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Abstract

Today, public areas across the globe are monitored by an increasing amount of surveillance
cameras. This widespread usage has presented an ever-growing volume of data that cannot
realistically be examined in real-time. Therefore, efforts to understand crowd dynamics have
brought light to automatic systems for the detection of anomalies in crowds. This thesis
explores the methods used across literature for this purpose, with a focus on those fusing
dense optical flow in a feature extraction stage to the crowd anomaly detection problem.
To this extent, five different deep learning architectures are trained using optical flow maps
estimated by three deep learning-based techniques. More specifically, a 2D convolutional
network, a 3D convolutional network, and LSTM-based convolutional recurrent network,
a pre-trained variant of the latter, and a ConvLSTM-based autoencoder is trained using
both regular frames and optical flow maps estimated by LiteFlowNet3, RAFT, and GMA
on the UCSD Pedestrian 1 dataset. The experimental results have shown that while prone
to overfitting, the use of optical flow maps may improve the performance of supervised
spatio-temporal architectures.
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Chapter 1

Introduction

Surveillance cameras are increasingly being used in public spaces across the globe for the
purpose of preserving public safety and social order. By the end of 2021, the number of
closed-circuit television (CCTV) surveillance cameras were estimated to grow beyond one
billion globally [1], with an ever-increasing demand expected as smart city infrastructure
and artificial intelligence (AI) based capabilities expand [2]. In this context, the monitoring
capability of law enforcement agencies are unable to keep up with the growing volume of
data, thus facing a pressing need for the development of intelligent and automatic surveil-
lance systems in the reality of growing threats to social security. To this extent, areas such
as object detection [3] or facial recognition [4] have been broadly studied in the last decades.

Subject of active research from different disciplines, especially within social studies and
computer vision, crowd behavior analysis is increasingly attracting attention as a way to
understand underlying crowd mechanisms that could be paramount for the safety of public
spaces [5]. With an increase of population and diversity of human activities, this area aims
to extract meaningful information of how individuals behave when they are part of a larger
group. However, there is a lack of consensus on what crowd behavior analysis constitutes,
due to the ambiguous nature of crowded scenes. For example, a group of ten individuals may
be considered a crowd in a park, but hardly so in other environments such as the Shibuya
Crossing in Japan. This issue is exacerbated when tackling sub-topics of the field; recent
studies have attempted to adopt a common taxonomy with crowd anomaly detection at the
forefront of the state-of-the-art |5, 6]. Notably, this topic aims to identify changing crowd
behaviors in a scene that differ from the conventional or expected behavior, based on a se-
lection of predictive crowd features that determine the relation between individuals and the
crowd they belong to |7, 8]. In this case, anomalous behavior is intrinsically ambiguous and
strongly dependent on the norms defined in the considered environment |9, §]. For instance,
a crowded scene of running individuals may be considered normal in one environment such as
a marathon, contrary to an environment such as a pilgrimage site. Moreover, the wide range
of changing circumstances between environments, such as illumination, angles, occlusion,
seasons, and weather, bring forth additional complexity. As a result, detecting anomalous—
or abnormal—events in real-world CCTV footage pose an important, yet challenging task,
particularly considering their spatio-temporal nature.

An emerging trend for crowd behavior analysis is the use of deep learning-based models,
which recently have achieved remarkable advances in computer vision tasks. These mod-
els are suitable for automatically analyzing video sources such as those from CCTVs, and
thereby have seen widespread use for the monitoring of crowded scenes [4|. In turn, numer-
ous deep learning methods have been employed in an attempt to solve the challenges of the
crowd anomaly detection problem. In general, these challenges are two-fold: the lack of spe-
cificity, and insufficiency of data. In terms of supervised learning models requiring labeled
data, human activities and interactions are difficult to represent and abnormal events may



be difficult to obtain or simply not have happened yet in a considered environment. Fur-
thermore, this approach lacks practicality due to the time consumption required to manually
label video footage. As a consequence, these models may be inadequate in understanding the
nature of an anomaly, and thus the task is often considered an unsupervised rather than a
supervised learning problem. To this end, datasets are commonly separated between training
videos that contain only normal activities, and testing videos that consist of both normal
and abnormal activities. An unsupervised model will be able to catch the normality existing
in the training dataset, and during testing provide a prediction of whether any activity that
deviates from the learned normality is an anomaly. In essence, the crowd anomaly detection
problem can be seen as a binary classification task—each frame is predicted to either belong
to a normal class or an abnormal class. Nevertheless, supervised deep learning-based meth-
ods have seen increased usage as of late due to the richness of features Convolutional Neural
Networks (CNN) are able to extract [10, 11].

