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Abstract: In this paper, a secure energy trading mechanism based on blockchain technology is
proposed. The proposed model deals with energy trading problems such as insecure energy trading
and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN).
EVs face two major problems: finding an optimal charging station and calculating the exact amount
of energy required to reach the selected charging station. Moreover, in traditional trading approaches,
centralized parties are involved in energy trading, which leads to various issues such as increased
computational cost, increased computational delay, data tempering and a single point of failure.
Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations
in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten
load curves and efficiently adjust electricity usage. In this work, communication between EVs and
aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved
in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain)
and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem
and reduces computational time. Moreover, an attacker model is designed to check the robustness of
the proposed system against double-spending and replay attacks. Security analysis of the proposed
smart contract is also given in this paper. Simulation results show that the proposed work efficiently
reduces the charging cost and time in a VEN.

Keywords: consortium blockchain; branching; charging station; demand response; double spending;
electric vehicles; energy trading; KNN; machine learning; vehicular energy network

1. Introduction

In this modern era, many technological advancements are introduced in various life
fields, such as energy management, smart cities, E-Health, E-Education systems, etc. The
concept of a global village brings different nations close and introduces a new concept of
smart cities, which leads to the upgrading of traditional systems [1]. Conventional homes
are converted into smart homes by equipping smart devices. Smart cities consist of multiple
smart entities such as smart vehicles, smart homes, smart educational systems and smart
hospitals. Similarly, traditional vehicles are replaced with smart and electric vehicles. Smart
and electric vehicles are our main focus in this work.
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Over the last few years, traditional vehicles have been equipped with the latest devices
and functionalities. Therefore, it is assumed that all traditional vehicles will be transformed
into smart and electric vehicles within a decade or two. In the last decades, the population
of urban areas has increased, leading to serious issues such as the depletion of fossil
fuels, drastic climate change, etc. According to [2], the number of autonomous vehicles is
increasing rapidly, and in the near future, the market value of EVs will grow from $54.23 to
$556.67 billion. Smart vehicle usage has many advantages. However, the increase in the
number of smart vehicles raises many issues, such as road accidents, range anxiety and
road congestion. In traditional transport systems, a central intermediary party is involved
in the efficient data flow between charging entities and electric vehicles (EVs) [3]. However,
the involvement of a third and central party creates many issues, e.g., lack of privacy, lack
of trust and a single point of failure. Therefore, a decentralized system is required to resolve
all these problems.

Blockchain technology has been introduced and integrated with different life fields
to resolve the problems of existing centralized systems. It is a decentralized system that
ensures cost reduction, security, trust and privacy among EV users [4]. In 2008, Satoshi
Nakamoto introduced blockchain with the advent of Bitcoin [5]. With the drastic increase in
population, the demand for energy usage has also increased by several orders of magnitude,
which creates an imbalance between energy supply and demand. This imbalance of
load leads to issues such as energy scarcity, irregular load shedding, increased electricity
costs, etc. To tackle such issues, smart energy management is required, which helps to
optimize the usage of scarce energy resources [6]. Furthermore, creating green, sustainable,
clean smart cities is also needed in the current era. The energy sector has witnessed
considerable developments in exploring new renewable energy sources (RESs) that help
tackle the issues caused by usage of fossil fuels. The most common RESs include solar,
wind and hydropower. Undoubtedly, RESs have immensely contributed to increasing
energy generation with the balance of demand and supply. However, RESs also cause some
issues; the most prominent are its volatile nature, which causes uncertainty for energy
generation [7].

Many smart vehicles operating on electricity, termed EVs, establish a network among
themselves while moving on roads. This network is termed a vehicular network (VN). A
VN consists of multiple entities: charging stations, roadside units (RSU), EVs, etc. All these
entities are linked together and perform various functions such as sharing road and weather
information, charging of EVs via charging stations and saving important information in
RSUs [8]. Various issues exist in VNs, such as lack of charging stations, trust issues among
EVs, limited battery capacities of EVs, etc. Moreover, EV users are not comfortable charging
their vehicles at a high cost/price and may travel long distances EV charging.

Optimal energy usage by EVs and establishing an equilibrium between supply and
demand also need to be addressed. For this purpose, demand-response (DR) strategies
are introduced, which help EV users adjust their energy demands according to charging
time and price. These strategies also enable users to shift their energy demand from
peak to off-peak hours, reducing the burden on energy grids and obtaining energy at low
prices. Furthermore, DR aids in flattening load curves without deploying additional energy
generators [9]. Moreover, great work has been done in integrating blockchain technology
in the transportation sector. Similarly, this sector has also deployed DR strategies to help
both EVs and energy grids. However, there still exist other issues such as privacy leakage,
optimal pricing schemes and lack of user comfort [10].

This work aims to ensure the security of EV users and data immutability of transactions
being generated and shared between EVs, RSUs and charging stations. Data storage issues
are also solved in the proposed work. Moreover, EVs are charged at a low monetary cost
by minimizing the burden of the charging entities. The nearest charging station to the
EV is calculated using the K-nearest neighbour (KNN). Moreover, EV charging is done
securely using blockchain technology and machine learning. Furthermore, EVs are charged
according to their present state-of-charge (SoC). The time required to charge an EV is also



Sensors 2022, 22, 7263 3 of 28

calculated in the proposed work, and the data redundancy of transactions is also resolved.
In a nutshell, the proposed work paves the way for efficient EV charging at a lower cost.

This paper is the extension of our conference paper [11]. The major contributions of
this paper are given below.

Contributions

• A blockchain-based secure energy trading system is proposed with minimum cost.
The proposed system also achieves security and privacy by using blockchain.

• Transaction redundancy is tackled through a hashing algorithm. A hashing algorithm
(SHA-256) is used as a tracer to remove redundancy.

• A machine learning algorithm, KNN, is used to calculate the shortest distance between
a charging station and an EV.

• A reputation mechanism is proposed for the selection of EVs. This reputation mecha-
nism also helps to avoid Sybil attacks.

• In the proposed system, energy aggregators are introduced as energy brokers that
provide a significant way to find optimal charging stations for EVs with less energy
consumption, calculate the time of charging and define the present state-of-charge.

• The proposed mechanism also calculates the energy required by an EV and presents
the amount of energy available at the charging station. Moreover, DR is integrated
with blockchain to manage EV demand and supply securely.

