
LanguageLab 1.1 User Manual

Terje Gjøsæter Andreas Prinz

January 1, 2013



Contents

1 Introduction 4
1.1 Language Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Meta-model Architecture . . . . . . . . . . . . . . . . . . . . 6

2 The LanguageLab Platform 7
2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Language Modularity and Instantiation . . . . . . . . . . 7
2.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Module System . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A LanguageLab Use Case 13
3.1 Installing and running LanguageLab . . . . . . . . . . . . . . . . 14
3.2 Creating a Module . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Executing a Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Creating a New Language with LanguageLab . . . . . . . . . . . 18

4 Implementation Details 20
4.1 Structure and Design of LanguageLab Modules . . . . . . . . . . 20
4.2 Internal Representation Language . . . . . . . . . . . . . . . . . . 22
4.3 Manual Module Creation . . . . . . . . . . . . . . . . . . . . . . 22

5 Initial Set of LanguageLab Meta-Modules 23
5.1 SimpleStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 SemBasic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 SimpleText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 SimpleGraphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 SimpleInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.6 SimpleConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 SimpleTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2



Preface

This user manual covers version 1.1 of LanguageLab.
The following people have contributed to the design and development of the

LanguageLab platform:

• Terje Gjøsæter

• Andreas Prinz

• Samuel Vogel

• Stian Mathias Guttormsen

• Thomas Fauskanger

• Guro Ødesneltveit

3



Chapter 1

Introduction

In meta-model-based language design, a major challenge is to be able to oper-
ate on an adequate level of abstraction when designing a complete computer
language. There are several di�erent technologies, meta-languages and tools in
use for de�ning di�erent aspects of a language, that may or may not satisfy the
needs of a DSL developer when it comes to abstraction level. Before starting
design and development of the LanguageLab workbench, we set out to exam-
ine what concepts are needed for de�ning the di�erent aspects of a computer
language, and discuss how to apply them on a suitable level of abstraction. If
the abstraction level is too high, the de�nition of behaviour may be a challenge,
and on the other hand if the abstraction level is too low, the language developer
will spend too much time on unnecessary details.

In the LanguageLab platform, we set out to facilitate operation on a suit-
able abstraction level, and also focus on user-friendliness and a low threshold
to getting started, in order to make it useful for teaching of meta-modelling.
The platform will be open for third party language modules and is intended
to facilitate re-use of language modules, modular language development and
experiments with multiple concrete syntaxes.

Another goal is to supply some basic guidelines for developing LanguageLab
modules that can further add to the features and capabilities of the LanguageLab
platform.

1.1 Language Aspects

A description of a modelling language, whether it is a domain speci�c language
(DSL) or a general purpose language, usually involves several di�erent tech-
nologies and meta-languages. Traditionally, we are familiar with the distinction
between the syntax and the semantics of a language. The syntax speci�es the
structure of sentences in the language, while the semantics assign a meaning to
the sentences.

In [4], a language de�nition is said to consist of the following aspects: Struc-

4



Structure'

Constraints'

Behaviour'

execu2on'

transform'

Presenta2on'

graphical'

textual'

Ma
p
p
ing'

Ma
p
p
ing'

Figure 1.1: The aspects of a modelling language.

ture, Constraints, Presentation and Behaviour (see Figure 1.1).

Structure de�nes the constructs of a language and how they are related. This
is also known as abstract syntax.

Constraints bring additional constraints on the structure of the language, be-
yond what is feasible to express in the structure itself.

Presentation de�nes how instances of the language are represented. This can
be the de�nition of a graphical or textual concrete language syntax.

Behaviour explains the dynamic semantics of the language. This can be a
transformation into another language (denotational or translational se-
mantics), or it de�nes the execution of language instances (operational
semantics).

These aspects are not always as strictly separated as they seem in the illus-
tration; constraints are shown as overlapping with structure, since constraints
interact closely with the structure-related technologies to restrict the set of valid
language instances. However, constraints can also be used for de�ning restric-
tions for presentations as well as behaviour.

Meta-models de�ne the structure and constraints of a language. For a com-
plete language de�nition, it is also necessary to de�ne the presentation and
behaviour, and relate these de�nitions to the meta-model, as explained in [2].

The structure is the core of the language; it contains the concepts that
should be part of the language, and the relations between them. While tradi-
tional grammar-based compiler tools tend to focus on the presentation of the
language rather than its structure, a meta-model-based approach to language
design facilitates a focus on the structure. Starting from a well-de�ned language
structure, it is convenient to de�ne one or more textual and/or graphical pre-
sentations for the language, as well as to de�ne code generation into executable
target languages such as Java.

