
Lost in Draft: Investigating

Game Balance in Multiplayer

Online Battle Arena Drafting

NGO VIEN BAO
VU HAO NHIEN

SUPERVISORS
Glimsdal Sondre
Granmo Ole Christoffer

University of Agder, 2021
Faculty of Engineering and Science
Department of Information and Communication Technology

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler,
retningslinjer for bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre
studentene på deres ansvar og hvilke konsekvenser fusk kan medføre. Manglende erk-
læring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke
har brukt andre kilder eller har mottatt annen hjelp enn det som er
nevnt i besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdel-
ing/universitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og
kan medføre annullering av eksamen og utestengelse fra universiteter
og høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8
og Forskrift om eksamen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja

5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor
det forligger mistanke om fusk etter høgskolens retningslinjer for be-
handling av saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og refer-
anser på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merk-
bart forskjellig og ønsker dermed å vurderes individuelt. Ordinært
vurderes alle deltakere i prosjektet samlet.

Ja

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til opp-
gaven. Det betyr blant annet enerett til å gjøre verket tilgjengelig for allmennheten
(Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli pub-
lisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven
tilgjengelig for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei

Er oppgaven unntatt offentlighet? Nei

Acknowledgements

We would like to begin by thanking our supervisor, Sondre Glimsdal,
for his invaluable guidance, support, and patience throughout this
thesis.

A special thanks to Anders Ghouchbar and Valdemar Andersen,
who helped proofread the thesis time and time again; special thanks
to Nadine Lindvik Parra for letting us borrow her iPad to create our
figures.

We would like to extend our thanks to Neuromancer and Flatline
for their commitment. Without their drive to deliver results all hours
of the day, this project would not have concluded.

Lastly, we would like to thank our respective workplaces for al-
lowing us to take time off to focus on this thesis. The extra allocation
of time has relieved us of immense levels of stress.

Thank you

iii

Abstract

This thesis explores modern machine learning solutions to turn-based
strategy games. In particular, we explore the possibilities of equalizing
the playing field for both teams in the draft phase of Defense of the
Ancients 2 (Dota 2) and League of Legends (LoL), with both games
being giants in the multi-million dollar esports industry.

The thesis covers the Multiplayer Online Battle Arena video game
genre and the draft phase the games use. We also discuss the tech-
nology used to address the problem, as well as the basic concepts of
modern machine learning that allowed this technology to arise. We
then introduce the Win Rate Predictor, which is our implementation
of the reward function in the Monte Carlo Tree Search algorithm used
to predict the win rate of each team given different parameters in the
draft phase.

The results show clear and quantifiable differences in different
parts of the draft phase. This includes reordering the pick order, the
impact of including banning in the draft phase, and the balance of
different draft schemes.

Specifically, first pick has a higher win rate than last pick for the
majority of the draft schemes, suggesting that strong initial picks are
more valuable than reactive response picks. Additionally, bans can be
a way to influence the balance of a draft phase. Our simulations also
suggest that the southwestern locations on the map have a higher win
rate in both Dota 2 and LoL. And finally, according to our simulations,
the games’ respective implementation of a draft scheme is the most
evenly balanced draft scheme for their game.

iv

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 The Evolution of Computers Playing Games 3
1.2 Motivation . 4
1.3 Thesis Description . 5
1.4 Goals and Research Questions 5
1.5 Contributions . 6
1.6 Outline . 6

2 Background 8

2.1 Multiplayer Online Battle Arena (MOBA) 8
2.1.1 Play Phase . 8
2.1.2 Draft Phase 9

2.2 Following the Meta 13
2.3 Player Positions and Roles 14
2.4 Machine Learning Concepts 17

2.4.1 Monte Carlo Tree Search (MCTS) 17
2.4.2 Upper Confidence Bound applied to Trees (UCT) 19
2.4.3 Predictor + UCT (PUCT) 20
2.4.4 Policy and Value Networks 20

2.5 Related Work . 21

v

3 Methodology 23

3.1 Win Rate Predictor as a Reward Function 23
3.1.1 Dota 2 Overview 24
3.1.2 LoL Overview 28
3.1.3 Feature Vector 33
3.1.4 Training the WRP 34
3.1.5 Evaluation . 35

3.2 Learning to Draft by Using MCTS and NN 36
3.2.1 Drafter Setup 37
3.2.2 The Steps of the Drafter 38
3.2.3 Training the MCTS Models with Self-Play . . . 39

4 Experiments, Results, and Discussion 42

4.1 Results for Dota 2 . 43
4.2 Results for LoL . 45
4.3 Modified Draft Scheme 45
4.4 Ban Impact . 47
4.5 Positions by Pick Order 49
4.6 Revisiting Research Questions 50
4.7 Limitations . 51

5 Conclusion and Future Work 52

5.1 Future Work . 53

Bibliography 54

List of Figures

1.1 A visual representation of the two phases in MOBA
game, the draft phase and the play phase. 2

1.2 Visualization of the evolution in terms of computers
playing board games. 3

2.1 A generic map of the play phase in a MOBA game. . . 9
2.2 Example of a draft scheme. The teams are distin-

guished by the colors and the picks and bans are sepa-
rated by the hue of the color. All draft scheme of this
type starts from the left side at Ban Phase 1 with blue
banning first, alternating between the teams towards
the right side to Pick Phase 2. This type of draft will
ban 10 heroes. B=Ban, P=Pick 10

2.3 Schoolyard drafting, assuming that Player 1, colored in
blue, is the starting team. 11

2.4 Captain’s Mode drafting, assuming that Player 1, col-
ored in blue, is the starting team. This draft bans a
total of 14 heroes. 12

2.5 Split Draft. This draft bans a total of 10 heroes. . . . 12
2.6 HoN Draft. This draft bans a total of 10 heroes, alter-

nating each time between the two teams. 13
2.7 A visualization of the steps of MCTS adopted from [19]. 18

3.1 Process of training the Dota 2 WRP. 24
3.2 Process of training the LoL WRP. 29

vii

3.3 Flowchart for data collection for LoL. 31
3.4 Visualization of encoded data. 34
3.5 An example of a Dota 2 match result obtained from

[26]. The Dire side won this particular match. 35
3.6 An example of a LoL match result obtained from [32].

The blue side (left) won this particular match. 36
3.7 The board state. The state is seperated in three sec-

tions; picks, bans, and next action. n is the number of
heroes available. 38

3.8 An illustration on how the MCTS use the policy and
value network. 38

3.9 A general overview of how the drafter play itself to
become better at drafting. 40

3.10 Dota 2 model’s value and policy loss curves per batch.
Batch size was set to 4096. 41

4.1 Illustration of Chop Draft. A copy of Split Draft in
LoL where the 2 last picks are flipped, colored green
and purple. 46

4.2 Illustration of General’s Mode. A copy of Captain’s
Mode in Dota 2 where the 2 last picks are flipped, col-
ored green and purple. 46

4.3 Illustration of how adding ban phases to Schoolyard to
make it a HoN draft. 47

4.4 Distribution of roles over pick order for winning team
composition in Dota 2 with Captain’s Mode. 49

4.5 Distribution of roles over pick order for winning team
composition in LoL with Split Draft. 49

List of Tables

2.1 Player positions and roles. 15

3.1 Selected attributes used for ranking 27
3.2 Table of Riot API endpoints 30
3.3 Results of WRP for Dota 2 and LoL. cv=5 35
3.4 The outcome and win rate predicted by Dota WRP,

with the teams in Figure 3.5 as input. The WRP pre-
dicted Dire win with a win rate of 0.5554. 36

3.5 The outcome and win rate predicted by LoL WRP,
with the teams in fig. 3.6 as input. The WRP predicted
Team 1 to win with a win rate of 0.5227. 36

4.1 mdota vs. mdota. The same model playing against each
other on the four different schemes, and the respective
results for first and last pick. 43

4.2 mdota vs mrandom in four different draft schemes. mdota

wins the draft phase dominantly over mrandom on all
four draft schemes both as first and last pick. 44

4.3 mlol vs. mlol. The same model playing against each
other on the four different schemes, and the respective
results for first and last pick. 45

4.4 mlol vs mrandom in four different draft schemes. mlol

wins the draft phase dominantly over mrandom on all
four draft schemes both as first and last pick. 45

ix

4.5 Results from mdota and mlol in which they both played
against themselves with flipped last picks. 46

4.6 The impact two ban phases has in for both mlol and
mdota. 48

Chapter 1

Introduction

What is balance, and how can we achieve it within a game? In general,
game balance is adjusting the game rules to make the game fair for
all players [1]. If a set of all players find the game challenging, one
might change the rules to adjust the overall difficulty and satisfy these
players. For example, imagine a group of friends are to play pick-up
basketball. A known saying is that "the winner stays on," meaning
that the losing team sits out while the winning team plays a new
team. First, even before they play, the group must split into teams of
five players. A way to build these teams is to nominate captains, who
alternates between picking players for their teams until the teams are
full. Once the teams have been established, they can play the game.
It is, in essence, a game within the game, namely the draft phase and
the play phase.

