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ABSTRACT In the industry, machinery failure causes catastrophic accidents and destructive damage to
the machines. It causes the machinery to stop and reduces production, causing financial losses to the
industry. As a result, identifying machine faults at an early stage is critical. With the rapid advancement in
artificial intelligence-based methods, developing automated systems that can diagnose machinery faults is
necessary and challenging. This paper proposes a multi-channel time-frequency domain deep convolutional
neural network (CNN)-based approach for machinery fault diagnosis using multivariate time-series data
from multisensors (tachometer, microphone, underhang bearing accelerometer, and overhand bearing
accelerometer). The wavelet synchro-squeezed transform (WSST) based technique is used to evaluate the
time-frequency images from the multivariate time-series data. The time-frequency images are fed into the
multi-channel deep CNN model for automated fault detection. The proposed multi-channel deep CNN
model is multi-headed, considering the time-frequency domain information of each channel time-series
data for automated fault detection. The proposed model’s performance is compared to benchmark models
regarding testing accuracy, total parameters, and model size. Experiments have shown that the proposed
model outperforms benchmark models regarding classification accuracy. The proposed multi-channel
CNN model has obtained the accuracy and Fl-score values of 99.48% and 99% for fault classification
using time-frequency images of multi-sensor data. Finally, the proposed model’s performance is measured
regarding inference time when deployed on edge computing devices such as the Raspberry Pi and the Nvidia
Jetson AGX Xavier.

INDEX TERMS Deep CNN, machinery failure, Nvidia Jetson AGX Xavier, Raspberry Pi, time-frequency
analysis, wavelet synchro-squeezed transform.

I. INTRODUCTION

The current machinery systems, such as chemical processes,
vehicle dynamics, aero engines, electric machines, manufac-
turing systems, wind energy conversion systems, induction
motors, and power networks, need safety due to different
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types of faults. The demand for the reliability and safety
of the industries is increasing effectively [1]. A minor fault
may lead to complete machinery failure and cause loss for
the industry. Hence, this leads to catastrophic accidents and
destructive damage. Further, modern industry primarily uses
rotating machinery. Under severe working conditions, there
is more possibility for critical component failure due to
high speed, big load, and heavy background noise [2], [3].
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It is of great interest to reduce accidents and improve the
reliability and safety of mechanical equipment. The multi-
sensor-based systems are widely used to collect vibration
data from the machine under normal and faulty conditions
[4]. The time-series data recorded using these sensor
systems have shown different characteristics for normal and
faulty operations of the machine. The advances in artificial
intelligence (Al)-based techniques enable the automated
recognition of machine faults using multi-sensor vibration
time-series data [5]. The development of novel Al-based
methods using multi-senor data is vital for automated fault
identification at the early stage. Motivated by this, a multi-
channel deep convolutional neural network model is proposed
for machinery fault diagnosis in this work. The following are
the significant contributions of the proposed work:

o The multi-channel time-frequency domain deep CNN
model is proposed for machine fault recognition using
Multi-sensor data.

o Wavelet synchro-squeezed transform (WSST) is
employed for the time-frequency analysis of the multi-
sensor data.

o A multi-channel deep convolutional neural network
model is developed to process the time-frequency
images of sensor time-series data simultaneously.

o The performance of the proposed model is compared to
the benchmark models through extensive results.

o Finally, the performance of the proposed model is
evaluated in terms of inference time when deployed
on edge computing devices such as Raspberry Pi and
Nvidia Jetson AGX Xavier.

The paper is further organized as follows. Section III
discusses the dataset details and the preprocessing with
the WSST. Section IV describes the proposed CNN model
architecture and the edge computing devices used. Section V
presents the comparison results of the proposed model with
the benchmark models in terms of accuracy and inference
time. Finally, the conclusion and possible future works are
discussed in Section VI.

