
Con
fide

nt
ia

l
On-the-Fly Establishment of Multi-hop D2D

Communication based on Android Smartphones and
Embedded Platforms:

Implementation and Real-Life Experiments

By

Harald Gramstad Lie and Michael Stensrud

Supervisor

Prof. Frank Y. Li

This Master’s thesis is carried out as a part of the education at the University of Agder
and is therefore approved as a part of this education. However, this does not imply that
the University answers for the methods that are used or the conclusions that are drawn.

University of Agder
Faculty of Engineering and Science

Department of Information and Communication Technology

Grimstad, May 26, 2015

Con
fide

nt
ia

l

Abstract

In the last decade, we have experienced natural disasters and crisis situations happening more
rapidly than before. This fact has led to an increasing demand for developing systems which
offer communication capability where conventional telecom infrastructure is either inaccessi-
ble or congested. With regard to this challenge, D2D communication has been envisaged as
a promising technology for P2P communication in such situations. This technology enables
easy to deploy services among devices by allowing wireless communication without infras-
tructure, in which information is relayed from source to destination in a multi-hop fashion.

In our Master’s thesis we have developed a communication system intended for rescue
responders and victims that can take the advantage of D2D communication without relying
on regular network infrastructure. We have designed and implemented a prototype system
which is composed of a portable battery powered embedded system, multiple WiFi routers
and Android smartphones. The system supports multi-services such as voice, SMS, MMS
and video. The D2D communication is based on ad hoc mode running the OLSR protocol.
We demonstrate that the developed prototype system functions properly in real-life, then
validated and tested the implemented system through extensive real-life experiments. The
numerical results demonstrate that the performance parameters such as delay and packet
loss meet the QoS requirements for D2D communication. Furthermore, the system is also
capable of providing connection to the Internet if required, through cellular networks, WiFi
or fixed connection. In addition, the system we developed is able to provide hybrid and
dynamic IP address allocation for end users.

Keywords: Device-to-Device Communication, OLSR, Multi-hop Communication,
Android Smartphones, Multi-services, Design and Implementation,
Real-Life Experiments

Con
fide

nt
ia

l
Preface

This report was written as the final result in IKT590 - Master’s thesis (30 ECTS credits),
at the Faculty of Engineering and Science, University of Agder (UiA) in Grimstad, Norway.
The work was performed from the beginning of January 2015 to May 26, 2015.

We would like to thank our supervisor Prof. Frank Y. Li for his assistance in giving us
constructive and helpful feedback, on both technical and practical contents of the report
throughout this thesis period. We would also like to thank the Department of Information
and Communication Technology at UiA for providing us with funds to buy the equipment
needed to complete our Master’s thesis. Finally we would like to thank our respective families
for supporting us through this thesis period.

Grimstad
May 26, 2015

Harald Gramstad Lie

Michael Stensrud

1

Contents

Preface 1

Contents 2

List of Figures 7

List of Tables 10

Listings 11

Acronyms 13

1 Introduction 16
1.1 Background and Motivation . 16
1.2 Project Goal . 17
1.3 Problem Statement . 18

1.3.1 Scope . 18
1.3.2 Limitations . 19

1.4 Methodology . 19
1.4.1 General description . 19
1.4.2 Detailed description . 20

1.5 Report Outline . 22

2 Related Work, Enabling Technologies and Tools 23

2

CONTENTS

2.1 Related Work . 23
2.1.1 On-the-fly establishment of multi-hop communication 24
2.1.2 Realizing multi-hop D2D communications 24
2.1.3 Serval project . 26
2.1.4 Resilient D2D communication in emergency situations 27
2.1.5 D2D communication with static IP address allocation 28
2.1.6 D2D communication with dynamic IP address allocation 28
2.1.7 D2D communication with enhanced secure services 29

2.2 D2D Communication in Cellular Networks 30
2.3 Android Smartphones . 30
2.4 Wireless Ad Hoc Networks and OLSR Daemon 31
2.5 Tools . 32

2.5.1 OpenWRT . 32
2.5.2 LAMP . 32
2.5.3 phpMyAdmin . 34
2.5.4 Eclipse . 34
2.5.5 ADB . 34
2.5.6 Logcat . 35
2.5.7 Wireshark . 35

3 Design of the Current Solution 36
3.1 Initial Plan . 36
3.2 System Design Overview . 37
3.3 Design of the Constituent Components . 38

3.3.1 Embedded system . 38
3.3.2 Android smartphones . 39
3.3.3 System prototype . 42

3.4 Chapter Summary . 45

4 Implementation 46
4.1 Network Topology . 46

3

CONTENTS

4.2 OLSR Routers . 47
4.3 Raspberry Pi based Hybrid IP Allocation Server 48

4.3.1 MySQL user database . 49
4.3.2 Apache web server . 49
4.3.3 PHP user framework . 49
4.3.4 Testing and clean-up scripts . 53

4.4 Android Application . 54
4.4.1 Android initialization . 55
4.4.2 Listview functionality . 58
4.4.3 HTTP media transmissions . 60

4.5 Illustration of the Implemented Prototype 63
4.6 Chapter Summary . 64

5 Experiments and Results 65
5.1 Validation of the Implementation . 65

5.1.1 OLSR routers . 66
5.1.2 Raspberry Pi based hybrid IP allocation server 66
5.1.3 Android application . 67

5.2 Test Scenarios . 68
5.3 Scenario I: Hybrid IP Address Allocation . 69

5.3.1 Android self-generated IP . 69
5.3.2 Debugging log . 70
5.3.3 Smartphone to Raspberry Pi communication 71

5.4 Scenario II: Service Provisioning . 74
5.5 Scenario III: Stress testing . 76

5.5.1 Raspberry Pi database . 76
5.5.2 Network HTTP throughput . 81

5.6 Scenario IV: Quantitative Performance Measurements 83
5.6.1 Delay and packet loss . 83
5.6.2 Network lifetime on battery . 85

5.7 Scenario V: Power Consumption of Android Smartphones 85

4

CONTENTS

5.7.1 Without data traffic . 86
5.7.2 Continuous voice transmission . 87
5.7.3 Continuous SMS transmission . 88
5.7.4 Comparison . 89

5.8 Chapter Summary . 90

6 Discussions 91
6.1 Related Projects . 91
6.2 Hardware Limitations . 92
6.3 Software Limitations . 93
6.4 Result Observations . 93

7 Conclusions and Further Work 94
7.1 Conclusions . 94
7.2 Contributions . 95
7.3 Further Work . 96

Bibliography 97

Appendices 101

A Installation Guide 102
A.1 Raspberry Pi based Hybrid IP Allocation Server 102

A.1.1 Installing the OS . 103
A.1.2 Updating the OS . 104
A.1.3 Installing the LAMP package components and phpMyAdmin 105
A.1.4 Configuring installed packages . 105

A.2 OLSR Routers . 108
A.2.1 Install necessary packages . 108
A.2.2 Configure interfaces . 108
A.2.3 Configure OLSR . 109

A.3 Android Smartphones . 110

5

CONTENTS

A.3.1 ROOT privliges and custom kernel 110

B Android Snippets and Logs 112
B.1 Tests . 112

B.1.1 Debugging logs . 112
B.1.2 Snippet code . 114

C PHP Source Codes 118
C.1 PHP Source Code . 118

C.1.1 Add a new user . 118
C.1.2 Update IP address . 120
C.1.3 Get user, by IP . 123
C.1.4 Get user, by nickname . 124
C.1.5 Update image . 125
C.1.6 Check if nick exists . 126

C.2 Testing and Clean-Up Scripts . 127
C.2.1 Clean up expired IP addresses . 127
C.2.2 Calculate Raspberry Pi uptime . 128
C.2.3 Stress test add user script . 128
C.2.4 Stress test get user by nickname . 129
C.2.5 Start add user stress test . 130
C.2.6 Start get ip stress test . 130

C.3 Simulation Scripts . 131

D Android Source Code Overview 135
D.1 Java Project Structure . 136
D.2 XML Project Structure . 138

E Android Bugs and Suggested Solutions 140

6

List of Figures

1.1 Four step process loop. 20

2.1 Demonstration of a three-based multi-hop OEMAN [22]. 24
2.2 Message transmission in the architecture of DTN over MANET [28]. 25
2.3 Main overview of previous Android application [40]. 28
2.4 Schematic representation of inband and outband D2D [1]. 30

3.1 System design, illustrating that clients could be connected to the local back-
bone network via one or multiple hops to extend the network connectivity. . 38

3.2 Android setup part 1. 41
3.3 Android setup part 2. 41
3.4 Android main class overview. 42
3.5 Water proof prototype case, 33x28x12 cm [6]. 43
3.6 Intocircuit 26000mAh battery pack [15]. 43
3.7 Design of box for Raspberry Pi. 44
3.8 Design of box for TP-Link router. 44
3.9 Assembled box of both TP-link and Raspberry Pi. 45

4.1 Network topology illustrating the different aspects of the local backbone net-
work, where clients are able to connect through the OLSR backbone or through
multiple hops. 47

4.2 TP-Link WDR3600 [20]. 47
4.3 Raspberry Pi B+ [16]. 48

7

LIST OF FIGURES

4.4 The add new user framework: Registering new user to the database. 50
4.5 The get user framework response: An array of all the available data. 51
4.6 The update image framework: For pushing up a new user image to the database. 52
4.7 Activity diagram: Part 1 overview of the application setup process. 55
4.8 Activity diagram: Part 2 overview of the application setup process. 57
4.9 Activity diagram: Listview and onPeersUpdated overview of the application. 58
4.10 Illustration of one single element in listview using custom adapter. 59
4.11 Dialog when user is selected from the listview. 60
4.12 Activity diagram: Transmitter overview of message, video and call processes. 61
4.13 Activity diagram: Recipient overview of message, video and call processes. . 62
4.14 The two designed prototype cases, with all the equipment mounted. 63
4.15 The prototype system with two tablets, five smartphones and the two cases. 63

5.1 Wireshark representation of the initial setup sequence. 72
5.2 SMS, MMS and video delay over one, two and three hops. 75
5.3 Single process executing 10.000 synchronized registration requests. 77
5.4 Single process executing 10.000 synchronized requests obtaining valid ip. . . 78
5.5 10 Processes executing 1500 synchronized registration requests. 79
5.6 10 Processes executing 1500 synchronized requests obtaining valid ip. 80
5.7 Server creating unique threads for each incoming request. 80
5.8 Comparison of simulated and obtained results of typically ad hoc network. . 82
5.9 Representation of the test enviorment with 3 connected enitites and the con-

nection quality between them. 83
5.10 ICMP delay over one, two and three hops. 84
5.11 Obtained uptime of all the experiments done on one Android smartphone,

also including the prototype case operational uptime. 89

A.1 Raspberry Pi install: Extend filesystem . 103
A.2 Raspberry Pi install: Enable boot to desktop/scratch 104
A.3 Raspberry Pi install: Internationalisation options 104
A.4 Raspberry Pi install: Finalize configuration 104
A.5 Galaxy S3 phone in download mode [8]. 111

8

LIST OF FIGURES

A.6 Illustration of CWM bootloader of Galaxy S3. 111

9

List of Tables

5.1 Obtained delays when running the application on two phones over one hop. . 74
5.2 Obtained delays when running the application on two phones over two hops. 75
5.3 Obtained delays when running the application on two phones over three hops. 75
5.4 Obtained throughput on one of the Android smartphones over both one and

two hops; Indoor through wall. 81
5.5 Obtained throughput on one of the Android smartphones over one to five

hops; Line of sight. 82
5.6 Packet loss and delay with one, two and three hops 84
5.7 Obtained uptime of the prototype system running on battery power. 85
5.8 Obtained uptime of one of the Android smartphones running in idle mode

with and without OLSR enabled. 87
5.9 Obtained uptime of one of the Android smartphones running a continuous

voice transmission. 87
5.10 Obtained uptime on one Android smartphone continuously sending out SMS

messages over one hop. 88

D.1 Android code data analysis. 135
D.2 Android Java class structure. 138
D.3 Android XML class structure. 139

10

Listings

5.1 Randomizing IP . 70
5.2 POST request for registry of new user . 72
5.3 POST request for new IP address . 73
5.4 POST request for request of user data . 73
B.1 Debugging log of first setup process . 112
B.2 Server reply class . 114
B.3 SMS test source code . 115
B.4 SMS auto reply . 115
C.1 PHP add a new user . 118
C.2 PHP update IP address . 120
C.3 PHP get user by IP address . 123
C.4 PHP get IP of user . 124
C.5 PHP update user image . 125
C.6 PHP check if nick is available . 126
C.7 Clean up old IP addresses . 127
C.8 Log Raspberry Pi uptime . 128
C.9 Continuously add new users to database . 128
C.10 Continuously retrieve user data by nickname 129
C.11 Spawn multiple instances of add new user stress 130
C.12 Spawn multiple instances of retrieve user data stress 130
C.13 Add two new users to the database . 131
C.14 Check if nickname is already in the database 131
C.15 Retrieve all information of two users from the database based on nickname . 132

11

LISTINGS

C.16 Retrieve all information of two users from the database based on IP address 133
C.17 Test that the server allocates a new IP address to users and that it returns

the correct information . 133

12

Acronyms

3GPP 3rd Generation Partnership Project

ADB Android Debug Bridge
ADS Alert Dissemination Strategy
AODV Ad hoc On-Demand Distance Vector Routing
AP Access Point
APK Android Application Package
ASP Active Server Page

BATMAN Better Approach To Mobile Adhoc Networking
BS Base Station

CPU Central Processing Unit

D2D Device-to-Device
DHCP Dynamic Host Configuration Protocol
DID Direct-Inward Dialing Numbers
DNA Distributed Numbering Architecture
DNS Domain Name System
DTN Delay/Disruption-Tolerant Network

GUI Graphical User Interface

13

Acronyms

HDMI High-Definition Multimedia Interface
HNA Host Network Address
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol
IDE Integrated Development Environment
IoT Internet of Things
IP Internet Protocol
IPsec IP Security
ISP Internet Service Provider

LAMP Linux, Apache, MySQL and PHP
LAN Local Area Network

MANET Mobile Ad hoc Network
MMS Multimedia Messaging Service

OEMAN On-the-Fly Establishment of Multi-hop Wireless Access Network
OLSR Optimized Link State Routing
OS Operating System

PHP Personal Home Page
PSTN Public Switched Telephone Network

RTP Real-time Transport Protocol
RTT Round Trip Time

SDK Software Development Kit
SID Subscriber ID

14

Acronyms

SIP Session Initiation Protocol
SMS Short Message Service
SQL Structured Query Language
SSH Secure Shell
SSID Service Set Identifier

TCP Transmission Control Protocol
TTL Time-To-Live

UDP User Datagram Protocol
UI User Interface

VAP Virtual AP

WiFi Wireless Fidelity

15

Chapter 1

Introduction

This chapter introduces the general organization of the thesis, where we first introduce
the basis of the performed thesis work, explain our motivation and the expected goal for
the project. Furthermore we define our problem statement and draw some key limitations
before we elaborate on our work methodology. Finally we incorporate a guideline of what is
to be presented in the following chapters.

1.1 Background and Motivation

Device-to-Device (D2D) communication has been envisaged as part of the 3rd Generation
Partnership Project (3GPP) 5G communication paradigm during the past five years. D2D is
a upcoming standard that allows devices to communicate directly without any infrastructure.
Currently research and standardization activities within the communication paradigm is
conducted on the basis of D2D communication, and the technology is intended to provide
offloading of unnecessary traffic and to extend coverage to handsets that are outside the
coverage area of 5G enabled Base Station (BS). Here we talk about three types of D2D
communication. First we have infrastructured D2D where handsets are controlled by the BS
to extend coverage, and provide service to other devices. The second is infrastructureless

16

CHAPTER 1. INTRODUCTION

where clients choose to provide access and communicate directly with other handsets without
the control of any BS. The last method is an hybrid of the two previous methods where
devices and BS cooperate in order to provide offloading and services to other devices.

As part of UiA’s contribution towards this hot topic the solution presented in this thesis
is triggered from three previous projects (one Master’s thesis and two semester projects), and
has been an ongoing development for the past two years. It first started with an application
to support D2D voice conversations between Optimized Link State Routing (OLSR) enabled
Android phones, without the need of any infrastructure. This work was done by two earlier
students Magnus Wennberg and Nils Erik Skjønsberg as their Master’s thesis in the spring of
2013 [40]. Further improvements were conducted by Michael Stensrud and Henrik Nergaard
in their project in the spring of 2014. They improved the Graphical User Interface (GUI)
of the application and employed a self-developed Domain Name System (DNS) server, that
to some extent supported dynamically allocation of Internet Protocol (IP) addresses [36].
In the spring of 2014 we redeveloped the system to move more against a commercializable
system. We further improved the Android application to support a newly developed user
framework employed on a Linux server. As well as making the system less dependent of the
OLSR protocol, by allowing clients to connect through regular Wireless Fidelity (WiFi) [35].

Even though lots of work has been performed as explained above, an overall solution
which includes both user devices and servers, capable of provisioning of multi-services, is still
lacking. This observation triggered our motivation to develop such a system as presented in
this thesis.

1.2 Project Goal

The main goal for this thesis is to develop a system which produces a solution for D2D
communication without traditional telecom infrastructure. This network should also be
operational by temporarily deployed infrastructure, which is battery powered. The platform
should be developed to be a portable system that could enable multi-services including Short
Message Service (SMS), Multimedia Messaging Service (MMS), video, and voice messaging

17

CHAPTER 1. INTRODUCTION

in crisis situations. It should also provide opportunities to further extend the available
services. More specifically this thesis should cover the following tasks:

• Design and implement a D2D communication platform.

• Implement an embedded system to provide service and user information in the network.

• Enable automatic IP assignment in the network.

• Enable multi-service including SMS, MMS, video and voice.

• Design and produce a workable prototype.

• Validate and test the performance of the implemented solution in real world.

1.3 Problem Statement

In addition to the project goal which is to design, improve and develop a communication
system for rescue responders that enables voice communication and exchange messages with
or without any infrastructure, the system should enable automatic IP address assignment
for new devices. Furthermore the system should be designed to enable mobile battery pow-
ered Access Points (APs), that provide network connectivity, IP resolution and opportunity
for gateway through either Ethernet or cellular connection. Finally we should design and
integrate two portable prototype cases, that enable us to do real-life experiments.

1.3.1 Scope

• Identify one application scenario, with the goal of providing a viable D2D communi-
cation platform for crisis situations.

• Design a system solution and implement it both on Android smartphones and OpenWrt
platform for communicating with Raspberry Pi -based embedded server.

• Develop a viable prototype and validate by real-life experiments.

18

CHAPTER 1. INTRODUCTION

1.3.2 Limitations

While accomplishing In order to achieve the project goal within the time schedule, the
accomplishment of this thesis project has the following limitations.

• Create an application to the Android platform. IOS and Windows Phone is not con-
sidered.

• Android application must have ROOT privileges.

• Android devices is limited to three types of model which are Samsung Galaxy S3,
Nexus I9250 and Nexus Tablet.

• Perform small- and medium-scale experiments, due to number of available devices and
participants to test the system.

1.4 Methodology

1.4.1 General description

This thesis mainly consists of software implementation. Therefore the agile methodology is
quite suitable for our purpose, which means our requirements and solutions evolves along
our progress of the thesis. Since this thesis consists of two collaborators we will have daily
and weekly meetings to evaluate our progress. On the daily meetings, the members can
discuss problems and possible approaches to make progress. The weekly meetings consist
of the members and the supervisor, where an overview of the progress is explained to the
supervisor. In this meeting the supervisor has the opportunity to make suggestions to the
members. By using this methodology we are able to keep track of our progress in regards to
the timeline.

By utilizing the methodology we are able to adapt to the current development of the
system, since development of applications and features most likely introduces a variety of

19

CHAPTER 1. INTRODUCTION

different problems. This is imminent and illustrates the importance of having a solid project
plan with a properly working methodology.

1.4.2 Detailed description

Figure 1.1: Four step process loop.

As mentioned in the previous subsection we have used
the agile methodology. To provide more insight on
how to solve both new implementation features and
problems, we propose a four step plan that will work
in all scenarios. For simplicity we have chosen to use
the four step plan when we implement a new feature
into the system. Figure 1.1 illustrates the four step
plan consist of planning, conduction, processing and
finally an evaluation of the new feature. The evaluation is done on behalf of the previously
three steps and is validated if it goes towards our desired goal.

Planning

When we want to implement a new feature we need to have some kind of theory behind
it. The new feature is implemented to further reach our desired goal. With the use of our
knowledge and research in certain Internet societies and forums we will be able to grasp
the theory behind each implemented feature. As problems arrive, we will use more effort
researching in how the feature is supposed to work. In the beginning of solving a problem we
will gather more information using theory to further enhance our knowledge. We also rely
on having daily meetings with discussion to see if there is any problem that needs attention.
The requirement and approach for the new task is discussed. The requirement is chosen
either by our own knowledge or by researching. First we isolate the new feature as much as
possible to make it work. Then we scale out to the whole system to see that our approach
also works as intended. Finally, we evaluate and discuss if the new solution satisfy our
requirement.

20

CHAPTER 1. INTRODUCTION

Conducting

To verify that a new feature work we need to do some conducting. Since this project mainly
relies on practical implementation we need to deploy the new feature and see that it works.
When the new feature is implemented we should first try to isolate it as much from the
system. This is to make it easier for us to verify that the basics of the feature works as
intended. If it works as intended we should scale the feature and test it up against the
complete system. The experiment will also mainly consist of practical testing where we can
clearly discover if the feature works as planned or not.

Processing

To verify that our feature works we need to gather information about the new feature. This
is accomplished by how we collect the data and gather information dependent on what kind
of feature we have conducted. On the Android phones we will use a debugging tool called
Logcat to gather information. For the server scripts we will use own test scripts and sniffing
tools to verify that the scripts receive and replies as intended. For the router, we will gather
and compare logs after major changes to verify that e.g. firewall blocks or allows our defined
rules.

Evaluation

The final step includes an evaluation of the previous steps, where we research how the possible
solution works in regards to the initial development plan, and how the solution enhances or
depreciates to the desired project plan. The evaluation will be debugged and verified. With
the use of the collected data using several tools from the processing step we will be able to
make more consistent evaluations. With this in mind the project plan should be updated in
regards to the new feature, whilst keeping in mind that we need to clearly define how and
why we came to edit the plan. With the updated plan we should move back to step one,
and repeat the process for any new implemented feature.

21

CHAPTER 1. INTRODUCTION

1.5 Report Outline

This report follows a top-down approach, where it first gives a general introduction on the
stated problems, what should be done, and what our desired outcome is. The rest of the
thesis is organized as follows:

• Chapter 2 includes several short summaries of different related network solutions, and
what the similarities are. Further on it elaborates on different technologies and tools
that are essential in order to reach the desired goals.

• Chapter 3 includes the initial planning, and the design of the current system and
prototype solution.

• Chapter 4 incorporates the implementation efforts done by us, with strong connection
to the appendices.

• Chapter 5 covers the real-life experiments with results and evaluation.

• Chapter 6 consists of discussion on our performed work and outcome.

• Chapter 7 includes the final conclusions, contributions and further work.

22

Chapter 2

Related Work, Enabling Technologies
and Tools

In order to accomplish the designed goals we have used different technologies and tools. This
chapter aims at providing an overview into the requirements needed in this project, as well
as giving a general introduction into some related network solutions.