In the draft phase, say all players are playing in the NBA1, how
can the captains draft to gain an advantage over the opposing team?
A strategy might be to pick the player who is presumably the most
skillful player left in the pool [2]. However, if those skillful players left
in the pool continuously are offensive players, a team might end up
with just offensive players with this strategy. Therefore, it is essential
to draft a balanced team among themselves while being more robust

1The highest division of professional basketball in North America.

1

than the opposing team.
It is therefore important to draft a team which is balanced among

themselves in addition to being stronger than the opposing draft.
These challenges are even more prevalent in the video game genre

multiplayer online battle arenas (MOBA). MOBA games are split into
the same two phases as the example above, illustrated in Figure 1.1.
In the basketball example, there are not generally not than 20 play-
ers to pick from, but in the most notable MOBA games, there are
over 100 heroes. A large number of possible combinations, synergies,
and counters are a few points that make the draft phase of MOBAs
difficult.

Figure 1.1: A visual representation of the two phases in MOBA game, the draft
phase and the play phase.

Another important point that adds to the challenges in MOBA
drafting is the two phases mentioned above. Due to human factors, it
is difficult to predict the outcome of a given game with a high degree
of certainty; the best one can do is to give an estimated winner. In
contrast, existing works with board games such as Chess and Go have
focused on the play phase as these games lack a draft phase.

Our proposed solution is to use a combination of reinforcement
learning, self-play, and domain knowledge to explore known draft
schemes in the draft phase of MOBA games. By considering the draft
phase as a turn-based game, we can use Monte Carlo Tree Search
(MCTS) as a search algorithm as it excels at these kinds of problems.
It effectively narrows down the search space and prioritizes the most
promising trees. More of this can be found in Section 2.4.1. Finally,

2

we adopt a proxy that estimates the winning team composition to
deal with the difficulty of predicting the winner based on team com-
positions. This proxy will be further discussed in Section 3.1.

1.1 The Evolution of Computers Playing Games

Using computers to play games has been a hot topic ever since Arthur
Samuel created the first computer program which was capable of play-
ing Checkers in 1959 [3]. His pioneering work was one of the first to use
heuristics search methods effectively. This program was able to assess
the current board state and determine the best next move. Samuel
started this project because games are less complicated than real-life
problems and hoped that his studies could show how heuristic proce-
dures and learning could be used together [4]. Little did Samuel know
that his work would spiral and lead to the increasingly large interest
in using computer programs to play games as we have today. Follow-
ing his footsteps, others have managed to create programs that have
been able to play other games such as Tic-Tac-Toe [5], Backgammon
[6], Chess [7] and lastly, Go [8].

Figure 1.2: Visualization of the evolution in terms of computers playing board
games.

An interesting point to note is that AlphaGo, the program play-
ing Go, learns partly from self-play [8]. Its successor AlphaZero, learns
entirely from self-play [9]. Another point, which makes AlphaZero an

3

important milestone, is that the game of Go is vastly more difficult
to compute than other board games such as Chess. In comparison, a
game of Chess has 10123 possible moves, whereas Go has 10360 possible
moves [10].

Various video games of different genres have already been played
at a superhuman level using computer programs, among these include,
but not limited to, StarCraft and StarCraft II [11, 12] in real-time
strategy (RTS), Dota 2 [13] in MOBA, and Doom [14] in first-person
shooter (FPS).

A common factor for many of the mentioned games is that they
lack a second phase. Although research has been done in this field, it
lacks in areas where there are two phases.

1.2 Motivation

The esport scene has become a multi-million business in the last few
decades. Esport is a form of competing using video games and in-
cludes various game genres, one of its most significant being the
MOBA genre. The MOBA genre is, in terms of monthly active players
[15], one of the biggest genres in the gaming industry. Some of these
events are The International (TI), an annual tournament in Defense
of the Ancients 2 (Dota 2), and Worlds, another annual tournament
in League of Legends (LoL). In the most recent TI, 18 teams competed
for a prize pool of $40 million while being watched by 2.7 million view-
ers live [16]. Whereas the final of Worlds 2021 peaked its concurrent
viewership at 73.8 million viewers [17], a 60% increase compared to
the previous Worlds. The esport scene has grown extensively over the
last decade, and that the top players and teams can make a living
from it. In comparison, the Super Bowl, one of the most-watched
sporting events globally, peaked its viewership at 96.4 million viewers
in 2021 [18]. Esports viewership numbers and large prize pool shows

4

how relevant it is today.
It is crucial to assess balance in all phases of a game, especially in

a multi-million business as MOBA. Games such as Dota 2 and LoL,
which have a large player base, big esports scene and a broad audience,
must keep the game balanced to retain its competitive integrity. An
unbalanced game affects the players directly, and a game can not
survive without its players.

1.3 Thesis Description

Due to the comparable structure of a MOBA draft phase and a board
game like Chess and Go, this thesis seeks to apply the self-play mech-
anism from the AlphaZero architecture to the draft phase in MOBAs.
We wish to investigate how balanced existing draft schemes are and
how they affect the game by utilizing this type of architecture. Our
focus is on the professional scene of Dota 2 and LoL, as they are
well-established in the industry, and use their drafting schemes as a
baseline. By comparing other popular drafting schemes to these, we
can better understand the drafting scheme’s effect. Lastly, this thesis
investigates whether these changed drafting schemes can be used as a
tool to analyze the draft phase.

In short, this thesis aims to explore how drafting schemes affect
the balance of the game in established games such as Dota 2 and
LoL by using a combination of reinforcement learning, self-play, and
domain knowledge.

1.4 Goals and Research Questions

The objective of this thesis is to create a model that explores alterna-
tive drafting schemes to balance the draft phase. We wish to explore
the following research questions:

5

• RQ 1: Is the drafting scheme for Dota 2 and LoL balanced?

• RQ 2: How would modifying the draft scheme affect the win
rate in Dota 2 and LoL?

• RQ 3: How valuable are bans in the draft phase for the two
teams?

• RQ 4: Is there a trend in which positions get picked first or last?

1.5 Contributions

This thesis explores how the Monte Carlo Tree Search architecture
can be coupled with a policy and value network to train itself by self-
play, in which it is expanded to the draft phase in MOBA games. The
following list summarizes the contributions:

• A sufficient MCTS model trained by self-play to simulate hero
compositions for Dota 2 and LoL.

• An experimental environment for testing different MOBA draft
schemes.

• Estimations of the balance of different draft schemes.

• Estimations of how different draft schemes affect game balance.

1.6 Outline

This thesis is structured into five different chapters. The chapters are
as follows:

• Chapter 2 introduces the underlying background of the MOBA
genre and its draft phase. Followed by the technical theory for
machine learning and its components used during this thesis.

6

• Chapter 3 describes our methodology and is divided into two
main sections. Section 3.1 explains our process collecting data
needed to train our Win Rate Predictor (WRP). In Section 3.2
we build the Drafter which will then use the prediction from our
WRP as input play the draft phase.

• Chapter 4 presents our findings and analyzes the results in
conjunction with the objectives set in Chapter 1.

• Chapter 5 concludes our investigation and looks at future work.

7

Chapter 2

Background

This section provides some background on the MOBA genre and the
two most popular games within this field, Dota 2 and LoL. Subse-
quently, we outline prior research on these two games and machine
learning concepts relevant to the project.

2.1 Multiplayer Online Battle Arena (MOBA)

MOBA is a subgenre of strategy video games in which two teams
battle against each other to destroy their opponents base. The first
team to do so is considered the winner. The match is played on a
predefined map with two sides. In Dota 2, the sides, named Radiant
and Dire, are located in the southwest corner and northeast corner,
respectively. In LoL they are named Blue and Red with the same
positions as in DotA 2 on a similar map. In most MOBAs, each team
consists of five players, where each player controls their own hero with
their unique sets of abilities. Each player chooses their hero from a
pool of heroes.

2.1.1 Play Phase

The generic MOBA map shown in Figure 2.1 is a square consisting of
three lanes top, middle, and bottom lane. Each lane has three turrets

8

guarding the lane, starting from the base and extending outwards to
the middle of the map. Due to its squared shape figure, the middle
lane is naturally shorter than the other two lanes.

Team
 1

base

Top
lane

Bottom lane

M
idd

le

Team 1
top jungle

Team 1
bottom jungle

Team
 2

base

Top lane

B
ottom

 lane
lan

e

Team 2
top jungle

Team 2
bottom jungle

Figure 2.1: A generic map of the play phase in a MOBA game.

There spawns several creeps from the base in set intervals and
move out through the lanes. A player can kill the opponent’s creeps
to gain gold and experience. A player does not gain gold or experience
by killing their own creeps; some MOBA games do not even allow
inflicting damage to their own creeps. In between the lanes is the
jungle. The jungle is the home of neutral creeps, neutral because both
teams can kill them in to gain gold and experience. This opens up
room for you or the opponent to invade and steal gold and experience.
The game’s objective is to destroy the opponent’s base structure, and
the first team to do so is declared the winner. These are the base
guidelines for most MOBA games. Each MOBA game has its style,
including rules and features such as the map, hero pool, items, visuals,
and other mechanics.