Il. RELATED WORK

A pattern recognition technique-based machinery fault diag-
nosis has been presented in [6] that deals with complicated
signatures in vibration signals of rolling element bearings
with or without defects. Further, it has been shown that
the proposed method in [6] is very effective in terms of
effective feature extraction, ability to learn, efficient feature
fusion, and a simple algorithm for classification. Finally, their
method’s effectiveness has been tested with an experimental
dataset. In [7], the authors have proposed a method to
represent the rotating machinery fault diagnosis with the
wavelet packet basis. The signal vector is divided into two
subspaces by representing them differently. Among them,
one subspace contains the transient components excited by
local defects, and the remaining components are contained in
another. Further, a basis selection algorithm and Coifman and
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Wickerhauser’s best basis algorithm have been considered for
the former subspace and second subspace, respectively, for
enhancing the detection of detects. Finally, their suggested
method has been tested using the gearbox dataset and a rolling
element bearing. Through results, it has been shown that the
proposed method does not require any training samples [7].
A local mean decomposition (LMD) based rotating fault diag-
nosis has been proposed in [8]. LMD is a novel method used
for time-frequency analysis that is suitable for processing
amplitude and frequency-modulated signals. The proposed
LMD approach has been compared with the empirical mode
decomposition (EMD) method. The results show that the
proposed LMD method outperforms the EMD [8]. Finally,
the authors have applied LMD for the fault diagnosis of gear
and roller bearings. It has been shown through analytical
results from practical gearbox vibration signals that the
LMD-based approach is effective in diagnosing the condition
of gear and roller bearing accurately. In [9], the rolling
element bearing faults have been represented using frequency
spectra, and then the fuzzy logic techniques (FLTs) have
been applied for classification. FLTs generate fuzzy numbers
that give the similarity between the frequency spectra. It has
been observed that selecting the correct combination of the
fuzzy numbers leads to the correct classification of the
faults [9]. The above-discussed methods are conventional
approaches that have utilized time-frequency analysis to
diagnose machinery faults. Next, we discuss the state-of-the-
art artificial intelligence (Al)/machine learning (ML)-based
machinery fault diagnosis.

Advances in Al and computer technology can be used
to diagnose machinery faults. Many techniques, including
support vector machines (SVMs) [10], self-organizing feature
maps [11], expert systems, rough sets, fuzzy logic, and
neural network models have been utilized for machinery
fault diagnosis. A survey on Al-based methods has been
presented in [5] for rotating machinery fault diagnosis,
focusing on both theoretical background and industrial
applications. Further, the survey in [5] briefed some Al
algorithms’ advantages, limitations, and new research trends.
A survey on deep learning (DL) models has been presented
in [12] for intelligent machinery fault diagnosis, including
their achievements, challenges, and pros and cons for the
future research scope. Due to the development of intelligent
fault diagnosis methods using DL, CNN has gained attention
for machinery fault diagnosis. In light of this, a survey
on the CNN-based rotary machine fault diagnosis methods
has been presented in [13]. In [13], the authors have
initially described the necessity of the data preprocessing
techniques, which are crucial for CNN for the reduction
in the difficulty of the feature learning and improving the
accuracy. Then, a review of the preprocessing methods is
presented. Thereafter, an analysis has been presented on the
main methods used in CNN-based intelligence systems [13].
Next, we explain in detail each AI/ML algorithm.