2.1 Related Work

To provide grounds for comparison we will elaborate on different related projects that aim at
providing communication in crisis situations. First we explain in general how the different
approaches work, before we draw some comparisons towards our developed system. The
three final subsections provides a general introduction into UiA’s efforts to provide viable
results in the D2D communication field.

23

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

2.1.1 On-the-fly establishment of multi-hop communication

To provide Internet access to victims in a disaster area where network infrastructure is bro-
ken, the paper [22] introduce a method for On-the-Fly Establishment of Multi-hop Wireless
Access Network (OEMAN) for disaster recovery. The method involves utilizing an AP which
is not affected by the disaster in surrounding areas, and extending the coverage by making
nearby devices download software that transform them into Virtual APs (VAPs). The VAPs
then extend the coverage to other devices which again are transformed into VAPs, building
up a tree-based topology of all the connected VAPs. This would mean that the APs that
are not affected by a disaster must still have a designated power source which could be
problematic affected areas, and the lifetime of the network therefore could variate. Figure
2.1 illustrates the three-based multihop OEMAN.

Figure 2.1: Demonstration of a three-based multi-hop OEMAN [22].

The difference between our system is that we aim at providing rescuers with a system that
enable them to communicate with each other based on a simple ad hoc network utilizing the
OLSR protocol. Our system is preconfigured and should be easy to deploy in crisis situations
by using batteries as the designated power source. The system is designed to be portable
and rescue workers could easily deploy the network in designated areas.

2.1.2 Realizing multi-hop D2D communications

In order to provide a network for message exchange, the paper [28] introduce a hybrid method
between Mobile Ad hoc Network (MANET) and Delay/Disruption-Tolerant Network (DTN)
enabled nodes. Even though all nodes run the OLSR protocol they switch between the

24

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

Figure 2.2: Message transmission in the architecture of DTN over MANET [28].

two modes. The reason for enabling this hybrid mode is to ensure that the network is as
connectable as possible for both static and highly mobile nodes. MANET operated nodes
will be beneficial when they are static, have multiple neighbors, and when the remaining
battery power is high. Whereas the use of DTN nodes are favorable when nodes are highly
mobile, have less battery power and don’t have many neighboring nodes. In this paper they
prove the networks feasibility with 30 operating nodes as well as the use of gateways to relay
messages further distances. Figure 2.2 illustrate at which layer messages are routed in the
implemented system.

There are two main differences between our system and what the publisher of this paper
has done. Our system relies on hybrid infrastructure to set up the nodes, whereas the paper
require manually configured nodes. Our system automatically assigns IP addresses to new
nodes as long as they are covered by our backbone network. After assignment, nodes are
free to move wherever they need to go, and as long as they are able to connect to any
other node information is relayed throughout the network. We are able to connect D2D
multi-service including voice, SMS, picture and video, whereas the published network only
are able to exchange text messages. They have enabled possibility to extend the network by
introducing gateways, as we also have done. Their gateways are only used to send messages
to foreign networks whereas our system is able to provide Internet access for the entire
network. The last thing we would like to point out is that our system manages users and
provides a backbone embedded server which is part of our battery powered prototype case,
which should be able to operate without AC power for several hours.

25

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

2.1.3 Serval project

The Serval Project is a communication system that aims at providing telecom free of charge
to under-developed countries and in crisis situations, where telecom infrastructure is possibly
broken and services are unavailable. The project [10] is based on an Android application
that requires ROOT access for operation in ad hoc mode, and make it possible to connect
smartphones through different operation modes that does not require ROOT access. In
contrast to our system, it therefore enables more devices to connect to the system. They use
the Better Approach To Mobile Adhoc Networking (BATMAN) protocol as an underlying
ad hoc routing protocol, whereas we utilize OLSR. The performance difference between
BATMAN and OLSR show that the OLSR protocol is a better approach, since OLSR rapidly
builds up routing tables for the entire network. This results in it being a better protocol to
utilize in a more dynamic network topology, even though it introduce more protocol overhead
[32].

The Serval Distributed Numbering Architecture (DNA) [10] provides a framework for
identification and call establishment in the network. It consist of a random 256-bit Subscriber
ID (SID) address which corresponds to a Direct-Inward Dialing Numbers (DID) which could
be a phone number. The voice conversations are interconnected using Session Initiation
Protocol (SIP) messages, thus enabling the use of a SIP trunk in the network to handle
calls to regular Public Switched Telephone Network (PSTN) network. There has also been
done work to provide encryption of the voice conversation by using the Diffie-Helleman
key-exchange.

We have currently not made it possible to interconnect calls between our system and
the regular PSTN network. Our system is dependent on pure Real-time Transport Protocol
(RTP)/User Datagram Protocol (UDP) exchange, and does not include SIP messaging that
would allow us to interconnect calls to PSTN. Where their system utilize SID and DID
identification, our system automatically assigns IP addresses to clients, and this address is
used to route voice and messages to the desired endpoint. By using a router and Structured
Query Language (SQL) database on a Raspberry Pi we are able to store information on each
user, and make this information available throughout the network.

26

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

2.1.4 Resilient D2D communication in emergency situations

The paper [17] introduce a viable alternative networking solution to increase network life-
time, and devices energy consumption. This is done by proposing a strategy called Alert
Dissemination Strategy (ADS) which enables the device to enter a sleeping state often, and
only wake up in determined periods. By introducing two metric variables they are able
to rank the individual devices based on neighboring connectability and remaining battery
power. To achieve a more viable network they introduce beaconing and broadcasting in se-
lected timeframes. The beaconing include the metric values, and are the base for computing
which nodes are used to broadcast alert messages. A node with a high number of neigh-
boring nodes and sufficient battery power will be selected over a node with less neighboring
nodes. In the defined wake times, each node will listen for a broadcasted message before
they go back to sleep, which reduce the possibility of all nodes receiving the message. This
is a calculated risk, that is fully elucidated in the paper. Extensive testing of the system
[17] has been done, which indicate that the introduction of the ADS result in a network that
does not consume a lot of power, and does not congest the entire network with fully flooded
messages.

The main difference between their research and ours lies in the network overhead produced
in our system. Our system introduces much more overhead and consumes more energy
resulting in a shorter lifespan of the entire network. But in contrast, our system enables
multi-service including voice, SMS, picture and video, between connected devices. Further
on each node in the ADS solution [17], need to be assigned a manually configured IP address,
where our system is fully automated, and does only require that each client to enter their
credentials before the application takes over and enables multi-service between all connected
devices.

27

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

2.1.5 D2D communication with static IP address allocation

Figure 2.3: Main overview
of previous Android appli-
cation [40].

The first major research and implementation at UiA’s of D2D
using the OLSR protocol was done in a Master’s thesis by two
earlier students [40]. By using the existing Manet Manager
application [34], they added support for RTP audio stream
between the nodes in the D2D network within their applica-
tion. An illustration of the application is showed in Figure 2.3.
The application relied on manually mapping the nodes using
static IP addresses so the nodes could reach each other. The
drawback with this application is that the IP address is the
only identification of the nodes, which does not make it user
friendly. This has resulted in an GUI which is not very appeal-
ing, in regards of getting an overview of available nodes in the
network. Still, their achievement worked as a proof of concept
that D2D using ad hoc with OLSR on Android phones was
possible with RTP audio transmission.

The students performed several tests such as max range for
RTP conversations with single and multi-hop. They also made
a separate application for performance evaluation that checked
delay between the nodes. Our application has used some of the
fundamentals of this Android application, but most features have been rewritten, mainly to
provide more stability and better performance.

2.1.6 D2D communication with dynamic IP address allocation

After the previous Master’s thesis project by the two earlier students, this project was done
by one of the current author of this Master’s thesis and another student. The main task of
this project was to develop a dynamic IP address allocation to avoid manually mapping static
IP address on every node. The solution relied on implementing a DNS server on the network

28

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

as well as writing support on the client side to communicate with the DNS server. The DNS
server was built from scratch using the following RFC papers [5, 7, 9, 21, 23, 24, 25, 26, 39].
By using the DNS server it was possible to identify the nodes with firstname and lastname
by letting the DNS server contain the information on every node. In addition, the Android
application got enhancements on the GUI to make it more appealing to use.

After testing of the system it worked to some extent. Still, there was several issues
that was not taken into consideration, which afterwards resulted in conclusion that this
implementations was not ideally to use in later implementation. One of the main reason was
that primarily DNS servers are weak on security and could easily be misused [4].

Since we as students do not have any qualifications on security within DNS servers we
decided that this implementation could lead to great misuse that could bring down the whole
network if it was misused. Even though the implementation of the DNS was not continued,
it provided us with useful knowledge that the D2D system could be enhanced in other ways,
and that the system is generally quite capable to handle other types of enhancements.

2.1.7 D2D communication with enhanced secure services

This project [35] was performed by both authors in the fall of 2014. The main goal was to fur-
ther extend the previous work done at UiA, where the Android application was redeveloped
and employed with a user framework on a Linux computer. The system was developed to be
scalable in order to support a huge number of users, both in the local backbone network and
in foreign networks. This was achieved by employing a secure router entity in the network,
which enabled clients to connect through a secure IP Security (IPsec) tunnel, providing in-
tegrity. Further work was done in the backbone network where we enabled clients to connect
either through a pure OLSR network or through regular WiFi connection. The main focus
here was to further extend the clients that would be able to connect to the network by doing
so. The system was designed to be more commercializable than the previous system was,
and thus the application should not be dependent of third party software that is reliant of
ROOT privileges on the respective device.

29

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

2.2 D2D Communication in Cellular Networks

Figure 2.4: Schematic representation
of inband and outband D2D [1].

D2D communication in general can enable devices to
communicate directly with each other without any in-
frastructure. This would mean that any device is able
to directly reach other devices in either direct contact
or through multiple hops without the need of APs
or BSs. In the cellular communication paradigm this
feature is seen as promising and would enable large
networks to offload unnecessary traffic through direct
communication or to extend coverage to devices out-
side coverage of the BS. We talk about three types of
D2D communication in general, infrastructured, in-
frastructureless and hybrid. Figure 2.4 illustrate the three types of operation, where ”Inband”
illustrates infrastructured and hybrid communication in the cellular band, while ”Outband”
shows infrastructureless in the Industrial, Scientific and Medical (ISM) radio bands. Infras-
tructured D2D communication would mean that the serving BS would allocate resources on
connected devices to other connected devices, enabling D2D communication to offload traffic
to the serving BS. In the infrastructureless method, devices would share their resources with
other devices on a self-determined basis, without the control of serving an BS. For the last
method, both the device and an BS would cooperate to serve other devices with bandwidth,
either through D2D communication or in direct contact with an BS.

2.3 Android Smartphones

The Android platform has been owned and developed by Google from the year of 2005 [2].
The mobile platform is currently the most popular and growing platform on world basis [11].
The platform has in the past few years also expanded to different platforms such as TV,
Internet of Things (IoT) and embedded devices. One reason why Android has become so
popular, is the large market of third party applications that is being developed. Google has

30

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

done a tremendous amount of work by offering wide support for application development.
Tools such as Eclipse with Android Software Development Kit (SDK) and Android Studio is
often used for application development. In addition, the Android platform is easy to provide
ROOT privileges, which for many developers is very useful. This means that one can access
ROOT folders, and ROOT privileged hardware which is normally not accessible. Still, this
has both positive and negative impact. If a phone has ROOT privileges and is infected with
some kind of malware, the attacker could have complete control over the phone and can
basically do what it wants. Yet, by giving ROOT to the platform it offers and provides the
user and developer almost full functionality to do what it wants with the phone. This has
been some of the reasons why people chose the Android platform over IOS platform which
is quite restricted.

2.4 Wireless Ad Hoc Networks and OLSR Daemon

A wireless ad hoc network is a network that does not rely on infrastructure to operate. Each
node has equal status in the network, and data is forwarded by relying to and from other
nodes. The network itself does not have a dependency of routing entities like routers and
APs. In addition to regular routing, the network can utilize flooding in order to reach each
core of the interconnected network. In wireless ad hoc network we have different routing
protocols that could be used. One of the most commonly used is the OLSR protocol, where
each node build up a routing table of the topology in the connected network, and regularly
sends out information that enables each node to update their routing tables. A different
protocol that could be used is the Ad hoc On-Demand Distance Vector Routing (AODV)
protocol, where each node does not have complete knowledge of the topology of the network,
and floods out messages to establish routes when they are needed.

The OLSR daemon is an implementation of the ad hoc routing protocol OLSR, enabling
ad hoc routing of a various number of system. It is available through the olsr.org web
page, and is currently supporting devices running Android, FreeBSD, Windows, Linux and
more. The daemon provides clients the opportunity to route traffic directly between clients

31

olsr.org

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

or through multiple hops, as clients are acting as relays of messages. OLSR is a pro-active
routing protocol, which means that each device running OLSR, need to send out messages to
build up routing tables, before messages can be sent. This makes the power consumption on
devices running this protocol higher than for other protocols, but it also provides a robust
backbone network that is able to handle moving nodes quite well.

2.5 Tools

In this section we present the most important tools that have been used for development
and experiments.

2.5.1 OpenWRT

OpenWRT is an alternative open source Operating System (OS) for routers, built from the
ground based on Linux. It enables multiple features through a package management system,
and offers a fully writable filesystem. This allows for a complete configurable router, which
can be tailored for the need of the system it provides service to. Thus making the OS highly
flexible and fully customizable.

2.5.2 LAMP

The Linux, Apache, MySQL and PHP (LAMP) package is a collection of open source pack-
ages that enable web interactiveness on Linux machines. In our system we use a Debian
Wheezy port for Raspberry Pi, which is customized and optimized for the embedded sys-
tem. The LAMP package collection consists of three main entities, namely an Apache web
server, a MySQL database server, and packages to enable use of the server side scripting
language Personal Home Page (PHP).

32

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

Apache web server

The Apache web server package for Linux is one of the most commonly used web servers
[3, 27]. It offers a robust, commercial-grade, feature-full and open source web server, that
can be fully customized for each use, and since it is part of the Apache Software Foundation
there are numerous of users which is contributing ideas, code and documentation to the
project. In our project the Apache server acts as the basis for communication between each
device and the MySQL database, with corresponding PHP scripts that enable access to data.

MySQL

The MySQL database package for Linux is one of the most popular relational databases, and
it offers superior speed, reliability and ease of use. In order to make it easier to handle the
databases, one could install second hand software like phpMyAdmin, since the basic MySQL
server does not provide a graphical interface. It is fully accessible through the terminal, with
the use of SQL syntax.

PHP

The server side scripting language PHP is designed to provide web development on the server,
but it could also be used as a general programming language. The basis of the language is to
provide capabilities to clients in the form of generating web pages, and interacting through
Hypertext Transfer Protocol (HTTP) forms. When using PHP the entire code is hidden
from the user, and only code that the developer want the client to access is available. This
make it ideal when talking to databases as the developer can fully control what the client
is able to retrieve. Other languages like Active Server Page (ASP) could of course be used,
and might also be more beneficial in large systems, different from ours. The main reason for
choosing PHP over other languages is that it is easy to use, and performs fast and reliable.

33

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

2.5.3 phpMyAdmin

phpMyAdmin is a freeware software that is able to provide an intuitive web interface of
different databases. It currently support MySQL, MariaDB and Drizzel, and is written in
PHP. The software makes it easy to handle most database management operations in a easy
and intuitive manner. Operations like creating databases, tables, columns, relations, indexes,
users, permissions, etc. are available through the web interface with great descriptions.

2.5.4 Eclipse

Eclipse is a free and open source Integrated Development Environment (IDE) that offers the
possibility to program in a various number of languages. Some of the available language
packages are, XML, Java, PHP, Perl, JavaScript, Ruby, etc. This is accomplished by the
native support for multiple plugins and SDKs. In our situation it is used to develop the
Android application through the Android SDK provided by Google. In addition, Eclipse
enables support for debugging which is crucial when developing. This makes the developer
able to trace the program and also provides the opportunity to check if the application
behaves as intended.

2.5.5 ADB

In order to aid development of Android application, Google has made available a Android
Debug Bridge (ADB) tool which is very useful. It allows the developer to get shell access to
either an emulated or connected Android phone, where numerous actions can be performed.
One of the most popular feature is to check how the private folder stores its sharedPerferences
and SQLite database files on the Android platform. By utilizing the ADB tool, the developer
can provide itself ROOT access and perform database lookups with regular Linux commands.
One other useful feature is that the developer can push Android Application Package (APK)
files, and install them on the phone remotely, without having to go through the Google Play
Store.

34

CHAPTER 2. RELATED WORK, ENABLING TECHNOLOGIES AND TOOLS

2.5.6 Logcat

The most efficient way for an Android developer to check and verify that the code works
as intended is by debugging. By debugging the developer is able to optimize performance,
stability and behaviour of the application. To debug Android applications a tool called logcat
is often used. To populate logs to logcat there are two main methods called system.out.print
and log. The log function has possibilities to log as Error, Warning, Verbose, Info and Debug
type, whereas the system.out.print function prints out log just Information to Logcat.

2.5.7 Wireshark

Wireshark is a powerful network protocol analyzer that is capable of capturing all kinds of
network traffic. This tool is very useful in order to validate and verify where traffic is being
requested and received. It can read the content in every packet, which makes it extremely
useful for testing and validation. It supports reading PCAP formats, and works perfectly
with Tcpdump [37]. Wireshark offers easy and quick filters so one can e.g. filter on only
HTTP traffic.

35

Chapter 3

Design of the Current Solution

This chapter include our work performed on how the system should operate and what re-
quirements we have. In addition we provide an overview of the design of current network
solution with the three components in our system. Further we explain the efforts to design
these constituent components, from the enabling embedded system, Android application and
finally the design of the prototype case with accessories.

3.1 Initial Plan

To provide grounds for improvement we began to evaluate the previous work done on the
system, where we outlined the main parts we saw as vital for creating a network platform
capable of providing seamless communication in crisis situations. With this information we
needed to evaluate what we would be able to accomplish within the time schedule.

The system should be stable, autonomous and provide network coverage outside the
bounds of enabling APs, and design a platform that would make it easy to implement new
future services. We decided to adopt the features of implementing a framework for handling
of users, and needed a way of assigning IPs to connected clients. The system should also be
portable so we needed to keep the energy consumption low, resulting in finding an embedded
system that would provide us with a platform for doing so. In addition we needed a power

36

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

source capable of providing enough energy to power the system for several hours. The system
should provide voice and text messaging service, but it should not be hard to implement
services like MMS and video in the future. On the client side there should just be one
Android application, not two like the previous project required, this alone meant that the
application needed to be totally redesigned. In the following list we provide a clear overview
of the system requirement for the designed solution.

• One single Android application which include both ad hoc mode initialization and
services

• User friendly interface which automatically updates connected nodes

• Provide multi-services including voice, text, picture and video

• Employ an embedded system to provide automatically assignment of IP address, and
user maintenance

• Design and implement a prototype system including Android smartphones, wireless
routers and Raspberry Pi which is operational without the need for AC power

3.2 System Design Overview

In order to provide a light overview of the current network solution, we created a design
overview illustrated in Figure 3.1. Here we introduce the main parts of the system. The
core network consist of two OLSR enabled APs which are meant to extend the coverage
area of the network. The Raspberry Pi provides the connected clients with information that
would enable them to automatically be assigned an IP address, as well as all the necessary
information needed to enable SMS, MMS, video and voice communication. Clients connected
to the network should be able to extend the coverage of the network to neighbouring clients,
by utilizing the OLSR protocol, and all traffic should be able to be relayed to the designated
source. The main idea of the network is to form a solid backbone network that would enable
clients to move freely and still be able to make voice calls and send SMS to each other. The

37

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

number of OLSR routers could be increased, and by placing them at strategic places around
the desired working area, provide seamless connectability to the clients.

Figure 3.1: System design, illustrating that clients could be connected to the local backbone
network via one or multiple hops to extend the network connectivity.

3.3 Design of the Constituent Components

3.3.1 Embedded system

In the network we needed an embedded system that were able to provide all the necessary
services, and still be lightweight enough to be operational on battery power. After doing
some research we decided to go for the Raspberry Pi model B+ that offers a fully configurable
Linux distribution and power consumptions as low as about 250 mA in ordinary operation.
By utilizing the Raspberry Pi we are able to set up a web server that could provide access
to different scripts that would enable us to provide hybrid IP address allocation and other
services like user handling. 38

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

3.3.2 Android smartphones

To reach a broader audience that can easily understand and manage the D2D application, we
have focused on making the application have a user friendly GUI. We have tried to make the
application as self-understanding as possible by using elements such as listview, navigation-
drawer, dialogs, notifications, etc. In this section, several illustrations from the application
User Interface (UI) will be presented with a brief explanation.

Core design evolution

Since this project is based on continuously work that has been made from three previously
applications, we were to some extent limited to have completely control of the design. One
design limitation is the core functionality of the OLSR. Since our application uses core
features from the Manet Manager application [34], we have to use the existent functionality
which the Manet Manager provides. One of the main issues with the design of the OLSR
service, is whenever changes are made to the service, it must be restarted. In addition there
is no good method to know when the service is again in ready state. In Section 4.4, we will
explain a workaround that we have discovered and is currently using to make the application
work as intended.

One of the major design improvement that we have accomplished in this project is by only
having one application that is implemented with the OLSR service, UI, media services and
registration to server. From the previously Master’s thesis, the application was dependent
on the Manet Manager as an own application on the devices. Our application is currently
not dependent on having this separate application, since we have integrated most of it into
our own application. There are both positive and negative effects with this merging. The
positive is that we have everything in one application, and we have more control over the
OLSR service. The negative effect is that the complexity of the application has increased
quite much. The general workload for the application has also increased, since it now handles
everything. This has led us configure the Android application to extend the Random Access
Memory (RAM) allocation, known as grow heap [12].

39

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

It should also be mentioned that the call functionality is not a part of our design and
implementation. This feature has only been modified and tweaked to work in the new
application. Even though we are dependent on some feature from the Manet Manager and
the previous Master’s thesis, we have implemented several new features that has allowed us
to come up with a design which we believe is quite unique and has not yet been done. As of
today we have not seen any other application that offers the same friendly UI as well as the
nthatumber of possible media opportunities to communicate with other nodes on the D2D
network.

User Interface

The illustrations when the application is started for the first time, and enters the setup is
shown in Figure 3.2. The figure shows a welcome screen, user agreement and user registration.
After the user selects the button Save from the last image shown in Figure 3.2 the application
will start by initializing the OLSR service and register to the server. In Figure 3.3, we can
see these illustrations. The application goes through three main steps before entering the
main class. The Figure are quite self explanatory on what the application is doing in order
to go to the next step.

40

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

Figure 3.2: Android setup part 1.

Figure 3.3: Android setup part 2.

When the application has reached step 3/3 from the Figures 3.3 it enters the main class.
The main class UI is illustrated in Figures 3.4. The illustrations shows the navigation-drawer
with different options such as start, stop adhoc, routing info, about, settings and exit. The

41

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

second figure shows several users that is currently active in the D2D network. The last
illustration shows when a user is selected from the listview. The user can then decide to
send message, video or call the other person.

Figure 3.4: Android main class overview.

3.3.3 System prototype

In order to have a workable prototype we designed two cases which include a battery pack,
a TP-Link router and an enabling Raspberry Pi. This section describe the efforts done to
design the two prototype cases. As well as including sketches of the designed hardware boxes.

Water proof case for assembly

To hold all the required hardware, we required two cases that were robust and could with-
stand some ruff treatment. We found suitable cases at Clas Ohlson [6]. The cases are
illustrated in Figure 3.5. They should be able to protect the hardware and battery pack
from the environment, and they should also be waterproof which is a nice feature for crisis
situations where the weather could change.

