dynamic Macroeconomic Theldgrard University Prespage 18
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the constant returns to scale technology. ThisGslab-Douglas function that includes a
technology shock, where labor and capital is pédabstitutes.

— a,1l—a
Ve = Zeking

Herea € (0, 1),y: is the output and is a technology shock. The technology shock fatldle

exogenous stochastic process
Inzy,q = plnzy + €444

wherep € (-1,1) andg; is the random element. This random element cantbspreted as
innovation in technology next period. It is assurttet this element is independently,
identically and normally distributed (i.i.d.N) wittero mean and variane& The level of
input is chosen such that the firms maximize tphedfit and equates the marginal product of
labor (capital) to the real wage (rental rate) sTtniocedure happens in every periblde
equilibrium for this economy is the sequence ofgsi{w, r; };~, and allocations {¢, x;,

ki+1 Yt iz Such that firms maximize profits, agents maximiabty, and all markets cledr
3.3 Linearization of the Model

It can be showed that this economy converges teaalg state. A common strategy to solve
DSGE models is to determinate a steady state ané the whole system to this deterministic
steady state, in a next step we linearize thedirder condition and constraints by means of a
first-order Taylor series expansion around therdatastic steady state. Often this
deterministic steady state is origin. This progsss contain complicated math, Ruge-Murcia
(2007) gives this linearization in percentage démiefrom its steady stat® Since these are
given in percentage deviation it is not that diffitdo check whether the central equations are

right or not. Because we could use this combination

Ct—¢C R
In(c;) = c Ct

° Ruge-Murcia F.J (2007): Methods to estimate dyeastichastic general equilibrium models. page 2602
® Ruge-Murcia F.J (2007): Methods to estimate dyeastochastic general equilibrium models. page 2634
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where the parameter without subscript are the gtstate values and the variable with the hat
denotes the percentage deviation from steady $tateéhe two first-order conditions it is
important to remember thek is equal to the marginal product of labor, ang equal the

marginal product of capital. First we start witle first-order condition. Remember that:

Tepr = AZppq (Kepr) ¥ ()%

To rewrite equation (1) is not that straight fordiass it seems. The rule | am going to use can

be found in Mood, Graybill and Boes (19%4)This rule is stated in the following way:

Hy K y

X 1
E (—) ~ B Cov(X,Y) + “—’;Var(y).
U
Hereuy andyy describes the expectations for X and Y. Our cewvee is equal to zero to that
term can be zeroed out. The last term is a litibeewlifficult to interpret. But becaugg
raised to the third will be a very lager number,witk get a small number divided by a large
number. This will go towards zero. If our data séamp large then Var(Y) also will go

towards zero. So we can rewrite (1) into this:

Ct EiCryq

1 _ B(1—6) + BEiTisq

After some manipulations we end up with an equatia is easy to work with if we are

going to find the linearized function of this fistder condition.
Eicepr = (B(1—68) + BETi41)Ct
Then we take the log to this equation and inserldl ofr.;.
Eilncgyqy =InfB—-—Ind+pIna+Inc, + fla — DE;Ink;y 1 + (1 —a)E Inngq + BE Inzpyq

This equation has the same structure as presentdge-Murcia (2007). The part which has

been typed in bold face will disappear when we rdaitee the steady state equilibrium to

' Mood, A.M., F.A. Grayhbill and D.C. Boes (1974): fiatluction to the Theory of Statistics, 3th , pagé 1

10
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origin. 1 will discuss how this is done later omethis paper. Then the second one starts with

equation (2), and substitute with the marginal product of labor.

Yo = (1 — a)ze (k)%(ny) ™

Here the right-hand side has been substituted tweéhmarginal product of labor. Then take
the log to this function and solve flor n;.

Inc, = In{(1/9P)(1 — )z, (k) (ne) ™"}
Inn, = (1/a)(In(1/P) +In(1 —a)) + (1/@)Inz; + Ink, — (1/a) Inc;

We can see that this has the same structure as igitke Ruge-Murcia (2007) article. The
part that is written in fat will disappear when meve the steady state to origin. This is

because we do not have a fixed point in origin. Garnmg for the product function.

