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Abstract

In this paper, the attitude tracking control problem of a rigid body is investigated
where the states are quantized. An adaptive backstepping based control scheme is
developed and a new approach to stability analysis is developed by constructing
a new compensation scheme for the effects of the vector state quantization. It is
shown that all closed-loop signals are ensured uniformly bounded and the tracking
errors converge to a compact set containing the origin. Experiments on a 2 degrees-
of-freedom helicopter system illustrate the proposed control scheme.

B.1 Introduction

The interest for quantized control has attracted considerable attention in recent years
due to its theoretical and practical importance in practical engineering, where signals
are required to be quantized and transmitted via a common communication network.
An important aspect is to use quantization schemes that yield sufficient precision,
but reduce the communication burden over the network.

A great number of representative results have been reported on analysis and
control of feedback systems with input quantization, as can be observed in [1–7].
The feedback control problem of systems with state quantization has been studied
in [8–11], where the system dynamics in these works are precisely known. As we
know, system uncertainties and non-linearity inevitably exist in physical systems.
Only a few work using an adaptive approach have been reported to solve the state
quantization problem for uncertain linear systems in [12] and uncertain nonlinear
systems in [13].

Quantized control of rigid bodies is a potential problem. For example, the remote





       

control of a group of UAVs or robots, where the signals are transmitted over a
shared network with limited communication information. Attitude stabilization with
input quantization was investigated in [14] using a fixed-time sliding mode control.
Trajectory tracking control for autonomous underwater vehicles with the effect of
quantization was investigated in [15] using a sliding mode controller, where the
considered systems are completely known. In [16], adaptive tracking control was
proposed for underactuated autonomous underwater vehicles with input quantization.
Uncertainties and non-linearities always exist in many practical systems. Thus it is
more reasonable to consider controller design for uncertain nonlinear systems.

Adaptive backstepping technique was proposed in the 1990’s in [17] to deal with
plant non-linearity and parameter uncertainties. Several results have been reported
on adaptive backstepping control with input quantization, e.g in [6, 7, 18, 19] for
uncertain nonlinear systems, in [20] for a 2-DOF helicopter system, in [16] for tracking
control for under-actuated autonomous underwater vehicles and in [21] for formation
tracking control for a group of UAVs. However, adaptive backstepping control results
to address uncertain systems with state quantization are very limited. One major
difficulty to deal with the state quantization is that the backstepping technique
requires differentiating virtual controls and in turn the states by applying chain rule.
If the states are quantized, they become discontinuous and therefore it is difficult to
analyze the resulting control system with the current backstepping based approaches.
This problem was solved in [13] where the states were quantized by a static bounded
quantizer.

This paper is concerned with the attitude tracking control of uncertain nonlinear
rigid body systems with state quantization. A new backstepping based adaptive
controller and a new approach to stability analysis are proposed. Compared to [13]
for single-input-single-output (SISO) systems, this paper considers multiple-input-
multiple-output (MIMO) uncertain systems with state quantization. A uniform
quantization is included when tested on a 2 degrees-of-freedom (DOF) helicopter
system from Quanser, with challenges in controller design due to the nonlinear
behavior, the cross coupling effect between inputs and outputs, and with uncertainties
both in the model and the parameters. It is analytically shown how the choice of
quantization level affects the tracking performance, where a higher quantization level
increases the tracking error. The experiments on the helicopter system illustrate the
proposed scheme.





          


B.2 Dynamical Model and Problem Formulation

B.2.1 Notations

The symbol ωc
b,a denotes angular velocity of frame a relative to frame b, expressed in

frame c; Rb
a is the rotation matrix from frame a to frame b; the cross product operator

× between two vectors a and b is written as S(a)b where S is skew-symmetric;
λmax(·) and λmin(·) denotes the maximum and minimum eigenvalue of the matrix
(·), and ∥·∥ denotes the L2-norm and induced L2-norm for vectors and matrices,
respectively.