2.1.2 Draft Phase

In both Dota 2 and LoL, there is a pool of over 100 heroes for each
player to pick from. These heroes have unique abilities, and they are
also categorized within different roles giving them various strengths

9

and weaknesses. It is therefore essential to compose a well-rounded
team.

Before a game can start, each player has to pick their heroes
from this pool. To balance the game, the developers introduced bans
to this phase. This phase will be called the draft phase. During this
phase, the two teams alternate between picking and banning heroes.
An example of how a draft phase can be performed is illustrated in
the figure below, Figure 2.2, also known as a draft scheme.

Figure 2.2: Example of a draft scheme. The teams are distinguished by the
colors and the picks and bans are separated by the hue of the color. All draft
scheme of this type starts from the left side at Ban Phase 1 with blue banning
first, alternating between the teams towards the right side to Pick Phase 2. This
type of draft will ban 10 heroes. B=Ban, P=Pick

The vast pool of totally different heroes makes it a complex com-
binatorial problem. It is also imperative to choose a strong combina-
tion of heroes from these combinations to beat the other team. Once
the team has been drafted, the teams can play the game.

Each game has its own draft scheme, and some of the ones we
will take a deeper look at are the tournament draft scheme for Dota
2 and LoL. These draft schemes will be further explained in the next
section.

Draft Schemes

There are different draft schemes in MOBA. Ranked matchmaking
games in Dota 2 use Ranked All Pick, while professional competitive

10

games primarily use Captain’s Mode drafting. The selected schemes
are further described in this section. We use Captain’s Mode and
Split Draft as a baseline ansd experiment on other schemes in our
implementation.

Schoolyard

We define a custom draft rule with no bans, and each player alter-
nate between picking. This scheme will provide insight into whether
banning heroes has any effect.

Figure 2.3: Schoolyard drafting, assuming that Player 1, colored in blue, is the
starting team.

Captain’s Mode

The draft rule used in Dota 2 professional games is the Captain’s Mode
drafting, shown in Figure 2.4. The two players alternate between
banning in a total of four heroes. P1 then gets to pick the first hero,
and to compensate for the potential valuable first pick, p2 gets to pick
the next two heroes in succession. P1 finishes the first pick phase with
the fourth pick. The drafting again switches into a six hero ban phase.
Next in the draft sequence is a pick phase, followed by a ban and final
picks. Note that a team gets both the first and the last pick in two of
these three phases.

11

Figure 2.4: Captain’s Mode drafting, assuming that Player 1, colored in blue,
is the starting team. This draft bans a total of 14 heroes.

Split Draft

Split Draft is the draft used in professional LoL games, visualized
in Figure 2.5. This scheme has only four phases, whereas Dota’s
Captain’s Mode has six. In addition to fewer phases, this scheme has
fewer overall bans, totaling ten bans. Note that this scheme does not
let the same player pick first twice. This scheme has an equal amount
of first picks and first bans split between the two teams.

Figure 2.5: Split Draft. This draft bans a total of 10 heroes.

12

HoN Draft

The HoN Draft is the draft scheme used in tournament games in
Heroes of Newerth (HoN). HoN is another popular MOBA game re-
leased in 2010 but will be discontinued on June 20, 2022. It is esti-
mated to have between 10k-12k active concurrent players during the
last few years. This draft scheme is identical to Schoolyard in terms
of picking; the difference is that HoN Draft includes two ban phases,
shown in Figure 2.6.

Figure 2.6: HoN Draft. This draft bans a total of 10 heroes, alternating each
time between the two teams.

An interesting aspect about this draft scheme is that P1 bans
and picks first in all four phases of the draft.

2.2 Following the Meta

The meta is, generally speaking, knowledge of the latest strategic
trends and its usage to create an optimal strategy to win. The
meta game starts already in the draft phase as there are many vari-
ables to consider when a player picks their hero. Variables such
as strengths, weaknesses, synergies, counters, and many others, are
changed throughout the lifespan of a video game, thus changing the
meta continuously.

The previously mentioned games, Dota 2 and LoL, regularly re-
lease new patches where they adjust these variables. They occasion-
ally release new heroes to keep their respective game fresh and fun

13

to play. All of these changes are contributing to changing the meta.
For example, a patch could introduce a new hero with strong synergy
towards another existing hero. This synergy could potentially lead
to an advantage. As people begin to the synergy and how to use it
to gain an advantage, more people will follow and adapt to the new
meta. The opposing team might then pick certain heroes to counter
this synergy. For example, patches might be released that adjust the
synergy if it is too strong. This cycle will continue until the game is
balanced and the whole player base is happy (which will likely never
happen).

The meta game can be so specific that it makes or breaks whether
a team has a specific hero or not. Fortunately, this is not the case
for many games. Both Dota 2 and LoL are in a healthy state with a
healthy meta where each player has their role in the team. How each
player contributes to their role is entirely up to them and their team.

2.3 Player Positions and Roles

The game publishers did not define any specific strategies for their
respective games; instead, the games were published, and the players
established and defined a meta. Once players gained experienced and
became better at the game, some made videos and guides, tutoring
other players and helping define the meta. Metas and strategies have
shifted drastically throughout the years, but some things remain the
same; the ideology of where a player plays on the map and the role
affiliated with that position.

There are primarily five positions each player can choose to play.
These positions go by different names depending on the game you
play, but they fulfill the same duties. The roles are:

Carries; these players usually play a hero whose weak early but
gets stronger the longer the game is. Their primary job in the

14

Lane Dota 2 Role LoL Role
Bottom lane Position 1 Hard-carry Bot Hard-carry
Mid lane Position 2 Semi-carry Mid Semi-carry
Top lane Position 3 Offlaner Top Offlaner
Jungle Position 4 Soft-support Jungle Soft-support/jungler
Bottom lane Position 5 Hard-support Support Hard-support

Table 2.1: Player positions and roles.

game is to deal damage. Damage is categorized into physical,
magical and pure/true damage. Commonly, the carries’ primary
source of damage opposes the other. Carries are typically leading
these charts after a game. These carries often need time to gather
gold and experience in order to scale into late. Because of their
weak early game, they are usually assisted by a support so that
they can farm gold and experience easier. The hard-carry is
almost always paired with a support in one of the side lanes while
the semi-carry plays in the middle lane. The semi-carry can be
left alone in the middle lane because the lane is shorter, and they
tend to have a stronger early game or some safety measure.

Hard-supports; also known as just the support. The role of
hard-supports is to keep their team alive and give them oppor-
tunities to gain extra gold and experience. The hard-supports
generally have abilities to engage/disengage depending on the sit-
uation. Some also have strong healing or shielding spells, making
them the perfect partner for the hard-carry. They normally wan-
der around in the jungle in order to gain map control and keep
track of the enemy soft-supports (jungler).

Soft-supports/jungler; while the other roles can gain gold and
experience through clearing lane creeps, the soft-support clears
neutral camps in the jungle for gold and experience (which is
why they are commonly named the jungler). Their role is to
assist the team by ganking a lane. Ganking a lane refers to

15

the strategy where one hero leaves their lane/jungle to create a
numbers advantage in another lane which hopefully leads to an
advantage later on. Soft-supports can roam together with the
hard-supports to gain map control or even gank the soft-support
while securing a neutral creep.

Offlaner; these players play in the last unoccupied side lane.
This lane is just as long as the lane where the carry and hard-
support plays, but unlike the carries, the offlaner does not have a
support-player to assist them. Therefore, they must play a beefy
hero who survives well on their own or an agile or mobile hero
who can quickly get to a safe position and avoid ganks. This
role is very versatile as many types of heroes fit this description.
Three of the most common ones are;

1. pushers heroes who specialize in pushing down their lane to
create an advantage. They bring down towers quickly and
acquire map control, usually alone while the team focuses
on other objectives.

2. initiators heroes who got abilities to lock down an enemy
hero. They can usually start a team fight from a relatively
safe position. Their strong lockdown abilities can consis-
tently lock down a hero long enough for the team to elimi-
nate that hero, causing a number advantage.

3. durables heroes who are capable of taking a heavy amount
of damage. They tend to have a large health pool and have
strong resistances. Important abilities with a long cooldown
timer that normally deal a lot of damage to carries do typ-
ically not deal much damage to durable heroes. Therefore,
their job is to be the meatshield and eat up these abilities
for the team.

16

It is normal that a player primarily commits their time playing
one position, maybe two. This way, they can fully immerse themselves
into the role and master the game quicker. It is the same way in
traditional sports; you do not usually train to play defense and offense.
Instead, you specialize in one role.

2.4 Machine Learning Concepts

This section will describe the different machine learning concepts rel-
evant to this thesis.

2.4.1 Monte Carlo Tree Search (MCTS)

MCTS is a heuristic search algorithm that is frequently used to play
board games. The algorithm is useful in turn-based games such as
Chess, Go, and Tic Tac Toe. Rather than searching through the
whole tree as other traditional tree search algorithms, MCTS simu-
lates the search and takes an action based on its accumulated reward.
MCTS’ main idea is to effectively search and prioritize the search trees
with the most promising actions. The algorithm consists of four steps,
illustrated in Figure 2.7 which are repeated: selection, expansion,

simulation and backpropagation. In theory, MCTS wants to iter-
ate until time or memory resource allocation is depleted.