A new framework based on deep convolutional variable-
beta variational autoencoder (VAE) has been proposed in [14]
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for machinery fault diagnosis. The proposed scheme in
[14] is an intelligent scheme that is used to extract the
discriminative features. To reduce the number of data points
and extract 2D data, a novel min-max algorithm and random
sampling technique, respectively, have been proposed. It has
been mentioned that this framework is a single framework
that combines both preprocessing and classification. When
tested on the case Western Reserve University vibration
dataset (VD) and air compressor acoustic dataset, the
proposed approach in [14] resulted in 99.93% and 99.91%
accuracy, respectively. A machine fault diagnosis method
based on a stacked sparse autoencoder (SAE) has been
proposed in [15]. The essential information can be mined
using the penalty term of the SAE, which further removes
redundant information. Empirical mode decomposition and
autoregressive (AR) models are used to preprocess the
collected non-stationary and transient signals, extracting AR
parameters based on the intrinsic mode functions (IMFs).
The superiority of the proposed method has been validated
with experiments with a test accuracy of 99.83% [15].
For diagnosing the machinery fault, a deep contractive
auto-encoding network (DCAEN) model has been presented
in [16]. The DCAEN model is constructed by unsupervised
learning named contractive auto-encoder (CAE), which
helps extract the features unsupervised. Further, the network
removes the redundancy by adding a sparsity constraint to
the loss function of CAE. Moreover, the DCAEN model can
extract the features automatically from the raw data without
creating artificial features. Finally, the proposed model in
[16] has been validated through experiments that resulted
in an accuracy of 99.60% on the rolling bearing dataset,
which is higher than the state-of-the-art methods. In [17],
fault diagnosis of rotating machinery has been made by
developing an enhancement deep feature fusion method.
First, the feature learning ability has been enhanced by
constructing a new deep auto-encoder with denoising and
contractive auto-encoders. Then, the quality of the features
was improved by adopting locality-preserving projection.
Finally, Softmax has been trained with the fused deep features
for intelligent diagnosis. It has been shown through the results
that the proposed model in [17] achieves an accuracy of
90-100%. A novel deep autoencoder feature learning method
has been developed in [18] for rotating machinery fault
diagnosis. The developed method in [18] first adopts the
maximum correntropy for designing the loss function for the
new deep autoencoder to enhance the feature learning from
the obtained vibration signals. After that, the artificial fish
swarm algorithm was utilized for optimizing the parameters
of the deep autoencoder in adaptation to the signal features.
Finally, the proposed method has achieved a testing accuracy
of 87.8% with a computation time of 371.16 seconds. The
above methods are based on the autoencoder and are more
beneficial in extracting useful information from the input
avoiding redundancy. Next, we discuss some of the state-
of-the-art deep learning models for fault diagnosis in the
machinery.
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The least squares support vector machine (LSSVM) and
deep structure-based fault diagnosis method have been
proposed in [19] for rotary machine fault diagnosis. The
proposed method learns the deep features layer by layer,
using SVM in each layer, until better classification results
are obtained. To reduce the time complexity associated
with multiple layers of SVM, a deep sparse least squares
support vector machine (DLSSVM) has been proposed that
combines the sparse theory with the LSSVM. At last, the
proposed DLSSVM has been compared to the existing
methods for diagnosing centrifugal pump faults and rolling
bearing faults. It has been shown through results that the
proposed DLSSVM results in an accuracy of 97.75%, which
is higher than the state-of-the-art methods [19]. For fault
diagnosis in rotating machinery, a novel deep learning method
has been proposed in [20]. Due to the difficulty in obtaining
the labeled data from the machinery fault, the authors
have considered data augmentation for creating additional
samples for model training. With two augmentation methods
and five augmentation techniques, the proposed method in
[20] has achieved an accuracy of 99.9%. A deep transfer
learning model has been proposed in [21] for the machinery
fault classification with a minimal dataset. The proposed
model simultaneously conducts the supervised classification
and multiple adversarial domain adaptation to improve
performance. It has been shown through the experiments that
the proposed method outperforms other models considered
in [21]. Next, we discuss the existing CNN-based models for
machinery fault diagnosis.

Two feature extraction methods, such as CNN and bag-
of-visual-word (BoVW), have been proposed in [22] for
the feature extraction and classification of the rotating
machinery conditions using Infrared (IR) Images. It has
been shown through experiments that CNN is performing
better than BoVW on the IR image data [22]. The usage
of the Predictive Maintenance model with Convolutional
Neural Network (PdM-CNN) has been presented in [23]
to notify maintenance when there is a rotatory equipment
fault. The proposed model in [23] uses the data from
only one vibrating sensor installed on the motor-drive end
bearing. It has been shown that PAM-CNN achieves an
accuracy of 99.58% and 97.3% with two publicly available
datasets. A fault diagnosis approach that combines the one-
dimensional CNN, Gated Recurrent Unit (GRU), attention
mechanism (AM), and knowledge graph has been proposed
in [24] for mechanical equipment. In the proposed approach,
the CNN model is used for feature extraction, and GRU and
AM mechanisms are used for accurate feature extraction.
An efficient bearing fault diagnosis scheme that uses the
CNN and energy distribution maps (EDMs) of AE has been
proposed in [25]. In this scheme, CNN automatically extracts
the features from EDM, and then an ensemble classifier
which is a combination of CNN and SVM, has been used for
bearing fault diagnosis [25].