Iny, = In(z;(k)*(n)'™%)
Iny, =Inz;, +alnk;, + (1 —a)lnn,

The meaning of these equations is that they fodynamic system that determines the path
for output, hours worked, technology shock, captahsumption and investment. If we not
linearize the model it will be very difficult, ifat impossible to estimate the model. After

some manipulations Ruge-Murcia (208 fresents these linearized equations in equatjon (3

feor | = al%]+ Bz, 3)

[a11 a12]

[1 +oy/1—-y) —6(1+ay—a)/(a—ay)
a1 4z

0 a/(¢+a—ag)

=[] =linsisva—a

According to Ruge-Murcia (2007) the= af(k/nf2, kin = (1 + 6 — 1))V is the steady-
state capital-labor ratig,= 1 —d(k/n)"” is the steady-state consumption-output ratiotid|
variables that do not have a time subscript aretibedy state values. If we will use this

 Ruge-Murcia F.J (2007): Methods to estimate dyeastochastic general equilibrium models. Page 2602

11
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model for calculations, the A matrix has to be @ned into a matrix that only includes the
structural parameters. This is done by insertimgejuations fog, y andk/n, after some
manipulations the result of this is quite easy.

Result 1:
If ¢ = aB(k/nY™, kin = (1B + 6 — V)V, y = 1 —6(k/n)** and matrix A and B holds, then
matrix A and B can be written in this way:

2461 1 _
1+ —+s 21 pro-1
A= 0 1 B = o(=+8) |
HEC-D 1 pa1-6) soHB(-)

Proof for result 1. See appendix A

These types of model are moving around the steady ® all kind of different directions and
are difficult to read. What Ruge-Murcia (2007) ldase, is that he has made equations that
tells us on how fare from the steady state equilibrthese movements are. This has been
done in percentage deviations. To understand exuéd) a bit more we could look at a more
general example. This example can be found in S(®®/ page 180), but | going to modify
it so it will be closer to the case in the Ruge-Mararticle. Suppose we have a nonlinear

system of equations,

Xer1 = [ (X6 Ve)
YVes1 = 9(Xe, Vi)

where we have just one period time lag. In orddyg@ble to investigate the stability
properties of this nonlinear system in the neighbod of the steady state, the steady state
have to exist for this system. Another importamdition is thatf andg have to be continuous

and differentiable. The steady stétey)exist if it satisfies these conditions.

x = f(xy)
y=9gxy)

If these conditions are fulfilled then we can uskaglor expansion in the steady sétey)

12
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Xepn =X Of(y)xe—x Of(xy)ye—y

X 0x; X dy; y
Yeer =y Of (o y)xe—x Of(Xy)ye =y
y 0x x 0y; y
And let:
Wy _9fxy)
11 axt y Y12 ayt
b 209Gy - 0fg(xy)
21 axt » Y22 ayt *

If we lety: = (i — y)/y which is the percentage deviation from $keady state, then the

system can be written like this:

[ft+1] — [all alz] [ft]
Vet az1 Q20 1y,

This gives us the same structure as equation [@®.sfructure is just a first-order linear
system. If we replace with k; andy; with ¢; you can see that this is almost the same as
equation (3). We have now transformed the nonlisgarem into a tractable linear system.
We are transforming the system such that the lisgstem has the same qualitative properties
in a neighborhood around the steady-state as thinear system.

To find a solution for the system (3) is not sthitprward because it includes expectations.
There are many methods for solving linear diffeemnimodels with rational expectation. The
method | am going to use was first presented bydiard and Kahn (1980). This is also the
method that Ruge-Murcia (2007) uses. This technigqaires that we first compute the
eigenvalues and eigenvectors for matrix A. Buteiwe are in a situation where we only have
one predetermined and one non-predetermined vanadido not need the eigenvectors to

compute the solutidil The eigenvalues and eigenvector are presentesit 2

Result 2:
If the form of matrix A that Ruge-Murcia (2007) pents holds, then we get two eigenvalues

noted asy; andi,:

Y Blanchard, 0.J. and C.M. Kahn (1980): The solutiblinear difference models under rational expéoiet.
Page 1309

13
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M=ay=a/(¢+a—ag)
Ay =a;; =1+6y/(1—vy).