The extraction of proper features play a vital role in how crowd anomaly detection methods
are able to capture the wide variety of anomalies present in crowded scenes [12]. While CNNs
are able to automatically extract key features without human effort, hand-crafted feature
extraction plays a larger role in the effectiveness of unsupervised detection methods [9, 13].
A common metric is the estimation of motion patterns that capture spatial and temporal
behaviors within a crowded scene, such as optical flow [14], histogram of oriented gradients
[15], and trajectory-based methods [16]. With the advancement of deep learning, optical
flow has emerged as a powerful technique to model spatiotemporal correspondence in videos,
and has been wildly applied in various computer vision tasks such as autonomous driving,
action recognition, scene understanding, and robotics [17]. In short, these methods aim to
represent the pixel motion between two consecutive frames in terms of velocity and direc-
tion. Subsequently, some studies have applied this in the feature extraction stage of deep
learning methods for the crowd anomaly detection problem, with impressive results [9, 18,
19]. Based on these studies, this thesis aims to evaluate how different optical flow methods
may improve the classification of both unsupervised and supervised deep learning models for
the crowd anomaly detection problem, without the need for extensive network modifications.

Furthermore, there is a pressing need for fair and interpretable deep crowd anomaly detection
methods [20, 21]|. By and large, most studies have mainly focused on the detection accuracy
aspect without concern for preserving the privacy of individuals. From the perspective of
both research ethics and policing, the mitigation of any potential bias such as gender or race,
or risk toward identifying features is of paramount importance [20, 22]|. Accordingly, some
studies have explored the anomaly explanation issues [23, 24] and data anonymization [25,
26, 27].

The rest of this thesis is organized as follows: Chapter 2 provides preliminary background
theory and introduces the fundamental elements of this thesis. Chapter 3 reviews related
work in terms of optical flow estimation and the crowd anomaly detection methods that
incorporate this in the feature extraction stage. Chapter 4 describes the methodical approach
taken to attain the goals of this thesis, including discussions of the data and different model
architectures. Chapter 5 provides details of the experiments conducted and the evaluation of
each approach. Chapter 6 discusses both remaining challenges and the potential for future
work. Finally, Chapter 7 concludes the paper.



Chapter 2

Theoretical Background

This chapter aims to provide the fundamental theory of elements that lay the foundation for
the topics and work covered in following chapters. First, an introduction to artificial neural
networks is outlined from their conception to the multiple architectures used in this thesis.
Second, the essence of optical flow estimation is described and looks at the evolution of both
traditional and deep learning-based methods. Lastly, the various features and methods used
in literature across the last decade for the crowd anomaly detection problem is summarized.

2.1 Artificial Neural Networks

Artificial neural networks (ANN), or simply neural networks (NN), reflect the behavior of
the human brain by loosely modeling the interconnectedness between biological neurons.
These artificial neurons aim to mimic how biological neurons signal one another based on
how strong their connection is, and allow computing systems to learn complex tasks without
human intervention. As such, ANNs have seen widespread usage in a wide variety of discip-
lines as computational power has improved, such as object recognition, face identification,
autonomous vehicle technology, cancer detection, and more. This section follows the devel-
opment of ANNs from their conception to the introduction of architectures utilized in the
methodical approach of this thesis.

2.1.1 The Perceptron

With the aim of creating a model that would mimic the functionality of a biological neuron,
McCulloch and Pitts proposed in 1943 the first computational model of a neuron [28]. By
means of propositional logic, given a set of Boolean inputs z; ...x,, and weights w; ... w,
representing a connections strength, each neuron forms a weighted sum z of its inputs and
passes it through an activation function deciding if the neuron should fire or not. Forming
the Threshold Logic Unit (TLU), or the McCulloch-Pitts model as shown in Figure 2.1, a
threshold 6 was proposed as the activation to determine the output y = f(z) as shown in
Equation 2.1. Yet, the TLU could not explicitly learn weights, and thus could not emulate
how the biological brain learns over time. It was not before over a decade later an extension
of this model was proposed by Rosenblatt in 1958 called the perceptron [29]. His key contri-
bution was the introduction of a learning rule, able to modify the weights of each input as
described by [30, 31]. Essentially, the perceptron is a supervised, binary classifier. Meaning
it can be provided with a set of examples, i.e. a training set, and separate two distinct classes
by a linear decision boundary learned from comparing the output to the desired target result,
and using the learning rule to adjust the weights in order to move the outputs closer to the
targets. Thereby, the perceptron can be considered the foundational building block of neural
network architectures, and a single-layered network as it contains only one computational
layer.