The organization of the paper is given below.
The related work and problem statement are mainly discussed in Section 2. The

proposed system model is presented in Section 3. Simulation results are described in
Section 4. Moreover, Section 5 presents a security analysis of the proposed system model
and blockchain based attacks are discussed in Section 6. The conclusion of this work is
presented in Section 7. Section 8 describes the future directions of proposed work.

2. Related Work

Nowadays, blockchain has gained tremendous attraction from industry and researchers
and has become an emerging technology. However, some researchers have discussed the
security risks and issues related to blockchain technology. The literature summary is given
in Table 1.

In [12], the authors addressed issues related to power supply between the regions of
a smart city. The authors proposed a dynamic complex network of grid-to-vehicle (G2V)
energy networks. EVs can travel to multiple cities in this network. Thus, EVs act as energy
transporters between multiple regions. However, the authors did not consider centralized
energy storage points.

Table 1. Related work.

Reference Year of
Publication Addressed Limitations Proposed Solutions Limitations

[12] 2019 Power supply A dynamic complex energy
network

Did not consider centralized
energy storage points

[13] 2018 Inefficient energy
management

A blockchain-based scheme for
management of charging piles

Maintenance of the system is
expensive

[14] 2017 Inefficient charging
strategies and trust issues A consortium blockchain system Requires high mining cost

[15] 2020
Discussed different charging
infrastructures and strategies
in smart cities

Analysis of different charging
strategies None
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Table 1. Cont.

Reference Year of
Publication Addressed Limitations Proposed Solutions Limitations

[16] 2019 Insecure energy trading
Used a dynamic pricing strategy
and a reverse-auction
mechanism

Centralized grids

[17] 2019 Trust issues among EVs
A decentralized trust
management system based on
blockchain

Lacked both trust management
and privacy preservation

[18] 2019 Security issues in energy
trading

An incentive scheme based on
blockchain

Malicious entities are not
considered

[19] 2019
Secure and efficient data
trading using consortium
blockchain

A consensus mechanism based
on pre-selected nodes

Increased energy consumption
because a large number of
iterations is involved during
the process

[20] 2017
Inefficient charging of
PHEVs and communication
issue

Energy trading mechanism for
(PHEVs)

Balancing of energy is not
considered

[21] 2018
Introduced a new concept
related to EVs in energy
markets: G2V and V2G

Proves that an energy grid is an
advantageous entity

Leads to environmental
pollution.

[22,23] 2018, 2020 Security analysis of the
Brooklyn microgrid network

An encryption scheme is used
for the security of transactions

Malicious operators and selfish
mining are not considered

[24] 2018 VN insecure energy
management A decentralized security model Privacy of EVs is not

considered

[25] 2020 Energy management
problems

Used a deep CNN model with
blockchain for energy
management

Complexity is an issue

[26] 2019 High delay in service
response and lack of trust

A blockchain-based intelligent,
secure autonomous
transportation system

Did not consider storage issues

[27] 2018 Security issues in SDN A novel hybrid architecture
network

Did not consider the efficient
deployment of edge nodes

[28] 2022 Addressed the controller
selection problem

Analytical Network
Decision-making Process
(ANDP)

Did not consider scalability
issues

[29] 2018 Security threats and trust
issues

An intelligent vehicular network
based on blockchain

The comfort of vehicle
operators in a hassle-free
network is not considered

[30] 2019 Storage and security issues

A blockchain-based
decentralized, distributed and
secure storage management
scheme

Channels are unreliable during
vehicle communication

[31] 2019 Trust issues
A decentralized
trust-management system based
on blockchain

Message validation delay is
increased

[32] 2018
Uncertainty and randomness
of the charging and
discharging of EVs

A decentralized power-trading
model High implementation cost
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Table 1. Cont.

Reference Year of
Publication Addressed Limitations Proposed Solutions Limitations

[22] 2018 Integrated blockchain with
EVs for security purposes

Designed a multi-blockchain
architecture

Multi-blockchains become
expensive

[33] 2017
Security and privacy
problems of energy trading
networks

A consortium blockchain-based
secure energy trading system

Requires high cost to maintain
an energy blockchain with IIoT
nodes

[34] 2019
Blockchain technology is
integrated with edge
computing in a VN

A contract theory-based
incentive mechanism

The given approach requires
further discussion

[35] 2019 Insecure energy trading and
malicious activities

Smart-contract-based secure
energy blockchain system Privacy issue is not resolved

[36] 2019
Deficiencies in dealing with
the profits made by charging
stations

Proposed an optimal pricing
scheme for charging EVs Coordination issues

The authors of [13] identify the problem of inefficient charging and discharging and
mention insecure energy trading between EVs. Therefore, they proposed a secure energy
trading approach based on blockchain. Moreover, the authors proposed a different energy
trading scheme in a blockchain-based system.

In [14], a charging guide strategy using a consortium blockchain system is proposed.
The proposed work is aimed at dealing with the charging requirements of taxis. They use a
practical Byzantine fault tolerance (PBFT) mechanism to achieve consensus in the proposed
system. PBFT is also used to tackle the trust issue between multiple charging station
operators. The charging guide model for the taxis in the proposed work is established
using multi-objective optimization. The simulation results of the proposed work show that
the passenger satisfaction is increased. In [15], the authors discussed different charging
infrastructures and strategies in smart cities. In [16], the authors propose an energy trading
model based on smart contracts and blockchain. They used a dynamic pricing strategy
and a reverse-auction mechanism during trading. The proposed work not only benefits
less-competitive power sellers but also reduces the electricity price. To tackle the trust issues
among EVs, a decentralized trust management system based on blockchain is proposed.
Another paper that addressed trust issues is [17]. In this system, received messages
are verified by EVs using a Bayesian inference model. Upon receiving the message, a
corresponding rating is generated for it. Using these trust values, RSU calculates trust
value offsets for the EVs. However, the proposed work lacked discussion of collective trust
management and privacy preservation.