The above methods have not focused on processing
multiple sensor data simultaneously, which results in a fast
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fault diagnosis. Further, the machine learning models are
not lightweight, making it difficult to deploy them on low-
computing devices. Thus, a multi-channel deep convolutional
neural network model is proposed for machinery fault
diagnosis in this work which is lightweight.

Ill. DATASET AND PRE-PROCESSING

The Wavelet synchrosqueezed transform (WSST) is a
time-frequency analysis used for analyzing the signals. The
input signal for the WSST is a vector or a set of real values.
The WSST algorithm decomposes the signal into components
with time-varying frequency.

A. DATASET DETAILS

The database is collected by using multiple sensors
deployed on SpectraQuest’s Machinery Fault Simulator
(MFS) Alignment-Balance-Vibration (ABVT). The multi-
variate time-series dataset consists of 1951 data files involv-
ing six specific simulated states such as normal function,
imbalance fault, horizontal and vertical misalignment faults,
and inner and outer bearing faults. The data was generated
at the rate of 50kHz for 5 seconds. Each file includes eight
columns of Tachometer signal, underhang, and overhang
bearing accelerometer with three dimensions axial, radial,
and tangential direction, and microphone data which collect
noise information. The six simulated states of the dataset are

1) NORMAL SEQUENCES

Normal Sequences indicate the data with no fault. The
49 measurements of the normal sequence cover a range of
rotation speeds in the range 737-3686 rpm with steps of
approximately 60 rpm.

2) IMBALANCE FAULT

The imbalance fault class is simulated with different load
values ranging from 6-35 grams. The rotational frequency is
frozen at 49 for the normal operation case with a load of less
than 30 grams. Meanwhile, the loads above 29 grams provide
vibrations which are very impractical to achieve 3300 rpm of
rotational frequency. This reason limits the number of distinct
rotations.

3) HORIZONTAL MISALIGNMENT FAULTS

The Horizontal misalignment simulated data is generated
by shifting the motor shaft by 0.5 mm, 1.0 mm, 1.5 mm,
and 2.0 mm into MFS. The rotation frequency for each
horizontal shift is in the same range as the normal operation
case.

4) VERTICAL MISALIGNMENT FAULTS

Vertical misalignment of the motor shaft was induced by
shifting the shaft horizontally by 0.51 mm, 0.63 mm,
1.27 mm, 1.40 mm, 17.8 mm, and 1.90 mm into MFS. For
each vertical shift, the rotation frequency range is the same
as the normal operation case.
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5) BEARING FAULTS

Rolling bearings are one of the most complex elements and
susceptible elements to fault occurrence. The manufacturer of
the ABVT provided three defectives with distinct defects—
outer tracks, rolling elements, and inner tracks that were
placed at different positions in the MFS experimental stand.
Underhang: In MFS, the bearing is placed between the rotor
and the motor. Overhang: In MFS, the rotor between the
bearing and the motor. Fig. 1 shows the time series samples
corresponding to different sensor data.

B. WAVELET SYNCHRO-SQUEEZED TRANSFORM
In this work, wavelet synchro-squeezed transform (WSST),
which is an improved version of continuous wavelet trans-
form (CWT) [26], is considered for the time-frequency anal-
ysis of the multi-sensor time-series data for the automated
recognition of machine faults. WSST aims at sharpening the
time-frequency graph by eliminating the smearing around
the frequency values. In this study, we have not applied any
filtering technique to remove the noise from the multi-sensor
time-series data. The WSST approach acts as a filter for
better localization of the signal components in both time and
frequency domains of multi-sensor data. The deep learning
models can be applied directly to the multi-sensor time-series
to remove noise [27], [28].