5



1.2 The Meta-model Architecture

A meta-model architecture or a meta-model hierarchy is a tree of models that
are connected by �instance-of" or �conforms-to" relationships.

In the OMG four-layer architecture, every model element on each layer is
strictly an instance of a model element of the layer above:

• M3: The meta-language for structure, MOF. (There is no M4 because
MOF can be used to de�ne itself)

• M2: Complete de�nition of all the aspects of a language.

• M1: Language instances (e.g. an UML diagram).

• M0: Data or runtime instances or real world objects.

It is common to use meta-models to specify the structure of a language,
using existing meta-languages like MOF and Ecore, but they are not expressive
enough to handle language aspects like presentation and behaviour.

The approach to the meta-model architecture within the modelling lab at the
University of Agder, is based the premise that all aspects of a language should
be de�ned speci�cally by using suitable meta-languages on the level above, as
described in [3]. We see meta-languages as o�ering interfaces that languages on
the level below can use, as shown in Figure 1.2.

Figure 1.2: The architecture used by the modelling lab at University of Agder.

Thereby, we apply the notion that models can freely be promoted or denoted
between levels depending on the intended use, and models in the meta-model
architecture are relative to each other based on the relationship between them.

This understanding of the meta-model architecture, forms the basis of the
concept of the LanguageLab module, where meta-language modules provide
interfaces that language modules can use, and the language modules can again
provide interfaces that allows them to be used as meta-language modules.

6



Chapter 2

The LanguageLab Platform

This manual is aimed at language developers that wish to use the LanguageLab
computer language development workbench. LanguageLab is a complete envi-
ronment for experiments with meta-model-based language speci�cation. Version
1.1 is a prototype that supports some basic functionality.

The manual will describe the functionality of the system as planned. How-
ever, the early versions will not implement all of the described functionality.
As far as possible, the not-yet-implemented functionality should be described
in su�cient detail that it can be implemented at a later stage.

2.1 Design

The LanguageLab language workbench will allow the DSL developer operate
on a suitable level of abstraction on all relevant language aspects, and facilitate
making and modifying small example languages. In the following, the design
for LanguageLab is described.

2.1.1 Language Modularity and Instantiation

The most fundamental functionality of the platform is to allow instantiation
of modules. When modules are used as languages for de�ning a new module,
they are also called meta-modules. A meta-module that supports structure, will
allow creation of instances based on its instantiation semantics, through a simple
built-in tree editor. A suitable presentation meta-module can be loaded, that
will provide an editor that allows for a more user-friendly creation of a module.
Then, constraints can be de�ned on the elements of the module with the help
of a constraints meta-module. Finally, a behaviour meta-module can be added
to allow de�ning semantics for the module.

Note that it is also possible to load more than one module for the same lan-
guage aspect, to provide e.g. di�erent views of the language (usually one pre-
sentation module will provide one editor) and/or support for di�erent language

7



features, like e.g. expressions or inheritance. However, for a given structure
meta-module, it is necessary to take care that all meta-modules for presenta-
tion, constraints and behaviour either are created for this particular structure
meta-module, or are adapted to it with suitable mappings.

When a module that has been developed based on the basic meta-modules
is itself a meta-module, it can be promoted, or �moved up� a level in the meta-
modelling hierarchy, by loading it as a meta-module and use its available in-
terface, in order to create an instance of the meta-module that has been de-
veloped. If presentations for the meta-module have been created, those editors
can then be loaded. When a new meta-module instance (module) has been
created, one may want to execute it. If a meta-module supporting behaviour
has been used, one can again �move up� the created module, and execute it in
a debugger/runtime-environment.

Figure 2.1 shows how a meta-language for structure can be de�ned using
di�erent meta-modules including a version of itself, following the pattern shown
in Figure 1.2.

Figure 2.1: The LanguageLab architecture used for de�ning a meta-module.

2.2 User Interface

The two main elements of the Language Lab Graphical User Interface are, from
top to bottom:

Language Level (upper interfaces) contain the interfaces of loaded meta-
modules. Each meta-module exists in a separate tab.

Model level contains the module being developed. The module is an instance
of meta-modules loaded on the language level. The model level always

8



includes the platform view (providing a simple tree structure) of the mod-
ule being developed. Optionally, it may contain other presentations of the
module in separate tabs, if the loaded meta-modules support it.