We can observer that{| < 1 and },| > 1. The eigenvectdf can be noted like this:

a _6(1+ay—a)
_ 12 1 _ a-ay
V= [ ai1—azz l = 1+5_V_( a ) 1 .
1 0 1-y \¢ta-ag
1 0

Proof for result 2: See appendix B. B.1 describes the eigenvalue @hthB eigenvector.

The solutions we get from the Blanchard and Kalpr@axh is given in equation (4) and (5).

kev1 = ainke + ag28 + by 2, (4)
¢ = ¢cki€t + ¢CZZAt (5)

Hereg¢ andg., are combinations of eigenvalues and eigenvectdisanatrix A. These
parameters depend on the structural parameterasonlaearly way. These equations have
been printed in the Ruge-Murcia (2007), but thdautloes not reveal the nature of their
functional dependency. | provide a res&eéult 3 which exhibits the full complexity of the

dependency ap.x andgc; on the structural parameteyso andp.

Result 3:
If the matrix A that Ruge-Murcia gives us holdsgddhat the Blanchard and Kahn (1980)

method hold. Theg. andg.; are equal to these equations.

az; —aqq
G = ——
¢ ap»
_ Az2(A22 — Q11)
¢cz - -1
a110a12

Proof for result 3: See appendix C.
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The state variables of this system are the cagtitgkk; and technology shock The
observable variables:( i, ) are the variables that will be used to estimia¢enhodel. We

can then form a model using the linearized equation

5;1: ¢yk ¢yz ]’é
se= e = 06 = | | |] ©)
ét ¢ck ¢cz ¢

Here the state- and observable variables are wiittpercentage deviation from the steady
state. The vectab is nonlinear functions of the structural paranmgtands; is a 2 x 1 vector
that contains our state variables. This equatipis(Be state-space representation of the
model. This model uses the predetermined leveapital and one exogenous shock as the
input. If this input is multiplied byb it provides us with predictions about our endogeno
observables: output, consumption and hours workied.matrix® can be presented in the

way Result 4shows us.

Result 4:
If the conditiony,, Ai, and equation (5) that Ruge-Murcia (200 Presents holds then we

have this result.

b ] [t g (1-7)ed]

Q=P Pnz| = 1 1 1
¢ck ¢cz l 1- Eqbck E - E(Ibcz j
¢ck ¢cz

Proof for result 4: See appendix D.

4. Estimation method

4.1 Maximum likelihood: General theory

The estimation method that is often used to sol8&B models is called Maximum
Likelihood (ML). The principle of maximum likelihabprovides a means of choosing an

asymptotically efficient estimator for a parameien set of parametéfsThe general result

* Ruge-Murcia F.J (2007): Methods to estimate dyeastochastic general equilibrium models. Page 2634
> Green, W.H (2003): Econometric AnalysRearson Education Internationdith edition page 470
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is that the ML estimator is a stationary pointtw tikelihood function. In our model there are
many parameters that need to be estimated. Thesm@i@rs are collected in the g x 1 vector
0. The observabley/c, n are then used to estimaeThen we can write the probability
density function a§x | #) wherex is the data that is observed. After obsenrnmgndom

draws from the densiti§x | ) that are assumed to be independent and identitiatiybuted
(iid), we can determine the likelihood of the ocemce of the sample as the product of

individual densities:

T
fer s, 1010) = | | FGl0) = LeOI).

The probability of the occurrence of a sample igegi by this likelihood function. The
maximum likelihood estimate df is the value for which this sample is most likedyhave
been observed; that it is the value of 0 that maximizes
LO|x) = fpxr_px, (X1, X7_1, .. X¢|0)16. Finding maximum likelihood estimates can be
split into two parts. One is to find the likelihofighction, second is to find the valuestahat
maximizes the likelihood function. It is often earsto work with the log of the likelihood
function, because it avoids technical problems wheding the first order conditions. The
maximum of a functiori(x) is the same as the maximumloff(x). This gives us a sum af

expressions involving the log of the densities dirae.