In [37], the authors proposed an incentive scheme based on blockchain for energy
trading. It provides efficient and secure energy trading between EVs and energy grids.
Moreover, to enhance security, they proposed a reputation model and a secure distributed
energy trading scheme for efficient energy trading. However, malicious entities are not
considered in the proposed system. Moreover, in [18], the authors also proposed a contract-
based energy trading scheme. In [19], the authors worked on secure and efficient data
trading using consortium blockchain. The consensus mechanism in the proposed system
is based on pre-selected nodes. A double-auction method is used; however, it consumes
more energy because a large number of iterations are involved during the process. In [20],
the authors propose an energy trading mechanism for plug-in hybrid electric vehicles
(PHEVs). According to the proposed scheme, PHEV perform efficient charging with less
energy cost. The authors also discuss the efficient communication of vehicles. However,
the proposed scenario is expensive to implement in real life, and energy balancing is not
considered. In [38], the authors introduced a hybrid peer-to-peer (P2P) energy trading
system for energy markets.
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In energy markets, a new concept related to EVs, grid-to-vehicle (G2V) and V2G, is
introduced in [21]. This new concept proves that an energy grid is an advantageous entity.
The EVs implement a bidirectional flow of communication and energy. Exponential growth
in the number of EVs has occurred over the past years. This has led to environmental
pollution. In [22], the security analysis is performed on the Brooklyn microgrid network,
including the implementation of blockchain in the energy sector. The authors also proposed
an energy trading model based on blockchain. An encryption scheme is used for the security
of transactions. However, malicious operators and selfish mining are not considered. In [23],
the authors addressed the issue of secure energy trading transactions between EVs.

In [24], the authors addressed a VN’s insecure energy management problem. The
problem of centralized charging systems in VNs is also identified. A decentralized security
model is used to resolve these problems. The proposed model is based on smart contracts
and a lightning network. It resolves the issues of registration, authentication, scheduling
and charging. In [25], the authors worked on the registration framework using blockchain.
In [39], the authors used a deep convolution neural network (CNN) with blockchain for
energy management.

The proposed model managed energy demand, storage systems, renewable energy
and real-time electricity prices. In [26], the authors identify the issue of long delays in
service response, low data-storage capacity, lack of trust between entities and high latency.
Therefore, they proposed a blockchain-based intelligent, secure autonomous transportation
system. There are two types of services used in this model: smart pay and smart share.
However, the authors did not consider storage.

In [27], the authors address the issue of inefficient energy balancing and restricted
battery capacities in an underwater sensor network (UWSN). Therefore, they proposed an
improved metaheuristics-based clustering with the multi-hop routing protocol (IMCMR). A
novel hybrid architecture network comprising blockchain and a software defined network
(SDN) is presented in [28]. The proposed architecture has two parts: an edge network and
a core network. Furthermore, the security issue is solved through the POW mechanism.
However, the authors did not consider the efficient deployment of edge nodes. In [29], the
authors address the controller selection problem. Therefore, they proposed an analytical
network decision-making process (ANDP) that finds optimal controllers in the network.
However, they did not consider scalability issues. In [40], an intelligent VN based on
blockchain is proposed to deal with security threats and resolve trust issues. The proposed
model communicates with vehicles and IoT devices without any security threat. However,
the comfort of vehicle operators in a hassle-free network is not considered.

In [30], a blockchain-based, decentralized, distributed and secure storage management
scheme is proposed in a VN. The proposed scheme increased the efficiency and perfor-
mance of the network. However, during vehicle communication, channels are not reliable.
Moreover, in [31], the authors also worked on a blockchain-based IoT traffic system. In [8],
a decentralized trust management system based on blockchain is proposed. The proposed
system uses a Bayesian interface model to validate the received messages. However, the
large size of the data packets increases the message validation delay. This delay affects the
efficiency of the network. In [41], the authors discuss P2P and V2G transactions of EVs
in a VN. They proposed a blockchain- and smart contract-based EV trading model. The
proposed decentralized power trading model considers the uncertainty and randomness of
the charging and discharging of EVs. Furthermore, a reverse-auction mechanism is used to
reduce the monetary cost of electricity. Further, the transportation sector has also stretched
the number of vehicles running on roads. The ongoing scarcity of energy-generating
sources has led the masses to face an imbalance between energy demand and supply [32],
which has paved the way for other issues such as increases in energy prices, the absence
of demand-response programs, etc. The increasing number of automobiles also adds to
energy demand to a great extent.
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In [42], the authors address the security and privacy problems in IIoT-based P2P energy
trading networks. Therefore, they proposed a consortium blockchain-based secure energy
trading system named ’energy blockchain’. However, it requires a high cost to maintain
the energy blockchain with IIoT nodes. Further, the computational delay also increases.
In [43], the authors proposed an incentive mechanism based on blockchain. In [33], the
authors discussed storage problems. In [44], therefore, they proposed a blockchain-based
trust management system. The proposed system resolves the issue of credibility of received
messages.

In [45], blockchain technology is integrated with edge computing in a VN. These
technologies are used for efficient V2G trading in the VN. To perform energy trading, a
consortium blockchain is used. A contract-theory-based incentive mechanism is used that
increases the involvement of users in the network. Resource allocation is resolved using
a Stackelberg game and backward induction. The proposed work enables efficient V2G
trading. However, the trading approach needs to be further discussed. In [34], the authors
also proposed an incentive system for real-time renewable energy resources for vehicles.

For the efficient placement of charging stations, the authors of [35,46] considered dif-
ferent aspects such as driving range, voltage regulation, cost, etc. Each feature important for
charging station placement is studied. The results show that the proposed work is globally
acceptable and exhibits a small approximation error. It is a highly technical study and
involves prioritization as well. However, this work lacks in providing a charging strategy
for EVs, which is also necessary. In [36], the authors proposed an optimal pricing scheme
for charging EVs with less cost. EVs also coordinate with each other under the proposed
scheme. The proposed work lacks in dealing with the profits made by the charging stations.
In [47], the authors addressed problems related to EV charging and discharging.

Research Gaps

In recent years, many conventional vehicles have been transformed into smart and
electric vehicles. These smart and electric vehicles come together and form a VEN. The
communication of vehicles in these networks is beneficial. However, some major issues
exist in VENs, such as scarcity of charging stations, inefficient energy management, load
fluctuations on charging stations, etc. [12].

The authors of [48] put forward a method for finding the nearest charging stations.
However, they encounter a major issue dealing with the geographical disparities related
to the edge nodes. To ensure efficient energy trading, the authors of [49] develop the idea
of sharing energy between users in a decentralized manner. However, issues of security,
privacy, and trust are witnessed. Hence, user security and privacy preservation need
realization in modern times. In VENs, energy aggregators also work as energy brokers
in energy markets. Furthermore, centralized grids are used to charge EVs in traditional
systems. This centralization leads to many issues, such as lack of trust, a single point of
failure, and security and privacy concerns [13].