1 ifz>40
f(Z)Z{O y (2.1)

Equation 2.1 illustrates the threshold function. Given a threshold of § = 2, the artificial
neuron would output y = 1 if the weighted sum passed through the activation function is
more than 2, otherwise y = 0.

2.1.2 Deep Neural Networks

In the pursuit of a more general framework to understand cognition, a pioneering neurocom-
puting group published a compendium called Parallel Distributed Processing (PDP) in 1986
[32]. In an interest to to train a neural network with multiple layers in a nonlinear fashion in
contrast to the perceptron, the idea of learning internal representations by backpropagation
was proposed by Rumelhart et al. [32]. By introducing hidden layers of neurons stacked
together (i.e. fully-connected, or dense), it would come to be known as a Multi-Layer Per-
ceptron (MLP), or a feed-forward network, as each output of a layer would be propagated to
the next layer as seen in Figure 2.2. Divided into two parts, the forward propagation phase
would feed each layer to the next and compute predictions and a measure of how well the
network performed. In their work, [32] measured the sum of squared errors, or the Mean
Squared Error (MSE). The backpropagation phase would propagate the error backward and
compute the gradient of the MSE with respect to the weight of each input and output pair,
and make adjustments to weights accordingly to reduce the error. Often used interchange-
ably in literature, the MLP can be considered the foundational architecture of deep neural
networks (DNN) [33]. The amount of hidden layers required to be considered deep is not
clearly defined [34], but the general consensus among researchers is two.
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Figure 2.2: A deep neural network in the shape of a multi-layer perceptron



2.1.3 Convolutional Neural Networks

The neocognitron, an NN proposed by Fukushima in 1980 [35], was inspired by studies of the
visual cortex of mammals and acquired the ability to recognize visual patterns irrespective
of translations or local distortions of the input through learning. This multi-layered network
introduced the concept of hierarchical layers connecting each neuron only to the neurons of a
small patch in the previous layer, or in the context of the visual cortex, their receptive fields.
By gradually reducing the spatial dimension of deeper layers through subsampling layers,
this architecture allows the network to concentrate on extracting local features of the input
space in shallow layers (e.g. lines, curves, etc.), and more global features (e.g. faces, objects,
etc.) in deeper layers as each respective receptive field expands [34, 36]. As a result, the
final layer of the neocognitron indirectly has a receptive field covering the entire input space
as illustrated by Fukushima in Figure 2.3. The benefit of this approach was that it avoided
pitfalls discovered in early DNNs—while in principle able to identify patterns with respect
to variation, such a network would lead to multiple neurons requiring similar weight patterns
positioned at various locations in the input, so as to detect distinctive patterns wherever they
appear on the input [37]. This would lead to an inefficient network architecture requiring
thousands, if not millions of parameters, and would require larger datasets with samples of
every possible variation. Over time, it was the combination of layers to extract features and
subsampling layers to reduce spatial resolution that gradually evolved into what we now call
convolutional neural networks (CNN) [37].

TS

Figure 2.3: Schematic diagram illustrating the interconnections between layers in the neocognitron
[35]

Widely used in the field of computer vision, the CNNs of today share the same basic ar-
chitecture to that of the neocognitron, and are typically fed a three-dimensional matrix of
pixels w x h x ¢ as input. Comprised of one or more convolutional layers followed by pooling
layers (i.e. subsampling) in-between, subsequent fully-connected layers perform classification
as in a feed-forward neural network as illustrated in Figure 2.4. In order to learn spatial
patterns, convolutional layers consist of learnable sets of feature extraction filters, or kernels.
Often used interchangeably in literature, kernels are defined as a two-dimensional matrix of
weights with size m x n applied to an input in a sliding fashion, whereas filters are a three-
dimensional m x n X ¢ structure of multiple kernels stacked together. Each channel of a filter
compose a kernel that will be convolved with the respective channel of an image.
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Figure 2.4: The architecture of a convolutional neural network including multiple convolutional and
pooling layers [38]

This convolution operation, which the convolutional layer derives its name from, computes
the output of neurons that are connected to local regions in the input and produces a feature
map from the dot product between the kernel weights and the neuron’s input [39]. In short,
given a kernel size of 3 x 3, a feature map is produced by looking at a 3 x 3 grid of pixels
in a sliding window from the output of the previous layer, extracting features as described
in Subsection 2.1.3 and illustrated in Figure 2.5. There are two common parameters when
applying filters—stride determines the number of pixels the filter moves for each step, and
padding which extends the area of an image such that the resulting feature map of the
convolutional operation preserves the dimensions of the input. The outcome of these layers
are shared weights across the input image, meaning the learned filters at each layer can be
applied across the whole of the image to account for variance. This property of CNNs is
essential, as it drastically reduces the number of parameters in contrast to regular DNNs.
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Figure 2.5: The sliding window technique of a kernel applied to an input in order to produce a
feature map