In addition, there is an optional lower interface view, for displaying the lower
interface of a meta-moduile.

Figure 2.2: LanguageLab user interface.

2.2.1 Presentation

Figure 2.2 shows the two main parts of the LanguageLab GUI, the upper part
is for meta-modules, and in this case it contains a meta-module interface for
structure. The lower part is for showing the module being built from elements
of the loaded meta-module(s). In this case, it is a simple petrinet module. In
this illustration, the language instance view is based on a built-in tree view,
the so-called platform view. It may display other views, editors, debuggers,
code generators as tabs depending on the meta-modules used. The following

9



Figures 2.3 and 2.4 show possible interfaces for working in textual and graphical
presentation modes.

LanguageLab allows users to switch between di�erent presentation views of
a language instance, that are automatically synchronised with the internal rep-
resentation. Note that the view must be in a consistent state for successful
synchronisation to take place. Future versions of LanguageLab will allow dif-
ferent presentations of a language to support preservation of extra information,
elements of the presentation that are also present in some form in other presen-
tations, but not in the structure, as described in [1]. This can be achieved by
using a presentation extra-information module.

Figure 2.3: Textual presentation of the language instance.

2.2.2 Constraints

Constraints may be added by using a suitable contraints meta-module (TBD).

2.2.3 Behaviour

There are menu items in the model view's menu to create new module elements,
based on types from meta-modules. Basic create-commands are provided by the
platform, but may be overloaded by customised versions from meta-modules.
Types may also have operations that can be run from this menu, as shown in
Figure 2.5.

10



Figure 2.4: Graphical presentation of the language instance.

For executing a module, its semantics must be de�ned using a meta-module
for that purpose, and then the module must be loaded as a meta-module for
being executed. This is further described in Section 3.3.

Transformations are implemented by using a transformation meta-module
for de�ning a transformation, and the result from executing the transformation
on the module is a new transformed module.

Code generators may function either as template-based systems where the
code generation is one-way, i.e. the code is read-only, or it may be a full editor
that allows for editing the generated code and have the changes applied to the
original language instance.

2.2.4 Module System

It is possible to combine elements from di�erent meta-modules, as shown in
Figure 2.6 where elements from three di�erent meta-modules are used for one
module.

11



Figure 2.5: Calling an operation.

Figure 2.6: Combining elements from di�erent meta-modules.

12



Chapter 3

A LanguageLab Use Case

In this part, concrete examples of LanguageLab usage are presented, to help
the developer getting started with LanguageLab. We explain how to install
LanguageLab, how to use it for creating a simple module based on an existing
meta-module, how to execute the module, and �nally how to create a new meta-
module. Figure 3.1 shows the relation between the di�erent modules and meta-
modules described in this chapter; SimpleStructure (meta-module for structure),
PetriNet (a petrinet meta-module), MyPetriNet (an instance of the PetriNet
meta-module) and RT_MyPetriNet (runtime-instance of MyPetriNet).

Figure 3.1: The (meta-) modules used in this chapter.

13



3.1 Installing and running LanguageLab

Download the LanguageLab platform with the initial set of LanguageLab mod-
ules. Unzip the downloaded �le into a folder of your choice, and run the Lan-
gugeLab application. LanguageLab is a Java application, requiring Java to be
installed on your system.

3.2 Creating a Module

Figure 3.2: Creating a new module.

In this example, we will show how to create a simple module based on an
existing meta-module in LanguageLab. The example language is a PetriNet

14



meta-module.
From this meta-module, we will be able to create a PetriNet module with

places, transitions and arcs.
We start by creating a new module from the File menu (see Figure 3.2):
File->New Model, Create New Folder.
Select the newly created folder, click OK.
After a new module is created, meta-modules can be loaded from the Inter-

face menu.
Interface->Load Meta-model.
Select InitialModules/LanguageModules/PetriNet, click OK
Figure 3.3 shows how type instances can be created based on the types of

the interfaces of the loaded meta-modules. If types contain operations, the
operations can be run from the same menu. First create two Place elements by
twice selecting the Create() operation for the type Place:

View-Menu (the small arrow marked with a rectangle in Figure
3.3) → PetriNet → Place → Create()

Then create a transition in the same way:
View-Menu → → Transition → Create()
When a type instance is created, the attributes and references are not set.

By double-clicking on the item, dialog boxes for setting attributes and references
will appear, to allow the language developer to set the values of these.