With the drastic increase in the number of EVs, the energy sector faces new challenges
such as imbalanced load supply, voltage fluctuation, load-shedding, etc. Therefore, the
integration of DR in VN becomes necessary because it efficiently manages the load supply
and reduces the peak load. However, traditional DR systems involve third parties and
lead to security issues, privacy leakage, increased cost, etc. [14]. Energy trading between
EVs and charging stations also faces many problems, such as lack of location privacy and
trust and imbalances between load and demand. Moreover, in [17], the authors worked
on a blockchain-based decentralized energy trading approach in energy markets in which
electricity is purchased at specified prices defined by utilities in the context of a one-sided
market. Therefore, a DR approach is needed to help consumers establish a double-sided
market in which utilities and consumers benefit equally.



Sensors 2022, 22, 7263 8 of 28

3. System Model

Nowadays, energy trading activities ubiquitously take place in smart cities. However,
in energy markets, secure energy trading is an important concern. Therefore, a secure
energy trading mechanism based on blockchain is proposed. The proposed mechanism
provides secure and efficient energy trading between charging entities, i.e., charging stations
and EVs. The proposed model comprises EVs, charging stations, aggregators, energy grids,
consortium blockchain, a tracer, and a DR mechanism, as shown in Figure 1.

City

G to V  tradingenergy

Buyer Seller

Transactions 
record

Energy grid

Charging Pile

Electric Vehicle
Load Curve

Charging station
Local Aggregator

Electricity Flow

Tracer

Controller

L1: Centralized grids

L2: Redundancy of 
transactions

L3: Insecure energy 
trading between EV and 
CS

L4: Imbalance load 
supply,      fluctuations in 
voltage level 

L5: Find the  
nearest charging station 
for EVs

S1: Decentralized   grids

S2: Trace with SHA-256 
to remove redundancy

S3: Use consortium 
blockchain for secure 
trading

S4: Use d  d    
response for balanced 
load

S5: Use KNN to find 
shortest distance

Request

demand

op�mal and

Figure 1. Proposed EV charging scenario.

The proposed system finds the nearest charging station for an EV. A machine learning
algorithm, KNN, is implemented to find the nearest optimal charging station. When an EV
needs to be charged, it sends the request, along with its current location, charging price and
energy requirement, to the aggregator. According to the given location, the aggregator finds
the nearest charging station for the EV and compares the amount of energy at the charging
station to the EV’s requirement. If sufficient energy is not available at the charging station,
the aggregator finds another charging station. In the proposed mechanism, the aggregator
provides a list of the nearest available charging stations according to the location of the EV.
The aggregator finds the required amount of energy that the EV needs to reach the charging
station and also estimates the time required for the EV’s charging. The communication
between EVs and charging stations is secure in the proposed mechanism because of the
authentication process. A branching mechanism that deals with the problem of intensive
data and reduces computational delay is also proposed in this system.

The proposed system model consists of the following components.
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3.1. Electric Vehicle

EVs play a unique role in VENs because of their bidirectional energy trading capa-
bilities. In the proposed system, EVs act as energy consumers that receive energy from
different charging stations through aggregators. In the proposed scenario, the EV gets a list
of charging stations from the aggregator and selects the nearest available charging station.
The given list consists of available charging stations with their locations and the amount of
energy at the selected charging station.

3.2. Charging Station

The charging stations obtain energy from the main power grids. These charging
stations are also connected to aggregators placed in the respective areas. If these charging
stations run out of electricity, they ask the energy grid to provide them with the required
energy. All charging stations forward their updated energy information to the aggregators.

3.3. Consortium Blockchain

Consortium blockchain is a type of blockchain that can be used in a security system.
In this blockchain, only specific, selected entities can maintain the access control of a
system and perform only certain functions. Therefore, it is different from private and
public blockchains. A consortium blockchain is used in the proposed scenario to resolve
security issues.

3.4. Vehicle-to-Grid Energy Network

In traditional systems, centralized grids are used to provide energy to EVs and the city
simultaneously. However, centralized grids have many challenges, such as a single point of
failure, load imbalance, and security and privacy issues. Therefore, decentralized grids are
proposed in the given system to overcome the above-mentioned problems. Decentralized
grids help manage the load supply and demand in vehicular and residential areas.

3.5. Role of Aggregators

Figure 1 shows the communication of EVs and the aggregator. Aggregators act as en-
ergy brokers. When energy is required by an EV, it communicates with a nearby aggregator
and sends an energy request to a nearby charging station. The aggregator finds a list of the
nearest charging stations according to the requirements of the EV. It also confirms the EV’s
energy price and charging requirement by using Algorithm 1. The proposed algorithm
calculates the required energy of an EV and the energy consumed to reach the selected
charging station. Every charging station has the ability for bidirectional communication.
Therefore, it tackles energy flow according to market demand. Aggregators are the selected
entities that manage access control during energy trading activities.

3.6. Role of Tracer

During energy trading, transactions are performed between EVs and charging stations.
In this process, several transactions occur that create redundancy. The proposed model
uses a tracer based on SHA-256 hashing to resolve this issue.

3.7. Energy Transportation by Electric Vehicles

V2G technology enables bidirectional energy flow in EVs. EVs have their own demand-
response management (DRM) dynamics connected by the EV fleets. The dynamics of V2G
energy networks are analyzed in this system. A dataset is used to describe the DRM
dynamics in a specific region. There are three state variables for the description of DRM
dynamics: (i) demand level of electricity, (ii) batter pool of SoC (iii) and the price of
electricity.
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Algorithm 1: Energy Trading Request

Input: Eth
i , Epr

i , Bcap
i , Treq

i
Result: Confirmed Request
for n no. of EVs do

if Epr < Eth then
Ereq

i = Bcap
i − Epr

i ;

Treq
char =

(
EreqxTreqi

60

)
;

Transactions Send to TSC
end
for m no. of CS do

if Epr
j > Ethj then
Eav

i = Epr
j − Eth

j ;

Print: Available Energy Value;