17

Figure 2.7: A visualization of the steps of MCTS adopted from [19].

1. Selection

In the first step, the algorithm starts at the root node and selects
a node to traverse. It traverses down until it reaches the terminal
state, or it reaches an expandable node. A node is expandable if
it is not terminal or if the node has unvisited child nodes.

2. Expansion

If the traversion ended at a node which is not terminal, the al-
gorithm will expand the node.

3. Simulation

When the algorithm has expanded a node, it performs a roll-
out until a terminal state is found. While the algorithm does
the rollout, it perform actions based on a default policy. The
default policy could be random sampling. When reaching a ter-
minal state, a reward is calculated and backpropagated. Note
that during the rollout, all nodes that have been passed are not
considered as visited.

4. Backpropagation

The algorithm updates the value of all the nodes from the ex-
panded node to the root node with the calculated reward. The

18

visit count of the said nodes are also incremented.

2.4.2 Upper Confidence Bound applied to Trees (UCT)

The most prominent challenging step of MCTS is its ability to select
a child node in the simulation. What is difficult about this is the
ability to maintain the balance between exploration and exploitation.
MCTS should have a good balance of nodes with known rewards and
unvisited nodes.

An example of the exploration/exploitation dilemma is the Multi-
Armed Bandit problem. An agent has to choose actions (arms) to
maximize its cumulative reward in the long term. For instance, a
player faces three slot machines, each with a different reward distri-
bution. The player wants to find the machine with the best payout
without spending too much money. If the player plays all the ma-
chines once, then plays on the only machine that gave a payout, the
choice could be sub-optimal; instead, the player should gather more
information on the other machines by playing them more often. As
a result, the player has to find a balance between exploitation and
exploration to find optimal actions.

Upper Confidence Bound applied to Trees (UCT) is a proposed
solution that addressed the balancing issue between exploitation and
exploration and was introduced by Kocsis and Szepesvári in 2006 [20].
The formula is defined below in Equation (2.1):

UCTj = Xj + C ×

√
ln(n)

nj
(2.1)

where:

• Xj is the win ratio of the child.
• n is the number of times the parent has been visited.
• nj is the number of times the child has been visited.

19

• C is an adjustable exploration-constant. Theoretically equal to
√
2.

2.4.3 Predictor + UCT (PUCT)

PUCT is a modified version of the aforementioned UCT algorithm. It
was introduced by Rosin in 2011 [21], and later refined by Silver et. al
in 2017 with AlphaGo [22]. PUCT estimates the policy #»p θ(s) given
a state s. The upper bound confidence is selected by the calculations
of:

U(s, a) = Q(s, a) + cpuct × P (s, a)×
√∑

bN(s, b)

1 +N(s, a)
(2.2)

where:

• Q(s, a) is the expected reward for taking action a from state s.
• N(s, a) is the number of times action a has been taken from state
s.

• P (s, ·) = #»p θ(s) is the initial estimation taken from the policy
which is returned by a NN.

• cpuct is the adjustable parameter that controls the degree of ex-
ploration.

2.4.4 Policy and Value Networks

An artificial neural network is a network connected with nodes, similar
to the neurons in the brain. The most basic form of an ANN consists
of three layers of interconnected nodes: input, output and a hidden
layer between the two. In a simple ANN the hidden layer only consists
of one layer.

Policy and Value Networks are NN and were first introduced as
a new search algorithm in MCTS simulations by AlphaGo [8]. In

20

short, a value network evaluates the board state and the policy net-
work selects a move. The general idea is that the network will learn
what board states could lead to wins (or losses). The successor Al-
phaZero combine the two network into one to allow it to be trained
and evaluated more effiently [9].

2.5 Related Work

In 2018, Chen, Z. et al. published a paper [23] proposing a hero recom-
mendation system that suggests a hero which maximizes the team’s
prospect for victory. The proposed model uses MCTS for estimating
the values of hero combinations and a classification model as their re-
ward function. They experimented with three different classification
models, Gradient Boosted Decision Tree (GBDT), Neural Network
(NN) and a generalized linear model, LR, where their NN scored
highest with a prediction accuracy of 0.65345. Continuing with NN
as their reward function they are able to confirm that MCTS-based
recommendations leads to stronger hero compositions compared to
other baselines. Some of its limitations include not considering the
hero position, but rather the complete draft.

DeepMind created a model named OpenAI Five [13] in 2019,
which is a system that has its primary focus on the play phase of
Dota 2. OpenAI Five is trained to play the best game possible given
a random selection of heroes. It narrows down the pool of over 100
heroes to 17 and uses a Minimax algorithm to select the best hero
given the board. This algorithm plays out the draft phase randomly
without much thought for robustness in evaluations against human
players. Its hero pool size of 17 makes it a limitation given the other-
wise large pool size.

Another paper that used MCTS was published by Chen, S. et al.
[24] two years later, in 2020. This proposed model, named JueWu-

21

Draft, applies MCTS and neural network for finding the optimal hero
draft. JueWuDraft utilizes PUCT as the search algorithm as opposed
to Chen, Z. et al. who used the default policy, which is default set
to random sampling. JueWuDraft did not take the ban phase into
consideration, which is a key element in MOBA games today.

The same year, 2020, Tomašev et al. published a paper [25] about
exploring alternative rule sets in Chess with AlphaZero. In essence,
the paper is about exploring and defining new rules for Chess and lets
AlphaZero train and learn with new rule sets in order to assess the
balance in Chess. Small changes in the rule sets allows AlphaZero to
develop new strategies and tactics while maintaining the integrity of
Chess.

22

Chapter 3

Methodology

This chapter explains our methodology concerning the objectives set
in Section 1.4. The chapter will be divided into two sections. The first
section dives into what the Win Rate Predictor (WRP) is, how we
use it as a reward function, and why it is fundamental for our thesis.
Finally, the last section explains how our MCTS Drafter works and
the steps implementing it.

3.1 Win Rate Predictor as a Reward Function

Once the MCTS algorithm reaches its terminal state, it outputs a
complete draft, it uses a reward function to determine a certain win-
ner, but since the play phase has not been played, it can not do so.
Thus, we adopt this proxy for the reward function, namely the WRP.
In short, the WRP estimates which team has a higher probability of
winning the game based on the draft phase. A classifier returns the
estimation and is trained individually for Dota 2 and LoL with their
respective match datasets. The match dataset contains information
about the team composition and which team won the game. The
WRP trains exclusively on the team compositions with positions to
predict a winner. The order of picks and bans is only relevant for the
Drafter, not the WRP, which will be further discussed in Section 3.2.

23

The processes of training the WRP for Dota 2 and LoL are dif-
ferent. Thus the following sections are split respectively. The sections
will provide the necessary information about the differences and what
obstacles emerged.

3.1.1 Dota 2 Overview

Which positions each hero plays is important for this project, and the
raw match dataset does not contain this type of information. To get
this information, we need a lane dataset to train a position classifier,
which enriches the match dataset with positions. Lastly, we use the
enriched match dataset to train the WRP. Figure 3.1 show an overview
of the process of training a Dota 2 WRP. We have divided the process
into the following three phases:

Figure 3.1: Process of training the Dota 2 WRP.

1. Gather data from two APIs to create two datasets, one for train-

24

ing the position classifier and one for training the Dota 2 WRP,
explained in Section 3.1.1.

2. Train a position classifier that predict the player positions, fur-
ther explained in Section 3.1.1.

3. Finally train the WRP with the enriched dataset.

Data Collection

We propose two datasets for Dota 2, a lane dataset for training the
position classifier and a match dataset for training the WRP.

Match Dataset

We used the Steam WebAPI to gather 25 million matches played
between 18 August and 28 October 2021. The matches are based
patch 7.30 up to patch 7.30d. We did not collect matches from patch
7.30e and after as they introduced adjustments that could change the
meta and new heroes. Each match in the dataset contains the heroes
in the match, as well as the attributes mentioned in Table 3.1. The
matches fulfill the following conditions:

• The game mode must be either All Pick or Ranked Matchmaking

• The match duration is longer than 20 minutes and less than 60
minutes.

• The match has no leavers. All players must be present during
the whole match with a total of 10 players.

• The player skill level is "high skill" or "very high skill".

We used the position classifier to enrich the original match dataset
with player positions to create the final match dataset.

25

Lane Dataset

OpenDota is an open-source platform that provides Dota 2 data and
analytics. The platform collects data from the Steam WebAPI and
also extracts more detailed data from match replay files [26]. Each
match in the dataset contains the same information as the dataset
mentioned above, but with additional information such as which lane
a hero played during the game. We collected 50k matches from the
OpenDota API.