T
InL(6]x) =In f(x:16)
]

T
InL(6x) = Z In £ (x,|0)

An important aspect is that maximum likelihood mstiors are consistent, asymptotically
normally distributed, and therefore efficient ama@sgimators that have these properties. This
is the case if MLE satisfies certain standard ragtyl conditions (see Green 2008 &dition
page 473 for these conditions). A drawback totéggtinique is that the density of the

observed variable has to be known. That is onedae able to give a detailed specification

'* Hamilton, J.D (1994): Time Series Analysisinceton University Prespage 117
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of the data generating process.
4.1.1 Maximum likelihood: For our model

The representation of the system (6) has to hatate and an observation equation. To find
the state equation we use (4) and (5). If we suhet{5) into (4) we will findk,,, described
by k, andZ,. The other state variable move from titrte t+1 are already described by the

linearization. Then we have:

iét+1] _ [‘111 + a3k Ar12Pc, + bl] [Et] n [ 0
0 p Z

ZAt+1 gt+1

Which can be formulated in another way, whiérie a 2 x 2 matrix and is a 2 x 1 vector.

This will be the state equation.
$tv1 = Fét +Vpiq (7)
To be able to us ML estimation we have to rewrgeation (6) by adding an extra variable.
Xy = hsy = hdé, = HE, (8)
This is our observation equation. Here we haverjudtiplied equation (6) with vectdr.

This vector can be interpreted as a selection vedfe do this because when we estimate
DSGE models with MLE there cannot be more obseestiien structural shocks. In our

model we just have one structural shock, so weocinestimate with one observable at each

time. The selection vector will be an 1 x 3 vecsar f this vector is like this (0,1,0) we are

estimating using hours workegalone.

Let all the parameters of the model be denotetem x 1 vectord. The past observations of
X can be collected ir.;. At time t-1 we us&.; as a basis for the forecastéphoted as
&:1:-1, and the mean square error for this forecaBjis If we take the assumption that

technology innovation is normal distributed we tés:

17
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f(xe|Req;0) = N(Hgt|t—1'HPt|t—1H’)-

Here we have used a result that is often usedrfprcanstant. If we lel be our constant in

this example:
X~N(p, Prje—1) = LX~N(Lp, LPyje—1L').
HereL" denotes the transposelofThen we can start the ML estimation.

0., = argmax L(6).
{6}

Have to find the log likelihood function. Since wssume normal distribution we can use the

general form of the normal distribution as a starpoint.
f(xlu_ 0'2) = Le—l/Z[(x—y,)z/O'Z]
ov2

Here the mean ig andc is the standard deviation. A large sample dapeaterred because
we are assuming normal distribution. So when we thk log to the standard normal

distribution function and take into consideratibattour sample is large we get this function.

InL(u,0?) = _EIH(ZT[) ——lna __z I(xl ) l

Since the mean and variance is given earlier wieh@sge to insert it in. We changdo T
which is equal to the sample size and insert olamaad variance. We will then get the log

likelihood function. Heré_(¢) denotes the log likelihood function.

T
T T 1 - ' -
L(6) = —Eln@ﬂ) - ElanPﬂt—lH,l - EZ(xt - H§t|t—1) (HPt|t—1H,)_1(xt - Hft|t—1)

Since we do not have a value fowe need an estimated a valuedorhe technique that can

be used is called Kalman filtering. Since we hanly one shock in this model we cannot use

18
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all the observables when we are estimating. Weusarjust one. To solve this problem we
have three options. The first is of course to estéone observable at each time. The
seconded alternative will be to add an error tertié observation equation of the state-space
representation of the model, and the last optida &dd more structural shocks. As mention
earlier the ML estimator under standard regulationdition is consistent and asymptotically

normal. | our case we have

VT (0 — 0) = N(O,(3/T)7H).