42

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

Figure 3.5: Water proof prototype case, 33x28x12 cm [6].

Battery power

Figure 3.6: Intocircuit 26000mAh
battery pack [15].

To operate the backbone system we need a battery
pack that is able to power the system for several
hours. By reading the specification sheet on the main
entities of the system cases, we found out that the
Raspberry Pi drain about 0.25 A [31] whilst the router
drain about 1.5 A [38]. This result in a total of 1.75 A
for the complete backbone system. The power pack
we have chosen are equipped with 26 Ah lithium bat-
tery pack. With these numbers provided we calcu-
lated that the battery pack should be able to operate
the system for about 15 hours. The chosen battery
pack is illustrated in Figure 3.6.

Design of hardware boxes

In order to assemble the hardware in the prototype cases, we designed custom hardware
boxes. The Raspberry Pi does not come with any protecting box, and we therefore designed
a box that would enable us to mount the Raspberry Pi. Figure 3.7 illustrate the case that was

43

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

designed, and from it we see the two parts that need to be assembled around the Raspberry
Pi, as well as an illustration of the assembled box. Furthermore we have the TP-Link router
that we dismounted from its original box. This is done to save space, since the original
case takes up more space than the hardware board itself. Figure 3.8 illustrates the designed
TP-Link box, from the two separate parts to the assembled case. Both boxes were designed
to fit in the assembly case and therefore they are designed to be mountable, as illustrated in
Figure 3.9.

(a) Bottom

(b) Top (c) Assembled

Figure 3.7: Design of box for Raspberry Pi.

(a) Bottom

(b) Top
(c) Assembled

Figure 3.8: Design of box for TP-Link router.

44

CHAPTER 3. DESIGN OF THE CURRENT SOLUTION

Figure 3.9: Assembled box of both TP-link and Raspberry Pi.

3.4 Chapter Summary

In this chapter we have presented our initial planning that include the requirements that
we have set for our system. As well as an overview on the design of the current network
solution that emphasises that we have three main entities in our system. From the enabling
embedded system, extending TP-Link routers and the Android smartphones running our
developed application. Further on we have explained the design of these constituent entities,
from the selection of a embedded system, to the design of the Android application and finally
the design of the prototype cases with accessories.

45

Chapter 4

Implementation

This chapter include what has been developed, implemented and initially provides a overview
of the network topology with possible extension. In Section 4.2 we describe how the OLSR
routers are implemented into the system. Further in Section 4.3 we elaborate on how the
Raspberry Pi and corresponding services are developed and implemented. Next in Section 4.4
we explain how the Android application is developed and how it interact in correspondence
with the user framework described in Section 4.3. Finally in Section 4.5 we illustrate the
prototype system. Furthermore the different implementation aspects are described with
strong relation to the appendices.

4.1 Network Topology

The network topology is shown in Figure 4.1, where we illustrate the three main entities
of the network. First we have the OLSR routers that provide a stable backbone network
for the clients. Connected to one of the routers we have the Raspberry Pi, which act as a
centralized database of connected clients. Here we make it possible for the connected clients
to retrieve all the information needed in order to connect calls and exchange messages, as
well as providing the clients to be automatically assigned with an IP address. This will be

46

CHAPTER 4. IMPLEMENTATION

further explained in the following sections. The network consists of these three main entities,
but the Raspberry Pi makes it possible to connect a fourth entity. This could for instance be
a 3G/4G network adapter that would provide the network with Internet connectivity. This
feature is not adapted by us at this stage and is purely meant as a possible extension of the
topology. Since this project involves having a portable network, the OLSR routers would be
placed at strategic places around the area of operations, enabling the clients to move freely
within the designated area, and further extend access to other clients moving outside of the
backbone coverage area through D2D communication.

Figure 4.1: Network topology illustrating the different aspects of the local backbone network,
where clients are able to connect through the OLSR backbone or through multiple hops.

4.2 OLSR Routers

Figure 4.2: TP-Link WDR3600 [20].

The OLSR enabled backbone routers are set up using
a custom router OS named OpenWRT. This is done
due to the flexibility using such custom firmwares on
the routers. In order to provide the OLSR routing
capabilities on the routers, several packages needed
to be installed on the routers. By installing these
packages the routers are further configured to act as

47

CHAPTER 4. IMPLEMENTATION

extenders of the network, and to provide a stable backbone network for connected clients.
To provide a portable router setup, we designed two cases that include battery power that
would enable the routers to be operational for up to 15 hours. The design of these cases are
further explained in Section 4.5

The setup are done utilizing two TP Link routers viewed in Figure 4.2. These routers are
capable of providing multiple Service Set Identifier (SSID) on one interface, and operation
on multiple antennas simultaneously. Due to the power consumptions utilizing this feature,
the routers are manually configured to only provide access on one antenna with one SSID.
Connected to one of the routers we have a Raspberry Pi that supplement the routers with
access to vital information. In order to know the IP of the Raspberry Pi we configured
a static IP lease on the designated Dynamic Host Configuration Protocol (DHCP) server
running on one of the routers. The setup process of the routers are more detaily explained
in Appendix A.2.

4.3 Raspberry Pi based Hybrid IP Allocation Server

Figure 4.3: Raspberry Pi B+ [16].

In order to provide services through the local net-
work we set up a Raspberry PI B+, running a Linux
Debian Wheezy port especially compiled for the re-
spective device. The choice of using the model B+
over other models is due to the power consumption
and available Local Area Network (LAN) interface.
We set the OS up without any GUI as we don’t need
it and to keep the power consumption as low as pos-
sible. Furthermore we configured the OS to enable Secure Shell (SSH) and installed the
LAMP package collection. To decrease the power consumption even more we configured
the Raspberry Pi to automatically obtain an IP address from a DHCP server and disabled
the High-Definition Multimedia Interface (HDMI) on the device. This should improve the
overall power consumption and make the installation of the Raspberry Pi more suitable for
battery power. The installation of the Raspberry Pi is further explained in Appendix A.1.

48

CHAPTER 4. IMPLEMENTATION

4.3.1 MySQL user database

In order to store information about users in the system, we set up a MySQL database included
in the LAMP collection. We could also have chosen to use a SQLite database, but to provide
more flexibility and ease we decided to use MySQL instead. The database is only accessible
through the local interface on the Raspberry Pi. For ease when configuring the database
we utilized the phpMyAdmin tool described in Chapter 2. The database has been deployed
to use the following table-fields: name, lastname, image, IP and expiration of the IP. To
handle all traffic to and from the database we have written several PHP scripts which make
it easier when developing the framework. This enable us to make all information available
through simple HTTP requests. The setup process of the database is further explained in
Appendix A.1.3

4.3.2 Apache web server

To provide access to the PHP user framework, we utilized the Apache web server included
in the LAMP package collection. When installing the Apache server, there are standard-
ized configuration available, but for our purpose we needed to modify some configuration
ourselves. As we neglect the security of the connection between the client and server, we
did not configure Hypertext Transfer Protocol Secure (HTTPS). We only allow access to
the server in regular HTTP requests, which would mean that all information is transferred
in clear text. Since the information available on the server is not sensitive, we do not see
this as an vital issue. The configurations and complete install process is further explained
in Appendix A.1.4

4.3.3 PHP user framework

In order to provide an easy user framework we developed multiple PHP scripts, that enables
interconnection to the MySQL database. Here we enable access to all information stored
in the database by processing requests to the respective scripts. All scripts are included in
Appendix C.1. In the following paragraphs the scripts are explained.

49

CHAPTER 4. IMPLEMENTATION

Add a new user

In order to provide a framework for registry of new user in the system, we developed a PHP
script that takes the input as illustrated in Figure 4.4. The script collects all the necessary
information to complete the registry process and require that all fields is defined. The script
first check that the supplied nickname does not already exist in the database. If it does
not, it moves on to store the respective image with the users nickname in a designated
image directory. Furthermore, putting the hyperlink to the image, along with all the other
information in the MySQL database. If all succeeds the scripts return 200 OK, to indicate
that all is done correctly. Response codes are further explained in the last paragraph.

Figure 4.4: The add new user framework: Registering new user to the database.

Update IP address

The update IP address script is the most important script we have developed. It is the basis
of the hybrid IP allocation mechanism in the system, as it provides the client with a leased
IP address. It only require one input, which is the clients current IP address. The script
either responds with a 200 OK message which indicate that the client can keep using the
same address. Otherwise it returns a new IP address which the client should switch to. This
is done in the following way:

50

CHAPTER 4. IMPLEMENTATION

• Check whether the supplied IP address ends with 254.

– If true: Check the database which IP address can be provided to the client, and
update the database.

– Return the respective IP address to the client.

• If the IP address does not end with 254.

– Check whether the supplied IP address is still valid.

∗ If true: Update database.
∗ Return 200 OK, letting the client know that it can still be used.

– If IP address is not valid.

∗ Check which IP address can be provided to the client, and update the database.
∗ Return the respective IP address to the client.

Get user, by IP or nickname

The system needed a way to retrieve all the information of a respective user, so we wrote
two scripts that are able to get this data. The first script takes an IP address as input, then
searches the database for the row that contains the specific IP and returns the entire row to
the user. The same goes for the script that takes a nickname as input, only here we search
for the row that contains the respective nickname. If the requested user is not found or an
unexpected error occur, the script will return an error code which is further explained in
the last paragraph. The script produce the output as illustrated in Figure 4.5, which is the
entire dataset of a user.

Figure 4.5: The get user framework response: An array of all the available data.

51

CHAPTER 4. IMPLEMENTATION

Update Image

After the first setup process there should be a method to change the specific thumbnail
picture of any user. Thus we created a script that takes input as illustrated in Figure 4.6,
where we collect the respective image and assigns it to the specified nickname. The old
image will be replaced, but we do not verify that the picture is uploaded by a validated user.
This can in worst case be exploited, but since the system at the current state is defined as
a prototype we accept this flaw.

Figure 4.6: The update image framework: For pushing up a new user image to the database.

Check if nick exists

Before the initial setup process the user specify a nickname it want to assign it’s respective
device to. To avoid problems in this process due to a nickname already being used, we wrote
a simple script where the application may check the validity of the entered nickname before
the initial add user script are being executed. The script takes a nickname as input and
checks the database for a similar nickname, if there is not found a similar nickname there
will be a 404 response, else a 409 response as described in the next subsubsection.

Error code handling

Most of the PHP scripts do not require much feedback after the request or update is com-
pleted. Therefore we used the standardization of HTML error codes into our scripts. In
order to provide ease we have used the following error codes:

52

CHAPTER 4. IMPLEMENTATION

• 200 OK

• 404 Not found

• 409 Conflict

• 500 Internal server error

4.3.4 Testing and clean-up scripts

Clean up expired IP addresses

When IP addresses expire we need a swift way of removing them from the database, so we
implemented a script that runs in the background of the Raspberry Pi OS once every hour.
This removes the IP address entries and sets the expire field to zero. This is done to optimize
the IP allocation process as we only allocate addresses that are not present in the database
already.

Calculate Raspberry Pi uptime

The Raspberry Pi is powered by a battery pack, and this introduces a problem of determining
how long the Raspberry Pi is able to operate along side with the OLSR router. Therefore
we developed a simple bash script that writes down how long the system has been operating
to a file. For testing purposes we run the system until the battery is empty, then power it
up again and check the log file. This is further explained in Section C.2.

Stress test add user

In order to validate that the system is scaleable we developed a script to generate randomized
users, and calculate the latency of each iteration. The script can be configured to add as
many users as we see fit, and the result of the latency are further explained in Section 5.5.

53

CHAPTER 4. IMPLEMENTATION

Stress test get user by nickname

After generating a lot of users, we implemented a script that calculates how fast we are able
to get information of a specific user. This script collects data of a pre-configured user and
calculate the latency. In Section 5.5 we utilize this script to see how fast we are able to
collect data when the database is large.

Asynchron stress tests

The two previous tests are synchronous and would not stress the system enough. Therefore
we developed a different script that spawns many instances. The scripts task is simply to
execute separate instances of the previous scripts, resulting in a multiple instance of each
script running in parallel and competing for resources, thus slowing down the system and
putting a lot of stress on it.

4.4 Android Application

To explain the functionality and implementation on the Android application will be ex-
plained. Due to the large amount of features that this application uses, this section will
explain the major key features which will be divided into topics to make it easier to com-
prehend. In Appendix D we have gathered some general information about the Android
application code. Information such as total lines of codes, number of Java classes etc. is
presented.

In this section we will first start with an explanation where the setup of the application
using the hybrid IP allocation feature will take part. Further we go to explaining the listview
capabilities and functionalities. Furthermore we will show how the application is able to
send SMS, MMS, video and make call conversations between each other. Every topic will be
explained using activity diagrams. The diagrams are simplified but shows the overall actions
that the application performs.

54

CHAPTER 4. IMPLEMENTATION

4.4.1 Android initialization

In order to explain the Android setup phase we have divided the activity diagram illustrations
into two parts. The first part mainly shows the initialization and general actions that is
performed on the application. The second part is a combination where it will register the
user and obtain a valid IP before entering the MainActivity class.

Figure 4.7: Activity diagram: Part 1 overview of the application setup process.

From Figure 4.7, it checks if the user has installed the Android D2D application. This is
measured by using a boolean that is set to true if the application has been started. If not, the
boolean is default set to false, and the user will be sent to the MainActivity class. Since the
user is running the application for the first time, it will be prompted with a welcome menu,
where the user also must agree and acknowledge the user-agreement of the application. Once
this is done, the application creates a database with two tables. The first table is called User,
where the user of the application will be stored. The second table is called Friends, where

55

CHAPTER 4. IMPLEMENTATION

the users of the D2D network will be stored. After these two tables has been created, the
user must enter its firstname, lastname, nickname and select a logo from its storage. If the
user do not want to select any logo, the application is set to use a default logo that will be
used. The default logo is the same for every user that do not want to use its own.

When the user information is added and stored into the User table, the application will
generate the temporary randomized IP. Now the application has enough information about
the user and is ready to initialize the OLSR. In order to install the OLSR service to the
application, we need to have ROOT privileges. This must be approved, otherwise the OLSR
will not be installed and the application will not perform as intended. When the user has
accepted, the OLSR initialization will start.

Since there is no function that tells us when the OLSR service is ready, we have found
a method around this by listening for the onAdhocStateUpdated. We figured out that on-
AdhocStateUpdated is initialized two times when the OLSR is started or stopped. Since we
know that the onAdhocStateUpdated must be runned twice we use a counter to verify when
it is equal to 2. When this state is true, we know that the OLSR state is ready and we can
go on to the next state in our application.

In the second part we can see that the Figure 4.8 continues from the first Figure 4.7.
Since the first Figure showed that the OLSR was in ready state we now insert the randomized
IP into the OLSR configuration. In order for the OLSR service to use the randomized IP,
we need to restart it. Before we can go further we must know when the OLSR is in ready
state again. As explained from the first part we must wait for the onAdhocStateUpdated .
Since we appended the counter to 2 in the first part, we must now wait for the counter to
be equivalent to 4.

When the onAdhocStateUpdateCounter is equal to 4, we know that the OLSR is in ready
state and using the randomized IP. Now the application will start by collecting the user info
from the database and send an HTTP POST request to the server. If the server received
the data and approved our request it will reply back with an 200OK. If the server did not
approve the request it will reply back with an error code. These code has been implemented
in the Android application so it is easy for us to debug and find what kind of error the server
had. The Android management of HTTP responses is demonstrated in Listing B.2.

56

CHAPTER 4. IMPLEMENTATION

Figure 4.8: Activity diagram: Part 2 overview of the application setup process.

Once the application received 200OK, it will send a new request to obtain a valid IP
address which the server allocates. Again, the application checks if the reply is as expected
or not. If it obtained an valid IP address the application stores the IP and disconnects
and stops the OLSR service. This must be done since the service is currently bound to an
activity class. Since we are currently in the setup and not in the MainActivity class, we need
to disconnect and stop it in the setup, and reinitialize it in the MainActivity class. In the
MainActivity the OLSR is started and the new IP address is used.

From this setup the application has gathered the user information, used the hybrid IP
allocation to contact the server, registered to the server and obtained a valid IP address that
it can use in the D2D network.

57

CHAPTER 4. IMPLEMENTATION

4.4.2 Listview functionality

Since the Listview is the main feature of the MainActivity class and its influence on the UI
is of great importance we have illustrated the main functionallity.

Figure 4.9: Activity diagram: Listview and onPeersUpdated overview of the application.

From the Figure 4.9 we begin in Start. This indicated that the user has entered the
MainActivity class and reached the point where the listview is initialized.

Since we want to customize and design our own listview in each element of the list, we
need to create a custom adapter. The adapter is bounded to the listview, and the adapter can
define how the element inside the listview should look like. From Figure 4.10 the illustration

58

CHAPTER 4. IMPLEMENTATION

of the adapter is showed. From each element that the adapter creates it appends it into the
listview to be populated. Once the listview and adapter has been created and initialized, we
bind onClickListener to the listview.

Figure 4.10: Illustration of one single element in listview using custom adapter.

The application now uses the listener OnPeersUpdated to check if any new nodes has
entered the network. Once this occur, we check if the IP address of the node exist in our
Friend table. If the user already exist in the Android database, it sends an query to the
database and populate the user information into the adapter and notify it for changes so the
listview can populate the user in the network.

If the IP address of the new node does not exist in the Friend table, the application sends
a request to the server and asks for user information about this IP address. The server then
replies back with a JSON array. The application then parses out the array and filters the
user that it wants. Then the application opens the database and insert the user, where it
will retrieve the user information and insert it into the adapter and notify the listview for
changes to be populated.

In this topic we have explained and illustrated how the listview is bounded to a custom
adapter, and how it works when a new node enters the D2D network.

59

CHAPTER 4. IMPLEMENTATION

4.4.3 HTTP media transmissions

Figure 4.11: Dialog when user is se-
lected from the listview.

In this section we will present how the application
establish its socket ports for both receiving and send-
ing data through the network. This section is divided
into two parts, where the first part will evolve around
when the application transmit data. In the second
part we will show how the application create its own
predefined socket ports for listening and how it reacts
when data is sent to these ports.

When a user wants to call someone which is online
in the network, this user will be showed in the listview
of the application. When the desired user is selected,
a dialog will be populated where the user has three
options. From Figure 4.11 we can see that these are
Message, Video and Call.

From Figure 4.12 we can see the general overview
when the user selects a user from the listview. In this
illustration a user has been selected and is prompted
with the dialog. If the user selects Message, it will have the opportunities to add a picture.
If an picture is added, the application checks if any text is added. If not, the application will
generate a predefined message which the recipient will receive in its notification-bar. This
functionality is also predefined if a user sends a video. For the Call feature, the application
will use an separate thread when initializing a call. When initiating a call, the application
checks if the phone is in Idle state. If this is true, then the application can initialize the call.
Finally we can see from the Figure 4.12 that Message, Video and Call sends on its own port.

60

CHAPTER 4. IMPLEMENTATION

Figure 4.12: Activity diagram: Transmitter overview of message, video and call processes.

When the Android application is started and enters the MainActivity class, we start
three separate socket port listeners. These listeners will trigger and alert the application
if data is sent to any of these ports. From Figure 4.13 we can see an overview of how the
application reacts if one of the ports gets incoming data. If data is received on port 4444
or 4445 the application will start to read the byte stream. Since this transmission consist
of text message, picture and video, we have used Transmission Control Protocol (TCP) to
ensure that the data is completely transmitted from sender to receiver. In both these two
cases the application will populate an message in the notification-bar so the user is aware
that it has received something from another user. Once this is clicked an UI is populate with
the data that was transmitted.

If the user receives data on port 9000, the application knows that someone wants to
initiate a call session. The audio stream is sent using UDP transmission. Once port 9000

61

CHAPTER 4. IMPLEMENTATION

trigger, it will tell the application to start a call sound and populate a dialog telling the user
that another user wish to initiate a call. The recipient can then decide to accept or decline
the call.

In this scenario we have showed a brief overview of what happens when a user selects a
desired medium to send to a recipient. The Figures 4.12 and 4.13 shows how the application
reacts when data is sent and received on the different socket ports.

Figure 4.13: Activity diagram: Recipient overview of message, video and call processes.

62

CHAPTER 4. IMPLEMENTATION

4.5 Illustration of the Implemented Prototype

In this section we will illustrate the complete prototype system, including five smartphones,
two tablets and two developed cases. Figure 4.14 illustrates the developed prototype cases,
where we have mounted all the equipment that is needed to extend coverage of the system.
Subfigure 4.14a show the case including the enabling Raspberry Pi, TP-Link router and
the Intocircuit battery pack. Whilst Subfigure 4.14b show the other case with a TP-Link
router and the power pack. The final subfigure show the closed case with mounted antennas.
Further on in Figure 4.15 we have the complete system with all the devices in our system.

(a) (b)
(c)

Figure 4.14: The two designed prototype cases, with all the equipment mounted.

Figure 4.15: The prototype system with two tablets, five smartphones and the two cases.

63

CHAPTER 4. IMPLEMENTATION

4.6 Chapter Summary

In this chapter we have elaborated on our implementation efforts, and how our system works
in practise. First we give a general introduction to the network topology where the three
main entities in our system are introduced. Next we provide a introduction to the enabling
OLSR routers, and how they are configured and integrated into our system. Section 4.3 give
a detailed overview of the efforts done to set up and develop the Raspberry Pi based hybrid
IP allocation server. Here we explained the software needed to make the Raspberry Pi act
as we desire, our developed user framework, and IP allocation handling. All are described in
detail with a strong correlation to the appendices, which include the source codes and step
by step guides required to set up the system. Further on in Section 4.4 we describes the
efforts done to develop and implement the Android application, as well as the fundamental
functionalities. The last section illustrates the implemented prototype system with all the
devices in our system and the developed prototype cases.

64

Chapter 5

Experiments and Results

This chapter will introduce the efforts done to validate our implementation as well as pro-
viding real-life experiments. The first section include the validation of the implementation.
Further in Section 2 we will give a general overview of the experiments that we have per-
formed, before we move on to the experiments itself in the following sections.

5.1 Validation of the Implementation

This section aims at demonstrating that our implementation and development efforts work
as expected. First we validate our efforts done to integrate the OLSR routers into our
system, before we verify that the database and enabling scripts on the Raspberry Pi is
working. The third subsection aims at providing our efforts done to validate the developed
Android application. When developing and validating each section of the system separately,
we gradually merged the validation to test more of the overall system.

65

CHAPTER 5. EXPERIMENTS AND RESULTS

5.1.1 OLSR routers

In order to verify that the TP-Link routers work as expected, we first finalized the configu-
ration of the routers, enabled OLSR and connected them to AC power. After this process
we connected several smartphones to the system and ensured that the router announced
the correct Host Network Address (HNA), and that all the enabled smartphones were able
to discover the routers. Due to general lack of documentation on setup of OLSR on these
routers, we manually had to test and verify with several configurations. Next, we ensured
that the configuration were done correctly by checking all parameters regarding the ad hoc
mode and OLSR service.

5.1.2 Raspberry Pi based hybrid IP allocation server

On the Raspberry Pi based hybrid IP allocation server we needed to do more extensive
testing in order to validate that everything worked as expected. First we installed all the
necessary packages, configured the database and put all the enabling scripts on the web
server. To prove that all the scripts worked as desired we developed separate scripts that
would prove that the scripts were able to post and retrieve all the necessary information to
and from the database. These simulation scripts are available in Appendix C.3. In order to
verify that everything worked as expected we divided the validation into the two following
tasks.