B.2.2 Attitude Dynamics

The orientation of a rigid body in frame b, relative to an inertial frame i, can be
described by a unit quaternion, q = [η, ε1, ε2, ε3]⊤ = [η, ε⊤]⊤ ∈ S3 = {x ∈ R4 :
x⊤x = 1} that is a complex number, where η = cos(υ/2) ∈ R is the real part and
ε = k sin(υ/2) ∈ R3 is the imaginary part, where υ is the Euler angle and k is the
Euler axis, and S3 is the non-Euclidean three-sphere. We consider a fully actuated
rigid body with equations of motion for the attitude dynamics defined as

q̇ = T (q)ω, (B.1)

Jω̇ = Ψ(q,ω) + Φ(ω)θ + Bu, (B.2)

with ωb
i,b = ω ∈ R3, and where

T (q) = 1
2

 −ε⊤

ηI + S(ε)

 ∈ R4×3, (B.3)

J = diag(Jx, Jy, Jz) ∈ R3×3 is the inertia matrix about the origin o, and is positive
definite,

Ψ = −S(ω)(Jω) − g(q) ∈ R3, (B.4)

Φ = diag(−ω) ∈ R3×3, (B.5)

are known nonlinear functions of q and ω, the vector θ ∈ R3 is unknown and
constant, the control allocation matrix B ∈ R3×3 and the control input u ∈ R3. The
matrix I denotes the identity matrix and S(·) is the skew-symmetric matrix given
by

S(ε) =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 . (B.6)
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Figure B.1: Control system with state quantization over a network.

The moment caused by the gravitational force is

g(q) = −S(rb
g)Rb

if
i
g ∈ R3, (B.7)

where rb
g = [xg yg zg]⊤ is the distance from the origin to the center of mass, f i

g =
[0 0 −mg]⊤, m is the mass of the rigid body, and g is the gravity acceleration. If
rb

g = 0 =⇒ g(q) = 0 and the rotation is about center of mass.
The orientation between two frames can be described by a rotation matrix given

as

R(q) = I + 2ηS(ε) + 2S2(ε), (B.8)

where R ∈ SO(3) that is a special orthogonal group of order 3, and has the property

SO(3) = {R ∈ R3×3 : R⊤R = I, det(R) = 1}. (B.9)

The time derivative of a rotation matrix can be expressed as

Ṙa
b = Ra

b S(ωb
a,b) = S(ωa

a,b)Ra
b . (B.10)

Attitude and angular velocities are assumed to be measurable after quantization,
and for the control allocation matrix it is assumed that det(B) ̸= 0, i.e. the matrix
is invertible.

B.2.3 Problem Statement

We consider a control system as shown in Fig. B.1, where the states ε,ω are quantized
at the encoder side to be sent over a network. The network is assumed noiseless,
so that the quantized state signal is recovered and sent to the controller. Only the





          


quantized states εQ,ωQ are measured, and the quantized value of η is calculated as

ηQ = ±
√

1 − εQ⊤εQ, (B.11)

to ensure that the property of unit quaternion, qQ⊤qQ = 1, is fulfilled, where the
quantized attitude is given by qQ = [ηQ, εQ⊤]⊤.

Remark 1. The quantized value, ηQ, can be calculated based on the value of εQ and
knowledge of the sign of η(t0) and the assumption of sign continuity of η(t) based
on derivative. We can do the calculation after the network communication, saving
bandwidth by sending less data over the network.

Remark 2. If we are close to, or at η = 0, we might end up with εQ⊤εQ > 1, and a
scaling is needed to ensure we have a unit quaternion.

Let qi,d = qd, ωi
i,d = ωd be the desired attitude and angular velocity. The

control objective is to design a control law for u(t) by utilizing only quantized states
qQ(t),ωQ(t) to ensure that qQ(t) → qd(t) and ωQ(t) → ωQ

i,d(t) as t → ∞, where the
kinematic equation

q̇d = T (qd)ωd
i,d = 1

2

 −ε⊤
d

ηdI − S(εd)

ωd, (B.12)

is satisfied, and where all the signals in the closed-loop system are uniformly bounded.
To achieve the objective, the following assumptions are imposed.