Green (2003 8 edition page 478) has sketched a proof, a gooaf oo this outline. Here we
have an unbiased estimator, aur 0. If we look at the variance term we can obsé¢hat a
lagerT that means a lager data sample, we get a smalli@nce. In mathematical terms:
WhenT — o then(J/ T)* — 0. We can interpret as the true value of the parameter vector,
and.5'= -E(6°L(0)/ 6 6 6 6 ') as the information matrix. When computing this can use the

Hessian, this is just a matrix of second derivative

The likelihood function that is mention earliertire text looks quite easy. But it is in fact a
very complex function of the structural parametérfRkesults | present this complex
likelihood function. Since we have three observalttere will be three likelihood functions.
They will approximately give us the same estimatiesults, but there will be some
differences. This has been demonstrated in theeaafuuge-Murcia (2007) in the
numerically results. In result 5 | just present ohéhese three equations. That is the one
when we set the selection vector h to be equdl, ). Then we are estimating usifg To
find the other two equations we have to set thecsieins vector h to (0,1,0) and (0,0,1).
According Ruge-Murcia (2007) theands can be fixed thefi will be equal tqg, p, 0). In
result 5 we can sq®1, P12, P21 andpys, they are only the variance that comes from the&a
filter. The estimated values from the Kalman filéeek,_;y andz._1). It we take a look at
the functionresult 5gives us it can be difficult to see connectiothi® parameters ando.

We can finds in thepy andp are hidden in estimated value far We can also fing in theF

matrix.
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4.2 Kalman filter

Kalman filtering technique was developed by R.Elnkan (Kalman R.E. 1960, Kalman R.E.
and R.S. Bucy 1961). This technique was in therbegg just used by control engineers and
other physical scientists, and one of the mainars$or this is that the Kalman article was
first printed in an engineering journal. Kalmaneiltechnique is a mathematical estimation
technique that can be used to tracking, prediaidiorecasting. Of course with these
applications statisticians and economist couldthisetechnique. Especially statisticians who
are interested in linear regression models and sienies analysis. The Kalman filter is an
algorithm for sequentially updating a linear praojee for the systerii. It is a recursive
technique using information from the past. Onehefmain advantages with this technique is

that it is quite easy to use.

To get a better understanding of the Kalman filt@ould describe the concept in a little more
technical aspect. If we obseryg, Vi-2,..., ¥.r and let this be our data. This data can be in
vector or scalar. We assume théepends on the variabie This is an unobservable
variable, and is the state vector/variable. Impartant to notice that i andt, are vectors,

the dimension of; is independent fornk . The relationship between these two is linear:

Ve = Fite + vt

This is the observation equation. The connectidwéenr; andz.; can be written like this:

T = GeTpoq + Wy

This is the state equation also known as the systgmtion. It's called system equation
because it’s not fixed, but moves over time likdyaamic systent; andG; in our case is
known, but there are methods to estimate this tiiralata, see Hamilton (1994, Chapter
13.4). The observation errgrand the system equation ermgrare both assumed to be

normal distributed with mean zero and a known venga They are also assumed to be
independent of each other. Kalman filter is a reimartechnique, and the mean squared error
(MSE) for each of these forecast in matrix notatfithis because it is closer to our case) can

be written like this:

Y Hamilton, J.D (1994): Time Series Analysisinceton University Presgpage 372
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Pye1 =E [(Tt - ft|t—1)(Tt - ft|t—1)l]-

Here the tilde denotes the expected value. Thesieuprocedure starts &f,. We focus on
time t-1, where t = 1,2,...,T and we use ore obsedatd up to time t-1. First we have to set a
starting value fof and forP. With them giveri,,, andPy, o, the next step is then to calculate

same type of values to the next period. This pmeesontinued on. In general terms we can
write it like this: Givent,;_, andPy.; the goal is to calculat® |, andP1. When we have

these results they can easily be inserted in autirs equations.

This explanation of the Kalman filter is obtaingdreading Meinhold and Singpurwalla
(1983) and Hamilton (1994 chapter 13). For futunderstanding of the Kalman filter |

recommend you to read both. Hamilton (1994) is whoge related to the Ruge-Murcia
(2007) article. In this paper equation (7) is tteesequation and (8) is the observation

equation. In our model the Kalman filter recursvaii be set to$1|0 = E(¢;) = (0,0)" and