Initially, WSST assumes that the signal can be represented
as a linear combination of harmonics and some additive noise
which is defined as [29] and [30]

L
s(t) = D" Ai(t) cos(Yi (1)) + n(t), (1

=1
where, L denotes the number of signal components, A;
denotes the amplitude and ; represents the phase of the /!
frequency component of the signal. n(¢) denotes the additive
noise component at time instant t [31]. The instantaneous
frequency (IF) for each component is obtained as
1 dyn(0)
fit) = o ar ()
Since most of the smearing happens along the frequency axis,
the first step of WSST is to obtain the IF, wg(u, v), at each
point (a,b). Here, wg(u, v) can be directly obtained from the
CWT time-frequency representation, W(u, v). Here, ws(u, v)
is defined as

- IWs(u,v)
27 Wi(u, v) av
where j represents the imaginary number. Then, the smeared
energy is relocated on these IFs by mapping the time-scale

plane to the time-frequency, which is called synchrosqueez-
ing. Finally, WSST can be obtained by

1 W (ug, v)
TG = o 37 ol
U,

) (€)

ws(u, v) =

i Aug, “

where, the scale, u, and time, b, are discrete values and
Auyp = up—1 — uy is the scaling step [26]. Fig. 2 shows the
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FIGURE 2. An illustration of the wavelet synchrosqueezed transform of the raw data samples.

time-frequency plots corresponding to the time series data in
Fig. 1.

IV. PROPOSED CONVOLUTIONAL NEURAL NETWORK

Fig. 3 shows the architecture of the proposed multichannel
Convolutional neural network model. Here, we consider
feature-level fusion wherein the data features obtained from
the eight channels are concatenated along a common axis to
create a single, merged feature vector. This merged feature
vector is then processed using a classifier, as can be seen
from Fig. 3. The layer structure of all channels is the same,
with each channel consisting of a batch normalization layer,
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convolution layer, max-pooling layer, convolution layer,
max-pooling layer, convolution layer, max-pooling layers,
and flatten layer. The outputs of flatten layers of all channels
are combined by concatenation, and after that softmax layer
is provided to give the output class as shown in Fig. 3.

Batch Normalization Layer: The Batch Normalization
layer standardizes and normalizes the output layer based on
the input layer. It helps the neural networks to become faster
and more stable.

Convolution Layer: The convolution layer extracts the
learnable features by applying a filter or kernel on the input
layer. It creates a features map that consists of the summary of
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the described features on the input. The convolutional layer
output, O(x,y), can be calculated as

O(x,y) = (@ *b)lx,y] = D> " bln, mlalx — n,y —m],
)

where the input image is represented by a, and b denotes the
kernel. The indices of rows and columns of the output matrix
are represented by n and m.
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Tanh Activation Function: It is a zero-centered function.
This function output values are either -1 or 1 based on
the real input value. The larger inputs and smaller inputs
will be mapped strongly positive and strongly negative,
respectively.

Max-Pooling Layer: Pooling layers are used to reduce
the dimensionality of the input matrix. In the Max pooling
layer, the kernel pulls the maximum value from the area
of the feature map. The output of the pooling layer can be
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TABLE 1. Number of samples per class in the dataset.

Class Name Number of Images
horizontal-misalignment 197
imbalance 333
normal 49
overhang 513
underhang 558
vertical-misalignment 301
Total 1951

calculated as
i — k42,
Output Size = - —*T2P | | ©)

N

where, ‘i’ represents input length, ‘k’ denotes kernel size. ‘p’
and ‘s’ denote the sizes of padding and stride, respectively.

Fully Connected Layer: 1t is the last layer in the Neural
Network. It will form the final output by compiling the data
extracted from the previous layers.

Softmax Activation Function: This function takes the
vector k real values as input and results in an output of real
values whose sum is 1. The standard softmax function is
defined as

el
ST

Softmax layer (i;) = -
€m

m=1
Cross-Entropy Layer: This is the layer used to measure the
performance of the model. The loss can be calculated as

1 x K
loss = — Z Z(Gi,jln(Hi,j))’ ®)

a=1 b=1

where x denotes the number of training samples and K
denotes the number of classes. G; j and H; ; denote the actual
output and calculated hypothesis of the network, respectively.