Manual code validation

This is done by thoroughly reading through the written scripts to identify bad code and
possible unused variables. By doing so we were able to find potential for improvement of the
code, and were able to fix issues that could have broken the scripts. Finally we verified that
the code was written in correspondence to what is considered as good coding.

66

CHAPTER 5. EXPERIMENTS AND RESULTS

Verification

• Manually read through the code and look for coding flaws.

• Use debugging logs of the Apache web server, to find errors.

• Simulate request to the server, by issuing test scripts.

• Monitor the database to ensure that the correct information is added and retrieved.

5.1.3 Android application

Validation of the Android application has been done in five main parts, which are:

• Validate code functionality by manually going through the code.

• Validate code functionality by using Logcat to identify grow heaps, exceptions, etc.

• Verify that OLSR service performed as expected and intended.

• Sniff traffic between client and server to verify successful communication.

• Application performance on different devices.

In order to avoid the most crucial bugs and glitches in the application, we have gone
thoroughly through both manually and by using the Logcat tool to fix and optimize the
application. By using these two methods we have managed to clean up and fix many bugs
that the application initially had under development. For instance, we managed to reduce
the setup time by 30 seconds when we manually looked through the code. We discovered
that we could optimize some of the code from one core java class when the OLSR service
was initialized and restarted.

Before validating that the application could communicate to the server, we started by
using most of the default configurations of the existing OLSR service. During the progress,
the OLSR service have been modified to our own desire to meet the system requirements.

67

CHAPTER 5. EXPERIMENTS AND RESULTS

Most of the validation took place by printing out logs and afterwards looking through, and
verify that the OLSR service was initiated and performed as we wanted.

To validate that the application could talk to the server we used several tools to sniff
and dump the traffic of the phones. By going through the traffic and looking at the request
and responses made by both the phones and server we had the opportunity to validate and
optimize how the client and server side communicated.

Lastly, we installed the application on the Nexus Tablet, Nexus I9250 and Galaxy S3
devices to check how the application performed on different devices. Since all three models
is different in both screen size and performance it gave an good indication if the application
had some issues and glitches. From this validation the application UI was rewritten several
times to be proper scalable in the main views. We also discovered that the Nexus I9250
phones also at some times had problems with grow heap which resulted in small glitches and
lagging on the UI. This made us go back to manually looking through the code and by using
Logcat to fix these issues.

5.2 Test Scenarios

In order to provide viable results that should provide grounds for validation of the developed
system, we have set up several test scenarios that will introduce a few different experiments.
The experiments are performed at the university campus. Some of the results may be
interfered by the available WiFi zones around the campus area. This is out of our control,
and may impact the validity of the achieved results. The following five test scenarios are
identified for experiments, and consequently numerical results are presented in the following:

I Hybrid IP address Allocation: Experiments which ensure that the developed system
and Raspberry Pi platform are able to provide hybrid IP allocation, as well as results
that show that the initial setup process works as expected.

II Service Provisioning: Experiments that provide insight into the quality of services, and
the obtained delay in real-life.

68

CHAPTER 5. EXPERIMENTS AND RESULTS

III Stress Testing: Experiments done to stress the system, in order to provide validity of
the developed Raspberry Pi database, to show that it can provide service to a larger
number of connected nodes than we are able to perform experiments on.

IV Quantitative Performance Measurements: Experiments that show results on how long
the developed prototype cases are able to operate in the network, and the Round Trip
Time (RTT) that are achieved by utilizing multi-hop.

V Power Consumption of Android Smartphones: Experiments that are performed to vali-
date how long the developed Android application is able to operate on a smartphone in
the network.

5.3 Scenario I: Hybrid IP Address Allocation

In this scenario we will provide results that can prove that the system is working with a
hybrid IP address allocation. The results will provide code snippets as well as debugging
logs from the application. To verify that the application sends the correct information to the
server, we will log all the network packages to sniff out the traffic when the client transmits
its data.

5.3.1 Android self-generated IP

When the application is going through the setup for the first time it will generate a random
IP in the range of 10.0.X.254, where X is the variable. The randomizing is accomplished
by using the java.lang.math class. Documentation for this class can be found here [30].
From Listing 5.1 we can see how this is accomplished in the Android application. The int
randomNum first generate a random value between 1 and 255. Then we append this into
the String RandomizedIP to produce a randomized IP. Even though the randomized IP is
only used in a limited amount of time it is not an optimal solution since we have 1

255 chance
of IP collisions while registering. Still, we have not had one collision yet during our test so
we consider this method as satisfactory in our prototype system.

69

CHAPTER 5. EXPERIMENTS AND RESULTS

Listing 5.1: Randomizing IP
1 int randomNum = (int) Math . c e i l (Math . random () ∗ 254) + 1 ;

S t r i n g RandomizedIP = ” 1 0 . 0 . ” + S t r i n g . valueOf (randomNum) + ” .254 ” ;

5.3.2 Debugging log

From Listing B.1 we have shown how the application log the setup phase. By looking at
the output of the log we first get the user information and store it in the sharedPreference
location [13]. It checks the user logo and compresses it if the image size is > 100KB. This
is mainly because sending a large image file as a logo which in our case is supposed to be
scaled as an 50x50px is pointless and will just cause more resources to both download and
show within the application.

The application then creates two database tables. The first one is called Friends which
its neighbour nodes will be placed in later on, when the OLSR discovers new nodes in the
network. The second table is created for the user of the application. After this is finished,
the OLSR service will be initialized. We can also see that the application has randomized
an IP address which in this case is 10.0.20.254 and will register the user karl hansen to the
server. It then send new request to the server where it should get a valid IP that can be
used within the system. In this case the received IP is 10.0.0.9. Since the OLSR service
is already initialized and started, we need to restart the OLSR and tell the service that it
should now use 10.0.0.9.

During this sequence there is several catch exceptions that has been implemented to try
and handle all the errors that could occur. For instance, we discovered that in some rare
cases the application gave an exception on sending the HTTP request. This resulted in not
obtaining any valid IP and just continued using the randomized IP in the network. After
this was discovered we implemented catch exception on the HTTP request. If the application
enters this state we use a boolean and flag it as false. Right before the application goes into
the MainActivity class we check if the boolean has been flagged false. If this is true then we
force the application to not enter the MainActivity.

70

CHAPTER 5. EXPERIMENTS AND RESULTS

In this case the application managed to send HTTP requests to the server where the users
was both registered and it got a new valid IP. The application then enters the MainActivity
class. Here we check if the OLSR service has managed to use the new valid IP. If this is not
the case then we restart the OLSR once again and use the valid IP. When the application
enters the MainActivity class there is several important elements that start. We can for
instance see that the application creates three socket listening ports (4444, 4445 and 9000).
These ports are used for sending SMS, MMS, and video between the users.

Finally, the MainActivity class has its own function where it triggers when a node enter
the network. When this occur, it check the IP of the node against the Friend table in the
database. If it gets a match from the table, then we populate the information about that
user. If the user does not exist in the table, then the application send a request to the server
and asks for the user information. In this case we can see that a new IP address 10.0.0.3
has been discovered. Since it does not exist in the table, it then sends the request to the
server, and gets information of this user. The information is then inserted into the Friend
table and populated in the application using our custom Listview adapter. This function
will continue to trigger and check every node that enters the network until the application
is paused or closed.

5.3.3 Smartphone to Raspberry Pi communication

On each smartphone it is necessary to do an initial registration process that involves two
vital steps. First the phone is registered in the local database provided in the Raspberry
Pi, before the allocation of an IP address is performed. In order to test that this process
is executed as desired we set up an experiment where we utilized a listener that logged all
activity on the network card on one of the Android smartphones. The recorded log were then
analysed by Wireshark to provide visible proof of concept. Figure 5.1 illustrate the initial
process that are executed on the smartphone, where we first see that the client issues a
request to the Raspberry Pi including the user credentials, before it responds with a 200 OK
message indicating that the request is approved. Furthermore we see that the smartphone
sends a request to retrieve a valid IP address, and that the Raspberry Pi responds to the

71

CHAPTER 5. EXPERIMENTS AND RESULTS

request. Finally we see a third request and response that indicate that the smartphone
have noticed another IP address in the network, and that it requires information on who is
on the respective address. In order to provide even more information of the requests and
responses we have included a short listing of each of the requests and responses. First we
have Listing 5.2 which illustrate the message the Smartphone sends to the Raspberry Pi,
including Michael Stensrud, the image and the nickname michas, along with the 200 OK
response on line 17. Further in Listing 5.3 the update of IP address is illustrated, here the
smartphone sends it current IP address 10.0.92.254 which is a randomed IP address, the
server then responds with the first available address that are 10.0.0.1 in this case. The last
Listing 5.4 illustrate the process to retrieve information of available IP address. In this case
the IP is an TP-Link router, so the Raspberry Pi issues a false statement as expected, since
we don’t want to populate the routers in the Listview.

Figure 5.1: Wireshark representation of the initial setup sequence.

Listing 5.2: POST request for registry of new user
POST / add user . php HTTP/1 .1

2 Content−Length : 28381
Content−Type : a p p l i c a t i o n /x−www−form−ur lencoded

4 Host : 1 9 2 . 1 6 8 . 0 . 1 6 5
Connection : Keep−Al ive

6 User−Agent : Apache−HttpCl ient /UNAVAILABLE (java 1 . 4)

8 NAME=michael&LASTNAME=stensrud&IMAGE=BYTE FORMATTED&NICK=michasHTTP /1 .1 200 OK
Date : Wed, 29 Apr 2015 1 4 : 1 9 : 0 7 GMT

10 Server : Apache / 2 . 2 . 2 2 (Debian)
X−Powered−By : PHP/5.4.39−0+ deb7u2

12 Vary : Accept−Encoding
Content−Length : 3

14 Keep−Al ive : t imeout =5, max=100
Connection : Keep−Al ive

16 Content−Type : t ex t /html
200

72

CHAPTER 5. EXPERIMENTS AND RESULTS

Listing 5.3: POST request for new IP address
1 POST / update ip . php HTTP/1 .1

Content−Length : 26
3 Content−Type : a p p l i c a t i o n /x−www−form−ur lencoded

Host : 1 9 2 . 1 6 8 . 0 . 1 6 5
5 Connection : Keep−Al ive

User−Agent : Apache−HttpCl ient /UNAVAILABLE (java 1 . 4)
7

NICK=michas&IP =10.0 .92 .254HTTP/1 .1 200 OK
9 Date : Wed, 29 Apr 2015 1 4 : 1 9 : 0 7 GMT

Server : Apache / 2 . 2 . 2 2 (Debian)
11 X−Powered−By : PHP/5.4.39−0+ deb7u2

Vary : Accept−Encoding
13 Content−Length : 8

Keep−Al ive : t imeout =5, max=100
15 Connection : Keep−Al ive

Content−Type : t ex t /html
17 1 0 . 0 . 0 . 1

Listing 5.4: POST request for request of user data
1 POST / g e t n i c k . php HTTP/1 .1

Content−Length : 13
3 Content−Type : a p p l i c a t i o n /x−www−form−ur lencoded

Host : 1 9 2 . 1 6 8 . 0 . 1 6 5
5 Connection : Keep−Al ive

User−Agent : Apache−HttpCl ient /UNAVAILABLE (java 1 . 4)
7

IP =10 .0 .255 .1HTTP/1 .1 200 OK
9 Date : Wed, 29 Apr 2015 1 4 : 2 0 : 0 9 GMT

Server : Apache / 2 . 2 . 2 2 (Debian)
11 X−Powered−By : PHP/5.4.39−0+ deb7u2

Vary : Accept−Encoding
13 Content−Length : 5

Keep−Al ive : t imeout =5, max=100
15 Connection : Keep−Al ive

Content−Type : t ex t /html
17 fa l se

73

CHAPTER 5. EXPERIMENTS AND RESULTS

5.4 Scenario II: Service Provisioning

In order to validate the implemented services from the Android application, we have done
experiments on one,two and three hops communication. The results provide a reflection of
how the different services function when deployed indoor. The test location has been at the
UiA, where the walls mainly consists of concrete and drywall, which may give variance on
the tests results. In addition the WiFi zones at the UiA campus may have interfered the
channel that the OLSR service is using.

For all experiments we have modified the Android application to automatically reply
back with an message when the recipient has received its message from the transmitter. The
modifications can been be viewed in Listing B.4. The device that has taken part in the
multi-hop communication has been placed in the same position for all experiments. For each
test we have used an third-party application called Shark [18]. This application dumps the
traffic from the source device and stores to an PCAC file. After each experiment the PCAP
files are opened using Wireshark where we can find the timestamp when packets has been
transmitted and received.

Experiment
Delay 1 2 3 Average
SMS 10.8 ms 22.3 ms 23.1 ms 18.7 ms
MMS* 403.7 ms 381.8 ms 397.6 ms 394.4 ms
Video** 1.56 s 1.55 s 1.57 s 1.56 s
* Picture size = 717 kB
** Video size = 3.3 MB

Table 5.1: Obtained delays when running the application on two phones over one hop.

From the results provided in Tables 5.1, 5.2 and 5.3 we can clearly see that the delay
vary quite much between each experiment. The results when testing one-hop communica-
tion is generally quite good. By looking at the traffic we saw that there were not much
retransmission of the packets. For the experiments of two and three hops we saw that the
retransmissions increased, which also reflects the delay in these results. From the results in
Tables 5.1, 5.2 and 5.3 graphical illustrations of these results have been provided in Figure
5.2.

74

CHAPTER 5. EXPERIMENTS AND RESULTS

Experiment
Delay 1 2 3 Average
SMS 35.6 ms 37.0 ms 31.9 ms 34.8 ms
MMS* 3.18 s 2.29 s 1.86 s 2.44 s
Video** 11.7 s 15.51 s 6.3 s 11.18 s
* Picture size = 717 kB
** Video size = 3.3 MB

Table 5.2: Obtained delays when running the application on two phones over two hops.

Experiment
Delay 1 2 3 Average
SMS 46.4 ms 44.5 ms 58.3 ms 49.7 ms
MMS* 8.64 s 8.06 s 8.93 s 8.55 s
Video** 42.9 s 42.7 s 51.9 s 45.85 s
* Picture size = 717 kB
** Video size = 3.3 MB

Table 5.3: Obtained delays when running the application on two phones over three hops.

Figure 5.2: SMS, MMS and video delay over one, two and three hops.

75

CHAPTER 5. EXPERIMENTS AND RESULTS

5.5 Scenario III: Stress testing

In this scenario we will perform a numerous set of test to validate that the system is able
to cope with multiple clients and provide stable service regardless of the clients are utilizing
multiple hops. The first experiment will focus on the stability and scalability of the database
on the Raspberry Pi. Secondly we will perform tests to ensure that the network are able to
cope with a various number of nodes, and that the performance is not affected. Finally we
will test the network throughput, this to check how well the network are able to cope with
ad hoc routing over multiple hops.

5.5.1 Raspberry Pi database

The Raspberry Pi is a vital part of the entire system, and we want to ensure that the system
can be scalable, and will handle much traffic. Below follows two subsections that elaborates
and demonstrates that the system is scalable and handle a fair amount of traffic.

Synchronized stability test

To ensure that the Raspberry Pi database would be able to endure stability with a lot of
connecting nodes, we set up at synchronized stability test that register 10 000 new user in
the database. The test script are previously explained in Section 5.5, and allow us to run
a continuous flow of new registry events on the Raspberry Pi from an Android smartphone
using the OLSR network. The result show that the system are quite able to handle the flow
of new request. From Figure 5.3 we see that the average latency of the system is about 53
ms. This is well within the expected values for the system, and we can conclude that the
system should operate quite well.

76

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.3: Single process executing 10.000 synchronized registration requests.

Furthermore we wanted to check how well the system would handle system calls to
retrieve data from the database. The previous script generated a large portion of users
in the database, where we wanted to measure how fast the database responded if it could
provide stable flow of user data to external clients. We used the script explained in the
earlier Section 5.5, and configured it to send 10 000 request to the Raspberry Pi database.
The results show that the performance is well within what is to be expected, and the average
response time is about 22 ms. This means that the system is swift and are able to cope with
continuous traffic to and from the database. Figure 5.4 show the obtained execution delays.
Both these tests are performed back to back, meaning that the calls are synchronized and
no calls is performed before the previous call receives a response.

77

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.4: Single process executing 10.000 synchronized requests obtaining valid ip.

Stress testing the database

In order to test the Raspberry Pi’s performance and database management we needed a
more thorough test. Therefore we used the same scripts as in the last example. But this
time we spawned 10 concurrent instances of the scripts which should stress the system and
database. The test simulate 10 synchronous connections to the database in addition to 1
500 requests per instance, resulting in the system to slow down and possibly halt if there is
not enough memory. The first test we initialized was the add user test, where we populated
the database with 10 000 users from 10 simultaneous scripts from an external Android
smartphone connected to the backbone OLSR network. The result show that the system
struggled with the task, but it did not fail. Figure 5.7 show that the system is running at
near full performance and that there is almost not enough memory left. Further on the test
revealed that the response time is averaged around 272 ms, which is quite well since the
system is put under a lot of stress. Figure 5.5 show the ten simulations and the achieved
delay times, where we get our averaged delay time.

78

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.5: 10 Processes executing 1500 synchronized registration requests.

Furthermore we tested the response time when we executed 10 simultaneous calls to
retrieve 1 500 individual user data from the database. Here we also used the same script as
before and initiated them to run ten simultaneous simulations. The results show that the
system struggles a bit, but not quite as much as for the previous case. Figure 5.6 shows us
that we have a averaged execution time of about 173 ms.

To illustrate that the client and embedded system are issuing request and responses in
parallel to each other, we have included a snippet from both platforms. From Figure 5.7
we can see that there are several instances of request bound by different ports. On the
Raspberry Pi we can see that the system is put under some stress, and are running at 54.1%
Central Processing Unit (CPU) power, and that there are several instances of the Apache
web server, indicating that there are many request to the enabling PHP scripts. On the
client we observed that the device spawned 10 instances of request to the embedded system,
and that they are bound to different ports.

79

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.6: 10 Processes executing 1500 synchronized requests obtaining valid ip.

Figure 5.7: Server creating unique threads for each incoming request.

80

CHAPTER 5. EXPERIMENTS AND RESULTS

5.5.2 Network HTTP throughput

In order to validate the system network throughput we connected the system to an Inter-
net Service Provider (ISP), configured HNA announcement on the router and connected a
smartphone to the network with using an application provided by Ookla which measures the
throughput [29]. The results illustrate the system throughput using TCP traffic between the
nodes. Table 5.4 illustrates the achieved rates over one and two hops in an indoor environ-
ment through concrete and drywalls. As we can see from the table we are able to provide
about 3.11 Mbps download and about 4.84 Mbps in upload speeds over one hop. These
results are well within what is to be expected, but when we look at the achieved results over
two hops, the results departs. The network throughput is so low compared to the results
over one hop, download speed about 1.5 Mbps is not what we expected. As well as the
upload test failed on two of the tests due to the lack of connectivity. We believe that these
results have been influenced partially by the connectivity through walls and much noise on
campus due to WiFi zones.

Experiment Throughput
1-Hop (Mbps) 2-Hop (Mbps)
Down Up Down Up

One 3.35 5.85 2.02 N.A
Two 3.73 4.23 0.98 N.A
Three 2.24 4.45 1.73 0.02
Average 3.11 4.84 1.58 N.A

Table 5.4: Obtained throughput on one of the Android smartphones over both one and two
hops; Indoor through wall.

Due to the inconsistent results from the experiments though walls, we decided to perform
experiments where every node had in-line sight to each other. The experiment was performed
in the same indoor environment, but the nodes were placed differently. From Table 5.5 we
can see that the results has improved drastically, compared to the results from Table 5.4.
We obtained more viable results, with download and upload rates of about 11 Mbps over
one hop. The results for two, three, four and five hops indicate that utilizing multi-hop
communication reduces the throughput, which was expected.

81

CHAPTER 5. EXPERIMENTS AND RESULTS

Experiment Throughput
1-Hop (Mbps) 2-Hops (Mbps) 3-Hops (Mbps) 4-Hop (Mbps) 5-Hop (Mbps)
Down Up Down Up Down Up Down Up Down Up

One 14.13 12.73 4.80 4.62 1.97 1.34 0.13 0.33 0.19 0.48
Two 10.97 12.62 2.84 4.59 2.20 1.18 0.16 0.29 0.18 0.33
Three 7.81 11.43 2.58 3.24 1.13 1.38 0.4 0.82 0.16 0.28
Average 10.97 12.26 3.40 4.15 1.77 1.30 0.23 0.48 0.18 0.36

Table 5.5: Obtained throughput on one of the Android smartphones over one to five hops;
Line of sight.

(a) Simulated chain throughput over multi-
hop using UDP traffic [19].

(b) Obtained average chain throughput over
one to five hops with TCP traffic.

Figure 5.8: Comparison of simulated and obtained results of typically ad hoc network.

From Figure 5.8a we can see an simulated example of throughput in an typical ad hoc
network [19]. In this test the nodes have been place 150 and 200 meters apart with two and
three nodes as neighbours. The simulation has been used by sending UDP traffic with an
packet length of 512 bytes. Since our experiment is based on HTTP throughput using TCP
traffic, our results will and should provide lower results then the simulated experiment. This
is simply because the TCP traffic require acknowledgement between each packet that is sent.
If a packet is dropped or corrupt, the packet need to be retransmitted, which will increase
the latency and decrease the overall throughput. From Figure 5.8b we have merged all the
results from Table 5.5 and populated it into a graph to see if we have some similarities to
the simulated experiment.

82

CHAPTER 5. EXPERIMENTS AND RESULTS

Even though the simulated and real-life experiment uses different transmission protocols,
we can clearly see comparisons in how the throughput decreases for each hop. The graphs
have the same tendency of decreasing, which indicates and verify both the simulated test,
as well as our real-life experiment.

5.6 Scenario IV: Quantitative Performance Measure-
ments

In this scenario we will perform experiments to provide results that illustrate how long the
developed prototype cases are able to operate. In addition we have results indicating the
impact of multi-hop service based on RTT in the network.

5.6.1 Delay and packet loss

Figure 5.9: Representation
of the test enviorment with
3 connected enitites and the
connection quality between
them.

Since the system should operate over multiple hops, we wanted
to provide results that show the latency of the system. We
therefore set up a test scenario where we validate how the sys-
tem performs in contexts to delay between nodes over one, two
and three hops. The experiment was performed indoor and
between both concrete and drywalls.

To provide these results we deployed 100 Internet Control
Message Protocol (ICMP) requests from one phone to another.
Figure 5.10 illustrates the received data, and provides an gen-
eral overview of the delay in the network. From Table 5.6 we
have illustrated the packet loss and average delay for each ex-
periment.

From the illustrations we can see that one, and two hop
have more packet loss than three hops. One explanation could
be noise from the WiFi zones which may have interfered with our test. From Figure 5.9

83

CHAPTER 5. EXPERIMENTS AND RESULTS

we have illustration of the current network topology when we deployed our test. We can
observe from this illustration that the cost between 10.0.255.1 and 10.0.0.3 is the weakest
link in this network topology. Since the test between two and three hop test was performed
through 10.0.255.1, this is most likely an cause to why our results varied. This may also be
an important reason to why we have an general delay which is four times a much compared
to the one hop test.

Figure 5.10: ICMP delay over one, two and three hops.