Following the meta, we assume that every player in a team has
designated positions, mentioned in Section 2.3. We did feature en-
gineering on the original lane dataset as it only contains lane infor-
mation and not player positions. Equation (3.1) show an example of
lane information in the data obtained from OpenDota.

teamn =

hero1, hero5 1: safelane

hero2 2: midlane

hero3, hero4 3: toplane

(3.1)

Within a team, we rank every hero from 1 to 5, where 1 being
the highest rank and 5 the lowest, in the following attributes; gold per
minute (GPM), experience per minute (XPM), kills, deaths, assists,
wards placed, last hits, hero damage and tower damage, which are
described in Table 3.1.

We assume that heroes played in position 5 is the highest wards
placed rank and one of the lowest GPM rank. We also assume that
the hero with the highest GPM rank in a team play as position 1.
The following steps describe how we label the heroes with positions:

1. If lane 1 has more than one hero, the hero with the highest GPM
rank will be labeled as position 1, leaving the other heroes as
position 5 candidates.

26

Attribute Description

GPM Gold per minute obtained by a player
XPM Experience Per Minute obtained by a player
Kills Number of kills
Deaths Number of deaths
Assists Number of assists
Wards placed Sum of all
Last hits Number of last hits
Hero damage Total damage dealt on the opponent heroes
Tower damage Total tower damage done by the player

Table 3.1: Selected attributes used for ranking

2. If lane 2 has more than one hero, the hero with highest GPM
rank will be labeled as position 2, and the other heroes will be
marked as position 4 candidates.

3. If lane 3 has more than one hero, the hero with highest GPM
rank will be labeled as position 3, and the other heroes will be
marked as position 4 candidates.

After going through the three lanes, we are left with position
4 and position 5 candidates. Among the position 5 candidates, the
candidate with the highest rank in wards placed is labeled as position
5. The same method is also done to label the position 4.

We processed all the matches in the original dataset and created
one dataset for every hero, which is 121. Each data point is a feature
matrix where its size is a multiplication of the total number of features
by the five available ranks. The target label is the assigned position.
The final dataset was used to train the position classifier.

Finding the Player Positions

The position classifier is an ensemble of 121 logistic regression clas-
sifiers trained on the lane dataset mentioned in Section 3.1.1. Each
classifier predicts the log probability for each position for a hero, given
their ranking within their team. For example, within a team, the hero

27

Phantom Assassin ranks number 1 in GPM, XPM, and kills, and rank
number 5 in wards placed. The classifier for Phantom Assassin will
most likely return a high probability that the hero plays as position.

We created an algorithm we call Team Position Optimizer (TPO)
to enrich the match dataset. We explain how TPO works with the fol-
lowing example. Given the following team; Treeant Protector (TP),
Batrider, Tidehunter, Lion, Morphling, we calculate the ranks on the
attributes mentioned in Table 3.1. We acquire the position probabil-
ities for all the heroes with the ranks by using the position classifier.
At this point, we sum the probabilities for every permutation of the
team. A permutation of the team could for instance be TP (position 5
p=0.7), Batrider (position 2 p=0.8), Tidehunter (position 3 p=0.6),
Lion (position 4 p=0.8) and Morphling (position 5 p=0.9). Assum-
ing that the permutation had the highest sum, we finally assigned the
heroes’ given positions.

3.1.2 LoL Overview

The general flow of how WRP was trained for LoL is visualized below
as Figure 3.2. The process are divided into three steps.

28

Figure 3.2: Process of training the LoL WRP.

1. Request and get the data needed to train the WRP for LoL
from the developers API. However, additional data was needed
as input to request the match data. These additional data were
gathered from OP.GG [27]. Once the data has been collected, it
was validated against the hero data from Data Dragon (ddragon)
[28].

2. The validated data is then run through a function that fills in
missing player positions to build a new desired feature vector.

3. Finally, the feature vector is used to train the WRP classifier.

Data Collection

One way to scrape LoL matches is through the game developers, Riot
Games’ API. A development user was created in order to gain access
to their API. It is not possible to get the complete match data by
calling a single API endpoint. In order to retrieve the match info,
an API call was made to three different endpoints with appropriate

29

parameters. These three endpoints are seen in Table 3.2.

Endpoint Returns
/summoner/v4/summoners/by-name/{summonerName} The users PUUID
/match/v5/matches/by-puuid/{puuid}/ids n Match IDs
/match/v5/matches/{matchId} Match info

Table 3.2: Table of Riot API endpoints

Before making requests to the mentioned endpoints, we needed
to collect summoner names to send along the requests. The Riot API
does not allow to get large numbers of summoner names efficiently, so
it was scraped off a third-party website named OP.GG [27]. OP.GG
is a website that provides insights to gamers for games such as LoL,
PlayerUnknown’s Battlegrounds, and Overwatch [27]. Riot has eleven
different platforms scattered globally where a player can own an ac-
count. It was necessary to scrape all platforms to get more accu-
rate data. Therefore, we iterated through all platforms and scraped
OP.GG’s first 20 pages of the leaderboard for that platform. Each
page consists of 100 players, which gives 4400 players globally, 400
players for each platform. This list of player, or summoner names in
this context, will be the first building block needed for data collection.

The Riot API uses three different IDs for players; summoner IDs,
account IDs, and PUUIDs. Since Riot has several servers worldwide
in different regions, we had to retrieve the globally unique ID, the
PUUID. By sending along the summoner name, its correspondent
platform, and n number, where n is the desired number of matches
for that player, initially set to 20, we get a list of n match IDs. These
match IDs are then sent along with the platform to retrieve the com-
plete match info. This process is repeated until all match IDs are
iterated through for all players on all platforms.

This process was very long and tedious due to Riot API’s rate
limit of 20 requests every 1 second and 100 requests every 2 minutes

30

[29]. We encountered our first problem due to this rate limiter. The
first 20 pages of the leaderboard that was scraped earlier represent
approximately 0.21% of the total player base for that platform [30].
There are remarkably few players at this high rank, which effectively
means that they are playing many games against the same players.
Thus, some of the first 20 match IDs that were scraped for one player
may match one or several other players’ match IDs. This means that
we are using the rate requests to collect many of the same matches.
One could, in theory, ignore this problem and filter out the duplicated
matches at a later stage, but considering how slow the process was
due to the rate limiter, the problem was addressed. A function was
made to compare the list of n match IDs against each other and re-
move the duplicates, thus only calling the API with unique matches
IDs.

Figure 3.3: Flowchart for data collection for LoL.

Once all the duplicate match IDs were removed, they were looped
through as input to an API call with the appropriate platform as an
additional argument. The match data contain valuable information,

31

such as game mode, game type, participants, which heroes were picked
by who and where those heroes played on the map, and most impor-
tantly, which team won the game.

LoL has multiple game modes and types, and we are only inter-
ested in games played with the original MOBA game mode. Another
condition we want is only to have high-ranked matches, but this con-
dition was fulfilled when we scraped the top of the leaderboard and
their matches. The list of conditions for a valid LoL match are as
follows:

• The patch the game is played on must be no newer than 11.18.1,
which is the latest patch before a new hero was released.

• The game mode must be "CLASSIC", meaning the normal 5v5
MOBA game mode.

• The game type must be "MATCHED_GAME", which is with a
ranked system for players. This mode does not allow players to
play the same heroes as the opponent.

Lastly, the dataset was checked against the hero information and
its IDs from ddragon to validate it. The validated and filtered dataset
totaled around 110k matches.

As mentioned earlier, the Riot API provides information about
the player position. Unfortunately, there are matches where this in-
formation is lacking or invalid. Looking through the data, we can see
that there is six valid input variable as positions:

1. BOTTOM
2. MIDDLE
3. TOP
4. JUNGLE
5. UTILITY

32

6. INVALID

From Section 2.3, we can recognize that the first five input vari-
ables resemble each of the positions a player can play on the map.
The variables are computed as the best guess for which position the
player played by Riot [29], but they sometimes return INVALID. A
function was created to catch matches in which a position or positions
are INVALID. If there is only one invalid position, it is changed to
fill the missing position. If there are two or more invalid positions, a
lengthier procedure is initiated.

First, the position distribution of all heroes is scraped from an-
other third party website named League of Graphs [31], which is a
website that tracks millions of LoL matches played every day to gather
champion stats, popularity, among other things. A list of available
heroes and their ID, gathered from ddragon [28], was used together
with this information to calculate the probability of that hero playing
in that invalid position. This algorithm selects the positions greed-
ily based on which hero has the highest probability. The process is
repeated for the remaining heroes and the invalid positions until all
positions are occupied and valid for all matches.

3.1.3 Feature Vector

Once data has been collected and missing positions have been filled,
we can start building the structure for the data. There are many
different features available from the two datasets retrieved earlier.
We selected a few features which adhere to the thesis’ objectives, and
more can be added at a later stage if needed. The following features
that were selected as a foundation were:

• Hero ID
• Which team hero are playing for (team 1 or 2)

33

• Role position for said hero
• Which team won (team 1 or 2)

The next step is to encode this information in a meaningful man-
ner. Ideally, we wish to reduce the size to increase efficiency while
keeping necessary information about the features. Another impor-
tant aspect is that the dataset should differentiate which positions a
hero is playing, or else our Drafter might draft a team composition
with several heroes with the same roles. Our proposed data structure
is made by one-hot encoding the heroes with their respective positions
in a large list depending on which team they are on and appending
which team won as the last element. We multiply the total number of
heroes with the five roles available for each hero, and lastly, append
which team won.