Assumption 1. The functions qd(t), ωd(t) and ω̇d(t) are known, piecewise con-
tinuous and bounded, where ∥ωd(t)∥ < kωd

and ∥ω̇d(t)∥ < kω̇d
∀t ≥ t0 where

kωd
, kω̇d

> 0.

Assumption 2. The unknown parameter vector θ is bounded by ∥θ∥ ≤ kθ, where kθ

is a positive constant. Also θ ∈ Cθ, where Cθ is a known compact convex set.

B.2.4 Quantizer

The quantizer considered in this paper has the following property

|xQ − x| ≤ δx, (B.13)

where x is a scalar signal and δx > 0 denotes the quantization bound. A uniform
quantizer is considered, which has intervals of fixed length and is defined as

xQ = xi sgn(x), xi − l

2 ≤ |x| < xi + l

2 , (B.14)





       

where i = 0, 1, 2, ..., x0 = 0, xi+1 = xi + l, l > 0 is the length of the quantization
intervals and where sgn(·) is the signum function. Here xQ = x + d, where d is
the quantization error and is bounded by (B.13), where δx = l/2. The uniform
quantization xQ ∈ U = {±xi}.

B.3 Controller Design and Stability Analysis

In this section we will design adaptive feedback control laws for the rigid body using
backstepping technique. We begin with a change of coordinates to the error variables,
and first find the error variables when the states are not quantized. The tracking
error e, is given by the quaternion product

e = q̄i,d ⊗ qi,b =
η̃
ε̃

=
 ηdη + ε⊤

d ε

ηdε − ηεd − S(εd)ε

∈ S3, (B.15)

where q̄ = [η − ε⊤]⊤ is the inverse rotation given by the complex conjugate. If
qi,b = qi,d then e = [±1 0⊤]⊤. Because there exists two different equilibria using
quaternion coordinates, global stability can not be achieved, even though e and −e

represents the same physical attitude [22]. We include one further assumption as
follows:

Assumption 3. sgn(η̃(t0)) = sgn(η̃(t)) ∀t ≥ t0.

Remark 3. Assumption 3 is imposed to avoid the problem when the attitude error
is close to E

∆= {e ∈ S3 : η̃ = 0}, where the solution is not robust when a
disturbance/quantization is introduced.

The relative error kinematics is

ė = T (e)ωe, (B.16)

where T (·) is defined in (B.3), and the angular velocity error

ωe = ω − Rb
iωd. (B.17)

Since we have two equilibrium points, we introduce the change of coordinates

z1± =
1 ∓ η̃

ε̃

 , z2 = ωe − α, (B.18)

ż1± = 1
2

 ±ε̃⊤

(η̃I + S(ε̃))

ωe
∆= 1

2G(e)⊤ωe, (B.19)





          


where z1+ is the equilibrium point when η̃(t0) ≥ 0 and z1− is the equilibrium point
when η̃(t0) < 0, the matrix G⊤ ∈ R4×3, and where α is a virtual controller chosen as

α = −C1Gz1 ∈ R3, (B.20)

where C1 ∈ R3×3 is a positive definite matrix.

Remark 4. Without the change of coordinates to z1± one might end up with an
unwanted or less optimal rotation of the rigid body.