The size of the time-frequency image for each channel
is 224 x 224. The proposed deep CNN model is multi-
headed, and each head takes the input as the time-frequency
image of one channel of multivariate time series data.
Similarly, the deep CNN model’s output has six neurons
corresponding to 6 classes (5 faults and 1 normal). This
work evaluates 1951 multichannel time-frequency images for
different machinery faults and normal classes. The number of
instances or multichannel time-frequency images from each
class is shown in Table 1. The dataset is divided into three
parts: training, validation, and testing for hold-out validation.
We consider 10% of the instances for testing the model. In the
rest, 90% of the instances are considered for training and
10% for validation of the proposed deep CNN model. For
10-fold cross-validation, each fold selects the training and
test instances from different portions of the dataset. Like in
the first fold, the initial 90% of the instances (index 1 to
index 1755) or multichannel time-frequency images are used
to train the deep CNN model, and the last 10% instances
are employed for the testing phase of the model for the fault
recognition.
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A. HARDWARE DEPLOYMENT

We consider edge computing devices such as Raspberry Pi 4
Model B and Nvidia Jetson AGX Xavier to evaluate the
performance of all models considered regarding inference
time.

Raspberry Pi 4 Model B, as shown in Fig. 4, is a mini
computer that is faster, more powerful, re-engineered, and
completely upgraded than previous models. It has an ARM7
quad-core processor with 1.5 GHz speed and supports up to
8 GB SDRAM. It has two USB 3.0 and two USB 2.0 ports.
It holds Ethernet, Wi-Fi, and Bluetooth with both 2.4 GHz
and SGHz operating frequencies. It also has a camera, audio,
and composite video ports.

Nvidia Jetson AGX Xavier is built on a 512-core Volta
GPU with Tensor Cores, along with an 8-core ARM
v8.2 64-bit CPU, with 8MB L2 and 4MB L3 as shown
in Fig. 4. It has a large memory of 32GB RAM, which
is 256-bit LPDDR4x, and internal storage of 32GB, type
eMMC 5.1. It is installed with a 7-way VLIW Vision
Processor Accelerator as well as two NVDLA Engines for
DL Acceleration. The physical measurements are 105mm x
105mm x 65mm for the entire module.

We also consider other hardware models such as GPU:
P100-PCIE-16GB, GPU: Tesla T4, GPU: GTX 1050 4GB,
GPU: Tesla K80,CPU: Intel(R) Xeon(R) Platinum 8259CL
CPU @ 2.50GHz,CPU: Intel i5 8th gen, CPU: Intel(R)
Xeon(R) Platinum 8168 @ 2.70GHz, and CPU: Intel i9 11th
gen.

V. RESULTS AND DISCUSSION
The proposed eight-channel CNN model is tested on the

fault machinery dataset with six classes: normal, imbalance
fault, horizontal misalignment, vertical misalignment, inner
bearing faults, and outer bearing faults. The performance
improvement of the proposed architecture is due to the
enabling of multi-channel processing for various sensor time
series features.

Fig. 5 and Fig. 6 show the variation of accuracy and
loss with epoch, respectively. It is observed from Fig. 5
that the training accuracy and validation accuracy reached
almost 100% after eight epochs. Further, it is observed from
Fig. 6 that the training and validation loss reach almost
zero after epoch nine. Fig. 7 provides the confusion matrix
corresponding to all six classes. It is observed from Fig. 7
that the horizontal misalignment is 0.95 confidence in itself
and 0.05 with the imbalance class. Meanwhile, the rest of the
classes achieved 100% accuracy.

The performance of the proposed model is evaluated when
tested on individual sensor datasets as well as all sensor
datasets in terms of the achieved test accuracy, parameters,
and model size Table 2. It is observed from Table 2 that
the proposed model achieves an accuracy of 99.48% when
processing the data of all sensors simultaneously with total
parameters of 68,742, and it consumes only 1.1MB. Further,
the proposed model using 10-fold cross-validation (CV)
gave an average classification accuracy of 99.28%. It is
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FIGURE 4. (a) Raspberry Pi 4 model B and (b) Jetson AGX Xavier.

TABLE 2. Test accuracy, total parameters, trainable parameters, non-trainable parameters, and size for the proposed model on multisensory data.