P1|0 = E(§:$0)-
5. Conclusion

In this paper | have presented the Ruge-Murcia{2@tbdel in more analytical way. The five
results that have been presented in this papeallareportant to see the underlying structure
of this model. It is also easier to understand klmevmodel works, and how the different
agents are connected. If we use the first fourtegte can find the likelihood function, and
we get a very complex equation. To estimate the B8&®del, we need to maximize the
likelihood. This requires partial differentiatiohtbe function. This will be a very difficult to
do analytical. DSGE models are already affectingoesause central banks are using them in
monetary policy decisions, but the models thatcémral banks are even more complicated.
They are more precise in their formulation of tiiféedent agents in the economy. The Ruge-
Murcia (2007) model together with the additionauks, are a good model when it comes to
understanding how DSGE models work. In the Rugedidui2007) model there are different
important agents that are not modeled, exampleeiggovernment. Since these models are so
complex it will maybe difficult to do the calculati with many agents. So these DSGE
models are best when we focus on a small parteoétonomy. DSGE models and the model

are complex and very detailed models. Since thesieha will be used in the future, it is
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important to understand their underlying structlireuill then be easier to interpret estimation
results from different DSGE models. Practical ecoiwal work involving the DSGE

modeling approach is barely feasible without thensive use of numerical techniques.

Appendix A: Proof for Result 1

A.l: Fora;; we have this combination:

o)
a11 = 1+%

Then we inserf = 1 —d(k/n)"™.

51— 8(k/n)t%)

R ¢ YD)
1 5 82(k/n)1
Sk s(k/n)te
=1+ ! 5
Bl (k/n)t-«
Then we inserk/n = (18 + 6 — 1)),
=1+ !
= T (/B + 5 - D) e )ia
=1+ 1
a (A/p+6-1)/a)~?
%+ 5—1
a11 = 1 + T - 6
A.2: Forai;», we have:
—6(l+ay—a)
A =
a—ay

Inserty = 1 —d(k/n)"*.
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=1 +a(1-6(k/n)'"%) —a)
M2 T a1 = 6k /) )
-85 —abd + ad?(k/n)"* + ab
ad(k/n)l-«
B ) ad?(k/n)t~«
= T wetk/m) e T as(k/myi-e
1

BCCORAN

Insertk/n = (18 + 6 — 1))V,

1
N Y/ T =

6

=—(%+5—1)+5=—%—1

A.3: The equation foay; is given in the following way:

a
A,y = ——.
22 ¢t+a—ag

Insertc = af(k/iny*.

(04
“22 =GB (/M) + a — a?B(k/n)e

Here in this case it is easier to focus on the denator first. We can express the

denominator in the following way.
Ble/m)*t +1—ap(k/n)*"
Insertk/n = (18 + 6 — 1))V,

ﬁ<w>+l—ﬁ(l/ﬁ+6—l)

1+806—1)
————+B(1 -8
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Then we have this result

1
Qzz = —
1+/5'g$ 1)+,8(1—5)
A.4: Forb; we are given this combination:
b = o)
Y a—ay
Inserty = 1 —d(k/n)"*.
b = o)
P77 a—a(l - 6(k/n)t9)
B 1
~a(k/n)t-e
Then inserk/n = (18 + 6 — 1))V,
1
bl - 1
(1/p+6—-1)/a)
_1 +6—-1
B
A.5: The last onel, is given:
by =— P
¢+a—ag

Insertc = af(k/iny?*.

pap (k/m)*!

% = QB + = By

Eliminatea and inserk/n = (18 + 6 — 1)kx)™@ ™.
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pﬂ(l/ﬁ+6—1>

a

ﬁ<1/,8+5—1>+1_aﬁ<1/ﬁ+5—1)

a a
p+pB6—1)

_ a
LG -1 g5y

B p+pB(6—1)
T 1+B8(6—-1) —aB(6—-1)

%ﬂ)ﬂ
A+ B —ap
_ r(G=1+8)
ﬁ+ﬁ(1—a)

b2:
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Appendix B: Proof for Result 2
B.1: For the eigenvalues

The eigenvalues of the matrxare obtained by solving |AM| = 0'%. Then we can write our
situation like this:

ey @) =2(o D=0

Then we have to find the determinant and set iaktuzero:

(a;; —M(az; —A) —ajpa;;, =0
1% — Alay; + azz) + aq11a2; — ag2051 = 0

A—Ap+qg=0

As we can see this is a polynomial equation, andawdd use a standard polynomial formal

to solve our problem. | us this one:

—b +Vb?% — 4ac
)\1’2 - Za .