Ps
J =
(

Bcap
j

Epr
kw−Eth

)
;

if Ps
j > Pbj then
Print Energy Price 1 then
Print Energy Price 2

end
EV Confirm Price;
Di→j = EuclideanDistance(long, lat) for m no. of CS do

Locj = Locj [m];
Sort (Locj[m])
Print all CS’s Distances Etr

xi→j = Bcap
i ∗

( Di→j
Dmax

)
Ttr

i→j = 2 ∗ Di→j

Ereq
i→j = SoCprj ∗ Ttr

i→j

MinnerINdex
i =

(
Tstay

i
Ttr

i→j

)
end

end
end
if Minnerindex

i > Minnerth
i then

Print EV Selects as Minner
end
Print EV Selects as Ordinary Node Print Charge Below 60%

end

3.8. Demand Response

A typical DR scenario is used in this system. The proposed system includes major
entities such as energy grids, charging stations, charging piles, EVs, etc. In the proposed
work, the DR pricing strategy is used, which enables EV users to flatten load curves and
efficiently adjust electricity usage. In DR, bidirectional communication takes place between
entities, which enables the efficient flow of electricity and data between different entities.
The DR mechanism shifts the energy demand of EVs from on-peak hours to off-peak hours.
The given scenario efficiently manages the load curves. The demand-response scenario is
discussed in Algorithm 2.
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Algorithm 2: Demand Response
Input: EVs, CSs, Edem, PriceRTP, Pricepeak
Result: Load being shifted
for ∀ EVs i = 1, 2, 3, ..., n do

Check for the Edem by EV
if EV needs energy then

Check for the RTP time slot
if PriceRTP > PricePeak then

Do not entertain energy request
else

Provide energy to EV
end

end
end

3.9. Finding Minimum Distance

The efficient charging of an EV depends on two major factors: distance from the
charging station and the time taken to travel this distance. In the proposed work, we
deal with the former factor, i.e., the distance to the nearest charging station. This distance
is calculated using a KNN technique. When an EV requires energy to charge itself, it
sends an energy request to the aggregator. The aggregator finds the nearest available
charging station for the EV. This scenario efficiently reduces the expenses and traveling
time. Algorithm 3 is used to select the charging station based on the shortest distance. The
proposed algorithm also calculates the amount of energy and time that an EV needs to
reach the selected charging station.

Algorithm 3: Selecting the Nearest Charging Station
Input: EVlong, EVlat, CSlong, CSlat, DistEV2CS
Result: Selection of Nearest Charging Station
for EV ∈ {EV1,EV2...EVN} do

Note the longitude and latitude values of an EV as EVlong and EVlat,
respectively

for (CS ∈ {CS1,CS2...CSM}) do
Note the longitude and latitude values of a CS as CSlong and CSlat,
respectively

Calculate the distance between EV and CS using KNN
Save it as
DistEV2CS such that DistEV2CS ∈ { Dist1,Dist2...DistTotal}
Compare Dist1 with Dist2
if Dist1 > Dist2 then

Select CS1 for charging EV
else

(Dist1 < Dist2)
Select CS2 for charging EV

end
Repeat the above If loop for all distances and then select the CS located at
the shortest distance from the EV

end
end
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3.10. Selection of Charging Station Using KNN

KNN is a supervised learning algorithm in which learning is done from a labeled
training dataset. According to the data, it finds the minimum distance between a specific
point and all other points. It makes iterative predictions on the training data and the
learning from the dataset.

This algorithm finds the shortest distance by using Euclidean distance, which is
calculated using Equation (1), where x1 and x2 are longitude coordinates and y1 and y2 are
latitude coordinates of two points.

DistEuclidean =
√
(x2 − x1)2 + (y2 − y1)2 (1)

Charging station selection depends on the shortest distance from the EV. The shortest
distance is calculated using KNN. In the proposed model, the locations of charging stations
are taken from the city of Oslo. This city has a large number of EV charging stations. The
proposed algorithm lists the nearest charging stations according to the position of the EV.

The EV first selects the nearest charging station. If the selected charging station is busy,
then the EV moves to the second-nearest charging station.

3.11. Trust-Factor-Based Reputation

In the proposed model, when two EVs send requests to aggregators simultaneously,
the aggregator gives preference to the request of the EV with the higher reputation value.
These reputations are based on trust factors. The Eigen trust reputation algorithm calculates
the reputation values for the EVs. Basically, reputation is anticipation of the behavior of an
EV based on its previous behavior and observations. An Eigen trust reputation algorithm
provides a unique trust value to each EV based on the history of transactions made by
each EV. It collects information from all peer EVs and calculates the trust value based on
feedback. This algorithm provides unique trust values to each EV. This trust value depends
on the transactional history of every EV.

The trust values either increase or decrease based on message credibility. When an EV
sends correct data, the trust value increases, and vice versa. EV stakes are purely based on
respective trust values.

This reputation mechanism is also used to avoid Sybil attacks. In a Sybil attack, the
attacker generates multiple fake IDs to gain incentives. In the proposed system, every
entity is registered and has its own reputation value; however, fake entities do not have
any reputation value. Therefore, fake entities can be easily identified when a reputation
system is implemented.

3.12. Registration and Authentication through Certificate Authority

Only registered EVs can communicate with other EVs, aggregators and the Certificate
Authority (CA) in the network. In the proposed model, newly incoming EVs are first
directed toward the CA. EVs make a request to the CA for entrance into the network.
The CA provides a certificate to the EV that contains the EV’s real identification (id) and
pseudonym id. These EVs collect data (e.g., road conditions, weather conditions, etc.) from
their surroundings and pass it to the nearest RSU. The CA also grants authentication to
EVs. Authentication resolves the issue of malicious EVs in the network. Figure 2, shows the
scenario to detect the malicious EVs in the network. When EVs are authenticated through
the CA, then they are free to participate in the network.
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Figure 2. A scenario to detect malicious EVs.

3.13. Branching of Data

In the proposed system model, a branching concept is used, in which the blockchain
network comprises two further chains: I-chain and F-chain. Transactional data are divided
into two parts because of the branching mechanism. Initially, all information related to
EVs is added to the I-chain. However, based on malicious activities, EVs are added to the
F-chain if they continuously send fake data to the RSU. The RSU node verifies the data of
nearby EVs. If the data are fake, the RSU takes the real id of the EV from the cloud, revokes
it from the network, and adds it to F-chain. Finally, the validated transactions and EVs are
stored in the I-chain, and all malicious EVs are stored in the F-chain.

Therefore, the network becomes robust against the EVs’ intensive data, and computa-
tional delay is also decreased. When the delay is decreased, the performance of the network
becomes efficient.

3.14. Payment to Charging Stations

Once an EV gets energy from the selected charging station, then the EV pays the
charging station for the energy supply.