Furthermore, pooling layers similarly use a sliding window to downsample feature maps, fur-
ther causing a reduction of parameters. The most common pooling operation, max pooling,
applies a filter of a given stride and size to calculate the maximum value that appears in
each region. A max pool layer of size 2 x 2 with a stride of 2 will reduce the number of
features by a factor of 4, as illustrated in Figure 2.6.
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Figure 2.6: Max pool operation of size 2 x 2 and stride 2 x 2

2.1.4 3D Convolutional Neural Networks

When considering filters with multiple channels, such in the case of an RGB image, each
kernel is applied to each channel separately, and added together as the final output. This is
considered a two-dimensional convolution (2D CNN), as each kernel only moves across the
input along the height and width of each channel. On one hand, this approach is favorable
for solving image classification problems as image data contain spatial information only. On
the other hand, data that come in sequences, such as videos, include temporal information
vital for accurate classification. As a consequence of this, CNN-based approaches to video
classification problems have seen a multitude of developments in recent years to incorporate
spatio-temporal feature extraction. Among these methods, a more recent one is the use of
three-dimensional CNNs (3D CNNs) proposed by Ji et al. in 2013 to perform human-action
recognition in video sequences [40], and have since seen application to various domains such
as medical imaging [41] and crowd anomaly detection [42].

In contrast to 2D CNNs, both the temporal and spatial dimensions are captured by applying
convolutions in 3D space as illustrated in Figure 2.7c. Given an input sequence of size
w X h x| x ¢ where [ denotes the number of frames, the weights are defined by a filter of
m X n X ¢ kernels with size m x n x d where d is the kernel temporal depth, and m and
d denote the kernel spatial size. As a result, a 3D CNN is able to extract spatio-temporal
features by stacking multiple contiguous frames together and applying convolutions across
the resultant volume in the shape of cubes. A comparison of 2D and 3D convolutions are
shown in Figure 2.7.
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Figure 2.7: Comparison of 2D and 3D convolution operations



2.1.5 Recurrent Neural Networks

While 3D CNNs are a more recent development, the idea of NNs exhibiting temporal be-
havior can be traced back a lot further. Building upon the works of McCulloch and Pitt’s
theories of networks with circles [28], Rumelhart et al. first introduced the concept of re-
current neural networks (RNN) in 1985 [32], with Rumelhart’s student Jordan developing
the concept further only a year later [43]. Following this, numerous works using RNNs have

been published since, across a wide variety of application domains where data is sequential
[44].

[lustrated in Figure 2.8, wherein the unfolded representation is simply a way conceptualize
the network, RNNs cyclic nature is apparent and conveys their central idea. For an input
sequence x, a hidden state vector s represents past knowledge at any discrete time step ¢.
As such, for any given ¢, the hidden state from the previous time step ¢ — 1 along with with
the current input z; is used to derive the current hidden state s;, and so on. The hidden
state vector is illustrated as an RNN cell in Figure 2.9, and is simply a fully-connected layer
with a hyperbolic tangent (tanh) activation function. Essentially, RNNs are distinguished
by having working memory—hidden state from previous inputs influence the current input
and output, and thus is able to extract temporal dependencies. Moreover, every time step
of the sequence is processed using the same weight parameters denoted W, and leverage
backpropagation through time (BPTT) to determine gradients by summing the error at
each time step as opposed to feed-forward networks. By reusing weights, RNNs are able to
significantly reduce the number of neurons required to process long sequences of data.
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Figure 2.8: Representation of a recurrent neural network both folded and unfolded