Figure 3.4: Visualization of encoded data.

The visualization in Figure 3.4 shows that hero with ID 0 is
playing for team 1 at position 1, whereas hero with ID 1 is playing
for team 2 at position 3, and also the fact that team 1 won. Each
encoded sample is m + 1 where m is the number of heroes available,
which differs whether the data comes from Dota 2 or LoL.

3.1.4 Training the WRP

The next step is to train the classifier that our MCTS implementation
uses as a reward function. The WRP uses LR to classify the draft and
returns 0 and 1. In a MOBA match, the play phase determines the
match outcome. However, the draft phase can only give an advantage

34

or disadvantage heading to the play phase. Two identical drafts can
play out the match completely differently and, therefore, get different
results, making the WRP an estimation rather than a definite predic-
tion. The accuracy that the WRP got from the datasets is presented
in Table 3.3.

Dota 2 LoL

Model Train Test Train Test

LR 0.589 0.5786 0.5636 0.5420

Table 3.3: Results of WRP for Dota 2 and LoL. cv=5

3.1.5 Evaluation

To evaluate the WRP, we took hero compositions from high-skilled
games for Dota 2 and LoL, used it as input in our WRP, and compared
the results.

The match seen in Figure 3.5 is a Dota 2 match between high-
ranked players. In this particular match, the dire team won. The
left-side team (radiant) is Team 1 and right-side (dire) is Team 2.
The two team compositions are used as input in our WRP, and the
results can be seen in Table 3.4.

Figure 3.5: An example of a Dota 2 match result obtained from [26]. The Dire
side won this particular match.

35

Safe Mid Off Soft-support Hard-Support WRP Win Rate

Team 1 Phantom Assassin Invoker Sand King Bounty Hunter Io Loss 0.4446
Team 2 Phantom Lancer Void Spirit Phoenix Weaver Dark Willow Win 0.5554

Table 3.4: The outcome and win rate predicted by Dota WRP, with the teams
in Figure 3.5 as input. The WRP predicted Dire win with a win rate of 0.5554.

The match from Figure 3.6 is from a real high-skilled game, with
a distinctive winning team. The left-side team is Team 1 and right-
side is Team 2. The two team compositions are used as input in our
WRP, and the results can be seen in Table 3.5.

Figure 3.6: An example of a LoL match result obtained from [32]. The blue
side (left) won this particular match.

Offlane Jungle Soft-Carry Hard-Carry Hard-Support WRP Win Rate

Team 1 Tryndamere Lee Sin Ekko Sivir Nautilus Win 0.5227
Team 2 Jayce Vi Yone Ashe Xerath Loss 0.4773

Table 3.5: The outcome and win rate predicted by LoL WRP, with the teams
in fig. 3.6 as input. The WRP predicted Team 1 to win with a win rate of 0.5227.

3.2 Learning to Draft by Using MCTS and NN

This chapter details how we applied the draft phase into an AlphaZero
inspired implementation we call Drafter. Further in this chapter, we

36

describe how we used the Drafter to train MCTS models for Dota 2
and LoL for use in our experiments.

3.2.1 Drafter Setup

We implemented a MCTS algorithm with a NN as a policy and value
network. The network is a fully connected ReLU network with three
hidden layers which take in a board state. We have two heads on
our network, a policy head and a value head. The policy head is
a fully connected layer with a softmax function, which outputs the
probabilities for the actions. The value head is a fully connected layer
with a tanh function that outputs the value of the current board state.

In draft schemes used in tournaments, two teams alternate be-
tween picking and banning, but sometimes a team can pick or ban in
succession. Therefore, we reconstructed the board state to recreate
the draft phase in the Drafter. The board state contains information
of the picks and bans in which is visualized in Figure 3.7. The values
of the board are seen from the perspective of the current player. For
instance, the board state [0, 1, 0] is seen from the perspective of player
1. The board state for player 2 is then [0,−1, 0].

The pick array is a 1-dimensional array with 121 indices. Each
index represents a hero. The pick array is initially filled with zeroes,
indicating that all heroes are available for picking. The p1 and p2
pick action are denoted with 1 and -1 respectively.

The ban array is a 1-dimensional array with the same shape as
the pick array. The initial state of the ban array is 121 zeroes. A ban
is denoted with 1 when a player bans a hero. We multiply the pick
array with ban array to mask out the banned heroes from pick array.
The game is terminal when both players have selected five heroes.

In order to incorporate the draft phase into the MCTS, we persist
the next action in the board state. The next action is a number

37

ranging from 0 to the number of actions in a draft scheme. Every
time a player selects an action, the number increment by 1.

Figure 3.7: The board state. The state is seperated in three sections; picks,
bans, and next action. n is the number of heroes available.

3.2.2 The Steps of the Drafter

Considering one simulation, we break down how the Drafter works.
We divide the steps into the following three phases shown in fig. 3.8:
selection, evaluation and expansion, and backpropagation.

Figure 3.8: An illustration on how the MCTS use the policy and value network.

Selection

In this phase, the algorithm starts the simulation from the root node
for a current board state. It traverses down the tree by selecting nodes
according to the visit counts and value in the tree by using the PUCT
algorithm mentioned in Section 2.4.3.

38

Evaluation and Expansion

The algorithm asks the policy and value network for the prior proba-
bilities for every possible legal move it can choose, denoted as p and
v. All the prior probabilities are then added as child nodes to the root
node. The child nodes have not been explored yet by the algorithm.
If the board state is terminal, the value from the NN is replaced with
the predicted winner by the WRP.

Backpropagation

After expanding the node, the tree will update the statistics on visit
counts and action-values for all the visited nodes.

Play

Lastly, the algorithm selects a move to play from the root position
when the search has ended.

3.2.3 Training the MCTS Models with Self-Play

Figure 3.9 shows the self-play process. Starting from the top left
corner, the Drafter performs tree search until the search reaches a
terminal state, explained in Section 3.2.2. All board states leading up
to terminal state during self-play, including the predicted winner that
we get from the WRP, are used as train data. We create mini-batches
of the train data to train the policy and value network. The process
is then repeated.

39

Figure 3.9: A general overview of how the drafter play itself to become better
at drafting.

We trained two models, a Dota 2 model trained on Captain’s
Mode and a LoL model trained on Split Draft. Both models were
trained over five days on a single NVIDIA 2080TI GPU. Each model
generated around 1.5 million board states of self-play with 300 sim-
ulations per MCTS. Each simulation took 4 seconds. Figure 3.10
shows the policy and value loss for the Dota 2 model trained on 400
mini-batches of 4096 board states. We made a Random Model that
outputs random prior probabilities and a random value to evaluate
the trained models.

40

Figure 3.10: Dota 2 model’s value and policy loss curves per batch. Batch size
was set to 4096.

At this point we have three different models, all of which have
been trained in different ways. The three models are as follows:

Dota 2 model (mdota) Trained model which has been trained
on Dota 2’s drafting scheme, Cap-
tain’s Mode.

LoL model (mlol) Trained model which has been trained
on LoL’s drafting scheme, Split Draft.

Random model (mrandom) A model where the policy network re-
turns random probabilities for which
action to take, and the value network
values the current state randomly.

41

Chapter 4

Experiments, Results, and
Discussion

The objective of this thesis is to analyze how different draft schemes
affect the game. From this, we can derive and answer different ques-
tions, like how influential a draft scheme is to the game. This section
will present the results of several experiments to evaluate the balance
in different draft schemes. To this end, we will utilize our trained
MCTS models and let them play themselves.

We pitted the trained models (mentioned in Section 3.2.3) against
each other for 100k games where each player had up to 20 simulations
or a time constraint of 30 seconds before selecting an action. The
number of simulations and time constraints were set low to match the
time constraint given in the draft phase of the different games1. We
performed all the experiments on a single NVIDIA RTX 2080 Ti. In
some of our experiments we pitted one of our trained models, mdota or
mlol, against mrandom on four different draft schemes. The four draft
schemes, explained in Section 2.1.2, are the following:

Captain’s Mode Professional draft scheme for Dota 2.

Split Draft Professional draft scheme for LoL.
1A player in the draft phase does not have infinite time to think about what to pick or ban.

30s for Dota 2 and 27s for LoL.

42

Schoolyard Alternating pick order, no ban phase.

HoN Draft Alternating pick and ban.

By setting all three models to play against each other on four
draft schemes, we can better understand how each draft scheme af-
fects the game. The following chapter will provide results from the
experiments and a brief discussion.

4.1 Results for Dota 2

The data used to train our WRP shows that the Radiant side has an
overall win rate of 52.28% over the Dire side. With this in mind, we
know that the Radiant has an advantage. The conducted experiments
aim to explore if different draft schemes affect this ratio.

We had the trained mdota play against itself. After 100k games,
player 1, denoted by first pick, had a mean win rate of 50.5%, shown
in Table 4.1, which corresponds to historical statistics about Radiant
having a slight win advantage.