Hop Count Packet Loss Average Delay
One 5% 5.755 ms
Two 11% 20.122 ms
Three 1% 22.240 ms

Table 5.6: Packet loss and delay with one, two and three hops

84

CHAPTER 5. EXPERIMENTS AND RESULTS

5.6.2 Network lifetime on battery

The prototype cases include battery power that should be able to power the devices for up
to 15 hours with the battery pack of 26 Ah. But this is only theoretically obtained, and we
therefore needed to do some experiments to validate how long they were able to operate.
This is done by fully charging the battery pack, and connecting one TP-Link router along
with the enabling Raspberry Pi in normal operational state. On the connected Raspberry
Pi we initiated the scripts previously explained in Subsection 4.3.4. The script logs how long
the Raspberry Pi are up and running. We ran the simulation a total of three times, which
provided us with the results presented in Table 5.7. From the table we can see that we
actually obtained an average uptime of 17 hours and 1 minute and an average power drain
of about 1.52 A. These results prove that our system is capable of operating longer that we
anticipated with regards to the estimated uptime of about 15 hours. Still, the system in its
whole won’t be able to operate as long as this due to the energy consumptions on the mobile
smartphones, which is further explained in Section 5.7.

Experiment Uptime Power drain
Hours Minutes (avg)

One 17 12 1.51 A
Two 16 49 1.54 A
Three 17 4 1.52 A
Average 17 1 1.52 A

Table 5.7: Obtained uptime of the prototype system running on battery power.

5.7 Scenario V: Power Consumption of Android Smart-
phones

This scenario will provide results with regards to the Android smartphones and how long
they are able to operate in our system. First we will perform tests to validate how much
power the implemented application requires in contrast to a plain initialized smartphone.

85

CHAPTER 5. EXPERIMENTS AND RESULTS

Next we will perform several experiments to provide results on how long the system is able to
provide selected services. The final subsection will include some comparison of the achieved
results. The results presented in this section are related to one specific smartphone namely
the Samsung I9250, and does not imply that the same results would be achieved by a different
phone. It is simply an approximation of what is to be expected by our developed Android
application.

5.7.1 Without data traffic

In order to validate how long the smartphone is able to operate without any data traffic, and
to compare the energy consumption between non-operational and operational state. First we
initialized a smartphone without any services running except the uptime timer previously
explained in Subsection 4.3.4, fully charged it and left it to deplete its battery. After 24
hours we checked if the phone still was active, and found out that it still had 96 % battery
remaining. We therefore aborted the test, and concluded that a plain Android smartphone
does not require much battery to stay in idle mode, without data traffic. To clarify, we
did not have any services like 3G or WiFi enabled, which would have an impact on the low
power draw. With that covered, we recharged the phone, initialized our application with ad
hoc mode, started the timer and left it to deplete its battery. The test resulted in a uptime
of 22 hours, indicating that an ad hoc enabled phone utilizing the OLSR protocol require
much power just to keep its routing tables up to date. The phone used in the experiment are
equipped with a 1750 mAh battery, and since the battery is reduced to approximately 0%,
we can therefore estimate how much power the application are requiring. The phone in idle
mode used 4% of the total battery power, resulting in a average drain of 2.9 mA, whilst the
OLSR enabled experiment averaged at a power draw of 116.7 mA resulting in the application
requiring about 75.5 mA to operate in idle mode. An overview of the achieved results is
illustrated in Table 5.8. Where we also display that the system is capable of operate for 7
hours and 11 minutes with the screen on. This test was performed due to the fact that we
would like to point out that much of the power on the device are utilized by keeping the
screen on. The result show that the screen use about 165,3 mA.

86

CHAPTER 5. EXPERIMENTS AND RESULTS

Experiment Uptime Power drain
Hours Minutes (avg)

Without OLSR, Screen off* 24 5 2.9 mA
With OLSR, Screen off 22 20 78.4 mA
With OLSR, Screen on 7 11 243.7 mA
* 96% battery remaining after experiment

Table 5.8: Obtained uptime of one of the Android smartphones running in idle mode with
and without OLSR enabled.

5.7.2 Continuous voice transmission

In contrast to the previous experiments, we set up a continuous voice transmission between
two enabled smartphones. One of the smartphones were connected to AC power, while the
other one was on battery power. To ensure that the system could provide communication
in an extended period, and to validate that the voice transmission does not require so much
power that the system fails after just a few hours of operation. The results show that the
battery powered phone were able to provide service for an average of 10 hours and 1 minute.
This is not bad results as continuous voice conversation over regular 3G networks [14] are
about the same as we achieved from our application. The results also show us that a voice
conversation drain about 96.2 mA, which is more compared to the ad hoc mode operation
of 75.5 mA. All experiments for this scenario is listed in Table 5.9.

Experiment Uptime Power drain
Hours Minutes (avg)

One 9 16 188.8 mA
Two 10 14 171.0 mA
Three 10 35 165.4 mA
Average 10 1 174.6 mA

Table 5.9: Obtained uptime of one of the Android smartphones running a continuous voice
transmission.

87

CHAPTER 5. EXPERIMENTS AND RESULTS

5.7.3 Continuous SMS transmission

The smartphones should be able to send out text messages and we want to check how much
impact sending these short messages had on the power drain of the smartphones. We used
two smartphones and customized the Android application to continuously send out an SMS
to the recipient smartphone every 60 seconds. The application code to send SMS every 60
seconds can be viewed in Listing B.3.

In order for the transmitting phone to send SMS continuously every 60 seconds we found
out that the screen cannot be turned off. When this happens, the Android system set the
application in onPause mode. For our results in this section we emphasize that the screen
has been on for the whole test scenario. This means that these results may vary from the
other scenarios where the screen has been turned off.

To provide some comparisons we have also tested the lifetime of the phones when the
application is running and the screen is on. This will then provide us with an estimate of
how much the phone uses to transmit an SMS every 60 seconds. The experiment has been
performed three times. The results presented in Table 5.10 show that the test achieved an
average uptime of 6 hours and 22 minutes. Based on these result we can conclude that SMS
does not require much energy since we achieved an average uptime of 7 hours and 11 minutes
in the previously explained experiment presented in Table 5.8.

Experiment Uptime SMS Power drain
Hours Minutes count (avg)

One 6 22 382 274.7 mA
Two 6 43 408 260.4 mA
Three 6 3 364 289.2 mA
Average 6 22 385 274.3 mA

Table 5.10: Obtained uptime on one Android smartphone continuously sending out SMS
messages over one hop.

88

CHAPTER 5. EXPERIMENTS AND RESULTS

5.7.4 Comparison

The previous experiments allow us to do some comparison of the acquired results. We are
able to see that the Android system itself does not require much energy to operate and that
it is the application you run on the system that are determining. Figure 5.11 illustrate the
different up times we have obtained from our experiments. The first column show the up
time of the prototype case with connected Raspberry Pi and a TP-Link router. It is included
to provide ease when determining how long the system in its whole could grant services in
the network. As we can see from the figure, the system in itself would be able to provide
service for approximately 17 hours, without any communication between connected nodes.
This is of course not representative for a system that could be used in crisis situations,
where there might be lots of communication between rescuers. The system would be able to
provide continuous voice service for about 10 hours, which is not bad at all. Regular phones
usually provide voice service about the same time, but in our case we are not dependent of
any infrastructure after initial setup process.

Figure 5.11: Obtained uptime of all the experiments done on one Android smartphone, also
including the prototype case operational uptime.

89

CHAPTER 5. EXPERIMENTS AND RESULTS

5.8 Chapter Summary

In this chapter we have performed several experiments which validate our requirements for
the system. We have done experiments that indicate how long the system is able to operate
on battery power, as well as provided results that indicate the availability and delay when
utilizing single and multi-hop communication. Furthermore, the system is able to provide
hybrid IP address allocation, and the developed application handles the initial setup process.
In order to simulate numerous connected nodes, we deployed stress testing on the system
that indicates that our system is scalable for a large number of connected nodes.

90

Chapter 6

Discussions

In this chapter we will discuss several main features that has been considered and discovered
during this project. We will discuss challenges regarding design, implementation and make
some thoughts about the achieved results that has been obtained.

6.1 Related Projects

In order to provide suggestions towards future work, and point out differences between this
project compared to other competitions, we need to look at other related projects.

In Chapter 2 we have mentioned a few of the most similar projects done in this field.
The projects have some similarities related to our own work. The main difference is that our
system is dependent on having a server that can be reachable in the network topology. By
doing so, we are able to identify nodes in the network with names and valid IP addresses.
The other projects have no method of handling this as we are aware of, and is one of the
major differences.

In this project we have mentioned that this thesis project is based upon three previous
projects. Since the main purpose was to enhance the current solution and make it easier
and more appealing for others to use, we have designed a system that works around the

91

CHAPTER 6. DISCUSSIONS

existing solution and developed new features. From other known related projects we have
the Serval project. One obvious advantage of the Serval project, is that they also support
not having ROOT privileges. As well as utilizing SIP for handling of voice calls, making
it possible to interconnect to regular PSTN network through a SIP trunk. Still, we believe
that the OLSR protocol is in general a better option to use than the BATMAN protocol.
Some studies indicate that OLSR produces more overhead, but performs overall better than
BATMAN [32].

6.2 Hardware Limitations

In this project we have used several types of hardware in order to establish the system.
Even though all of these devices supports ad hoc to some extent, all of the devices has been
modified from stock kernel and distribution. The Android devices had to be given ROOT
privileges and custom ROM to be functioning correctly.

The routers was flashed from stock distribution to OpenWRT, where we had to install
and manually configure the OLSR configuration parameters. Even though our study shows
that the system works, it currently restrict us to some degree to let anyone use this system
due to the amount of configuration, which can be too complicated and confusing for a regular
person. Still, by following the installation guide provided in Appendix A.2 this barrier could
be narrowed but there are still need for some technical background to integrate the platform
into our system.

To operate the prototype cases we require a battery pack that is able to power the system
for an extended period of time. The results obtained in Chapter 5 shows that the system
cases is able to operate for about 17 hours, and that the Android smartphones is able to
operate for about 22 hours in idle mode. This means that in a crisis situation the battery
powering will be the limited factor. Still, we are satisfied with the current available uptime
of the prototype cases.

92

CHAPTER 6. DISCUSSIONS

6.3 Software Limitations

For every software implementation, there is always some kind of bugs and restrictions that
will affect the system to some extent. This also reflects on our project. Even though the
system overall perform as we desire, there has been some features that has not been fixed
and contains some kind of bug/issues that should be resolved. Some of these issues we are
aware on how to fix, but due to time restriction we have not been able to fix all of them. In
Appendix E we have listed bugs features that we are aware of.

6.4 Result Observations

From the previous Master’s thesis [40], they performed a lot of experiments on audio qual-
ity. Since this has been done before, we decided to focus more on how the system entities
performed on battery by testing, delay, operational-time and throughput. Due to the large
time-consumption to obtain results for each test, we had to limit some of the experiments
to three test per experiment. This limits us to not give certain statements on the results.
However they give a solid indication of how the system will perform. For instance the results
that was achieved in Subsection 5.5.2 shows that simulated behaviour of typically ad hoc
network reflects our real-life results.

93

Chapter 7

Conclusions and Further Work

In this chapter we will present our conclusion, contributions, and make suggestions to possi-
ble further work for this project. The conclusion will be based upon what we have discussed
from Chapter 6. We will also propose our objective view on how the project overall accom-
plishment regarding the project goals have been achieved. For the contributions, we will
explain what major features we have done compared to the previously project and how this
can be used as a standalone system and self-configurable. Finally, we will provide some main
features that applies for further work.

7.1 Conclusions

This report demonstrates an implemented and validated system which improves the state-
of-the-art technology for D2D communication in crisis management. We have provided
numerous test results which have confirmed that our system can be deployed in both indoor
and outdoor environments and function as designed. For testing we focused on indoor
environment with line-of-sight and connectivity across walls, and demonstrated that the
developed solution functions. By designing and implementing the temporary infrastructure
system we have showed that the Android application is capable of providing multiple services.

94

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

We believe that using ad hoc mode with OLSR offers a lot of exclusive possibilities for the
Android platform. Our system works as a stable prototype and can be used as an example
on how to create a separate and private communication network that does not rely on any
ISP or telecommunication provider. We personally believe that with the developed UI and
service capabilities, this system provides a proper and solution to crisis management for
rescue responders, as well as in conflict areas where communication with other parties can
be of great importance.

7.2 Contributions

Throughout this thesis, we have designed and implemented a new prototype system based on
existing OLSR implementation on Android devices. We have minimized and accomplish to
only use one application instead of two, which was initially required. The Android application
is deployed with an new UI, which makes it more appealing and easier to use and manage.

The results shows us by deploying the system in an temporary infrastructure mode that
the Android devices can authenticate themselves to our system server, and obtain a valid
IP address that can be used for communication with other devices. In addition, when each
device has obtained the valid address, we have showed by activity-diagrams, pictures and
detailed information that the nodes is able to automatically find and populate the users in
the main view of the application.

The following list below summarizes in short term our contributions in this thesis project.

• We have designed and implemented a prototype system, which includes an Raspberry
Pi, multiple routers and several Android devices.

• We have developed Android application with integrated support of ad hoc mode and
user registration.

• We have developed hybrid IP allocation mechanism to an Raspberry Pi server and user
handling.

95

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

• We have developed support for multiple services for sending SMS, MMS and video
between the devices.

• We have improved, redesigned and developed Android application GUI.

7.3 Further Work

During this Master’s thesis, we have made a prototype that has performed as intended. Still,
there are some features that we would like to supplement and optimize.

• The Android application should be deployed with a chat feature, where all nodes can
view and participate in.

• SMS, MMS and video should be locally stored and viewed later if desired.

• Services like video streaming and interconnection to regular PSTN network could be
a useful feature.

• The user should be given the opportunity to change its nickname and logo, where the
server and neighbour nodes would be notified.

Finally, we would like to make all communication end-to-end encrypted within devices
and server in order to provide more anonymity and privacy.

96

Bibliography

[1] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication
in cellular networks,” Communications Surveys Tutorials, IEEE, vol. 16, no. 4, pp.
1801–1819, Fourthquarter 2014.

[2] Bloomberg, “Google buys android for its mobile arsenal,” August
2005. [Online]. Available: http://www.bloomberg.com/bw/stories/2005-08-16/
google-buys-android-for-its-mobile-arsenal

[3] BuiltWith, “Web server usage statistics.” [Online]. Available: http://trends.builtwith.
com/web-server

[4] F. Carli, “Security issues with dns,” 2003. [Online]. Available: http://www.sans.org/
reading-room/whitepapers/dns/security-issues-dns-1069

[5] S. Cheshire and M. Krochmal, RFC 6762: Multicast DNS, February 2013. [Online].
Available: http://www.rfc-editor.org/info/rfc6762

[6] Clas-Ohlson, “Water proof suitcase.” [Online]. Available: http://www.clasohlson.com/
no/Koffert/Pr314142000

[7] J. Damas, M. Graff, and P. Vixie, STD 75, RFC 6891: Extension Mechanisms for DNS
(EDNS(0), April 2013. [Online]. Available: http://www.rfc-editor.org/info/rfc6891

[8] Droidview, “Samsung galaxy s3 download mode.” [Online]. Available: http:
//droidviews.com/wp-content/uploads/2012/06/Galaxy-S-III-Download-Mode.jpg

[9] D. Eastlake 3rd, BCP 42, RFC 6895: Domain Name System (DNS) IANA
Considerations, April 2013. [Online]. Available: http://www.rfc-editor.org/info/rfc6895

[10] P. Gardner-Stephen and S. Palaniswamy, “Serval mesh software-wifi multi model
management,” in Proceedings of the 1st International Conference on Wireless

97

http://www.bloomberg.com/bw/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.bloomberg.com/bw/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://trends.builtwith.com/web-server
http://trends.builtwith.com/web-server
http://www.sans.org/reading-room/whitepapers/dns/security-issues-dns-1069
http://www.sans.org/reading-room/whitepapers/dns/security-issues-dns-1069
http://www.rfc-editor.org/info/rfc6762
http://www.clasohlson.com/no/Koffert/Pr314142000
http://www.clasohlson.com/no/Koffert/Pr314142000
http://www.rfc-editor.org/info/rfc6891
http://droidviews.com/wp-content/uploads/2012/06/Galaxy-S-III-Download-Mode.jpg
http://droidviews.com/wp-content/uploads/2012/06/Galaxy-S-III-Download-Mode.jpg
http://www.rfc-editor.org/info/rfc6895

BIBLIOGRAPHY

Technologies for Humanitarian Relief, ser. ACWR ’11. New York, NY, USA: ACM,
2011, pp. 71–77. [Online]. Available: http://doi.acm.org/10.1145/2185216.2185245

[11] Google, “Android, the world’s most popular mobile platform.” [Online]. Available:
http://developer.android.com/about/index.html

[12] ——, “Managing your app’s memory.” [Online]. Available: https://developer.android.
com/training/articles/memory.html

[13] ——, “Sharedpreferences.” [Online]. Available: http://developer.android.com/
reference/android/content/SharedPreferences.html

[14] GSMarena, “Samsung nexus spesification.” [Online]. Available: http://www.gsmarena.
com/samsung galaxy nexus i9250-4219.php

[15] Intocircuit, “Power castle.” [Online]. Available: http://www.hisgadget.com/product/
intocircuit-power-castle-26000mah-2/

[16] kiwi electronics, “Raspberry pi b+ image.” [Online]. Avail-
able: http://www.kiwi-electronics.nl/image/cache/data/products/raspberry-pi/
boards/RPI-MOD-B+512MB-1-800x533.jpg

[17] K. Koumidis, P. Kolios, C. Panayiotou, and G. Ellinas, “Resilient device-to-device com-
munication in emergency situations,” 2015.

[18] E. KuŽtans, “Shark for root.” [Online]. Available: https://play.google.com/store/apps/
details?id=lv.n3o.shark

[19] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris, “Capacity of ad hoc wireless
networks,” Mobicom.

[20] T. Link, “Tp link wdr3600 image.” [Online]. Available: http://www.tp-link.com/
resources/images/products/large/TL-WDR3600-UN-V1-03.jpg

[21] M. Lottor, RFC 1033: Domain Administrators Operations Guide, November 1987.
[Online]. Available: http://www.rfc-editor.org/info/rfc1033

[22] Q. T. Minh, K. Nguyen, C. Borcea, and S. Yamada, “On-the-fly establishment of multi-
hop wireless access networks for disaster recovery,” Communications Magazine, IEEE,
vol. 52, no. 10, pp. 60–66, October 2014.

[23] P. Mockapetris, RFC 883: Domain names: Implementation specification, November
1983. [Online]. Available: http://www.rfc-editor.org/info/rfc883

98

http://doi.acm.org/10.1145/2185216.2185245
http://developer.android.com/about/index.html
https://developer.android.com/training/articles/memory.html
https://developer.android.com/training/articles/memory.html
http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/content/SharedPreferences.html
http://www.gsmarena.com/samsung_galaxy_nexus_i9250-4219.php
http://www.gsmarena.com/samsung_galaxy_nexus_i9250-4219.php
http://www.hisgadget.com/product/intocircuit-power-castle-26000mah-2/
http://www.hisgadget.com/product/intocircuit-power-castle-26000mah-2/
http://www.kiwi-electronics.nl/image/cache/data/products/raspberry-pi/boards/RPI-MOD-B+512MB-1-800x533.jpg
http://www.kiwi-electronics.nl/image/cache/data/products/raspberry-pi/boards/RPI-MOD-B+512MB-1-800x533.jpg
https://play.google.com/store/apps/details?id=lv.n3o.shark
https://play.google.com/store/apps/details?id=lv.n3o.shark
http://www.tp-link.com/resources/images/products/large/TL-WDR3600-UN-V1-03.jpg
http://www.tp-link.com/resources/images/products/large/TL-WDR3600-UN-V1-03.jpg
http://www.rfc-editor.org/info/rfc1033
http://www.rfc-editor.org/info/rfc883

BIBLIOGRAPHY

[24] ——, RFC 973: Domain system changes and observations, January 1986. [Online].
Available: http://www.rfc-editor.org/info/rfc973

[25] ——, STD 13, RFC 1034: Domain names - concepts and facilities, November 1987.
[Online]. Available: http://www.rfc-editor.org/info/rfc1034

[26] ——, STD 13, RFC 1035: Domain names - implementation and specification,
November 1987. [Online]. Available: http://www.rfc-editor.org/info/rfc1035

[27] Netcraft, “Web server survey,” January 2015. [Online]. Available: http://news.netcraft.
com/archives/2015/01/15/january-2015-web-server-survey.html

[28] H. Nishiyama, M. Ito, and N. Kato, “Relay-by-smartphone: realizing multihop device-
to-device communications,” Communications Magazine, IEEE, vol. 52, no. 4, pp. 56–65,
April 2014.

[29] Ookla, “Ookla speedtest for android.” [Online]. Available: http://www.speedtest.net/
mobile/android/

[30] Oracle, “Class math.” [Online]. Available: http://docs.oracle.com/javase/7/docs/api/
java/lang/Math.html

[31] Raspi.tv, “How much less power does the raspberry pi b+ use
than the old model b?” [Online]. Available: http://raspi.tv/2014/
how-much-less-power-does-the-raspberry-pi-b-use-than-the-old-model-b

[32] D. S. Sandhu and S. Sharma, “Performance evaluation of batman, dsr, olsr
routing protocols - a review,” International Journal of Emerging Technology and
Advanced Engineering, vol. 2, no. 1, p. 4, January 2012. [Online]. Available:
http://www.ijetae.com/files/Volume2Issue1/IJETAE 0112 35.pdf

[33] F. Sauer, “Eclipse metric.” [Online]. Available: http://metrics.sourceforge.net/

[34] SPAN, “Manet manager,” July 2012. [Online]. Available: https://play.google.com/
store/apps/details?id=org.span

[35] M. Stensrud and H. G. Lie, “D2d communication: Temporarily deployed infrastructure
with enhanced secure services,” University of Agder, Tech. Rep., 2014.

[36] M. Stensrud and H. Nergaard, “Dynamic address and user interface enhancements
for android-based smartphone d2d communication: Implementation and experiments,”
University of Agder, Tech. Rep., 2014.

99

http://www.rfc-editor.org/info/rfc973
http://www.rfc-editor.org/info/rfc1034
http://www.rfc-editor.org/info/rfc1035
http://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
http://www.speedtest.net/mobile/android/
http://www.speedtest.net/mobile/android/
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://raspi.tv/2014/how-much-less-power-does-the-raspberry-pi-b-use-than-the-old-model-b
http://raspi.tv/2014/how-much-less-power-does-the-raspberry-pi-b-use-than-the-old-model-b
http://www.ijetae.com/files/Volume2Issue1/IJETAE_0112_35.pdf
http://metrics.sourceforge.net/
https://play.google.com/store/apps/details?id=org.span
https://play.google.com/store/apps/details?id=org.span

BIBLIOGRAPHY

[37] Tcpdump, “Official homepage of the tcpdump tool.” [Online]. Available: http:
//www.tcpdump.org/

[38] TPLink, “Wdr3600 spesification.” [Online]. Available: http://www.tp-link.com/en/
products/details/cat-9 TL-WDR3600.html#specifications

[39] P. Vixie, Ed., S. Thomson, Y. Rekhter, and J. Bound, RFC 2136: Dynamic
Updates in the Domain Name System (DNS UPDATE), April 1997. [Online]. Available:
http://www.rfc-editor.org/info/rfc2136

[40] M. Wennberg and N. E. Skjønsberg, “Mobile to mobile communication with or without
temporary infrastructure prototype implementation and real-life experiments,” Master’s
thesis, University of Agder, 2013.