A known limitation of RNNs is that of the vanishing or exploding gradient [15, 416]. As
the backpropagated gradients either grow or shrink at each time step, very deep networks
intrinsically cause an unstable gradient problem. To solve this, Hochreiter and Schmidhuber
presented the Long Short-Term Memory (LSTM) cell as illustrated in Figure 2.9 in 1997 [47].
As the name implies, an LSTM cell is capable of remembering short term dependencies over
long periods of time. An LSTM layer itself consists of a set of recurrently connected cells—
or memory blocks—each divided into three distinct gates: the input gate, the output gate,
and the forget gate. These gates are on their own a distinct NN, each with their respective
sigmoid activation function that output in an interval of [0, 1], and a pointwise multiplication
operation comparable to that of a filter (by the definition of the word) to determine what
to remember or what to forget. This is possible as the network is trained such that the
sigmoid activation outputs close to zero when an input is deemed irrelevant, and closer to
one when relevant. Thus each pointwise multiplication will be less or more influenced by a
lower or higher activation respectively. As opposed to an RNN cell with working memory
through hidden state, LSTM cells also maintain a cell state vector ¢ that each gate connects
with, representing the current long-term memory of the network. Hence, at any distinct
time step ¢, the current input from a sequence x;, the previous hidden state s;_;, and the
previous cell state ¢;_1, each gate can be described as follows. The forget gate decides which
parts of ¢;_1 should be forgotten given x; and s;_;. The input gate determines both what



information should be added to ¢;_1, and whether is it actually worth remembering. To do
this, it consists of two discrete NNs—sometimes referred to as the candidate gate [18], a
tanh activated NN outputs a value in the interval [—1,1], and a regular sigmoid activated
NN. The former generates a new update vector based on x; given the context of s, ; with
an impact determined by the tanh activation, whereas the latter determines the relevance
of the update vector. The combined vector of the pointwise multiplication is then added
to ¢;_1, resulting in the long-term memory of the network being updated. The output gate
decides the new s; and ¢; by applying a pointwise tanh of ¢; and passing it onto the resultant
sigmoid activation of z; and s;_; by pointwise multiplication, thus passing only the current
relevant information as output. Circling back to the gradient problem of RNNs, [19] details
a thorough explanation of how LSTMs prevent this when backpropagating. A more recent
variant of LSTM called the Gated Recurrent Unit (GRU) designed to be computationally
less expensive and easier to implement was proposed by Cho et al. [50] and has since been
used extensively [51].
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Figure 2.9: Comparison of RNN cell (left) and LSTM cell (right)

Although there is no common architecture or abbreviation, some works have also combined
both CNNs and RNNs to develop what are essentially convolutional recurrent neural net-
works (CRNN), or recurrent convolutional neural networks (RCNN) [52, 53, 54]. To this
extent, the extracted features of a CNN can be utilized as the sequential input to an RNN.
Similarly, hybrid models of LSTM and CNNs (ConvLLSTM) have been proposed for a variety
of problems |55, 56].

2.1.6 Autoencoders

As with many other concepts presented in this chapter, the idea of autoencoders (AE) were
first introduced in 1986 by the PDP group to address the problem of “backpropagation
without a teacher”, by using the input data as the teacher [32, 57]. The NNs discussed
previously have all been supervised—i.e. they have required the use of labeled datasets in
order to predict or classify outcomes accurately. AEs, on the other hand, require no labels
and instead are capable of discovering hidden structure within data to learn a compressed
representation of an input. Essentially, they are unsupervised models whose output is to ap-
proximate the input [58]. Traditionally used for dimensionality reduction or feature learning,
AEs now span a variety of domains, such as anomaly detection [59] and image processing [60].

As illustrated in Figure 2.10, AEs consist of two phases: encoding and decoding. Given an
input image z (although AEs are commonly used for images, this is not a limitation and
used only for demonstrative purposes), the encoder ideally learns and describes the latent
attributes of the image and maps this to a low-dimensional latent space H, often called a
bottleneck, representing the compressed features. The decoder is then used to reconstruct
the initial input as output & from the compressed latent space representation. To effectively
learn a meaningful and generalizable H, AEs train by minimizing the reconstruction error,
L(x,z), which measures the difference between x and Z.
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Figure 2.10: A general representation of an autoencoder architecture

Similarly to RNNs, combining CNNs with autoencoders (CAE) have shown state-of-the-art
performance in image processing tasks [61, 62, 63, 64]. Additionally, some works incorporate
LSTM into the AE architecture (LSTM-AE) to learn compressed representations of tem-
poral (and spatial) dependencies [65, 66, 67]. Finally, accounting for both CNN’s feature
extraction ability and LSTM’s ability to capture temporal patterns, hybrids of ConvLSTMs
and AEs have been proposed [68, 69, 70].

It is worth noting that the concept of encoder-decoder architectures are not limited to AEs,
and have seen widespread usage in both CNNs (e.g. U-Net |[71] or SegNet [72]) and RNNs
[73]. As encoders are able to provide the network with a rich representation of low resolution
features at latent space, decoders can map these lower resolution features to an output,
leading to a lighter network structure.