Draft Scheme First Pick Last Pick

Captain’s Mode 0.505 0.495
Split Draft 0.412 0.588
Schoolyard 0.509 0.491
Alternating Draft 0.546 0.453

Table 4.1: mdota vs. mdota. The same model playing against each other on the
four different schemes, and the respective results for first and last pick.

The table further shows that when mdota drafted with Split Draft,
which is designed for a different game, it scored better when having
the last pick. The cause might be the different total numbers of bans
between Captain’s Mode and Split Draft. The drafter might not ban
heroes accordingly because it effectively has four bans less, which
makes the last pick more important.

43

The next experiment for Dota 2 consists of setting itself against
mrandom for the draft schemes, both as first pick and last pick, seen in
Table 4.2.

mdota mrandom mrandom mdota

Draft Scheme First Pick Last Pick First Pick Last Pick

Captain’s Mode 0.802 0.198 0.147 0.853
Split Draft 0.806 0.194 0.127 0.873
Schoolyard 0.863 0.137 0.026 0.974
HoN Draft 0.733 0.267 0.147 0.853

Table 4.2: mdota vs mrandom in four different draft schemes. mdota wins the draft
phase dominantly over mrandom on all four draft schemes both as first and last
pick.

As expected, the trained model performed better than the ran-
dom model, winning the draft phase both as first and last pick for all
draft schemes.

44

4.2 Results for LoL

The data for LoL displays much of the same results as Dota 2. From
the dataset collected in section 3.1.1, we see that the Blue side in LoL
has a slight advantage over the Red side with a win rate of 50.62%,
which also corresponds to the historical statistics on Blue vs. Red. In
LoL, the team with first pick is set to be the Blue team, whereas, in
Dota 2, the team that does not get first pick gets to choose the side.

Draft Scheme First Pick Last Pick

Captain’s Mode 0.545 0.455
Split Draft 0.504 0.496
School Yard 0.522 0.478
HoN Draft 0.573 0.427

Table 4.3: mlol vs. mlol. The same model playing against each other on the four
different schemes, and the respective results for first and last pick.

mlol mrandom mrandom mlol

Draft Scheme First Pick Last Pick First Pick Last Pick

Captain’s Mode 0.662 0.338 0.219 0.781
Split Draft 0.887 0.113 0.173 0.827
Schoolyard 0.726 0.274 0.167 0.733
HoN Draft 0.712 0.288 0.104 0.896

Table 4.4: mlol vs mrandom in four different draft schemes. mlol wins the draft
phase dominantly over mrandom on all four draft schemes both as first and last
pick.

4.3 Modified Draft Scheme

In this experiment, we introduce two new draft schemes, namely Gen-
eral’s Mode and Chop Draft which is a copy of Dota 2’s and Lol’s pri-
mary draft schemes, but with the last two picks flipped between the
two teams. This effectively means that the team with the first pick
also has the last pick, as shown in the two figures below, Figure 4.1
and Figure 4.2.

45

Figure 4.1: Illustration of Chop Draft. A copy of Split Draft in LoL where the
2 last picks are flipped, colored green and purple.

Figure 4.2: Illustration of General’s Mode. A copy of Captain’s Mode in Dota
2 where the 2 last picks are flipped, colored green and purple.

For this experiment, the team with both first and last pick will
be denoted Team 1, and the other team will be denoted Team 2.

Draft Scheme Team 1 Team 2

mdota Captain’s Mode 0.505 0.495
General’s Mode 0.408 0.592

mlol Split Draft 0.545 0.455
Chop Draft 0.386 0.614

Table 4.5: Results from mdota and mlol in which they both played against them-
selves with flipped last picks.

46

The results from Table 4.5 show that although Team 1 has both
the first and last pick, Team 2 gets a considerable advantage. The
models tend to constrict themselves to a few hero compositions that
it likes to draft, much like normal players. It is reasonable to believe
that once the model knows the first pick, it can start building its
composition around a counter for that hero. Due to the flipped picks,
Team 2 gets the chance to finish this composition a step earlier while
also potentially denying Team 1s last pick.

4.4 Ban Impact

The following table, Table 4.6, displays what difference the ban phase
has in two otherwise identical draft schemes, Schoolyard and HoN
Draft. The HoN Draft is a modification of the Schoolyard draft
scheme. First, it has a ban phase at the start, then the pick phase is
split into two phases and another ban phase between the pick phases,
illustrated in Figure 4.3.

Figure 4.3: Illustration of how adding ban phases to Schoolyard to make it a
HoN draft.

47

When adding the two ban phases we observed a 3-5% increase
in win rate for both mdota and mlol, shown in Table 4.6.

Draft Scheme First Pick Last Pick

mdota Schoolyard 0.509 0.491
HoN Draft 0.546 0.454

mlol Schoolyard 0.522 0.478
HoN Draft 0.573 0.427

Table 4.6: The impact two ban phases has in for both mlol and mdota.

The HoN draft scheme alternates between the teams, beginning
with the same team in each phase. We note from previous results that
the team with first pick has the advantage in almost all cases. It is,
therefore, reasonable to argue that the team with first pick has the
advantage coming into each phase.

From the tables presented in Section 4.5, we can argue that the
respective models might use the banning phase to ban heroes that
might counter their last two picks. It is also reasonable to further
argue that the models prefer picking heroes that complete hero com-
position with heroes that synergizes well and strengthen their team
over sub-optimal heroes to counter the opposing team - this gives a
further advantage to Team 1 with the first pick if both teams are
competing for the same heroes.

48

4.5 Positions by Pick Order

From the conducted results, we derived a table showing the distribu-
tion of hero positions by pick order in winning team compositions for
both Dota 2, Figure 4.4 and LoL, Figure 4.5. Both games are played
with their respective draft scheme.

Figure 4.4: Distribution of roles over pick order for winning team composition
in Dota 2 with Captain’s Mode.

For Dota 2 we notice an abnormality in the second pick phase
where mdota favored picking heroes in Position 1 and Position 4.

Figure 4.5: Distribution of roles over pick order for winning team composition
in LoL with Split Draft.

A similar abnormality is seen for LoL where the mlol favored
picking heroes playing Jungle. Almost 50% of the last pick for mlol

was a hero playing in the Jungle. Another abnormality for mlol is the
first pick, in which mlol favored picking a hero for Top. Most likely
due to this position being the most flexible position in the game.

49

4.6 Revisiting Research Questions

In Section 1.4 we presented a set of research questions. This section
will review these research questions in relation to our results.

RQ 1: Is the draft scheme for Dota 2 and LoL balanced?

Our findings presented in Section 4.1 and Section 4.2 shows a 0.5%
and 0.4% advantage towards the team located in the south west corner
for Dota 2 and LoL, respectively. Both of these draft schemes are
tournament-only for both games, which implies that the games are
using a different draft scheme as default.

Historical statistics for both games show that there is > 1% ad-
vantage towards the team located in the south west corner with the
games’ default draft scheme. Their tournament-only draft schemes,
Captain’s Mode and Split Draft, decrease this advantage to < 1%.

RQ 2: How would modifying the draft scheme affect the win rate in
Dota 2 and LoL?

We modified a draft scheme by flipping the two last picks such that
a team had both the first and last pick. We discovered from these
results that the team who had neither increased their win rate by
over 10% for both games.

RQ 3: How valuable are bans in the draft phase for the two teams?

Our experiment shows that adding ban phases to a draft scheme ac-
tively increases the team’s win rate with first pick by 3-5%. The
win rate might change according to how these ban phases are added,
to what draft schemes, and in what kind of sequence, but bans are
valuable to one team or another.

50

RQ 4: Is there a trend in which positions get picked first or last?

Our models tend to pick certain heroes at a specific turn in the draft
phase. Notably mdota favored picking heroes to fill Position 1 and
4 at pick 4 and 5, whereas mlol favored picking a hero for the Top
position at pick 1 and a hero for the Jungle position at either pick 4
or 5.

This confirms with the current meta for the respective games. In
Dota 2 heroes playing in Position 1 have a greater impact in the play
phase compared against other positions, as for LoL it is the position
Jungle.

Our models show a trend towards picking heroes to fill positions
with the least impact first, effectively saving impact-picks for the last
phase.

4.7 Limitations

As mentioned in Section 3.2.3, we limited the total simulations for
the models to 300. However, we could not train the models for the
desired time due to hardware limitations and time constraints.

In terms of the WRP datasets, we decided not to collect profes-
sional matches for both Dota and LoL as the sample size would be
too small for use. It is worth noting that the collected matches in the
datasets, mentioned in Section 3.1.1 and Section 3.1.2, use a different
draft scheme, which has not been explored.

Our project was only based on Dota 2 and LoL, two well-established
games in the MOBA industry, as there were difficult to gather enough
data in other small MOBA games.

51

Chapter 5

Conclusion and Future Work

The primary objective of this thesis was to assess game balance within
MOBA games, more specifically, through the draft phase. Through-
out this thesis, we have studied the effects of different draft schemes
applied on the two most prominent MOBA games, Dota 2 and LoL.
We trained a WRP classifier as a proxy for the reward function in our
MCTS models with an enriched dataset including hero positions. We
set up experiments to assess game balance once our MCTS models
have learned to a satisfactory level through self-play.