100

http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tp-link.com/en/products/details/cat-9_TL-WDR3600.html#specifications
http://www.tp-link.com/en/products/details/cat-9_TL-WDR3600.html#specifications
http://www.rfc-editor.org/info/rfc2136

Appendices

101

Appendix A

Installation Guide

This appendix include the installation guide on how to set up the Raspberry Pi enabling
server, with corresponding configuration files. How to enable everything needed to provide
a fully configurable system. Further it covers the installation of the OLSR enabled routers,
and how they should be set up to function as expected. Based on the information made
available here, you should be able to set up a fully functional system that corresponds to
our designed backbone network. Some minor configurations may have been neglected, but
they should not have a major impact on the configuration itself.

A.1 Raspberry Pi based Hybrid IP Allocation Server

Here we describe how to set up the different part of the system, in order to have a fully
functional embedded server. First we will describe how to install the OS system, before we
move on to the dependencies that are required to have a complete system.

102

APPENDIX A. INSTALLATION GUIDE

A.1.1 Installing the OS

1. Download the latest Raspbian release:
https://www.raspberrypi.org/downloads/

2. Write the downloaded filesystem to a microSD card, if on windows you could use:
http://sourceforge.net/projects/win32diskimager/

3. Boot up the Raspberry Pi for the first time, and follow the next first boot configura-
tions, illustrated in Figure A.1-A.4.

(a) Expand the filesystem. Illustrated in Figure A.1

(b) Enter, Enable Boot to Desktop/Scratch and disable the graphical interface. Il-
lustrated in Figure A.2

(c) Enter, Internationalisation Options, and set the desired keyboard layout and time-
zone. Illustrated in Figure A.3

(d) Finnish the initial setup and reboot the Raspberry Pi. Illustrated in Figure A.4

Figure A.1: Raspberry Pi install: Extend filesystem

103

https://www.raspberrypi.org/downloads/
http://sourceforge.net/projects/win32diskimager/

APPENDIX A. INSTALLATION GUIDE

Figure A.2: Raspberry Pi install: Enable boot to desktop/scratch

Figure A.3: Raspberry Pi install: Internationalisation options

Figure A.4: Raspberry Pi install: Finalize configuration

A.1.2 Updating the OS

After the reboot, connect your device to a Ethernet cable, allowing it access to the Internet.
And issue the following commands in the terminal to update the system.

104

APPENDIX A. INSTALLATION GUIDE

1 # apt−get update
apt−get −y upgrade

3 # apt−get −y d i s t−upgrade

A.1.3 Installing the LAMP package components and phpMyAd-
min

The next to do is to install all the required packages that would enable the system to operate
as expected. By issuing the following commands, we will install the entire LAMP package
along with phpMyAdmin.

• When promted, select Apache2 as the web server.

• Use dbconfig-common to set up the database.

1 # apt−get update
apt−get −y i n s t a l l apache2 mysql−s e r v e r php5−mysql php5 l ibapache2−mod−php5 phpmyadmin

apache2−u t i l s
3 # s e r v i c e apache2 r e s t a r t

A.1.4 Configuring installed packages

After successful install of all the previously explained packages we need to do some minor
configurations.

phpMyAdmin

First we configure phpMyAdmin to be more secure. This is done by modifying the generated
apache2 config file, creating an restriction and user file. Follow the following guide and you
will achieve a secured phpMyAdmin configuration.

First edit the apache2 configuration file:

105

APPENDIX A. INSTALLATION GUIDE

1 # pico / e tc / apache2 / conf−a v a i l a b l e /phpmyadmin . conf

3 Add AllowOverride Al l as f o l l o w i n g :

5 <Direc tory / usr / share /phpmyadmin>

Option FollowSymLinks
7 DirectoryIndex index . php

AllowOverr ide Al l

Secondly, create a .htaccess file with the following restriction rules:
1 # pico / usr / share /phpmyadmin / . h t a c c e s s

%% I n s e r t the f o l l o w i n g %%
3

AuthType Basic
5 AuthName ” R e s t r i c t e d F i l e s ”

AuthUserFile / e t c /phpmyadmin / . htpasswd
7 Require va l id−user

The next thing to do is to generate the .htpasswd file, with your own user credentials.
1 # htpasswd −c / e tc /phpmyadmin / . htpasswd username

%% Addit iona l user can be added by i s s u i n g the f o l l o w i n g command;
3 # htpasswd / etc /phpmyadmin / . htpasswd username

Finally we need to restart the apache2 server by issuing the following command.
1 # s e r v i c e apache2 r e s t a r t

Now you should be promted for a valid username and password when trying to reach the
graphical phpMyAdmin interface located at:

http://local_ip/phpmyadmin

Apache2 configurations

To filter out what are available through the http interface, we need to do some configuration
on the web server. First we enable customated .htaccess files by changing the preferences in
the apache2.conf file.

1 pico \ e t c \apache2\apache2 . conf

106

http://local_ip/phpmyadmin

APPENDIX A. INSTALLATION GUIDE

Find the listing of the directory where your web files are located and modify the AllowOver-
ride to All as following:

1 AllowOverr ide Al l

Next we create some .htaccess files to prevent listing of the directories.

In the directories that we do not want to be listed create the following file with the
following commands.

1 #pico . h t a c c e s s

3 %%And i n s e r t the f o l l o w i n g text%%

5 Option −Indexes

MySQL database

If you forget your ROOT password it can be reset by first stopping the server, creating a
recovery file and issuing a failsafe.

First locate the PID of your MySQL database server and kill it.
1 # top | grep mysql

k i l l PID

Secondly you need to create a recovery file with the following statement:
#pico f a i l s a f e

2 %% I n s e r t the f o l l o w i n g statement:%%

4 SET PASSWORD FOR ’ root ’@’ l o c a l h o s t ’ = PASSWORD(’ MyNewPass ’) ;

Finally you need to issue the failsafe, by starting the server and pointing to the failsafe
file.

mysq ld sa fe −−i n i t− f i l e =/DIRECTORY WITH FILE/ f a i l s a f e &

Delete the file after reset is done.
1 # rm /DIRECTORY WITH FILE/ f a i l s a f e

107

APPENDIX A. INSTALLATION GUIDE

A.2 OLSR Routers

The TP-Link routers need to be flashed with the custom firmware OpenWRT. In order to
do so you need to log into the stock router and upload the new firmware, this is done by
following the following step by step guide:

• Download the latest OpenWRT rom:
https://downloads.openwrt.org/barrier_breaker/14.07/ar71xx/generic/

• Log on to the stock router, available at http://tplinklogin.net with login: admin
and password: admin

• Browse to the firmware upload page, and flash the downloaded rom.

• Wait for the process to be done.

The router is now available on the local IP address: 192.168.1.1, so point your browser
at this IP and we will do some configuration to set up the system as desired.

A.2.1 Install necessary packages

Browse to the software section found at: System⇒ Software. Select Update lists and wait for
the lists to be updated. Next install the following packages: olsrd, luci-app-olsr, luci-app-olsr-
viz, olsrd-mod-arprefresh, olsrd-mod-dyn-gw, olsrd-mod-httpinfo, olsrd-mod-jsoninfo, olsrd-
mod-nameservice, olsrd-mod-p2pd, olsrd-mod-txtinfo, luci-lib-json, nano.

With all the packages installed, reboot the router.

A.2.2 Configure interfaces

Now we need to configure the interfaces of the router, browse to the interface section found
at: Network ⇒ Interfaces. First remove the unnecessary interfaces and create a new OLSR
interface. Configure the interfaces as following:

108

https://downloads.openwrt.org/barrier_breaker/14.07/ar71xx/generic/
http://tplinklogin.net

APPENDIX A. INSTALLATION GUIDE

OLSR interface

Protocol: Static address

IPv4 address: 10.0.255.x

IPv4 netmask: 255.255.255.0

IPv4 gateway: 192.168.0.165
if 3G/4g adapter is installed

IPv4 broadcast: 10.0.0.255

IPv6 assignment length: disabled

DHCP Disabled.

LAN interface

Protocol: Static address

IPv4 address: 192.168.0.x

IPv4 netmask: 255.255.255.0

IPv6 assignment length: disabled

DHCP Enabled.

A.2.3 Configure OLSR

In order to enable the OLSR interface, first navigate the the OLSR configuration page located
at: Services⇒ OLSR IPv4. Here we first configure the plugins, and enable all of them. Next
configure the HNA announcement to announce 192.168.0.0 255.255.255.0. Finally make sure
that the OLSR interface is enabled, at the bottom of the page. HNA announcement should
announce the net and subnet that the DHCP server of the respective LAN interface.

109

APPENDIX A. INSTALLATION GUIDE

A.3 Android Smartphones

A.3.1 ROOT privliges and custom kernel

Providing ROOT privileges to Nexus and Samsung Android phones is generally easy. This
section will cover how to ROOT and flash a customized kernel to the Galaxy S3 phone.
The devices that is running need to be flashed with a customized kernel in order to make
the OLSR work properly. First, we need to download some general tools that is required to
ROOT and flash a new kernel to the device:

I Download and install Samsung Kies (Samsung official program). In order for the com-
puter to recognize the Galaxy S3 phone, we need to install Samsung Kies. This program
will identify the phone and download the required drivers.
http://www.samsung.com/no/support/usefulsoftware/KIES/.

II Download and install Odin. This program is used for creating ROOT on the phone.
http://odindownload.com/

III Download SuperSu and move it to the Sdcard of the Galaxy S3 phone. . The SuperSu
application can be deployed on the phone when ROOT has been provided. The SuperSu
application handles and decided which application gets ROOT privileges.
http://forum.xda-developers.com/showthread.php?t=1538053

IV Download kernel that supports OLSR
https://github.com/monk-dot/SPAN/tree/master/kernels

V Download ROOT File for Galaxy S3
https://autoroot.chainfire.eu/.

Once all of the above tools is downloaded and installed, we can set the phone in Download
Mode. The Odin program requires the phone to be in this mode when we are granting the
phone ROOT. To enter the Download mode, we need to start the phone by holding in the

110

http://www.samsung.com/no/support/usefulsoftware/KIES/
http://odindownload.com/
http://forum.xda-developers.com/showthread.php?t=1538053
https://github.com/monk-dot/SPAN/tree/master/kernels
https://autoroot.chainfire.eu/

APPENDIX A. INSTALLATION GUIDE

following buttons on the phone: Volume Down Button + Home Button + Power Button. If
this is done correctly the phone should show as Figure A.5 illustrates.

Figure A.5: Galaxy S3 phone in download mode [8].

Next we launch the Odin program. Here we select the PDF button, and find the ROOT
file that we previously downloaded. Make sure that Auto Reboot and F. Reset Time is
enabled. Then press Start. After a while the phone should indicate that the installation
went successful.

The device has now installed an custom bootloader that we can access and install the
custom ROM and kernel. By pressing Volume Up button + Home Button + Power Button
the phone will now enter the custom bootloader.Illustration if shown in Figure A.6. From
the bootloader we can install both ROM and kernel by selecting Choose zip from sdcard.
When this is done, the installation is complete and the phone is properly configured.

Figure A.6: Illustration of CWM bootloader of Galaxy S3.

111

Appendix B

Android Snippets and Logs

B.1 Tests

B.1.1 Debugging logs

Listing B.1: Debugging log of first setup process
1 04−27 2 1 : 1 8 : 4 8 . 3 2 5 : Welcome to D2D setup !

04−27 2 1 : 1 9 : 0 0 . 1 0 5 : Get user in fo rmat ion and s t o r e i t in s h a r e d P r e f e r e n c e s for l a t e r use .
3 04−27 2 1 : 1 9 : 1 8 . 3 1 5 : Checking Image s i z e . I t i s 425 KB

04−27 2 1 : 1 9 : 1 8 . 3 2 0 : Image i s > 100KB and i s TOO BIG ! Sta r t compress ing
5 04−27 2 1 : 1 9 : 1 8 . 4 7 0 : CREATE TABLE i f not e x i s t s Fr iends (i d i n t e g e r PRIMARY KEY

autoincrement , f i r s tname , lastname , nickname , ip , t t l , imageUrl , imagestatus BLOB) ;
04−27 2 1 : 1 9 : 1 8 . 4 7 0 : CREATE TABLE i f not e x i s t s User (i d i n t e g e r PRIMARY KEY autoincrement ,

f i r s tname , lastname , username) ;
7 04−27 2 1 : 1 9 : 1 8 . 5 0 5 : User c r e d e n t i a l has now been saved

04−27 2 1 : 1 9 : 1 8 . 7 3 0 : App l i ca t ion i s r e g i s t e r i n g user to s e r v e r . This w i l l take some time . . .
9 04−27 2 1 : 1 9 : 1 8 . 7 3 0 : User Data | Firstname : k a r l lastname : hansen username : karhan ip :

1 0 . 0 . 2 0 . 2 5 4
04−27 2 1 : 1 9 : 1 8 . 7 5 5 : MESSAGE SERVICE STARTED! !

11 04−27 2 1 : 1 9 : 2 1 . 1 1 0 : onConfigUpdated
04−27 2 1 : 1 9 : 2 3 . 5 3 5 : onAdhocStateUpdated

13 04−27 2 1 : 1 9 : 2 3 . 5 3 5 : removeDialog
04−27 2 1 : 1 9 : 2 3 . 5 4 5 : onServiceConnected

15 04−27 2 1 : 1 9 : 2 3 . 5 4 5 : removeDialog
04−27 2 1 : 1 9 : 2 3 . 5 4 5 : S e r v i c e Connected . Res ta r t ing MANET to use the new c o n f i g !

112

APPENDIX B. ANDROID SNIPPETS AND LOGS

17 04−27 2 1 : 1 9 : 2 4 . 4 0 5 : I n i t i a l i z i n g Ad hoc with OLSR
04−27 2 1 : 1 9 : 4 0 . 1 3 0 : LoadRegister : onPeersUpdated

19 04−27 2 1 : 1 9 : 4 2 . 4 0 0 : onAdhocStateUpdated
04−27 2 1 : 1 9 : 4 2 . 4 0 0 : removeDialog

21 04−27 2 1 : 1 9 : 5 0 . 4 3 0 : Waiting . Timer 1 : 0 min , 1 s ec
04−27 2 1 : 1 9 : 5 1 . 3 4 5 : LoadRegister : onPeersUpdated

23 04−27 2 1 : 1 9 : 5 2 . 4 1 5 : Obtain v a l i d IP from s e r v e r
04−27 2 1 : 1 9 : 5 2 . 4 1 5 : R e g i s t e r user by sending data to addUser s c r i p t

25 04−27 2 1 : 1 9 : 5 2 . 4 1 5 : UpdateIP executed !
04−27 2 1 : 1 9 : 5 2 . 4 3 0 : Waiting . Timer 2 : 0 min , 6 s ec

27 04−27 2 1 : 1 9 : 5 2 . 6 2 5 : 200 . Request approved
04−27 2 1 : 1 9 : 5 2 . 6 2 5 : Received data i s : 200

29 04−27 2 1 : 1 9 : 5 2 . 7 1 0 : Did not r e c e i v e r e p l y or unknown message sent by s e r v e r
04−27 2 1 : 1 9 : 5 2 . 7 1 0 : Received data i s : 1 0 . 0 . 0 . 9

31 04−27 2 1 : 1 9 : 5 7 . 4 3 0 : Waiting . Timer 2 : 0 min , 1 s ec
04−27 2 1 : 1 9 : 5 8 . 9 1 5 : check i f any e r r o r s occoured !

33 04−27 2 1 : 1 9 : 5 8 . 9 7 0 : onConfigUpdated
04−27 2 1 : 2 0 : 0 4 . 2 0 0 : onAdhocStateUpdated

35 04−27 2 1 : 2 0 : 0 4 . 2 0 0 : removeDialog
04−27 2 1 : 2 0 : 1 4 . 8 0 5 : LoadRegister : onPeersUpdated

37 04−27 2 1 : 2 0 : 1 7 . 1 6 5 : onAdhocStateUpdated
04−27 2 1 : 2 0 : 1 7 . 1 6 5 : removeDialog

39 04−27 2 1 : 2 0 : 1 7 . 1 7 0 : User i s r e g i s t e r e d and v a l i d IP (1 0 . 0 . 0 . 9) i s r e c e i v e d .
04−27 2 1 : 2 0 : 1 7 . 1 7 0 : Setup i s f i n i s h e d . Enter MainActivity .

41 04−27 2 1 : 2 0 : 1 7 . 1 8 0 : Going i n t o MainActivity !
04−27 2 1 : 2 0 : 1 7 . 3 0 5 : address == 1 0 . 0 . 2 0 . 2 5 4

43 04−27 2 1 : 2 0 : 1 7 . 5 1 0 : Main : main and communicationMaster r e c r e a t e d
04−27 2 1 : 2 0 : 1 7 . 5 2 0 : CommunicationMaster Started !

45 04−27 2 1 : 2 0 : 1 7 . 5 2 0 : CommunicationListener Started !
04−27 2 1 : 2 0 : 1 7 . 6 3 5 : MESSAGE SERVICE STARTED! !

47 04−27 2 1 : 2 0 : 1 7 . 6 3 5 : MMSSERVICE STARTED! !
04−27 2 1 : 2 0 : 1 7 . 6 3 5 : Server s t a r t e d . L i s t e n i n g to the port 4444

49 04−27 2 1 : 2 0 : 1 7 . 6 3 5 : RECEIVEVIDEO SERVICE STARTED! !
04−27 2 1 : 2 0 : 1 7 . 6 3 5 : Server s t a r t e d . L i s t e n i n g to the port 4445

51 04−27 2 1 : 2 0 : 1 7 . 6 4 5 : onServiceConnected
04−27 2 1 : 2 0 : 1 7 . 6 4 5 : removeDialog

53 04−27 2 1 : 2 0 : 1 7 . 6 4 5 : S e r v i c e Connected . Res ta r t ing MANET to use the new c o n f i g !
04−27 2 1 : 2 0 : 2 2 . 3 1 0 : onConfigUpdated

55 04−27 2 1 : 2 0 : 2 2 . 5 8 5 : onAdhocStateUpdated
04−27 2 1 : 2 0 : 2 2 . 5 8 5 : removeDialog

57 04−27 2 1 : 2 0 : 2 2 . 6 4 0 : onConfigUpdated
04−27 2 1 : 2 0 : 2 2 . 8 6 0 : onAdhocStateUpdated

59 04−27 2 1 : 2 0 : 2 2 . 8 6 5 : removeDialog
04−27 2 1 : 2 0 : 2 8 . 8 7 5 : se t IpAddress == 1 0 . 0 . 0 . 9

61 04−27 2 1 : 2 0 : 2 8 . 8 8 5 : We s t i l l have the randomizedIP in the OLSR s e r v i c e . Restart and use the
new IP provided from the Server .

04−27 2 1 : 2 0 : 2 8 . 8 8 5 : our new f i n a l IP i s : 1 0 . 0 . 0 . 9

113

APPENDIX B. ANDROID SNIPPETS AND LOGS

63 04−27 2 1 : 2 0 : 3 6 . 5 8 0 : Main : main and communicationMaster r e c r e a t e d
04−27 2 1 : 2 0 : 3 6 . 5 9 0 : CommunicationMaster Started !

65 04−27 2 1 : 2 0 : 3 6 . 5 9 5 : CommunicationListener Started !
04−27 2 1 : 2 0 : 3 6 . 6 0 5 : MMSSERVICE STARTED! !

67 04−27 2 1 : 2 0 : 3 6 . 6 0 5 : Server s t a r t e d . L i s t e n i n g to the port 4444
04−27 2 1 : 2 0 : 3 6 . 6 1 0 : RECEIVEVIDEO SERVICE STARTED! !

69 04−27 2 1 : 2 0 : 3 6 . 6 1 0 : Server s t a r t e d . L i s t e n i n g to the port 4445
04−27 2 1 : 2 0 : 3 6 . 6 1 0 : MESSAGE SERVICE STARTED! !

71 04−27 2 1 : 2 0 : 3 6 . 6 1 0 : Server s t a r t e d . L i s t e n i n g to the port 9000
04−27 2 1 : 2 0 : 4 3 . 2 4 5 : onPeersUpdated

73 04−27 2 1 : 2 0 : 4 3 . 2 4 5 : HashSet with Peers i s empty !
04−27 2 1 : 2 0 : 4 5 . 2 7 5 : onAdhocStateUpdated

75 04−27 2 1 : 2 0 : 5 2 . 2 7 0 : Do not r e s t a r t . We have the c o r r e c t IP ! Just send Star t Command to the
OLSR s e r v i c e !

04−27 2 1 : 2 0 : 5 5 . 0 4 0 : onAdhocStateUpdated
77 04−27 2 1 : 2 0 : 5 5 . 5 5 0 : onPeersUpdated

04−27 2 1 : 2 0 : 5 5 . 5 6 0 : Ip dosen ’ t e x i s t in database | 1 0 . 0 . 0 . 3
79 04−27 2 1 : 2 0 : 5 5 . 5 6 5 : Send re que s t on ip 1 0 . 0 . 0 . 3 to address :

04−27 2 1 : 2 0 : 5 5 . 5 8 0 : GetNick executed !
81 04−27 2 1 : 2 0 : 5 5 . 6 7 5 : Adding User i n t o Database : Name : c h r i s t o f f e r Lastname : s tensrud Nickname

: f r i s c o IP : 1 0 . 0 . 0 . 3 Expires : 100 Image : http : / / 1 9 2 . 1 6 8 . 0 . 1 6 5 / images / f r i s c o . jpg

B.1.2 Snippet code

Listing B.2: Server reply class
1 /∗∗

∗ Class f o r hande l ing Server r e p l i e s ,
3 ∗ Checks the r e p l y from the se rver , and l o g s a c c o r d i n g l y to t h i s .

∗
5 ∗ @author Michael Stensrud

∗/
7 public class ServerReply {

9 I d e n t i f i e r s ID = new I d e n t i f i e r s () ;
S t r i n g TAG = ” ServerReply . c l a s s ” ;

11

public ServerReply (S t r i n g Reply) {
13

i f (Reply . equa l s (” 200 ”)) { Log . i (TAG, ID . OK200) ; }
15 else i f (Reply . equa l s (” 401 ”)) { Log . i (TAG, ID . Error401) ; }

else i f (Reply . equa l s (” 500 ”)) { Log . i (TAG, ID . Error500) ; }
17 else i f (Reply . equa l s (” 500a”)) { Log . i (TAG, ID . Error500a) ; }

else i f (Reply . equa l s (” 500d”)) { Log . i (TAG, ID . Error500d) ; }
19 else { Log . i (TAG, ID . ErrorUnkwnown) ;}

}
21 }

114

APPENDIX B. ANDROID SNIPPETS AND LOGS

Listing B.3: SMS test source code
1 smsTest inner = new smsTest () ;

i nne r . s t a r t () ;
3

private class smsTest extends Thread {
5 public void run () {

while (true) {
7 try {

s l e e p (60000) ;
9 S t r i n g msg = f i r s tname + ” ” + lastname + ” (” + app . manetcfg . getIpAddress () +

”) ” + ”\n” + ” \n Hey , \n Check out the p i c t u r e that I ’ ve sent you ! ” ;
S t r i n g r e t v a l = null ;

11 try {
smsCounter++;

13 System . out . p r i n t l n (” sending reque s t number : ” + smsCounter) ;
SharedPre f e rences s e t t i n g s = getSharedPre f e r ence s (MainActivity .