2.2 Optical Flow

Optical flow is the pattern of apparent motion of image objects between two consecutive
frames of a sequence, caused by the relative movement between an object and the camera
[74, 75]. In practice, the goal of optical flow estimation is to compute an approximation
of a 2D vector (or motion) field, where each vector is defined by the displacement between
aforementioned objects from one frame to the next. This problem has long been studied as
a part of computer vision since the work of Horn and Schunck in 1981 [76], and with the
concise description of both motion and velocity it provides, has seen application to areas
such as, but not limited to, robotics [77], autonomous driving 78], and action recognition
[79].

2.2.1 Traditional Methods

Traditionally, optical flow estimation requires two prerequisite assumptions—brightness con-
stancy, and smooth motion (i.e. neighboring pixels have similar or small motion) [76, 80].
Methods taking these assumptions into account have long been the predominant and most
successful ways to estimate optical flow, and are referred to as variational methods [81, 82].
On the basis of these assumptions, assuming two frames as illustrated in Figure 2.11, we
can express the intensity of a pixel I as a function of its spatial position (x,y) and time ¢,
that is I(z,y,t), which moves a distance of (dx,dy) over 6t time to obtain the new image
I(x + 0x,y + 0y, t + dt).

10



Itz v .b T+, y+dy, t=+di)

i, v) (x+x, y+dy)
(dx, dy)
displacement -

time =t time = t+dt

Figure 2.11: The optical flow problem [30]

Based on the assumption that the pixel intensity is constant between consecutive frames,
Equation 2.2 can be established.

I(z,y,t) = I(x + 0x,y + dy,t + dt) (2.2)

To remove the common terms, a first-order Taylor expansion of Equation 2.2 is performed
assuming small motion between consecutive frames:

[(z + 0z, y + 0y, t + 6t) = I(w,y, 1) + 50w + Loy + 5ot + ...

2.3
:>§—£(53:+§—;5y + 25t =0 (2:3)

Finally, Equation 2.3 is divided by 0t using the chain rule for differentiation to derive the
brightness constancy equation:

61 o1 o1
E&u + @50 + 5= 0 or Lu+Toy+1,=0 (2.4)

where u = %—f and v = % are two unknown variables of a single linear equation, character-
istically known as the optical flow vectors or the displacements respectively along the x and

Y axes.

Essentially, solving for u and v is the definition of the optical flow problem, and forms the
basis a variety of algorithms based on the assumption of brightness constancy and smooth
motion to address this issue. These can broadly be classified as two separate strategies
as illustrated in Figure 2.12: sparse optical flow such as the Kanade-Lucas-Tomasi (KLT)
method [83], and dense optical flow such as the Farneback method [84]. The former does not
compute displacements per-pixel but instead tracks a smaller number of feature points such
as edges or corners to represent overall object motion (using Shi-Tomasi’s Good Features
to Track [85]). At the cost of being more computationally expensive, the latter will track
per-pixel displacements to attain higher accuracy for matching moving objects. Important
to note is that there is a lack of explicit separation between what is classified as one method
or the other in existing literature, and sparse methods are commonly referred to as local
methods, while dense methods are referred to as global methods. For example, what consti-
tutes one or the other can be difficult to follow, as some works refer to variational methods
as global only [86, 87, 88, 89|, others refer to them as both [82, 90|, and some define no
clear distinction [80, 17, 91, 86]. This issue surrounds a variety of terms. For this thesis,
a generalization is made that follows the aforementioned broad classification of sparse and
dense optical flow.
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Figure 2.12: Sparse vs. dense optical flow [92]

A common evaluation technique of optical flow estimation is to visualize the result as shown
in Figure 2.12b. A more concise example is illustrated in Figure 2.13, wherein the optical flow
vectors are encoded by color corresponding to their direction, and the magnitude expressed
by the color intensity.
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Figure 2.13: Optical flow representation [93]
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2.2.2 Feature Based Methods

Despite being among the most popular techniques, variational methods are susceptible to a
variety of challenges as their assumptions are often violated. In practice, there is no guarantee
realistic scenes uphold the given assumptions, and may consist of large displacements, strong
changes in illumination, image noise, or occlusion [87]. While image processing techniques
have been proposed to remedy some these problems [94], large displacements remained a
bigger issue |95, 81]. This gave birth to a new variety of optical flow methods known
as feature-based methods [82]|, wherein feature matching of images complementary serve
variational methods.