For our problem we get:

1
Mo = E((an +azy) + \/(‘111 + az;)% — 4(a11a32 — ‘112‘121))-

Here there is important to remember tagt= 0. We get this from the matrix A. Then the

result can be written in the following way:

1
M = E((an +az;) + /(a1 — azz)z)

M= E((an + az;) — (11 — azz) = ay;

¥ Shone R. (1997): Economic Dynami€ambridge University Prespage 159
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1
Ay = E((an + az;) + (a11 — azz) = agq

Is important to remember that we assuyhe4qg> 0.
B.2: For the eigenvector
If we denote the eigenvector Es= [v*1, v*2] we have these two combinations:

(A-MDvM =0
(A —A,Dv*2 = 0.

Then we just solve these equations.
[(an alZ) _ (azz 0 )] vy M = [O]
Az1 Az 0 az/l|vM 0
(@11 — az2)vi + agv™M [ ]
0

A
Az V1™t

If we fix v, equal to 1 and solve,*2we get the last necessary result we need to foem th
eigenvector. We know thab; is equal to zero. So the last element of thisorewtll always

be zero.

_ Q12
Ull = ai1—0azz

1

The second eigenvector have the same procedure.
[t Y [ W
d21 Q22 0 ay v27‘2 0
[ 120, l [0
a2101%% + (a52 — A1)V,

Since we know thady; is equal to zero, we can fix2 to 1 and still it will fulfill the

condition. There is no other solutionutg*2 than setting it equal to 0. Then we get this tesul
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oo []

This give us the eigenvector that has been presémiesult x If we would like to check if
this vector is correct we could solve the combimab=V AV, where matrixD is the
eigenvalue matrix.

0 1 a a Q12
VAV = [1 G2 l [all alz] I a11—0zz 1] = [azz 0 ]
a11—0dz2 21 22 1 0 0 a1

It is important to remember that; is equal to zero.
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Appendix C: Outline for equation (4) and (5). Proof for result 3

The solution presented by Blanchard and Kahn (1p8Q¢ 1309 is the starting point. We
have that matrix A is 2 x 2, ané@ly] < 1 and },| > 1. The solution is given like this:

iétZiéOfOTtZO

koo = ke + by2, + uz A3 E (Z04419Q) fort >0,

=0

& = aiF[(4 — ag ke + #Z A3 E(204:1Q0)] for t = 0.

i=0

Hereu = (1, — a;1)A; — a;24,. Then we insert the eigenvalues and do the cortiponga

b = aifl(@z — @k + 1 ) @i E (0]
i=0

s _ Q22+ a4q 4 1 o—1prs A-1pn s
be = ————ke + aiiu[ar1 E2ilQ) + any T EGeral Q) + arf T E (el Q) + -]
12

HereQ; is all the information we have available at tim®he of our main assumptions is that
E(Z:411Q;) is equal to zero. This means that at time t wétdpect any technology shock
to accrue in the future. Another important thingegmember it that the information we have
available at time t, include. If we take these assumptions into consideratierget a much

easier equation to work with.

Ay, + aqq ~

A -1 —15 -1-1 -2-1
Ct_—a ki +aulaize+a; *0+a; 0+ -]
12
Azp T Aq1 ~ 1 uo,
==k, +—(—2 (9)
ai» a2 \Qq11
_ Gyt ap i (azz — a11)az; — A12a13
= ¢+ Zt
ai, a12017
Azp + Aq1 o (azz — ag1)asz; A
) aj2d11

Ct = Peke + ezZy
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Et+1 = azziét + b1z + Hz a1_1i_1E(ZAt+i|Qt)

=0

= azziét + biZy + M[afllE(ZAtlﬂt) + a1_11_1E(ZAt+1|Qt) + al_lz_lE(ZAt+2|-Qt) + e

We have the same reasoning as above in this case.

kevr = agoke + b2y + plaiize + aif ™« 0+ agZ t 0 + - ]

~ A uo,
== azzkt + b121 + _Zt
a11

We can rewrite (9) and get an equation that coeldeblacef—@.
11

u N o~
—Z¢ = 126, — (az — aq1)ke
ajq

This gives us the final result.