This payment can be in the form of cryptocurrency or in the form of fiat money, i.e.,
USD, PKR, etc. Figure 3 shows the trading scenario between buyer and seller. A smart
contract is established between both entities that verifies the amount of energy and energy
price. All trading information is stored as transactions in the blockchain after it has been
validated by the miners.
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Figure 3. Charging payment.

In Table 2, all limitations are mapped with proposed solutions.

Table 2. Mapping of problems with proposed solutions and validation results.

Addressed Limitations Proposed Solutions Results and Validations

L1: Vehicles use high computational
power and resources to find an optimal
charging station.

S1: Finds the shortest distance by using a
machine learning algorithm

V1: Figure 10 depicts the expenses used
by an EV according to the travelling
distance.

L2: The energy sector faces new
challenges such as imbalanced load
supply, fluctuations in voltage level and
load shedding.

S2: The integration of DR in VNs
becomes necessary as it helps to manage
the load supply and efficiently reduce the
peak load.

V2: Figure 13 depicts the load
consumption with and without using DR.

L3: Multiple vehicles send requests to the
aggregator simultaneously. Therefore,
selecting the desired vehicle becomes
difficult in the network/system.

S3: A reputation mechanism is proposed
for the preferred selection of EVs.

V3: The validation of this reputation
mechanism is shown in Figure 4 as the
deployment of a smart contract that
assigns reputations to EVs.

L4: Malicious operators in energy
markets are threats to network privacy
and security through exploitation, e.g.,
privacy leakage and node impersonation.

S4: To resolve this problem, we use
authentication.

V4: Figure 9 depicts the number of
authentic and unauthentic messages
generated by EVs.

L5: Data redundancy issues exist.

S5: A SHA-256 hashing algorithm is used
to remove/detect data redundancy. Hash
values of newly uploaded data are
compared with the hash values of
existing data to find duplication.

V5: Figure 8 shows the encryption of
character strings into bits.

4. Simulation Results

Simulation results are described in this section. This paper proposes an algorithm to
find the optimal charging station for an EV. Moreover, a smart contract is implemented for
secure energy trading. This smart contract is written in solidity. The simulation of a given
smart contract is performed on RemixIDE.

Execution and transaction costs of the smart contracts are considered for evaluation.
The conversion of ether into gas is taken from [50]. Moreover, for the testing and validation
of smart contracts, MetaMask is used [51].
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1 ether = 207.6946 Gwei gas = 378.839639 USD

The transaction costs and execution costs are directly proportional. They are calculated
by Equation (2):

Transaction Cost = Gas Used × Gas Price (2)

Figure 4 shows the transaction and execution cost of smart contract functions. It can
be seen that the transaction costs are greater than the execution costs. The transaction cost
is the combination of deployment cost and function cost. Moreover, execution cost is only
based on execution functions. This smart contract is used to assign the reputation values.
This smart contract comprises the following functions: ‘Set reviews’, ‘Reviews counter’, ‘Get
ratings’ and ‘Get reviews’. The execution and transaction costs are highest for the ‘Set reviews’
function because at the occurrence of the first function all resources are initialized, which
consumes more gas. This figure is the validation of L3 as shown in Table 2.

Set reviews Get ratings Get reviews Reviews counter
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Figure 4. Gas consumption of smart contract.

The concept of branching is used in this work. This phenomenon helps reduce the
time taken for data storage and also decreases the computational delay. The data coming
from malicious EVs are added to the F-chain, and only authenticated data are stored in the
I-chain. Figure 5 shows the relation between data size and time with or without branching.
When we store data on the same branch, it takes more time and space.

When data are stored in the blockchain through branching, it consumes less time
because the data are divided into two types: fraud data and authenticated data. However,
storing the data without branching consumes more time because the entirety of the data
are stored in a single blockchain.

Many factors play an important role in EV charging, with distance from the charging
entity being one of them. EVs tend to select the charging entity that is near to them. Figure 6
shows the time required to reach the selected charging station. There is a proportional
relation between time and distance. The time increased with respect to the distance. An
increase in the distance also leads to increased expenses. Therefore, EVs tend to select the
nearest charging entity to reduce expenses.
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Figure 5. Time taken for data storage.

Figure 7 shows a relation between time and data size. This data are based on character
strings of different sizes. These strings are the number of bits; each bit takes some time
to convert in the hash. This graph shows an exponential trend of increasing time because
when the number of bits increases, the time for hashing increases. The number of bits and
time are proportional. One character uses 8 bits for storage. This hashing technique is used
to avoid data redundancy. This figure is the validation of L5 as shown in Table 2.

Figure 8 shows the relationship between the time and distance required to reach the
destination. Whenever an EV wants to buy energy from a charging station, it must cover
some distance to reach the charging station. While covering this distance, the EV consumes
some time. The time calculation helps the EV set its charging schedule according to the
time required to reach the charging station. However, we have considered only the charge
consumption cost and time, while the other factors are neglected in our case. A linear trend
is observed in Figure 8, which means that as the distance between the EV and the charging
entity increases, more monetary cost is required to reach the charging station. This figure is
the validation of L1 as shown in Table 2.
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Figure 6. Expenses incurred while traveling.
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Figure 7. Time taken for the conversion of bits.
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Figure 8. Time taken to travel a certain distance.

The selection of the charging entity depends on the time taken to reach that entity. If
the time taken to reach the charging entity is much greater than a specific value, then that
entity is discarded, and a closer entity is selected. The time taken to reach the charging
entity can be affected by external factors such as road congestion, obstruction on the road,
etc. However, these external factors are not considered. Figure 9 shows the difference
between the number of messages generated by the authenticated EV and the messages
generated by both authenticated and unauthenticated EVs. The elimination of unauthen-
ticated messages leads to a reduction in the storage required to store the messages. The
presence of unauthentic EVs in the VN leads to the generation of fake messages. When the
number of malicious EVs increases, the number of fake messages also increases. Generating
many fake messages leads to data redundancy, and hence, data storage issues. Removing
unauthenticated vehicles from the network is required to tackle the message storage issue
and increase network security. This figure is the validation of L4 as shown in Table 2.
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Figure 9. Time versus the number of generated messages.