PREFS NAME, 0) ;
15 SharedPre f e rences . Editor e d i t o r = s e t t i n g s . e d i t () ;

e d i t o r . putInt (” smsCounter ” , smsCounter) ;
17 e d i t o r . commit () ;

19 SendMessageTask task = new SendMessageTask () ;
task . execute (new S t r i n g [] { address , msg}) ;

21 r e t v a l = task . get () ;
}

23 catch (Exception e) {
r e t v a l = ” Error : ” + e . getMessage () ;

25 System . out . p r i n t l n (r e t v a l) ;
}

27 }
catch (Inter ruptedExcept ion e) {

29 throw new RuntimeException (e) ;
}

31 }
}

33 }

Listing B.4: SMS auto reply
1 /∗
∗ SMS has been r e c e i v e d on l i s t e n i n g port 9000 .

3 ∗ Once message has been handeled , prepare by sending an autorep ly back
∗/

5 System . out . p r i n t l n (” Star t by sending r e p l y back ! ”) ;
S t r i n g fromIP = null ;

7 SharedPre f e rences sp = getSharedPre f e r ence s (” u s e r S e t t i n g s ” , A c t i v i t y .MODE PRIVATE) ;

115

APPENDIX B. ANDROID SNIPPETS AND LOGS

S t r i n g f i r s tname = sp . g e t S t r i n g (”FIRSTNAME” , null) ;
9 S t r i n g lastname = sp . g e t S t r i n g (”LASTNAME” , null) ;

S t r i n g ip = sp . g e t S t r i n g (”IP” , null) ;
11 Matcher m = Pattern . compi le (” \ \ (([ˆ)]+) \\) ”) . matcher (from) ;

while (m. f i n d ()) {
13 fromIP = m. group (1) ;

}
15 try {

AutoReplyText task = new AutoReplyText () ;
17 S t r i n g msg = f i r s tname + ” ” + lastname + ” (” + ip + ”) ” + ”\n” + ” \n Hey ,

\n I Just r e c e i v e d your awesome message ! ! ! ” ;
task . execute (new S t r i n g [] { fromIP , msg}) ;

19 System . out . p r i n t l n (” Reply f i n i s h e d ”) ;
}

21 catch (Exception e) {
System . out . p r i n t l n (e) ;

23 }

25 public class AutoReplyText extends AsyncTask<Str ing , Void , Str ing > {

27 I d e n t i f i e r s ID = new I d e n t i f i e r s () ;

29 @Override
protected S t r i n g doInBackground (S t r i n g . . . params) {

31 S t r i n g address = params [0] ;
S t r i n g msg = params [1] ;

33 S t r i n g r e t v a l = sendMessage (address , msg) ;
return r e t v a l ;

35 }
private S t r i n g sendMessage (S t r i n g address , S t r i n g msg) {

37

S t r i n g r e t v a l = null ;
39 DatagramSocket socke t = null ;

try {
41 socke t = new DatagramSocket () ;

byte b u f f [] = msg . getBytes () ;
43 int msgLen = b u f f . l ength ;

boolean t runcated = fa l se ;
45 i f (msgLen > MessageServ ice .MAX MESSAGE LENGTH) {

msgLen = MessageServ ice .MAX MESSAGE LENGTH;
47 t runcated = true ;

}
49 DatagramPacket packet = new DatagramPacket (buf f , msgLen , InetAddress . getByName (

address) , ID . MessagePort) ;
socke t . send (packet) ;

51 System . out . p r i n t l n (”VERIFY! message sent to : ” + InetAddress . getByName (address)
+ ” packet s i z e : ” + packet . getLength () + ” msglength : ” + msgLen) ;

116

APPENDIX B. ANDROID SNIPPETS AND LOGS

i f (t runcated) {
53 r e t v a l = ” Message truncated and sent . ” ;

} else {
55 r e t v a l = ” Message sent . ” ;

}
57 }

catch (Exception e) {
59 e . pr intStackTrace () ;

r e t v a l = ” Error : ” + e . getMessage () ;
61 }

f i n a l l y {
63 i f (socke t != null) {

socke t . c l o s e () ;
65 }

}
67 return r e t v a l ;

}
69 } ;

117

Appendix C

PHP Source Codes

This Appendix includes the written scripts that the application utilized to push and request
information to the MySQL databases. The scripts include a short description on what is
happening as in-line comments. It also include the scripts written for test and clean up
service on the local Raspberry Pi embedded system.

C.1 PHP Source Code

C.1.1 Add a new user

Listing C.1: PHP add a new user
1 <?php

/∗ ADD PERSON
3 ∗ What t h i s f i l e does i s i t :

∗ 1) Creates connect ion to database .
5 ∗ 2) Ret r i eve the data being send .

∗ 3) Add the r e t r i e v e d data to database .
7 ∗ 4) Close database connect ion .

∗/
9 e r r o r r e p o r t i n g (0) ; //Turn e r r o r r e p o r t i n g o f f , f o r s e c u r i t y reasons .

// 1 : Connect to a database / d i s connec t handler .
11 r e q u i r e o n c e ’ db/connectDB . php ’ ;

118

APPENDIX C. PHP SOURCE CODES

d e f i n e (’UPLOAD DIR ’ , ’ images / ’) ; // Def ine the user image d i r e c t o r y
13

// 2 : Ret r i eve the data .
15 $name =$ POST [’NAME’] ;

$lastname = $ POST [’LASTNAME’] ;
17 $image = $ POST [’IMAGE ’] ;

$n ick = $ POST [’NICK ’] ;
19

//Check that the user does not e x i s t a l r eady
21 i f ($stmt = $db−>prepare (” S e l e c t COUNT(Nickname) FROM ‘ Users ‘ WHERE Nickname = : n ick LIMIT

0 ,1 ”)) {
$stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;

23 $stmt−>execute () or d i e (” 500 ”) ;
i f ($ r e s u l t = $stmt−>fetchColumn (0)) {

25 d i e (” 409 ”) ;
}

27 }
else {

29 d i e (’ 500 ’) ;
}

31

// 3 : Create the new user .
33 i f ($stmt = $db−>prepare (”INSERT INTO ‘ Users ‘ (Name, Lastname , Nickname , Image)

VALUES (: name , : lastname , : nick , : image) ON DUPLICATE KEY UPDATE Nickname=: nick ”)) { //
Prepare the statement f o r s e c u r i t y reasons .

35 // Bind the parameters , such that they are a v a i l a b l e f o r the prepared statement .
$stmt−>bindParam (’ : name ’ , $name , PDO: : PARAM STR) ;

37 $stmt−>bindParam (’ : lastname ’ , $lastname , PDO: : PARAM STR) ;
$stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;

39 // Modify the image , such that i t can be downloaded c o r r e c t l y .
$image = s t r r e p l a c e (’ data : image/ jpeg ; base64 , ’ , ’ ’ , $image) ;

41 $image = s t r r e p l a c e (’ ’ , ’+ ’ , $image) ;
$data = base64 decode ($image) ;

43 $imagename = $nick . ’ . jpg ’ ;
$ f i l e = UPLOAD DIR . $imagename ;

45 $tmp = ’ http : / / 1 9 2 . 1 6 8 . 0 . 1 6 5 / images / ’ . $imagename ;
$stmt−>bindParam (’ : image ’ , $tmp , PDO: : PARAM STR) ; //Bind the abso lutepath to the

image .
47 //Get remote image ($data) and s t o r e i t in l o c a l path ($ f i l e) .

i f (f i l e p u t c o n t e n t s ($ f i l e , $data) !== FALSE)
49 $stmt−>execute () or d i e (” 500 ”) ; // Execute the prepared statement to complete

the user r e g i s t r y .
else d i e (’ 500 ’) ;

51 }
else {

53 d i e (’ 500 ’) ; // Return 500 , i f the re i s an i n t e r n a l s e r v e r e r r o r .
}

119

APPENDIX C. PHP SOURCE CODES

55

echo ’ 200 ’ ; // Return 200 , i f the r e g i s t r y i s completed .
57

// 4 : Disconnect from database .
59 $db=null ;

?>

C.1.2 Update IP address

Listing C.2: PHP update IP address
<?php

2 /∗ Update IP
∗ What t h i s f i l e does i s i t :

4 ∗ 1) Creates connect ion to database .
∗ 2) Ret r i eve the data being send .

6 ∗ 3) Check r e t r i e v e d data with database entry and add i f c o r r e c t .
∗ 4) Close database connect ion .

8 ∗/

10 e r r o r r e p o r t i n g (0) ; //Turn e r r o r r e p o r t i n g o f f , f o r s e c u r i t y reasons .
// 1 : Connect to a database / d i s connec t handler .

12 r e q u i r e o n c e ’ db/connectDB . php ’ ;
d e f i n e (’IPSTART ’ , ’ 1 0 . 0 . ’) ;

14

// 2 : Ret r i eve the data
16 $nick = $ POST [’NICK ’] ;

$ ip = $ POST [’ IP ’] ;
18

f u n c t i o n endsWith ($haystack , $need le) {
20 // search forward s t a r t i n g from end minus need l e l ength c h a r a c t e r s

return $need le === ”” | | s t r p o s ($haystack , $needle , s t r l e n ($haystack) − s t r l e n ($need le))
!== FALSE;

22 }

24 //Check that the nickname e x i s t s in the database
i f ($stmt = $db−>prepare (” S e l e c t COUNT(Nickname) FROM ‘ Users ‘ WHERE Nickname = : n ick LIMIT

0 ,1 ”)) {
26 $stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;

$stmt−>execute () or d i e (” 500 ”) ;
28 i f (! $ r e s u l t = $stmt−>fetchColumn (0)) {

d i e (” 404 ”) ; // Return i f the n ick does not e x i s t ;
30 }

}
32 else {

d i e (’ 500 ’) ; // I n t e r n a l s e r v e r e r r o r message .

120

APPENDIX C. PHP SOURCE CODES

34 }

36 // 3 : Check v a l i d i t y o f IP address , and add i f i t s v a l i d .
// I f randomed IP

38 i f (endsWith ($ip , ’ . 254 ’)) {
$counter = 1 ; $ i = 0 ;

40 $temp = IPSTART . $ i . ’ . ’ . $counter ;
i f ($stmt = $db−>prepare (” S e l e c t Count (IP) FROM ‘ Users ‘ WHERE IP = : ip LIMIT 0 ,1 ”)) {

42 $stmt−>bindParam (’ : ip ’ , $temp ,PDO: : PARAM STR) ;
$stmt−>execute () or d i e (’ 500 ’) ;

44 }
else {

46 d i e (’ 500 ’) ;
}

48 // While IP e x i s t , i n c r e a s e counter .
while ($ r e s u l t = $stmt−>fetchColumn (0)) {

50 i f ($counter == 253) {
$counter = 0 ; $ i ++;

52 i f (i ==255) d i e (’ 500 ’) ;
}

54 $counter ++;
$temp = IPSTART . $ i . ’ . ’ . $counter ;

56 $stmt−>bindParam (’ : ip ’ , $temp ,PDO: : PARAM STR) ;
$stmt−>execute () or d i e (’ 500 ’) ;

58 }
$ ip = $temp ;

60 // I n s e r t the c o r r e c t IP i n t o the database , cor re spond ing to the c o r r e c t nickname
i f ($stmt = $db−>prepare (”INSERT INTO ‘ Users ‘ (Nickname , IP , Expires) VALUES (: nick , : ip ,

UNIX TIMESTAMP(NOW() + INTERVAL 1 DAY)) ON DUPLICATE KEY UPDATE Expires=
UNIX TIMESTAMP(NOW() + INTERVAL 1 DAY) , IP=: ip ”)) {

62 $stmt−>bindParam (’ : n ick ’ , $n ick ,PDO: : PARAM STR) ;
$stmt−>bindParam (’ : ip ’ , $ ip ,PDO: : PARAM STR) ;

64 $stmt−>execute () or d i e (’ 500 ’) ;
}

66 else {
d i e (’ 500 ’) ;

68 }
echo $ ip ;

70 }
// I f not a randomed IP

72 else {
//Check v a l i d i t y o f IP address

74 i f ($stmt = $db−>prepare (” S e l e c t Count (IP) FROM ‘ Users ‘ WHERE IP = : ip AND Nickname = :
nick LIMIT 0 ,1 ”)) {
$stmt−>bindParam (’ : ip ’ , $ip , PDO: : PARAM STR) ;

76 $stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;
$stmt−>execute () or d i e (’ 500 ’) ;

121

APPENDIX C. PHP SOURCE CODES

78 // i f va l id , update l e a s e time .
i f ($ r e s u l t = $stmt−>fetchColumn (0)) {

80 i f ($stmt = $db−>prepare (”INSERT INTO ‘ Users ‘ (Nickname , IP , Expires) VALUES (:
nick , : ip ,UNIX TIMESTAMP(NOW() + INTERVAL 1 DAY)) ON DUPLICATE KEY UPDATE
Expires=UNIX TIMESTAMP(NOW() + INTERVAL 1 DAY) , IP=: ip ”)) {
$stmt−>bindParam (’ : n ick ’ , $n ick ,PDO: : PARAM STR) ;

82 $stmt−>bindParam (’ : ip ’ , $ ip ,PDO: : PARAM STR) ;
$stmt−>execute () or d i e (’ 500 ’) ;

84 }
else {

86 d i e (’ 500 ’) ;
}

88 echo ’ 200 ’ ; // Return 200 OK, i d i c a t i n g the the IP can be used .
}

90 // e l s e , f i n d new IP .
else {

92 $counter = 1 ; $ i = 0 ;
$temp = IPSTART . $ i . ’ . ’ . $counter ;

94 i f ($stmt = $db−>prepare (” S e l e c t Count (IP) FROM ‘ Users ‘ WHERE IP = : ip LIMIT 0 ,1 ”
)) {
$stmt−>bindParam (’ : ip ’ , $temp ,PDO: : PARAM STR) ;

96 $stmt−>execute () or d i e (’ 500 ’) ;
}

98 else {
d i e (’ 500 ’) ;

100 }
// While IP e x i s t , i n c r e a s e counter .

102 while ($ r e s u l t = $stmt−>fetchColumn (0)) {
i f ($counter == 253) {

104 $counter = 0 ; $ i ++;
i f (i ==255) d i e (’ 500 ’) ;

106 }
$counter ++;

108 $temp = IPSTART . $ i . ’ . ’ . $counter ;
$stmt−>bindParam (’ : ip ’ , $temp ,PDO: : PARAM STR) ;

110 $stmt−>execute () or d i e (’ 500 ’) ;
}

112 $ ip = $temp ;
// I n s e r t the c o r r e c t IP i n t o the database , cor re spond ing to the c o r r e c t

nickname
114 i f ($stmt = $db−>prepare (”INSERT INTO ‘ Users ‘ (Nickname , IP , Expires) VALUES (:

nick , : ip ,UNIX TIMESTAMP(NOW() + INTERVAL 1 DAY)) ON DUPLICATE KEY UPDATE
Expires=UNIX TIMESTAMP(NOW() + INTERVAL 1 DAY) , IP=: ip ”)) {
$stmt−>bindParam (’ : n ick ’ , $n ick ,PDO: : PARAM STR) ;

116 $stmt−>bindParam (’ : ip ’ , $ ip ,PDO: : PARAM STR) ;
$stmt−>execute () or d i e (’ 500 ’) ;

118 }

122

APPENDIX C. PHP SOURCE CODES

else {
120 d i e (’ 500 ’) ;

}
122 echo $ ip ; // Return the new IP address

}
124 }

else {
126 d i e (’ 500 ’) ;

}
128 }

130 // 4 : Close database connect ion
$db = null ;

132

?>

C.1.3 Get user, by IP

Listing C.3: PHP get user by IP address
1 <?php

/∗ Get User by name
3 ∗ What t h i s f i l e does i s i t :

∗ 1) Creates connect ion to database .
5 ∗ 2) Ret r i eve the data being send .

∗ 3) Query the database and r e t u r n s the r e s u l t .
7 ∗ 4) Close database connect ion .

∗/
9 e r r o r r e p o r t i n g (0) ;

r e q u i r e o n c e ’ db/connectDB . php ’ ; // connect to a database .
11

// Retr i eve the data .
13 $name = $ POST [’NAME’] ;

$lastname = $ POST [’LASTNAME’] ;
15 $nick = $ POST [’NICK ’] ;

$name = $name . ”%” ;
17 $lastname = $lastname . ”%” ;

$nick = $nick . ”%” ;
19

$ r e s u l t a r r a y = array () ;
21 i f ($stmt = $db−>prepare (”SELECT ∗ FROM ‘ Users ‘ WHERE

‘ Nickname ‘ LIKE : n ick AND ‘Name‘ LIKE : name AND ‘ Lastname ‘ LIKE :
lastname LIMIT 10”)) {

23 $stmt−>bindParam (” : n ick ” , $nick , PDO: : PARAM STR) ;
$stmt−>bindParam (” : name” ,$name , PDO: : PARAM STR) ;

25 $stmt−>bindParam (” : lastname ” , $lastname , PDO: : PARAM STR) ;

123

APPENDIX C. PHP SOURCE CODES

$stmt−>execute () or d i e (” 500 ”) ;
27

while ($row = $stmt−>f e t c h (PDO: : FETCH ASSOC)) {
29 $ r e s u l t a r r a y [] = $row ;

}
31 echo j son encode ($ r e s u l t a r r a y) ;

}
33 else {

d i e (’ 500 prepare ’) ;
35 }

37 // Disconnect from database .
$db=null ;

39 ?>

C.1.4 Get user, by nickname

Listing C.4: PHP get IP of user
1 <?php

/∗ Get DNS
3 ∗ What t h i s f i l e does i s i t :

∗ 1) Creates connect ion to database .
5 ∗ 2) Ret r i eve the data being send .

∗ 3) Query the database and r e t u r n s the r e s u l t .
7 ∗ 4) Close database connect ion .

∗/
9 e r r o r r e p o r t i n g (0) ;

r e q u i r e o n c e ’ db/connectDB . php ’ ;
11

// Retr i eve the data .
13 $nick = $ POST [’NICK ’] ;

15 //Check that the nickname e x i s t s in the database
i f ($stmt = $db−>prepare (” S e l e c t COUNT(Nickname) FROM ‘ Users ‘ WHERE Nickname = : n ick LIMIT

0 ,1 ”)) {
17 $stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;

$stmt−>execute () or d i e (” 500 ”) ;
19 i f (! $ r e s u l t = $stmt−>fetchColumn (0)) {

d i e (” 404 ”) ; // Return i f the n ick doesn ’ t e x i s t .
21 }

}
23 else {

d i e (’ 500 ’) ;
25 }

124

APPENDIX C. PHP SOURCE CODES

27 // Ret r i eve the IP corre spond ing to the s p e c i f i c nickname
i f ($stmt = $db−>prepare (”SELECT IP FROM ‘ Users ‘ WHERE Nickname= : nick ”)) {

29 $stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;
$stmt−>execute () or d i e (” 500 ”) ;

31 $ r e s u l t = $stmt−>fetchColumn (0) ;
}

33 else {
d i e (’ 500 ’) ;

35 }
echo $ r e s u l t ; // Return the IP address

37 // Disconnect from database .
$db=null ;

39 ?>

C.1.5 Update image

Listing C.5: PHP update user image
1 <?php

e r r o r r e p o r t i n g (0) ;
3 r e q u i r e o n c e ’ db/connectDB . php ’ ;

d e f i n e (’UPLOAD DIR ’ , ’ images / ’) ; // Def ine the user image d i r e c t o r y
5

// Retr i eve the data .
7 $nick = $ POST [’NICK ’] ;

$image = $ POST [’IMAGE ’] ;
9

//Check that the nickname e x i s t s in the database
11 i f ($stmt = $db−>prepare (” S e l e c t COUNT(Nickname) FROM ‘ Users ‘ WHERE Nickname = : n ick LIMIT

0 ,1 ”)) {
$stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;

13 $stmt−>execute () or d i e (” 500 ”) ;
i f (! $ r e s u l t = $stmt−>fetchColumn (0)) {

15 d i e (” 404 ”) ; // Return i f the nickname doesn ’ t e x i s t .
}

17 }
else {

19 d i e (’ 500 ’) ;
}

21

$image = s t r r e p l a c e (’ data : image/ jpeg ; base64 , ’ , ’ ’ , $image) ;
23 $image = s t r r e p l a c e (’ ’ , ’+ ’ , $image) ;

$data = base64 decode ($image) ;
25 $imagename = $nick . ’ . jpg ’ ;

$ f i l e = UPLOAD DIR . $imagename ;
27 $tmp = ’ http : / / 1 9 2 . 1 6 8 . 0 . 1 6 5 / images / ’ . $imagename ;

125

APPENDIX C. PHP SOURCE CODES

$stmt−>bindParam (’ : image ’ , $tmp , PDO: : PARAM STR) ; //Bind the abso lutepath to the image .
29 //Get remote image ($data) and s t o r e i t in l o c a l path ($ f i l e) .

i f (f i l e p u t c o n t e n t s ($ f i l e , $data) !== FALSE) {
31 echo ’ 200 ’ ;

}
33 else d i e (’ 500 ’) ;

}
35

$db = null ;
37 ?>

C.1.6 Check if nick exists

Listing C.6: PHP check if nick is available
1 <?php

/∗ Check Nickname
3 ∗ What t h i s f i l e does i s i t :

∗ 1) Creates connect ion to database .
5 ∗ 2) Ret r i eve the data being send .

∗ 3) Check r e t r i e v e d data with database entry .
7 ∗ 4) Close database connect ion .

∗/
9

e r r o r r e p o r t i n g (0) ; //Turn e r r o r r e p o r t i n g o f f , f o r s e c u r i t y reasons .
11 // 1 : Connect to a database / d i s connec t handler .

r e q u i r e o n c e ’ db/connectDB . php ’ ;
13

// 2 : Ret r i eve the data
15 $nick = $ POST [’NICK ’] ;

17 // 3 : Check that the nickname does not e x i s t a l r eady
i f ($stmt = $db−>prepare (” S e l e c t COUNT(Nickname) FROM ‘ Users ‘ WHERE Nickname = : n ick LIMIT

0 ,1 ”)) {
19 $stmt−>bindParam (’ : n ick ’ , $nick , PDO: : PARAM STR) ;

$stmt−>execute () or d i e (” 500 ”) ;
21 i f ($ r e s u l t = $stmt−>fetchColumn (0)) {

d i e (” 409 ”) ; // Nick e x i s t s message ;
23 }

}
25 else {

d i e (’ 500 ’) ; // I n t e r n a l s e r v e r e r r o r message .
27 }

29 echo ’ 200 ’ ; // Return 200 , i f n ick does not a l r eady e x i s t .

126

APPENDIX C. PHP SOURCE CODES

31 // 4 : Close database connect ion
$db = null ;

33

?>

C.2 Testing and Clean-Up Scripts

C.2.1 Clean up expired IP addresses

Listing C.7: Clean up old IP addresses
<?php

2 /∗
Clean exp i red IP a d dr e s s e s

4 1) E s t a b l i s h connect ion to MySQL database
2) Check v a l i d i t y o f IP address

6 3) Remove i n v a l i d a d d r e s s e s
4) Close database connect ion

8 ∗/

10 e r r o r r e p o r t i n g (0) ; //Turn e r r o r r e p o r t i n g o f f , f o r s e c u r i t y reasons .
// 1 : Connect to a database / d i s connec t handler .