Even though our models never trained on an actual game with a
tournament-only draft, they managed to simulate its data and learn
through self-play to show that these draft schemes are more balanced
than the default draft schemes both Dota 2 and LoL uses. Our re-
sults provide valuable insight into how much impact the draft phase
has and how a small change to the draft scheme has on the overall
game balance. More specifically, in most of the draft schemes, it is
shown that the first pick is more valuable than the last pick for both
games, thus also conveying the importance of draft order across var-
ious MOBA games. Additionally, the same results show a trend of
which type of heroes would be picked first. Lastly, one can see how a
few changes to the draft scheme can drastically change the prediction
outcome. We conclude that it is possible to assess game balance by

52

observing only the draft phase in conjunction with these results.

5.1 Future Work

As the objective and results for this thesis was narrowed to a simple
game balance assessment, we suggest the following further work:

Improve Drafter

While we got reasonable results with our models, there is always room
for improvement. It would be interesting to see if adding to the com-
plexity in the feature vector improves the model. In theory, a model
trained on complex data would be able to draw complex solutions.

Improve the WRP

We think that improving the WRP will set a better foundation for
the Drafter. To start off, we suggest adding bans to the dataset which
the WRP will be trained on.

Scale up

We used a single thread implementation of the MCTS algorithm. We
believe that by implementing a parallel MCTS algorithm would lower
the simulation time substantially. Additionally, having more com-
putational resources available would definitely speed up the overall
process.

53

Bibliography

1. Andrade, G., Ramalho, G. L., Gomes, A. S. & Corruble, V. Dynamic Game
Balancing: An Evaluation of User Satisfaction. AIIDE 6, 3–8 (2006).

2. Zou, S. & Scott, D. Constraints to pickup basketball participation among
Chinese American women. Leisure Sciences 40, 307–325 (2018).

3. Samuel, A. L. Some studies in machine learning using the game of checkers.
IBM Journal of research and development 3, 210–229 (1959).

4. Samuel’s Checkers Player http : / / www . incompleteideas . net / book /

ebook/node109.html. (accessed: 12.12.2021).

5. Michie, D. & Chambers, R. A. BOXES: An experiment in adaptive control.
Machine intelligence 2, 137–152 (1968).

6. Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural computation 6, 215–219 (1994).

7. Campbell, M., Hoane Jr, A. J. & Hsu, F.-h. Deep blue. Artificial intelligence
134, 57–83 (2002).

8. DeepMind. AlphaGo is the first computer program to defeat a professional
human Go player, the first to defeat a Go world champion, and is arguably
the strongest Go player in history. https://deepmind.com/research/

case-studies/alphago-the-story-so-far. (accessed: 26.12.2021).

9. Silver, D. et al. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science 362, 1140–1144 (2018).

10. Koch, C. How the Computer Beat the Go Master https://www.scientificamerican.

com/article/how- the- computer- beat- the- go- master/. (accessed:
12.12.2021).

11. Vinyals, O. et al. Starcraft II: A new challenge for reinforcement learning.
arXiv preprint arXiv:1708.04782 (2017).

12. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent rein-
forcement learning. Nature 575, 350–354 (2019).

54

http://www.incompleteideas.net/book/ebook/node109.html
http://www.incompleteideas.net/book/ebook/node109.html
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/

13. Berner, C. et al. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

14. Kempka, M., Wydmuch, M., Runc, G., Toczek, J. & Jaśkowski, W. Vizdoom:
A doom-based ai research platform for visual reinforcement learning in 2016
IEEE Conference on Computational Intelligence and Games (CIG) (2016),
1–8.

15. Allio, M. Top 5 Most Played Gaming Genres, Ranked By Active Players
https://twinfinite.net/2018/09/most- played- gaming- genres-

active-players-ranked/4/. (accessed: 14.10.2021).

16. Hassall, M. TI10 viewership breaks records with 2.7 million peak viewers
https://esports.gg/news/dota-2/ti10-viewership-breaks-records-

averages-and-peak-viewers/. (accessed: 29.11.2021).

17. Fudge, J. Riot Games reveals Worlds 2021 Finals viewership numbers https:
//www.sportsbusinessjournal.com/Esports/Sections/Media/2021/

11/Worlds-2021-Finals-AMA. (accessed: 29.11.2021).

18. Baker, A. The Most Watched Sporting Events in The World https://www.

roadtrips.com/blog/the-most-watched-sporting-events-in-the-

world/. (accessed: 29.11.2021).

19. Browne, C. B. et al. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games 4, 1–43 (2012).

20. Kocsis, L. & Szepesvári, C. Bandit based monte-carlo planning in European
conference on machine learning (2006), 282–293.

21. Rosin, C. D. Multi-armed bandits with episode context. Annals of Mathe-
matics and Artificial Intelligence 61, 203–230 (2011).

22. Silver, D. et al. Mastering the game of go without human knowledge. nature
550, 354–359 (2017).

23. Chen, Z. et al. The art of drafting: a team-oriented hero recommendation
system for multiplayer online battle arena games in Proceedings of the 12th
ACM Conference on Recommender Systems (2018), 200–208.

24. Chen, S. et al. Which Heroes to Pick? Learning to Draft in MOBA Games
with Neural Networks and Tree Search. arXiv preprint arXiv:2012.10171
(2020).

25. Tomašev, N., Paquet, U., Hassabis, D. & Kramnik, V. Assessing game bal-
ance with AlphaZero: Exploring alternative rule sets in chess. arXiv preprint
arXiv:2009.04374 (2020).

55

https://twinfinite.net/2018/09/most-played-gaming-genres-active-players-ranked/4/
https://twinfinite.net/2018/09/most-played-gaming-genres-active-players-ranked/4/
https://esports.gg/news/dota-2/ti10-viewership-breaks-records-averages-and-peak-viewers/
https://esports.gg/news/dota-2/ti10-viewership-breaks-records-averages-and-peak-viewers/
https://www.sportsbusinessjournal.com/Esports/Sections/Media/2021/11/Worlds-2021-Finals-AMA
https://www.sportsbusinessjournal.com/Esports/Sections/Media/2021/11/Worlds-2021-Finals-AMA
https://www.sportsbusinessjournal.com/Esports/Sections/Media/2021/11/Worlds-2021-Finals-AMA
https://www.roadtrips.com/blog/the-most-watched-sporting-events-in-the-world/
https://www.roadtrips.com/blog/the-most-watched-sporting-events-in-the-world/
https://www.roadtrips.com/blog/the-most-watched-sporting-events-in-the-world/

26. OpenDota. The OpenDota Blog | About https://blog.opendota.com/

2014/08/01/faq/. (accessed: 13.12.2021).

27. OP.GG https://op.gg/. (accessed: 24.09.2021).

28. Games, R. Data Dragon https://riot-api-libraries.readthedocs.

io/en/latest/ddragon.html. (accessed: 24.09.2021).

29. Riot Developer Portal https://developer.riotgames.com/docs/portal.
(accessed: 24.09.2021).

30. LeagueOfGraphs.com. Rank distribution https://www.leagueofgraphs.

com/rankings/rank-distribution. (accessed: 15.10.2021).

31. Champion Stats https://www.leagueofgraphs.com/champions/stats.
(accessed: 15.10.2021).

32. LeagueOfGraphs.com. League of Graphs https://www.leagueofgraphs.

com/. (accessed: 15.10.2021).

56

https://blog.opendota.com/2014/08/01/faq/
https://blog.opendota.com/2014/08/01/faq/
https://op.gg/
https://riot-api-libraries.readthedocs.io/en/latest/ddragon.html
https://riot-api-libraries.readthedocs.io/en/latest/ddragon.html
https://developer.riotgames.com/docs/portal
https://www.leagueofgraphs.com/rankings/rank-distribution
https://www.leagueofgraphs.com/rankings/rank-distribution
https://www.leagueofgraphs.com/champions/stats
https://www.leagueofgraphs.com/
https://www.leagueofgraphs.com/

	Acknowledgements
	Abstract
	Introduction
	The Evolution of Computers Playing Games
	Motivation
	Thesis Description
	Goals and Research Questions
	Contributions
	Outline

	Background
	Multiplayer Online Battle Arena (MOBA)
	Play Phase
	Draft Phase

	Following the Meta
	Player Positions and Roles
	Machine Learning Concepts
	Monte Carlo Tree Search (MCTS)
	Upper Confidence Bound applied to Trees (UCT)
	Predictor + UCT (PUCT)
	Policy and Value Networks

	Related Work

	Methodology
	Win Rate Predictor as a Reward Function
	Dota 2 Overview
	LoL Overview
	Feature Vector
	Training the WRP
	Evaluation

	Learning to Draft by Using MCTS and NN
	Drafter Setup
	The Steps of the Drafter
	Training the MCTS Models with Self-Play

	Experiments, Results, and Discussion
	Results for Dota 2
	Results for LoL
	Modified Draft Scheme
	Ban Impact
	Positions by Pick Order
	Revisiting Research Questions
	Limitations

	Conclusion and Future Work
	Future Work

	Bibliography