Figure 10 shows the required energy to reach the charging station. A high amount
of energy is commonly required to cover a long distance. There is a direct relationship
between the amount of energy and distance. Figure 11 shows the EV’s present SoC and
the time (in hours) that an EV requires to become fully charged. When an EV has a high
SoC, it requires less time to charge and vice versa. The present SoC and time taken to
charge are inversely proportional; therefore, the graph shows a decreasing trend. The total
charging capacity of an EV is 100%; required time for charging is calculated by subtracting
the present SoC percentage from 100. Figure 12 shows the trend of the present charging
state and the number of vehicles present in the network. Figure 12 depicts an inverse
relationship between the time the EV takes for charging and the present SoC.

Figure 13 compares the expense incurred with and without DR while traveling to the
selected charging entity. It is visualized that DR helps minimize expenses to a great extent.
Initially, for small distances, the difference is not much. However, as the distance increases,
the difference becomes large because of the high charging energy consumption. Therefore,
EVs tend to apply the DR mechanism to adjust the load curves.
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Figure 10. Time versus energy required.



Sensors 2022, 22, 7263 19 of 28

10 20 30 40 50 59
State of Charge (percentage)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e 
re

qu
ire

d 
(h

ou
rs

)

Figure 11. Present SoC of the EV and time required for charging.
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Figure 13. Expenses incurred with DR.
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5. Security Analysis of the Proposed Smart Contract

This section consists of the analysis of the proposed smart contract and the finding of
related vulnerabilities. Figure 14 shows the security analysis of the proposed smart contract
through Oyente. Oyente is used for the analysis of smart contracts. It is an open-source
tool developed by [52]. It analyzes smart contracts using symbolic execution techniques
based upon the execution of step-wise functions [53]. Oyente software provides a flexible
environment that works directly with an Ethereum Virtual Machine (EVM) and does not
require access to high-level representations such as Solidity, Serpent, etc. [54]. Moreover,
it is also used to analyze smart contracts against the following major vulnerabilities and
attacks. However, we have not tackled these attacks in our proposed system.

• Re-entrancy vulnerability
• Timestamp dependency
• Callstack depth vulnerability
• Transaction ordering dependency
• Parity multisig bug
• Integer overflow
• Integer underflow

Figure 14 shows the security analysis of the smart contract involved in the proposed
model. The figure shows that the outputs of almost all results in the analysis report are
“False”, which indicates that the proposed smart contracts are robust against many well-
known vulnerabilities. Many false results mean the proposed model is secure and robust
against these attacks. However, the smart contract faces two types of vulnerabilities: integer
overflow and integer underflow. Integer overflow occurs when the quantity of integers
used in a specific function exceeds the defined limit, whereas integer underflow occurs
when the quantity of integers is less than a threshold value required for the function’s
execution.

Figure 14. Security analysis of the proposed smart contracts.

5.1. Security Features

In this section, we discussed the solutions of our security model and how it deals
with security threats and ensures system security. The proposed solution consists of
blockchain features. These features are decentralization, integrity, non-repudiation, trust
and availability. This system is protected against man-in-the-middle (MITM) and replay
attacks.
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5.1.1. Integrity

Integrity is an important feature that is used to ensure that there have been no data
modifications. The immutability of blockchain ensures data integrity and exchanges
messages between all participants and generates logs and events.

5.1.2. Availability

Availability ensures the deployed smart contract in the blockchain is always available
for all participants. This ensures that all present network services are always available for
the users. It protects the system from denial-of-service (DoS) attacks. All transactions are
stored in the distributed Ethereum ledger; therefore, there is no fear of hacking, failure or
compromise. The Ethereum ledger is highly robust against DoS attacks because thousands
of mining nodes protect it.

5.1.3. Confidentiality

The confidentiality requirement is achieved using a private/permissioned blockchain
such as private Ethereum and Hyperledger. The proposed system consists of a consortium
blockchain.

6. Blockchain-Based Attacker Model

Blockchain networks are generally considered secure, immutable and scalable net-
works. However, some attacks can harm the network because of its security level. The
security level of a blockchain network is directly proportional to the number of miners. The
security level increases with an increased number of miners.

A blockchain network can be attacked by several attacks, such as Sybil, routing, DDOS
and double-spending attacks.

6.1. Double-Spending Attack

In this attack, digital currency can be spent twice. Unlike physical currency, a digital
token can be easily modified through a potential flaw. Therefore, it can easily be falsified
and duplicated. This attack occurrs when a digital currency is stolen in a disrupted network.
In energy trading systems, attacks are not only security threats; they also result in financial
loss. A double-spending attack can occur during EV and charging station transactions
in the proposed system. The attack model introduced by Satoshi Nakamoto is similar
to Rosenfield’s attack model [55]. The parameters used in both models have the same
definitions and use similar notions. The parameters used in the proposed model are
given below.

• CN : a catch-up function that shows the probability of the fake longer chain published
by the attacker.

• T: a random variable that shows the time needed for mining.
• PN : a potential progress function. It shows the probability of mining by an attacker.
• m: in the double-spending attack, attackers mine the nth block and the honest nodes

mine the mth block.
• z: z is the initial disadvantage of the attacker.
• x: the computation power available in the network.
• q: the probability that the attacker will mine the block before the honest miner when

both miners start mining simultaneously. In other words, it can be said that q is the
proportion of the attacker’s computation power. The value of q belongs to [0, 1], and
q = p− 1.

• n: the number of mined blocks.
• t: the time advantage of the attacker.
• K: the number of confirmations needed to declare a block and the transaction as valid.

This parameter depends upon the seller and not the network. The value of K belongs
to the set of natural numbers N.
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• τ: the average time required by the honest and attacker nodes for block mining. The
value of τ belongs to the set of real numbers R>0.

6.2. Mathematical Formulation

The mathematical formulation of double spending is described in this section. These
equations are based on [55]. The probability of a double-spending attack is related to the
mining time of a block. The attacker mines block 1 to block n and ends up with a difference
of K− n blocks. This is given in Equation (3).

DSN(q, K) = ∑+∞
n=0 PN(q, K, n)CN(q, K− n− 1)

= 1−∑K
n=0 PN(q, K, n)(1− CN(q, K− n− 1))

(3)

where C(q, z) is given as

C(q, z)

{
( q

p )
z+1 , i f q < 0.5∧ z > 0

1 , otherwise

In the above equation, q identifies the attacker’s computational power, and p shows
the probability of less computational power of an attacker, where p = 1− q calculates the
computational power of an attacker in the network. The probability that the attacker is
successful in mining the block before the honest block is given using Equation (4).