By multiplication, it can be shown that Gz1 = ±ε̃, and then from (B.20) we
have

α̇ = ∓1
2C1

[
η̃I + S(ε̃)

]
ωe. (B.21)

The angular velocity error and angular velocity are bounded

∥ωe∥ ≤ ∥z2 + α∥ ≤ ∥z2∥ + λmax(C1)∥G∥∥z1∥ ≤ [1 + λmax(C1)]∥z∥
∆= da∥z∥, (B.22)

∥ω∥ ≤ ∥ωe + Rb
iωd∥ ≤ da∥z∥ + ∥Rb

i∥∥ωd∥

≤ da∥z∥ + kωd
, (B.23)

where z = [z⊤
1 , z

⊤
2 ]⊤. When the states are quantized, the quantization error of the

quaternion can be expressed as

dq = q̄i,b ⊗ qi,Q =
dη

dε

=
 ηηQ + ε⊤εQ

ηεQ − ηQε − S(ε)εQ

 , (B.24)

where dε is the quantization error and bounded by ∥dε∥ ≤ kε∥δε∥ from (B.13) and
where kε > 1 is a positive constant, and dη is bounded from the unity property of
unit quaternion. If qQ = q and there is no quantization error, dq = [1 0 0 0]⊤. The
tracking error with the quantized value of the unit quaternion eQ, is given by

eQ = q̄i,d ⊗ qi,Q =
η̃Q

ε̃Q

=
 ηdη

Q+ε⊤
d εQ

ηdεQ−ηQεd−S(εd)εQ

, (B.25)

and can also be described by

eQ = qd,b ⊗ qb,Q = e ⊗ dq =
 η̃dη − ε̃⊤dε

dηε̃ + η̃dε + S(ε̃)dε


=
 η̃Q

ε̃ + (dη − 1)ε̃+η̃dε + S(ε̃)dε

 ∆=
 η̃Q

ε̃ + dε̃

 , (B.26)





       

where the value of dε̃ depends on the quantization error given in (B.24). If there is
no quantization error, dε̃ = 0. The quantization of the angular velocities ω can be
expressed as

ωQ = ω + dω, (B.27)

where dω is the quantization error and bounded by ∥dω∥ ≤ ∥δω∥ from (B.13). We
choose the adaptive controller

u(t) = B−1
[

− GQzQ
1 − C2z

Q
2 − ΦQθ̂ − ΨQ − J

(
S(ωQ)RQ

i ωd − RQ
i ω̇d − ᾱQ

)]
,

(B.28)
˙̂
θ = Proj{ΓΦQzQ

2 }, (B.29)

where θ̂ is the estimated value of θ, the vector θ̃ = θ − θ̂, the matrices C2, Γ ∈ R3×3

are positive definite, and where Proj{·} is the projection operator given in [17], and

zQ
1± =

1 ∓ η̃Q

ε̃Q

 , (B.30)

zQ
2 = ωQ

e − αQ, (B.31)

G(eQ)⊤ =
 ±ε̃Q⊤

η̃QI + S(ε̃Q)

 , (B.32)

αQ = − C1G
QzQ

1 = ∓C1ε̃
Q, (B.33)

ΨQ = − S(ωQ)(JωQ) − g(qQ), (B.34)

ΦQ = diag(−ωQ), (B.35)

g(qQ) = − S(rb
g)RQ

i f i
g, (B.36)

ᾱQ ∆= ∓1
2C1

[
η̃QI + S(ε̃Q)

]
ωQ

e , (B.37)

ωQ
e = ωQ − RQ

i ωd, (B.38)

RQ
i = RQ

b Rb
i . (B.39)

Remark 5. The projection operator Proj{·} in (B.29) ensures that the estimates
and estimation errors are nonzero and within known bounds, that is ∥θ̂∥ ≤ kθ and
∥θ̃∥ ≤ kθ, and has the property −θ̃⊤Γ−1Proj(τ ) ≤ −θ̃⊤Γ−1τ , which are helpful to
guarantee the closed-loop stability.

Remark 6. Only the quantized states can be used in the designed controller. Since
the quantized states are used in the design of the virtual controller αQ in (B.33), the
derivative of the virtual controller is discontinuous and can not be used in the design
of the controller, as it is for the case when the states are not quantized. Instead we





          


choose a function (B.37), that is designed as if the states are not quantized in (B.21),
where ∂α/∂ε̃ is used [13].