A e

T
L

Data Test accuracy | Total parameters | Trainable Parameters | Non-trainable Parameters | Model size
Tachometer Signal 28.06% 8,598 8,592 6 157 KB
Microphone 69.89% 8,598 8,592 6 157 KB
underhang bearing accelerometer 98.46% 25,782 25,764 18 441 KB
overhang bearing accelerometer 97.95% 25,782 25,764 18 441 KB
Combined Data 99.48% 68,742 68,694 48 1.1 MB
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FIGURE 5. Variation of the accuracy of the proposed model with epoch.

also observed that the proposed model results in higher test
accuracy when we process the data from all sensors. Further,
the model size is light, which helps in real-time deployment.
However, the proposed model performance degrades when

considering data from one sensor alone.
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FIGURE 6. Variation of the loss of the proposed model with epoch.

Interestingly, the overall size of the proposed multi-channel
architecture is still realizable with less size compared to
benchmark models, as can be observed from Table 3.
Table 3 provides the validation accuracy, total parameter,
and size for all the models considered in this work. The
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TABLE 3. The performance comparison of the proposed model with benchmark models.

Model Testing Testing Total Trainable Non-trainable Size
Accuracy (10-fold) | Accuracy (Holdout - 10%) | Parameters | Parameters Parameters
Proposed Model 66.53(+3.0) 65.81% 8,598 8,592 6 157 KB
DenseNet121 43.41(42.48) 42.34% 7,043,654 6,150 7,037,504 27.6 MB
DenseNet169 50.71(£1.77) 46.93% 12,652,870 9,990 12,642,880 49.3 MB
DenseNet201 47.44(£1.22) 47.44% 18,333,510 11,526 18,321,984 71.1 MB
InceptionResNetV?2 46.12(42.06) 41.32% 54,345,958 9,222 54,336,736 208.6 MB
InceptionV3 41.42(%1.49) 47.44% 21,815,078 12,294 21,802,784 83.8 MB
MobileNetV?2 54.69(£2.84) 51.53% 2,265,670 7,686 2,257,984 9 MB
MobileNetV3Large 41.58(42.55) 41.32% 3,002,118 5,766 2,996,352 11.8 MB
MobileNetV3Small 45.66(+2.27) 41.83% 942,582 3,462 939,120 3.9 MB
NASNetMobile 37.80(£2.09) 46.93% 4,276,058 6,342 4,269,716 17.6 MB
ResNet50V2 43.26(42.17) 47.44% 23,577,094 12,294 23,564,800 90.3 MB
ResNet101V2 48.62(+1.98) 51.02% 42,638,854 12,294 42,626,560 163.3 MB
ResNet152V2 45(£3.02) 53.06% 58,343,942 12,294 58,331,648 223.6 MB
VGG16 47.90(%1.33) 53.57% 14,717,766 3,078 14,714,688 56.2 MB
VGG19 39.43(£1.97) 49.48% 20,027,462 3,078 20,024,384 76.5 MB
Xception 46.64(+1.10) 45.91% 20,873,774 12,294 20,861,480 80 MB
EfficientNetBO 46.63(+1.48) 40.3% 4,057,257 7,686 4,049,571 159 MB
EfficientNetB 1 50.15(£2.16) 43.36% 6,582,925 7,686 6,575,239 25.7 MB
EfficientNetB2 40.66(+1.73) 47.44% 7,777,023 8,454 7,768,569 30.3 MB
EfficientNetB3 50.4(£1.36) 52.55% 10,792,757 9,222 10,783,535 41.8 MB
EfficientNetB4 44.84(+1.46) 42.85% 17,684,581 10,758 17,673,823 68.3 MB
EfficientNetB5 41.83(43.54) 39.79% 28,525,821 12,294 28,513,527 109.8 MB
TABLE 4. The inference time for the proposed model on different hardware modules.
Model Inference time(milli-seconds)
GPU: GPU: NVIDIA CPU: Intel CPU: Intel Intel(R) Xeon(R) Platinum
Tesla T4 | GeForce GTX 1050 | Core i5 8th gen | Corei7 9750H 8259CL CPU @ 2.50GHz Raspberry Pi AGX
Microphone 5.09 4.73 6.34 5.26 3.63 66.58 11.8
Tachometer Signal 5.07 4.65 5.49 5.24 3.62 76.22 11.93
underhang bearing accelerometer 159.71 206.47 335..37 280.38 185.69 3990.41 748.07
overhang bearing accelerometer 167.43 211.83 339.12 280.63 176.62 4205.20 557.8
Combined Data 105.58 213.75 352.53 261.89 164.39 4299.42 583.84
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FIGURE 7. Confusion matrix of the proposed model.