P(Tq < Tp) =
∫ ∞

0
P(Tq = x)P(Tp > x)dx

=
∫ ∞

0

q
τ

e(
−q
τ

x)e(
−p
τ

x)dx

= q
∫ ∞

0

1
τ

e(
−1
τ

x)dx

= q (4)

The attacker’s potential progress function is defined using Equation (5).

P(q, m, n, t) =
n

∑
z=0

a(q, t, z)PN(q, m, n− z) (5)

where

a(q, t, n) =


1 , i f t = n = 0
0 , i f t <= 0
(qt)n

n! e−qt, , otherwise

The impact of a double-spending attack in the proposed work is evaluated using
the time advantage, computing power, and the number of pre-mined blocks. These pre-
minded blocks are mined by the attacker and are known as negative blocks. If the number
of negative blocks is increased in the network, then the probability of a double-spending
attack is increased. In Figure 15, the number of pre-mined blocks is used as an input. The
results are obtained for different values of q: 15%, 25%, 35% and 45%. It is observed from
the figure that for q less than 30%, the probability of a successful double-spending attack
begins after the creation of some blocks, at which point this probability increases to 35%.
For values of q greater than 40%, the double-spending attack can occur after creating just a
few blocks. This means if the value of q increases, the probability also increases, and after
attackers control the network, the chances of double-spending attacks are increased greatly.
Probability values close to zero show that a double-spending attack will be unsuccessful,
while values closer to one show a high success rate.
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Figure 15. Probability of double-spending attack vs. block advantage.

Figure 16 depicts the probability of a double-spending attack versus the time taken to
launch the attack. From the figure, it is obvious that as the value of q increases, the time
required for a double-spending attack is lessened. The figure shows that when q is 5%, the
attack starts happening after 50 s, and when q is 25%, the attack happens in milliseconds.
This means when the number of fake blocks increases, the probability of an attack also
increases.
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Figure 16. Probability of double-spending attack vs. time advantage.

Figure 17 depicts the probability of a double-spending attack against the computing
power of an attacker. The figure depicts that as the computing power of the attacker
increases, the probability of the attack also increases. The increased computing power
means the attacker has sufficient time to mine a new block. The results are obtained for
q = 60%.



Sensors 2022, 22, 7263 24 of 28

0 2 4 6 8
Computing Power

0.0

0.2

0.4

0.6

0.8

1.0

Do
ub

le
 S

pe
nd

in
g 

At
ta

ck
 P

ro
ba

bi
lit

y

Figure 17. Probability of double-spending attack vs. computing power when q = 60%.

6.3. Replay Attack

In a replay attack, the attacker saves sensitive information from the network and uses
it after some time to gain incentives. It is also called a playback attack, in which a malicious
entity repeats a valid transaction to gain financial incentive. This attack can also be used
to gain access to valid credentials of the network. A replay attack can occur between EVs
and charging stations in the proposed system. When a transaction occurs between an EV
and a charging station, the attacker entity saves the transaction’s data and uses them on
other charging stations. In the proposed system, we set a specific time period to update the
reputation of EVs. If the reputation value of the EV is older than a specific threshold, the
transaction is considered malicious.

Figure 18 shows the transaction age of both honest and fake ids. The attackers created
fake IDs, which are shown on the upper side of the red line. The bars shown in blue color,
which are lower than the red line, are the transactions performed by the honest nodes. The
red dotted line shows the threshold limit of transaction age, which is set as 150 in our case.
It can be observed from the figure that the fake transactions cross the threshold limit.

Figure 18. Number of transactions versus transaction age.
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On the other hand, the transaction age of honest transactions is almost half that of the
malicious transactions. This 1:2 proportion shows the occurrence of a replay attack.

7. Conclusions

In VEN, a novel charging algorithm is proposed with moderate cost. The proposed
model comprises machine learning, blockchain and DR. Moreover, the proposed system
consists of consortium blockchain, energy trading, EVs, charging stations, DR and a branch-
ing mechanism. The incorporation of blockchain technology promotes security and ensures
secure data storage, immutability and transparency in the proposed work. In the underly-
ing work, the coordination between different EVs, charging stations and aggregators is also
done securely and efficiently. The proposed work helps solve the communication issues
in VEN.

Furthermore, the most commonly used machine learning algorithm, KNN, is used in
the proposed work to find the nearest charging station, which reduces resource consump-
tion and computation power. EVs communicate with charging stations through aggregators
to fulfil their energy requirements and pay in the form of cryptocurrency. The time required
to charge the vehicles depends upon the charging station’s distance, and the SoC value is
also calculated in this work. The proposed model is more efficient than present work, as a
branching concept for data is used, which reduces computational delay and solves storage
issues. The branching mechanism is also involved in the proposed system to deal with
the complexity of intensive data. While performing transactions, data redundancy is also
resolved in the proposed work via SHA-256 hashing. We used Oyente to analyze the bugs
and vulnerabilities in the proposed smart contracts, and we also checked the robustness of
the network against double-spending and replay attacks. The analysis of smart contracts
also shows that our system improves the security and privacy of transactions.

8. Future Work

In this paper, we worked on optimal energy usage in EVS. A novel algorithm is
proposed for EVs to find the nearest optimal charging station. The results of our proposed
scheme outperform and show that the EVs use less computational power. Previously
in [48], the authors worked on energy trading between EVs and charging stations; however,
they included a third party, which may cause security issues and used a cloud for storage,
which creates a single point of failure. Therefore, we did not include any third party in
our proposed system and used IPFS for data storage. However, in the future, we will
compare our proposed model with other charging schemes with the same parameters and
implement our proposed model in a real-time scenario. Moreover, a novel variable pricing
scheme will be used in vehicular systems, which will allow users to charge their vehicles at
affordable prices.
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Abbreviations
The list of acronyms is given in the following:

Acronym Description
Bcap

i Battery capacity
Edem Energy demand
Eav

i Available energy at charging station
Eth

i Threshold for charging
Epr

i Present energy in EV
Locj Location of charging station
Ps

j Energy price
SoCprj State-of-charge
Treq

i Time required for charging
CN Catch-up function
K Confirmation number to declare a block
m Block mined by the honest nodes
n Block mined by the attacker
PN Potential progress function
q Attack probability
T Time required for mining
t Time advantage for the attackers
τ Average time to mine a block
x Computational power available in the network
z Attacker’s initial disadvantage
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