key1 = azake + b1Ze + ag26 — (azz — agp)k;

== allkt + alzét + blz’\t
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Appendix D: Proof for Result 4

Given equation (5) and these two linearized eqnatfoom Ruge-Murcia (200

We insert equation (5) ifi;

ng = _E(Cpckkt + ¢czzt) + k¢ + Ezt

=L e, -2 “+IE+1“
= a¢ckt a¢czzt t OCZt

- a ¢ck t a a ¢cz Zt-
Then we can insert this int@;

~ 1 - 1 1
9, = ak, +(1— [(1—— )k +(——— )]+
Ve = ak, + ( a) a¢ck t p a¢cz Zt Zt
~ 1 - 1 1 . .
=akt+(1——¢ck—a+¢ck)kt+(5—a¢cz—1+¢cz)zt+zt
“ 1 1 ) )
=kt — E(pckkt + ¢ckkt +—= Zt ¢czZt + ¢zt

(14 (- (4 (=)

¥ Ruge-Murcia F.J (2007): Methods to estimate dyeastichastic general equilibrium models. Page 2634
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Appendix E: Proof for result 5

We are going to estimate the likelihood functiomhwisingy,, the h vector is (1,0,0). To this
gives us the following:

The H matrix will be looking like this.

¢yk d)yz
d’nk d’nz
¢ck d)cz

H=[1 0 0] =[¢yk ¢yz]-

Then we can compute the variand®t|t-1H’. In the outline of this variandet|t-1 is just a 2
x 2 matrix. The values for this matrix come frore #alman filter. So we just use standard

notation for a 2 x 2 matrix.

, P11 Piz2][Pyk] _ P11Pyk + P12Dy
HPyaH' = [Py Py [p21 p22] [d)yz] = [Py Pyl P21Pyk + P22Py:

= d’yk (plld)yk + p12¢yz) + d)yz(led)yk + p22¢yz)
= P11¢32/k + (P12 + P21) Py Py + P22¢3zzz

The likelihood function that are given:

T T T . L _
L(6) = —EIH(Zﬂ) - ElanPﬂt—lH | - EZ(xt - H€t|t—1) (HPt|t—1H ) (X — H€t|t—1)-
t=1

If we then insert the variance and H matrix wetgét result.

L(®) =

2
(yt_(¢ykk(t|t—1)+¢y25(t|t—1)))
pl1¢}2/k+(p12+p21)¢yk¢yz+p22¢32/z

T T 2 2 1o
_Eln@ﬂ) - Eln (p11¢yk + (p12 + p21)¢yk¢yz + p22¢yz) - 52t=1

Form result 4 we have a combination §gy, andg,,,. If we insert them we get the following

result.
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L(®) = —gln(Zn) - gln (P11 (1 + (1 - i) ¢ck)2 + (P12 + P21) ((1 + (1 - i) ¢ck) (& +
(-0u))+rale (1-00))-

(3612 et (4 (- o))
pua(1+ (1) ek) +@az e (14 (1-3)0e8) G (1-5)00) Jopaa (Gt (13) o)

1
S Lt=1

If we then useesult 2that explains the A matrix in just structural paeders and insert them

into result 3which gives us the combinations behifig andg.,, we have the following

combinations.

1 lis-1
L BTt 1 1+8 )
T, 55 <1. ——+8 (a-1) EVICR 1)+B(1—6) a
a

(1) gac=14+(1-7) 1 - <) )

|

w|

KN
/—_

1

1
—( 1+
1+B(8 1)+B(1 6)\<1+B(a§—1)+ﬁ(1_6)> ( a

1 - =-
<1+F+j_1+6>(—%—1) ¢

1
1 / 1 [ 14
N 1+B(6 1)+[3(1 5)\ 1+ﬁg$—1)+ﬁ(1_5) t—
)
( a %+5—1 1
1+ ——4s (—5—1) /

|
+
i
N
+7)
~
v
U=y
N
+

H(1-g) e+ (1)

|
+
&
|
n
[«9)
~
~_
-_/

If we insert these combinations into the likelihdadction we get our final result.
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