Figure 3.3: Creating module elements from the language interface.

15



Double click on the name attribute of the �rst Place, enter the
name `A' in the dialog box, Click OK.

Double click on the name attribute of the second Place, enter the
name `B' in the dialog box, Click OK.

We now have two named places and a transition. Add one token to place A
by double clicking on the tokens attribute and enter the number `1'.

Double click on the name attribute of the transition, enter the
name `T1' in the dialog box, Click OK.

Set Place A as inputPlace for the Transition: Double click on the input-
Place reference of Transition T1, select the ID of the Place A in the
dialog box, Click OK.

Set Place B as outputPlace for the Transition: Double click on the out-
putPlace reference of Transition T1, select the ID of the Place B in
the dialog box, Click OK, as shown in Figure 3.4.

Figure 3.4: Dialog for selecting the target Transition of an Arc from a Place.

We may now want to call the operation PrepareToRun() to prepare the
module for execution, as described in the next section. We now have a complete
model, and may save the module for later use:

File->Save Model

16



3.3 Executing a Model

The execution requires the module to be loaded on the language level. Then
its runtime operations can be executed, e.g. run(), step(), reset(). Execu-
tion/debugging (based on operational semantics) and code generation will usu-
ally be displayed in a separate tabbed view. Debugging is shown in the form
of an extended version of the platform view showing the stepwise state of a
language instance during runtime. Start, stop and reset operations as de�ned
by the PetriNet meta-module are called through the Runtime View menu.

Figure 3.5: platform-view debugger.

The debugger will show the runtime-structure in the platform view, with
access to values of runtime variables, as shown in Figure 3.5. Runtime elements
are marked with italics font.

17



3.4 Creating a New Language with LanguageLab

Using the SimpleStructure meta-module, we de�ne the structure of PetriNet in
the same way as we de�ned the module above, adding Place and Transition,
with the above described attributes and transitions.

If we want to use a module as a meta-module, we may open it as a meta-
module from the interface menu. For this to be meaningful, the lower interface
of the module has to be populated.

Figure 3.6: Generating a lower interface based on language module semantics.

Figure 3.6 shows how the SimpleStructure module may be used to de�ne the
structure of the PetriNet language and generate a lower interface o�ering place
and transition elements that can be used by other modules, thereby allowing it
to be used as a meta-module. The lower interface is expanded in this �gure, for
illustrative purposes.

Note that if we want to be able to execute a module, we also have to add
execution semantics and a runtime environment to its meta-module, or we may
alternatively transform it into another form that we are able to execute. Textual
or graphical presentations and constraints may also be added to the module.

Constraints for PetriNet like �A transition must have at least one inputPlace
or one outputPlace� may for example be expressed using the SimpleConstraints
module antipattern constraint as shown in Figure 3.7.

18



Figure 3.7: A constraint for PetriNet.

19



Chapter 4

Implementation Details

The starting point for the LanguageLab application is an Eclipse/EMF-based
tree-view model editor, generated from an Ecore model of the proposed Lan-
guageLab module format. The EMF-based editor plugins were extended with a
front-end carrying a full graphical user interface, implemented as a standalone
Eclipse RCP application, enabling the language developer to use it indepen-
dently of Eclipse. Although RCP applications do not carry the weight of the
full Eclipse workbench, they can still build on all available features of Eclipse,
such as the JFace widget toolkit, the plug-in architecture of Eclipse, and EMF,
allowing a relatively rapid development of the LanguageLab platform.

4.1 Structure and Design of LanguageLab Mod-

ules

As shown in the model of the LanguageLab in Figure 4.1, the Module may
provide an interface where the types that are supported by the module are
de�ned. It may also have an interface bound to the provided interfaces of other
modules and thereby use them as meta-modules. The Interface consists of
Types that can have Attributes; supporting basic built-in types: EBoolean,
EString, EInt. Reference refers to typed objects. Operation elements may
have operation implementation and code (Java class �les).

This implements the architecture described in Section 1.2 by allowing a
module to both use interfaces from meta-modules as well as o�er interfaces for
other modules to use. This facilitates not only a module per language aspect,
but also other variants such as modules supporting particular language features
that can be used as building blocks, as a starting point for creating a partly
customised DSL with some stock features.