12 try{
$db = new PDO(’ mysql : dbname=d2dphone ; host =127 .0 .0 .1 ’ , ’ d2dphone ’ , ’ awesome1 ’) ;

14 }
catch (PDOException $ex) {

16 echo ’ Connection f a i l e d : ’ . $ex−>getMessage () ;
}

18 // 2 : Check v a l i d i t y o f IP a d d r e s s e s .
i f ($stmt = $db−>prepare (” S e l e c t Nickname FROM ‘ Users ‘ WHERE ‘ Expires ‘ > NOW() ”)) {

20 $stmt−>execute () or d i e () ;
$ r e s u l t = $stmt−>f e t c h A l l (PDO: :FETCH COLUMN, 0) ;

22 // 3 : Remove i n v a l i d a d d r e s s e s .
$stmt = $db−>prepare (”UPDATE ‘ Users ‘ SET IP = ’ ’ , Expires = ’ ’ WHERE Nickname = : nick ”) ;

24 f o r e a c h ($ r e s u l t as $temp) {
$stmt−>bindParam (’ : n ick ’ , $temp ,PDO: : PARAM STR) ;

26 $stmt−>execute () or d i e () ;
}

28 }
// 4 : Close database connect ion .

30 $db=null ;
?>

127

APPENDIX C. PHP SOURCE CODES

C.2.2 Calculate Raspberry Pi uptime

Listing C.8: Log Raspberry Pi uptime
1 #! bin /bash

3 # I n i t i a l i z e the time v a r i a b l e s
h=0

5 m=0
Def ine the cur rent time

7 now=$ (date +”%m %d %Y”)
Run for ever

9 while :
do

11 # Def ine the uptime and p r i n t to l og f i l e
temp=”Uptime : $h :$m”

13 echo $temp > /home/ pi / l o g s / counter $now . l og

15 #slepp for 60 seconds
s l e e p 60

17

I n c r e a s e the minutes and hours counter v a r i a b l e .
19 i f [$m − l t 59] ; then

m=$ (($m +1))
21 else

m=0
23 h=$ (($h +1))

f i
25 done

C.2.3 Stress test add user script

Listing C.9: Continuously add new users to database
1 <?php

$ u r l = ’ http : / / 1 9 2 . 1 6 8 . 0 . 1 6 5 / add user . php ’ ;
3

$counter = 1500 ;
5 $ la tency = array () ;

$accepted = 0 ;
7 for ($x=0;$x<=$counter ; $x++) {

$rand = subs t r (md5(microtime ()) , rand (0 ,26) ,10) ;
9 $rand1 = subs t r (md5(microtime ()) , rand (0 ,26) ,10) ;

$rand2 = subs t r (md5(microtime ()) , rand (0 ,26) ,10) ;

128

APPENDIX C. PHP SOURCE CODES

11 $data = array (’NAME’=>$rand , ’LASTNAME’=>$rand1 , ’IMAGE ’=> ’ \var\www\ image . jpg ’ , ’NICK ’=>

$rand2) ;
$opt ions = array (

13 ’ http ’ => array (
’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,

15 ’ method ’ => ’POST ’ ,
’ content ’ => h t t p b u i l d q u e r y ($data) ,

17)
) ;

19

$context = s t r e a m c o n t e x t c r e a t e ($opt ions) ;
21 $ la tency [$x] = −microtime (true) ;

$ r e s u l t = f i l e g e t c o n t e n t s ($ur l , false , $context) ;
23 $ la tency [$x] += microtime (true) ;

i f ($ r e s u l t == ’ 200 ’) {
25 $accepted++;

}
27

}
29

$data = $accepted . ” o f ” . $counter . ” accepted \n” ;
31 f i l e p u t c o n t e n t s (’ l a t e n c y ’ . $argv [1] . ’ . txt ’ , va r expor t ($ latency , true) , FILE APPEND |

LOCK EX) ;
f i l e p u t c o n t e n t s (’ r e p o r t ’ . $argv [1] . ’ . txt ’ , $data , FILE APPEND | LOCK EX) ;

33

?>

C.2.4 Stress test get user by nickname

Listing C.10: Continuously retrieve user data by nickname
<?php

2 $ u r l = ’ http : / / 1 9 2 . 1 6 8 . 0 . 1 6 5 / g e t i p . php ’ ;

4 $counter = 1500 ;
$ la t ency = array () ;

6 $accepted = 0 ;
for ($x=0;$x<=$counter ; $x++) {

8 $data = array (’NICK ’=> ’ habbiz ’) ;
$opt ions = array (

10 ’ http ’ => array (
’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,

12 ’ method ’ => ’POST ’ ,
’ content ’ => h t t p b u i l d q u e r y ($data) ,

14)
) ;

129

APPENDIX C. PHP SOURCE CODES

16

$context = s t r e a m c o n t e x t c r e a t e ($opt ions) ;
18 $ la tency [$x] = −microtime (true) ;

$ r e s u l t = f i l e g e t c o n t e n t s ($ur l , false , $context) ;
20 $ la tency [$x] += microtime (true) ;

22 }
f i l e p u t c o n t e n t s (’ l a t e n c y g e t i p ’ . $argv [1] . ’ . txt ’ , va r expor t ($ latency , true) ,

FILE APPEND | LOCK EX) ;
24 ?>

C.2.5 Start add user stress test

Listing C.11: Spawn multiple instances of add new user stress
<?php

2 for ($ j =0; $j <10; $ j++){
$pipe [$ j] = popen (’ php s t r e s s a d d u s e r . php ’ . $j , ’w ’) ;

4 s l e e p (1) ;
}

6

for ($ j =0; $j <10;++$j) {
8 p c l o s e ($pipe [$ j]) ;

}
10 ?>

C.2.6 Start get ip stress test

Listing C.12: Spawn multiple instances of retrieve user data stress
<?php

2 for ($ j =0; $j <10; $ j++){
$pipe [$ j] = popen (’ php s t r e s s g e t i p . php ’ . $j , ’ r ’) ;

4 s l e e p (1) ;
}

6

for ($ j =0; $j <10;++$j) {
8 p c l o s e ($pipe [$ j]) ;

}
10 ?>

130

APPENDIX C. PHP SOURCE CODES

C.3 Simulation Scripts

Listing C.13: Add two new users to the database
<?php

2 $ u r l = ’ http : / / 1 2 7 . 0 . 0 . 1 / add user . php ’ ;
$data = array (’NAME’=> ’ Donald Duck1 ’ , ’LASTNAME’=> ’ User ’ , ’IMAGE ’=> ’ abcde fgh i jk lmnopqrs t ’ , ’

NICK ’=> ’ donald1dsg ’) ;
4 $opt ions = array (

’ http ’ => array (
6 ’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,

’ method ’ => ’POST ’ ,
8 ’ content ’ => h t t p b u i l d q u e r y ($data) ,

)
10) ;

12 $context = s t r e a m c o n t e x t c r e a t e ($opt ions) ;
$ r e s u l t = f i l e g e t c o n t e n t s ($ur l , false , $context) ;

14 var dump ($ r e s u l t) ;

16 $data2 = array (’NAME’=> ’ Test ’ , ’LASTNAME’=> ’ User1 ’ , ’IMAGE ’=> ’ abcde fgh i jk lmnopqrs t ’ , ’NICK ’=> ’
Testerdg ’) ;

$opt ions2 = array (
18 ’ http ’ => array (

’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,
20 ’ method ’ => ’POST ’ ,

’ content ’ => h t t p b u i l d q u e r y ($data2) ,
22)

) ;
24

$context2 = s t r e a m c o n t e x t c r e a t e ($opt ions2) ;
26 $ r e s u l t 2 = f i l e g e t c o n t e n t s ($ur l , false , $context2) ;

var dump ($ r e s u l t 2) ;
28

?>

Listing C.14: Check if nickname is already in the database
1 <?php

$ u r l = ’ http : / / 1 2 7 . 0 . 0 . 1 / check n i ck . php ’ ;
3 $data = array (’NICK ’=> ’ donald1dsg ’) ;

$opt ions = array (
5 ’ http ’ => array (

’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,
7 ’ method ’ => ’POST ’ ,

’ content ’ => h t t p b u i l d q u e r y ($data) ,

131

APPENDIX C. PHP SOURCE CODES

9)
) ;

11

$context = s t r e a m c o n t e x t c r e a t e ($opt ions) ;
13 $ r e s u l t = f i l e g e t c o n t e n t s ($ur l , false , $context) ;

var dump ($ r e s u l t) ;
15

$data2 = array (’NICK ’=> ’ Tester ’) ;
17 $opt ions2 = array (

’ http ’ => array (
19 ’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,

’ method ’ => ’POST ’ ,
21 ’ content ’ => h t t p b u i l d q u e r y ($data2) ,

)
23) ;

25 $context2 = s t r e a m c o n t e x t c r e a t e ($opt ions2) ;
$ r e s u l t 2 = f i l e g e t c o n t e n t s ($ur l , false , $context2) ;

27 var dump ($ r e s u l t 2) ;

29 ?>

Listing C.15: Retrieve all information of two users from the database based on nickname
1 <?php

$ u r l = ’ http : / / 1 2 7 . 0 . 0 . 1 / g e t i p . php ’ ;
3 $data = array (’NICK ’=> ’ donald1dsg ’) ;

$opt ions = array (
5 ’ http ’ => array (

’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,
7 ’ method ’ => ’POST ’ ,

’ content ’ => h t t p b u i l d q u e r y ($data) ,
9)

) ;
11

$context = s t r e a m c o n t e x t c r e a t e ($opt ions) ;
13 $ r e s u l t = f i l e g e t c o n t e n t s ($ur l , false , $context) ;

var dump ($ r e s u l t) ;
15

$data2 = array (’NICK ’=> ’ Tester ’) ;
17 $opt ions2 = array (

’ http ’ => array (
19 ’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,

’ method ’ => ’POST ’ ,
21 ’ content ’ => h t t p b u i l d q u e r y ($data2) ,

)
23) ;

132

APPENDIX C. PHP SOURCE CODES

25 $context2 = s t r e a m c o n t e x t c r e a t e ($opt ions2) ;
$ r e s u l t 2 = f i l e g e t c o n t e n t s ($ur l , false , $context2) ;

27 var dump ($ r e s u l t 2) ;

29 ?>

Listing C.16: Retrieve all information of two users from the database based on IP address
1 <?php

$ u r l = ’ http : / / 1 2 7 . 0 . 0 . 1 / g e t u s e r . php ’ ;
3 $data = array (’ IP ’=> ’ 1 0 . 0 . 0 . 2 ’) ;

$opt ions = array (
5 ’ http ’ => array (

’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,
7 ’ method ’ => ’POST ’ ,

’ content ’ => h t t p b u i l d q u e r y ($data) ,
9)

) ;
11

$context = s t r e a m c o n t e x t c r e a t e ($opt ions) ;
13 $ r e s u l t = f i l e g e t c o n t e n t s ($ur l , false , $context) ;

var dump ($ r e s u l t) ;
15 ?>

Listing C.17: Test that the server allocates a new IP address to users and that it returns the
correct information

1 <?php
$ u r l = ’ http : / / 1 2 7 . 0 . 0 . 1 / update ip . php ’ ;

3 $data = array (’NICK ’=> ’ donald1dsg ’ , ’ IP ’=> ’ 1 0 . 0 . 0 . 2 ’) ;
$opt ions = array (

5 ’ http ’ => array (
’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,

7 ’ method ’ => ’POST ’ ,
’ content ’ => h t t p b u i l d q u e r y ($data) ,

9)
) ;

11

$context = s t r e a m c o n t e x t c r e a t e ($opt ions) ;
13 $ r e s u l t = f i l e g e t c o n t e n t s ($ur l , false , $context) ;

var dump ($ r e s u l t) ;
15

$data2 = array (’NICK ’=> ’ Tester ’ , ’ IP ’=> ’ 1 9 2 . 1 6 8 . 0 . 1 ’) ;
17 $opt ions2 = array (

’ http ’ => array (

133

APPENDIX C. PHP SOURCE CODES

19 ’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,
’ method ’ => ’POST ’ ,

21 ’ content ’ => h t t p b u i l d q u e r y ($data2) ,
)

23) ;
$data3 = array (’NICK ’=> ’ Tester ’ , ’ IP ’=> ’ 1 9 2 . 1 6 8 . 0 . 2 ’) ;

25 $opt ions3 = array (
’ http ’ => array (

27 ’ header ’ => ” Content−type : a p p l i c a t i o n /x−www−form−ur lencoded \ r \n” ,
’ method ’ => ’POST ’ ,

29 ’ content ’ => h t t p b u i l d q u e r y ($data3) ,
)

31) ;

33 $context3 = s t r e a m c o n t e x t c r e a t e ($opt ions3) ;
$ r e s u l t 3 = f i l e g e t c o n t e n t s ($ur l , false , $context3) ;

35 var dump ($ r e s u l t 3) ;

37 ?>

134

Appendix D

Android Source Code Overview

In order to provide some overview of the complexity of the application, we have used an
metric plugin which supports Eclipse [33]. By using this plugin we are able to get useful
information such as total line of Java codes. It should be mentioned that the total amount
of source code which is represented in this appendix is partially from the Manet Manager.
Even though most of this code has been edited, modified or completely re-coded, we believe
it should be mentioned. This has also been stated several times in Chapter 3 and 4.

In Table D.1 we can see some general information about the application. In Section D.1
we have listed every Java class with its respected code length. Finally in Section D.2 we
have listed every XML class for the UI with its respected code length.

Total line of Java codes 8846
Total line of XML codes 1992
Number of Java classes 106
Number of XML classes 27
Number of attributes 400
Number of static attributes 276
Number of methods 553
Number of packages 13
Number of static methods 765
Method lines of codes 5266

Table D.1: Android code data analysis.
135

APPENDIX D. ANDROID SOURCE CODE OVERVIEW

D.1 Java Project Structure

Package name Class name Lines of code

uia.d2d.install FinalStage 169
uia.d2d.install InstallFragment 1 34
uia.d2d.install InstallFragment 2 52
uia.d2d.install LoadRegister 215
uia.d2d.install MainInstaller 65
uia.d2d.localdb DbAdapter 217
uia.d2d.manager AlertDialogClass 92
uia.d2d.manager ApproveCall 66
uia.d2d.manager AutoReplyText 47
uia.d2d.manager Calling 66
uia.d2d.manager ChangeSettingsActitivy 442
uia.d2d.manager CommunicationListener 108
uia.d2d.manager CommunicationMaster 139
uia.d2d.manager CommunicationService 55
uia.d2d.manager CustomSimpleCursorAdapter 59
uia.d2d.manager EditIgnoreListActitivy 130
uia.d2d.manager Identifiers 56
uia.d2d.manager MainActivity 651
uia.d2d.manager ManetManagerApp 132
uia.d2d.manager MessageService 128
uia.d2d.manager NavDrawerItem 42
uia.d2d.manager NavDrawerListAdapter 50
uia.d2d.manager PopupDialog 53
uia.d2d.manager Protocol 62
uia.d2d.manager ReceiveMMSservice 88
uia.d2d.manager ReceiveVideoService 79
uia.d2d.manager RtpService 128

136

APPENDIX D. ANDROID SOURCE CODE OVERVIEW

uia.d2d.manager SendMessageActivity 220
uia.d2d.manager SMS 397
uia.d2d.manager Validation 152
uia.d2d.manager Video 363
uia.d2d.manager ViewLogActivity 127
uia.d2d.manager ViewLogActivityHelper 29
uia.d2d.manager ViewMessageActivity 97
uia.d2d.manager ViewRoutingInfoActivity 129
uia.d2d.manager ViewVideoActivity 94
uia.d2d.manager.adapter LruBitmapCache 29
uia.d2d.manager.adapter PlacesListAdapter 47
uia.d2d.manager.adapter PopupDialog 51
uia.d2d.requests AddUser 69
uia.d2d.requests GetNick 65
uia.d2d.requests ServerReply 30
uia.d2d.requests UpdateIP 71
uia.d2d.service CircularStringBuffer 26
uia.d2d.service LogObserver 4
uia.d2d.service ManetHelper 220
uia.d2d.service ManetObserver 16
uia.d2d.service ManetParser 51
uia.d2d.service.core ManetBootBroadcastReceiver 17
uia.d2d.service.core ManetCustomBroadcastReceiver 18
uia.d2d.service.core ManetService 133
uia.d2d.service.core ManetServiceHelper 615
uia.d2d.service.routing Dijkstra 80
uia.d2d.service.routing Edge 34
uia.d2d.service.routing HelloMessage 19
uia.d2d.service.routing Node 50
uia.d2d.service.routing OlsrProtocol 216
uia.d2d.service.routing Route 27

137

APPENDIX D. ANDROID SOURCE CODE OVERVIEW

uia.d2d.service.routing RoutingProtocol 13
uia.d2d.service.routing SimpleProactiveProtocol 489
uia.d2d.service.routing SimpleReactiveProtocol 38
uia.d2d.service.system CoreTask 446
uia.d2d.service.system DeviceConfig 155
uia.d2d.service.system DnsmasqConfig 28
uia.d2d.service.system HostapdConfig 36
uia.d2d.service.system ManetConfig 462
uia.d2d.service.system ManetConfigHelper 80
uia.d2d.service.system RoutingIgnoreListConfig 23
uia.d2d.service.system TiWlanConf 39
uia.d2d.service.system WpaSupplicant 54
uia.d2d.service.legal EulaHelper 54
uia.d2d.service.legal EulaObserve 4
uia.d2d.helpers onAddNewUser 4

Table D.2: Android Java class structure.

D.2 XML Project Structure

Class name Lines of code

aboutview 99
callanswerui 85
callui 95
clientrow 65
contacts adapter 147
contacts adapter2 73
drawer listview item 33
finalstage 97
ignoreviewwrapper 29

138

APPENDIX D. ANDROID SOURCE CODE OVERVIEW

loadregister 43
logview 38
main installfragment 14
main 66
navigation drawer info 53
nonetfilterview 34
norootview 25
routinginfoview 41
sendmessageview 61
settingsview 120
settingsviewrapper 29
sms 168
smsview 99
step0 67
step1 72
toolbar 10
video 203
videoview 126

Table D.3: Android XML class structure.

139

Appendix E

Android Bugs and Suggested
Solutions

This appendix has as purpose to provide detailed guidelines of known bugs that should be
looked at or fixed in further work.

• When onPeersUpdated is triggering in MainActivity, it has tendence to double and
duplicate users into the database.
Suggested Solution: The datbabase could define that the IP field should be unique
to avoid duplication.

• Tilting the phones/tablets in some UI classes results in layout floating out of bound.
The last part of Setup has this problem.
Suggested Solution: The application needs to be styled and aligned correcly in the
XML files so it supports to be tilted, and renders correctly to differenct screen sizes.

• The initialization setup does in some cases tend to do odd operations. In the end of
the setup where the application enters the MainActivity and reloads the OLSR service
in order to have reference to the MainActivity it can bounce back to the setup, which
it should not do.

140

APPENDIX E. ANDROID BUGS AND SUGGESTED SOLUTIONS

Suggested Solution: This issue is currently unknown why it actually does bounce
back. One solution could perhaps be to force-close the activity that is referrenced to
the setup. This need to be done in the beginning of the MainActivity class.

• When the application sends request to register and obtain an valid IP from the server,
the applicaton can in rare cases not manage to either send or obatin the response from
the server. This could either be that the application gets an HttpException or the
server is currently not in the system.
Suggested Solution: This bug actually has to some extend a solution, where the
application gets closed if this step fail. Still, this bug should be handled in a better
way. For example, an re-attempt could be done, and/or pause the setup until it actually
manages to register and obtain valid IP from the server.

• If the system get more than 255 registered users it can result in IP-collisions. Currently
there is none method for Time-To-Live (TTL) on the IP-adresses.
Suggested Solution: The clients and server can deploy TTL on the IP-adresses.

• The voice establishment does curretly not have any busy tone and mechanism for using
speaker-phones.
Suggested Solution: By modifying the voice establishment from the Communication
class, it should be possible to listen for any input if the desired target is busy or have
declined the call.

• The application can freeze if one tries to transmit large files. This occur for both
picture and video services.
Suggested Solution: The system currently relies on receiving data on custom port
to the socket, and reading the bytes when the packets are decoded. Most likely the
issue occur when stacking the bytes, where it normally uses the RAM for caching
before saving the file. If the file is too large, we suspect that the Android’s native
garbage collector removes some of the retrieved data, resulting in weird behaviour on
the application on both transmitter and recipient.

• The application does curretly not have any indication if the router has announced HNA
and has connection to the Internet.

141

APPENDIX E. ANDROID BUGS AND SUGGESTED SOLUTIONS

Suggested Solution: This could be checked/verified by using a green color that
indicate if HNA is announced and the router has Internet connection.

142

	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Background and Motivation
	Project Goal
	Problem Statement
	Scope
	Limitations

	Methodology
	General description
	Detailed description

	Report Outline

	Related Work, Enabling Technologies and Tools
	Related Work
	On-the-fly establishment of multi-hop communication
	Realizing multi-hop D2D communications
	Serval project
	Resilient D2D communication in emergency situations
	D2D communication with static IP address allocation
	D2D communication with dynamic IP address allocation
	D2D communication with enhanced secure services

	D2D Communication in Cellular Networks
	Android Smartphones
	Wireless Ad Hoc Networks and OLSR Daemon
	Tools
	OpenWRT
	LAMP
	phpMyAdmin
	Eclipse
	ADB
	Logcat
	Wireshark

	Design of the Current Solution
	Initial Plan
	System Design Overview
	Design of the Constituent Components
	Embedded system
	Android smartphones
	System prototype

	Chapter Summary

	Implementation
	Network Topology
	OLSR Routers
	Raspberry Pi based Hybrid IP Allocation Server
	MySQL user database
	Apache web server
	PHP user framework
	Testing and clean-up scripts

	Android Application
	Android initialization
	Listview functionality
	HTTP media transmissions

	Illustration of the Implemented Prototype
	Chapter Summary

	Experiments and Results
	Validation of the Implementation
	OLSR routers
	Raspberry Pi based hybrid IP allocation server
	Android application

	Test Scenarios
	Scenario I: Hybrid IP Address Allocation
	Android self-generated IP
	Debugging log
	Smartphone to Raspberry Pi communication

	Scenario II: Service Provisioning
	Scenario III: Stress testing
	Raspberry Pi database
	Network HTTP throughput

	Scenario IV: Quantitative Performance Measurements
	Delay and packet loss
	Network lifetime on battery

	Scenario V: Power Consumption of Android Smartphones
	Without data traffic
	Continuous voice transmission
	Continuous SMS transmission
	Comparison

	Chapter Summary

	Discussions
	Related Projects
	Hardware Limitations
	Software Limitations
	Result Observations

	Conclusions and Further Work
	Conclusions
	Contributions
	Further Work

	Bibliography
	Appendices
	Installation Guide
	Raspberry Pi based Hybrid IP Allocation Server
	Installing the OS
	Updating the OS
	Installing the LAMP package components and phpMyAdmin
	Configuring installed packages

	OLSR Routers
	Install necessary packages
	Configure interfaces
	Configure OLSR

	Android Smartphones
	ROOT privliges and custom kernel

	Android Snippets and Logs
	Tests
	Debugging logs
	Snippet code

	PHP Source Codes
	PHP Source Code
	Add a new user
	Update IP address
	Get user, by IP
	Get user, by nickname
	Update image
	Check if nick exists

	Testing and Clean-Up Scripts
	Clean up expired IP addresses
	Calculate Raspberry Pi uptime
	Stress test add user script
	Stress test get user by nickname
	Start add user stress test
	Start get ip stress test

	Simulation Scripts

	Android Source Code Overview
	Java Project Structure
	XML Project Structure

	Android Bugs and Suggested Solutions