We show the stability of the positive equilibrium point, i.e. zQ
1 = zQ

1+. To ensure
that all signals are bounded, we first establish some prelimenary results as stated in
the following lemma.

Lemma 1. The effects of state quantization are bounded by the following inequalities:

(i) ωQ
e = ω + dω − RQ

b Rb
iωd ≤ ωe +

(
2kε

[
S(δε)+S2(δε)

]
Rb

iωd + δω

)
∆= ωe + δωe , (B.40)

(ii) zQ
2 ≤ ωe + δωe + C1ε̃

Q ≤ ωe + δωe − α + C1dε̃≤ z2 + (δωe + C1kεδε)
∆= z2 + δz2 , (B.41)

(iii) ∥Gz1 − GQzQ
1 ∥=∥ε̃ − ε̃Q∥ ≤ ∥kεδε∥, (B.42)

(iv) ∥RQ
i − Rb

i∥ ≤ ∥−2dηS(dε)+2S2(dε)⊤∥∥Rb
i∥≤ 2

[
kε∥δε∥ + k2

ε∥δε∥2
]

∆= dR, (B.43)

(v) ∥Ψ−ΨQ∥≤∥−S(ω)(Jω)+S(ω+dω)(J(ω+dω))+S(rb
g)Rb

if
i
g −S(rb

g)RQ
i f i

g∥

≤
[
λmax(J)

(
∥δω∥2 + 2kωd

∥δω∥
)

+ ∥rb
g∥dRmg

]
+
[
2λmax(J)∥δω∥da

]
∥z∥

∆= dΨ1+dΨ2∥z∥, (B.44)

(vi) ∥S(ω)Rb
i − S(ωQ)RQ

i ∥ ≤ ∥−S(ω)[−2dηS(dε) + 2S2(dε)⊤]Rb
i − S(dω)RQ

i ∥

≤ ∥ω∥dR + ∥δω∥≤ (kωd
dR + ∥δω∥)+(dadR)∥z∥

∆= dS1 + dS2∥z∥, (B.45)

(vii) ∥ᾱQ − α̇∥ = ∥1
2C1

[
[η̃I + S(ε̃)]ωe − [η̃QI + S(ε̃Q)]ωQ

e

]
∥

≤ 1
2λmax(C1)

(
2∥ωe∥ + ∥δωe∥

)
≤ λmax(C1)(

1
2∥δωe∥ + da∥z∥)

∆= dᾱ1 + dᾱ2∥z∥. (B.46)

Proof: The property of (B.40) follows from (B.38), with the use of (B.8), (B.24),
(B.27) and (B.39). The property of (B.41) follows from (B.31), with the use of (B.40),
(B.33), (B.26), (B.18) and (B.20). The definition in (B.26) is used for inequality
(B.42). The property of (B.43) follows by using (B.39) and (B.24), together with
the property of (B.8). Using (B.4), (B.7), (B.13), (B.23), (B.27), (B.34), (B.36) and
(B.43) the bound in (B.44) is ensured. The property of (B.45) follows by using (B.23),
(B.24), (B.27), (B.43), (B.39) together with the properties of (B.8) and (B.13). The
property of (B.46) follows by using (B.21), (B.22), (B.37), (B.40) and the property
of unit quaternion.





       

We state our main results based on the control scheme in the following theorem.

Theorem 1. Considering the closed-loop adaptive system consisting of the plant
(B.1)-(B.2) with state quantization satisfying the bounded property (B.13), the ad-
aptive controller (B.28), the update law (B.29) and Assumptions 1-3. If the gain
matrices C1 and C2 and quantization parameters δε and δω are chosen to satisfy

c0

2 − dV1 ≥ k > 0, (B.47)

where c0 is the minimum eigenvalue of C0 = min{G⊤C1G,C2}, k is a positive
constant, and dV1 is defined as

dV1 = dΨ2 + dS2λmax(J)kωd
+ dᾱ2λmax(J), (B.48)

all signals in the closed loop system are ensured to be uniformly bounded. The error
signals will converge to a compact set, i.e.