20



F
ig
u
re

4
.1
:
T
h
e
L
a
n
g
u
a
g
e
L
a
b
E
co
re

m
o
d
el

21



4.2 Internal Representation Language

The LanguageLab platform provides a basic representation language that is de-
rived from the LanguageLab module model described above, with Type, Attribute,
Reference, and Operation. This representation language is supported by the
platform view, allowing any type of LanguageLab module to be displayed.

4.3 Manual Module Creation

The Eclipse/EMF-based tree-view model editor, generated from an Ecore model
of the proposed LanguageLab module format, was used for creating some basic
meta-modules for initial bootstrapping and testing of the system, as can be seen
in Figure 4.2.

Figure 4.2: EMF-based LanguageLab module editor

For the purpose of bootstrapping, operations can be added in the form of java
classes to the module. When they are available, the operations can be executed
from the module menu. This method may be used for de�ning the behaviour of a
language. However, for more proper and developer-friendly behaviour handling,
a behaviour DSL module allowing for de�ning behaviour on a higher level of
abstraction should be used.

22



Chapter 5

Initial Set of LanguageLab

Meta-Modules

5.1 SimpleStructure

SimpleStructure is a simple basic module that allows for creating simple module
structures. It contains the object-oriented basics with classes, attributes and
references, but not inheritance in this initial version. Figure 5.1 shows the
module loaded as a meta-model in LanguageLab, o�ering Class with Name, and
it also has references to its member Attributes and References; in addition
there are the Attribute and Reference themselves, each with Name and Type.

Figure 5.1: The SimpleStructure meta-language interface.

23



5.2 SemBasic

SemBasic is a simple (work-in-progress) module for de�ning instantiation se-
mantics of a language by providing a mapping between a given structure (e.g.
SimpleStructure) and the platform module structure given in Figure 4.1 above,
thereby facilitating the creation of a new language interface from elements of
a structure model. Figure 5.2 shows the interface of the SemBasic module
that contains FunctionDe�nition, MapUse, ClassMap, AttributeMap and Ref-
erenceMap. The function makeSem() is used for generating a java version of the
modeled mapping function that may be used with a Structure meta-language
like SimpleStrucrure for creating a lower interface based on a structure.

Figure 5.2: The SemBasic meta-language interface.

5.3 SimpleText

Not yet implemented.

24



5.4 SimpleGraphics

Not yet implemented.

5.5 SimpleInstance

SimpleInstance allows for de�ning an instance structure with Objects that have
definingClass, and a set of Slots, as shown in Figure 5.3. The reason for Slot
having both attributeValue and referenceValue, is that it was created using a
meta-module that did not support inheritance, and this option was chosen for
accomodating slots with either attribute nature and reference nature.

Figure 5.3: The SimpleInstance meta-language interface.

5.6 SimpleConstraints

The meta-module for constraints is a (work-in-progress) module that allows one
to add constraints that are connected to elements of a module. The current
version of SimpleConstraints extends SimpleInstance and allows to de�ne two
types of constraints; AntiPatternConstraints that de�nes a model-instance pat-
tern that is not allowed.The other option is the ImplicationConstraint, where
the precence of one pattern, implies the existence of another pattern. Both con-
straint types use a SimpleInstance-like way of de�ning the pattern, and allow
the setting of severity level and message to give in case the constraint is broken.
The SimpleConstraints module generates a checkConstraints function to use for
checking the de�ned constraints.

5.7 SimpleTransform

Not yet implemented.

25



Figure 5.4: The SimpleConstraints meta-language interface.

26



Bibliography

[1] Terje Gjøsæter and Andreas Prinz. Preserving non-essential information
related to the presentation of a language instance. In Proceedings of NIK

2009, 2009.

[2] Anneke Kleppe. A language is more than a metamodel. In ATEM 2007

workshop, 2007. Available at http://megaplanet.org/atem2007/ATEM2007-
18.pdf.

[3] Liping Mu, Terje Gjøsæter, Andreas Prinz, and Merete Skjelten Tveit. Spec-
i�cation of modelling languages in a �exible meta-model architecture. In Ian
Gorton, Carlos E. Cuesta, and Muhammad Ali Babar, editors, ECSA Com-

panion Volume, ACM International Conference Proceeding Series, pages
302�308. ACM, 2010.

[4] Jan Pettersen Nytun, Andreas Prinz, and Merete Skjelten Tveit. Automatic
generation of modelling tools. In Arend Rensink and Jos Warmer, editors,
ECMDA-FA, volume 4066 of Lecture Notes in Computer Science, pages 268�
283. Springer, 2006.

27