proposed model is compared with the existing state of
arts of DenseNetl121, DenseNet169, DenseNet201, Incep-
tionResNetV2, InceptionV3, MobileNetV2, MobileNetV3,
MobileNetV3Large, MobileNetV3Small, NASNEtMobile,
ResNet50V2, resNet101V2, ResNet152V2, VGG16, VGG19,
Xception, EfficientNetBO, EfficientNetB1, EfficientNetB2,
EfficientNetB3, EfficientNetB4, and EfficientNetB5 when
run on microphone data. This investigation uses the
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10-fold validation technique to see the robustness of
the proposed algorithm. It is evident from Table 3 that the
proposed model gives superior performance compared to
other models with 66.53% of ten-fold accuracy. InceptionV3
and EfficientNetB6 are bulk in size (> 100MB) due to
many layers. Further, these bulk networks can only provide
an accuracy of around 41%, much lower than the proposed
architecture. The lightweight architecture and the small size
of the proposed architecture can easily enable real-time
applications like industrial automation, vital environment
control, robotics, etc. It is also worth noting that the proposed
architecture contains only 8598 parameters, 8592 trainable
and 6 non-trainable parameters, with a 157KB size. The
second best model, MobileNetV2, has a size of 9MB and
provides 51.53% accuracy. At the same time, the proposed
architecture can provide high performance and lightweight
compared to the MobileNetV2, which is superior and highly
applicable in industrial applications.

Table 4 shows the inference time required by the proposed
model when deployed on edge computing devices. Here,
we processed combined data from all the sensors as well
as individual sensor data. It is observed from Table 4
that the microphone data and tachometer data require less
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inference time. Whereas the data from the underhang bearing
accelerometer and overhang bearing accelerometer requires
higher inference time. When we consider the combined
data, the inference time is greater than using microphone
and tachometer data and less than underhang and overhang
bearing accelerometer data, as can be seen from Table 4.

In this work, the number of test instances is less for
the proposed time-frequency domain deep CNN model to
recognize machinery faults. Access to large and diverse
datasets is limited, especially in this specialized domain.
The proposed study is useful for preliminary analysis,
exploratory research, or proof of concept studies. This can
help researchers assess the feasibility of a particular approach
before investing in extensive data collection. This can serve
as a starting point for refining approaches before applying
them to larger datasets. The robustness of the model can be
verified using new datasets with more instances to recognize
more machinery faults. This work uses only four types of
fault classes to develop the deep learning model. In the future,
more number multivariate time series instances with different
fault types can be utilized for the automated recognition of
machinery faults.

VI. CONCLUSION
In this paper, a multi-channel deep CNN model for detecting

machinery faults using multi-sensor time-series data has been
proposed. The time-frequency images were obtained from
the multi-sensor time series using the WSST-based time-
frequency analysis technique. A deep CNN model considered
time-frequency images of each channel time series to
recognize different types of faults. Experiments have shown
that the proposed multichannel deep CNN model achieves
a 10-fold testing accuracy of 99.28(%0.4) when processing
the combined data from all sensors. We also compared the
proposed model’s performance to that of the benchmark
models. Experiments have also shown that the proposed
model achieves a 10-fold testing accuracy of 66.53(£3.0)
on the microphone dataset, which is higher than other
benchmark models. Furthermore, it has been demonstrated
that the proposed model is lightweight, with 8,598 parameters
and a size of 157 KB, which is significantly less than other
models. Finally, the proposed model’s performance in terms
of inference time has been compared to other models when
deployed on edge computing devices such as the Raspberry
Pi and Nvidia AGX Xavier. In the future, we plan to generate
more samples to analyze the performance of the proposed
model as compared to other models.
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