∥z(t)∥ ≤
√
a

k
, (B.49)

where

a = dθ1 + 1
2c0

d2
V2 , (B.50)

dθ1 = kθ∥δω∥∥δz2∥ + kθ∥δz2∥kωd
, (B.51)

dV2 = λmax(C2)∥δz2∥ + ∥kεδε∥ + dΨ1 + dS1λmax(J)kωd
+ dRλmax(J)kω̇d

+ dᾱ1λmax(J) + dθ2 , (B.52)

dθ2 = kθ∥δω∥ + kθda∥δz2∥, (B.53)

and is ultimately bounded. Tracking of a given reference signal is achieved, with a
bounded error.

Proof: Considering the Lyapunov function

V (z, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃, (B.54)

then by following the controller design in (B.28)-(B.29), the derivative of (B.54) is
given as

V̇ = z⊤
1 G⊤z2 − z⊤

1 G⊤C1Gz1 + z⊤
2

[
Φθ + Ψ + Bu + J

(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
− θ̃⊤Γ−1 ˙̂

θ

= − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z
Q
2 + z⊤

2 (Gz1 − GQzQ
1 ) + z⊤

2 (Ψ − ΨQ)





          


+ z⊤
2 J(S(ω)Rb

i − S(ωQ)RQ
i )ωd + z⊤

2 J
(
RQ

i − Rb
i

)
ω̇d + z⊤

2 J(ᾱQ − α̇)

+
[
z⊤

2 (Φθ − ΦQθ̂) − θ̃⊤ΦQzQ
2

]
. (B.55)

By using (B.5), (B.35), (B.29), (B.27), (B.41), (B.23) and Assumption 2 the last
terms in (B.55) satisfy the inequality

z⊤
2 (Φθ−ΦQθ̂)−θ̃⊤ΦQzQ

2 = θ⊤Φz2 − θ⊤ΦQz2 + θ̃⊤ΦQz2 − θ̃⊤ΦQzQ
2

≤∥θ∥∥Φ − ΦQ∥∥z2∥ + ∥θ̃∥∥ΦQ∥∥z2 − zQ
2 ∥

≤kθ∥diag(−ω)−diag(−ω−dω)∥∥z∥+kθ(∥ω∥+∥δω∥)∥δz2∥

≤dθ1 + dθ2∥z∥. (B.56)

By using Young’s inequality, the properties in Lemma 1, (B.56) and Assumption 1,
the derivative of V in (B.55) can be obtained as

V̇ ≤ − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z2 + λmax(C2)∥δz2∥∥z∥ +∥kεδε∥∥z∥ +dΨ1∥z∥

+dΨ2∥z∥2+dS1λmax(J)kωd
∥z∥ + dS2λmax(J)kωd

∥z∥2 + dRλmax(J)kω̇d
∥z∥

+dᾱ1λmax(J)∥z∥ + dᾱ2λmax(J)∥z∥2+dθ1 +dθ2∥z∥

≤ − c0∥z∥2 + dθ1 + dV2∥z∥ + dV1∥z∥2

≤ − (c0

2 − dV1)∥z∥2 + dθ1 + 1
2c0

d2
V2

≤ − k∥z∥2 + a < 0, ∀∥z∥ >
√
a/k. (B.57)

From (B.54) and (B.57) and by applying the LaSalle-Yoshizawa theorem, it
follows that z1, z2 and θ̃ are bounded and satisfy (B.49) under condition (B.47).
From (B.28) and Lemma 1 it follows that the control input u, where only quantized
states are measured, also is bounded. Thus, all signals in the closed loop system
are bounded. Tracking of the desired reference signal is achieved, with a bounded
tracking error given in (B.49). The value of a depends on the quantization parameters,
and higher values of the quantization intervals will increase a, and if there is no
quantization then a = 0.