Feature matching is a technique that can be divided into two parts. First, a feature extraction
or detection step which aims to return a set of feature points. These points are located at
salient image structures and are generally as a consequence very sparse, but some works
have proposed feature matching for dense optical flow [96, 97, 98]. The most common
feature extraction techniques are based on either edge-like structures when using algorithms
such as Harris corners [99], the Canny edge detector [100], and Shi-Tomasi’s Good Features
to Track [85], or blob-like structures when using algorithms such as Scale Invariant Feature
Transform (SIFT) [101] or Speeded Up Robust Features (SURF) [102]. The evaluation
results between these algorithms have shown to depend on the lighting conditions of a scene
[103]. Ideally, these feature extraction techniques should be robust to image transformations
such as rotation, scale, illumination, noise and affine transformations [104]. The second step
is matching. Here, the goal is to find feature correspondence between neighboring frames,
i.e. an association of the feature points extracted from each frame. These matches are found
based on visual descriptors gathered from image patches [105, 106], such as histogram of
gradients [107, 108, 109] or binary patterns [110, 111] extracted around the feature points.
As a result, approaches based on feature matching gain an advantage as they can compute
large displacements. While they can be applied to image sequences under such circumstances
for the estimation of optical flow, another common use case of feature matching is to align
image pairs [112, 113].

2.2.3 Deep Learning Based Methods

The advances of optical flow estimation the past decades have largely solved the case of
small displacements [36], yet the challenges presented in the previous sections have remained.
However, as with other image processing tasks mentioned in this chapter, deep learning has
had a massive impact on this field of research. While not an NN directly, a feature-based
method called DeepFlow was proposed in 2013 by Weinzaepfel et al., based on a convolutional
structure similar to that of CNNs but with no learned parameters [114]. Possibly, this sparked
the exploration of deep learning for optical flow estimation as FlowNet, arguably the first
deep learning optical flow architecture for realistic scenes introduced by Fischer et al. in
2015, closely relate their work [115]. Since then, over 352 deep learning-based methods
have been proposed based solely on the results of the MPI-Sintel benchmark [116] (further
discussed in Section 3.2).

In general, these methods learn dense optical flow by computing per-pixel predictions. What
separates most deep learning methods for optical flow with that of other DNNs, is that they
require networks to learn per-pixel features for two separate input frames before combining
them at a higher level. This roughly resembles the matching approach described in the
previous section [115]. Furthermore, said methods have long relied on synthetic datasets
such as Flying Chairs [115] or the previously mentioned MPI-Sintel dataset [117] which do
not reflect genuine scenes specific to that of particular domains. As such, their performance
may depend on the content and the application for which they are used [118]. While both
supervised and unsupervised learning methods are present in current literature, the best
performing are those of the supervised nature based on current benchmarks.
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2.3 Crowd Anomaly Detection

Crowd anomaly detection has long stood at the forefront of problems in the field of computer
vision. Although a unanimous definition of an anomaly has yet to be met, the general con-
sensus is based on that of observed deviations from normal behavior in crowded scenes. What
constitutes said behavior is derived from spatial and temporal dynamics of a given scene,
and as such it is difficult or impossible to form generalized patterns upholding different en-
vironments and conditions. To this end, the crowd anomaly detection problem encompasses
a wide range of difficulties in which research has accomplished significant strides in recent
years. Overall, there is a great diversity of approaches considering the ambiguous nature
of different crowds, and access to relevant datasets pose one of the key challenges for the
detection of anomalous events. In particular, methods have been proposed to detect anom-
alous motion patterns of pedestrians [119, 120, 121|, unexpected presences within crowds
[122, 123, 124], escape panics [125, 126, 127], violent behaviors [128, 129], traffic accidents
[128], and more. These methods have conventionally relied on the hand-crafted extraction of
crowd features to effectively model a scene, but recent advances in deep learning has contrib-
uted to automatic feature extraction, or a mixture of both. The intent of this section is to
outline the various features and methods used in literature the last decade for the detection
of anomalies in crowds.

2.3.1 Crowd Features

The extraction of crowd features play a crucial role in the crowd anomaly detection problem.
Depending on the approach, these features exist as a set of metrics to be evaluated over time
for a given individual (a microscopic approach) or crowd as a whole (a macroscopic approach)
from a video sequence [130]. In their work, Sanchez et al. [6] propose a taxonomy as shown
in Figure 2.14 which identifies the following relevant crowd features for the understanding
of crowd behavior:

e Velocity. Measures the average speed at which individuals at a microscopic level,
or crowds at a macroscopic level, are moving. This feature can be equated to the
magnitude of an optical flow vector as described in Subsection 2.2.1 [131, 132, 133].

e Direction. At a microscopic level determines the main directions of movement followed
by each individual, or the crowd as a whole at macroscopic level [134].

e Density. Determines the density of a crowd given the proximity of individuals. At
macroscopic level where dense crowds make it difficult to separate individuals at mi-
croscopic level, density estimation is performed instead [134].

e Collectiveness. Measures the degree of individuals acting as a union in collective
motions [135, 130].

e Valence. Measures the positive and negative affect of a crowd given a combination of
velocity and density at macroscopic level [136].

e Arousal. Aimed at monitoring how calm or excited a crowd is based on variance of
motion magnitude [136].