B.4 Experimental Results

The proposed controller was simulated using MATLAB/Simulink and tested on the
Quanser Aero helicopter system, shown in Fig. B.2. This is a two-rotor laboratory
equipment for flight control-based experiments. The setup has a horizontal position
of the main thruster and a vertical position of the tail thruster, which resembles a
helicopter with two propellers driven by two DC motors. This is a MIMO system
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Figure B.2: Quanser Aero helicopter system with body coordinate frame.

Table B.1: Helicopter Parameters.

Symbol Value Units
J diag(0.0218, 0.0217, 0.0218) kgm2

m 1.075 kg
g 9.81 m/s2

rg
b [0 0 − 0.0038]⊤ m

B

1 0 0
0 0.0011 0.0011
0 −0.0014 0.00176

 Nm/V

with 2 DOF, and the helicopter can rotate around two axes where each input affects
both rotational directions. The body fixed coordinate frame is visualized in Fig.
B.2, and the inertial frame is coinciding with the body frame when q = [±1 0 0 0]⊤.
The mathematical model is described by (B.1) and (B.2), and the parameters
used for simulation and experiments are shown in Table B.1. The initial states
and estimated parameters were chosen as q(t0) = [1 0 0 0]⊤, ω(t0) = [0 0 0]⊤

and θ̂(t0) = [0 0.0070 0.0095]⊤ and the design parameters were set to C1 = 0.3I,
C2 = 0.15I and Γ = 0.02I. The objective was to track a sinusoidal signal where
rd = 0, pd = 40π/180 sin(0.1πt), yd = 100π/180 sin(0.05πt), given in Euler angles,
and converted to a quaternion, and see how the system was affected by quantization
of the states and validate the findings in Theorem 1. The quantization level for all
measured states were chosen as l = 2/2R, where R is number of bits transmitted in
the communication. The system was first tested with continuous states, then with
different values for R.

The results from the test with quantized states, where R = 7 are shown in Figs.
B.3-B.5, showing the states qQ, ωQ, the error in attitude and in angular velocity
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Figure B.3: The attitude qQ and the angular velocity ωQ from experiment.

ε̃Q, ωQ
e , and the input u(qQ,ωQ), respectively. The desired states are shown with

a dotted line and measured values from tests on the helicopter model are shown
with a solid line. Since we only have 2 motors on the helicopter model, the control
allocation matrix B, was chosen so that the input u1 = 0, and is not included in the
plot of the input in Fig. B.5.

The total tracking error ztrack was measured, where

ztrack =
∫ tf

t0
ε̃(τ)Q,⊤ε̃(τ)Qdτ, (B.58)

with t0 = 0 and tf = 50 s. The tracking errors for different values of R are shown
in Table B.2. For values R ≥ 9, the system does not show a big difference in
performance compared to when using continuous signals. A lower value for R is also
possible, and will require less data transmission, but with the cost of higher tracking
error and also with more chattering for the input.
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e from

experiment.
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Figure B.5: The input u(qQ,ωQ) from experiment.

Table B.2: Tracking error for different quantization levels, l = 2/2R, from test on
helicopter model.

ztrack ωQ

εQ

R 7 8 9 cont.
7 0.0072 0.0075 0.0074 -
8 0.0043 0.0043 0.0044 -
9 0.0042 0.0039 0.0035 -

cont - - - 0.0035





          


B.5 Conclusion

In this paper, an adaptive backstepping control scheme is developed for attitude
tracking using quaternions where the states are quantized. The quantizer considered
satisfies a bounded condition and so the quantization error is bounded. With the use
of constructed Lyapunov functions, all signals in the closed loop system are shown
to be uniformly bounded and also tracking of a given reference signal is achieved.
Experiments support the proof. As illustrated in the experiment, it is possible to
reduce the communication burden over the network by including quantization and
still have a good performance, where a suitable quantization level must be chosen.
Actuators may reach their saturation level at some point, and this is a problem that
can be further looked into.
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