Some works have further quantified other crowd features, such as speed or merging prob-
abilities [137], uniformity and conflict [138, 139, 140], stability [138, 139, 141, 142, 140], or
trajectories representing both direction and velocity extracted from methods such as sparse
optical flow [143, 144, 124].
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Figure 2.14: The four main stages of the crowd behavior analysis pipeline [6]

2.3.2 Traditional Methods

At large, crowd features such as density, motion, and trajectory are analyzed from surveil-
lance videos to detect abnormalities in crowded scenes [6]. The extracted features are further
used to model the interactions of individuals and the activities present in the scene [145],
followed by a detection stage. In the conventional sense, [6] classifies the many research
works analyzing such features and detection means for crowded scenes into four methods:
Gaussian Mixture Model (GMM) [146, 147, 148] or Hidden Markov model (HMM) [149,
150, 151] techniques modeling normal behavior patterns to detect abnormal patterns, and
optical flow [152, 153, 154] or spatio-temporal techniques [155, 156, 157| analyzing motion
over time. Important to note is that these techniques are commonly used in conjunction with
one another in a hybrid approach, and are not strictly separate. Besides the aforementioned
classification, some works have proposed sparse coding or dictionary learning based meth-
ods [158, 159, 160]. However, these conventional techniques have shown to be ineffective at
identifying complex patterns, and difficult to implement in real-time applications [161].

2.3.3 Deep Learning Based Methods

Extensive surveys have been conducted on models that employ deep learning to solve the
crowd anomaly detection problem [6, 162, 163, 164]. Given the vast history of literature
within this topic, a clear timeline is nigh impossible to cover—nevertheless, it stands to
reason CNNs and AEs are among the most popular of choices for the detection of anomalies
within crowds. The former is applied in a supervised fashion, oftentimes using pre-trained
networks to avoid constructing a model from scratch. The latter is an unsupervised approach
focused on minimizing a reconstruction error. Thus, this subsection brings attention to their
use in literature over the last decade, whereas Chapter 3 will detail the current state-of-the-
art within this field fusing optical flow methods with deep crowd anomaly detection.

Supervised CNN-based methods have been proposed to detect anomalous events or behavior
for specific domains. As they require annotated datasets, general-purpose anomaly detection
is largely seen as not possible. Nevertheless, given specific requirements for a particular
environment, they have proved their effectiveness [161]. That being the case, research work
in this area can generally be divided into (i) 2D CNNs; (ii) 3D CNN; (iii) pre-trained CNNis;
and (iv) LSTM-based models. Furthermore, in an unsupervised manner, a diverse range of
AE-based methods have been proposed (v).
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(i)

(iii)

(iv)

2D CNNs. While most existing techniques have relied on pre-trained CNN models,
some works applied rigorous pre-processing steps based on hand-crafted features to form
hybrid models. In this sense, most works have relied on spatio-temporal CNNs using
extracted optical flow [165, 128, 166], wherein classification was commonly performed
by CNNs themselves [167, 168, 169] or Support Vector Machines (SVM) [170, 171].
Other approaches include using a CNN to classify extracted spatio-temporal features
such as collectiveness, stability, conflict, and density using a combination of KLT and
GMM [172]—or simply regular end-to-end CNNs [161].

3D CNNs. Few works have attempted to use 3D CNNs that do not rely on pre-trained
networks. Nonetheless, given their ability to capture spatio-temporal features, interest
has grown over recent years. In their work, Ullah et al. [173] used a 2D CNN to identify
frames with individuals from surveillance videos, and pass those frames to a 3D CNN to
capture spatio-temporal features and perform classification of violence. Similarly, Song
et al. [174] proposed a 3D CNN using a novel sampling method to extract a number of
key frames in a pre-processing step. Sabokrou et al. [175] explored the use of an AE to

detect cubic patches of frames to find regions of interest, of which interesting patches
are fed into a deeper 3D CNN.

Pre-trained CNNs. To train CNNs, there are generally two options—training the
domain specific problem from scratch, or using a pre-trained model, often referred to as
transfer learning [176]. To this extent, most of literature that explore CNNs for crowd
anomaly detection rely on pre-trained networks. For this purpose, a variety of both
pre-trained 2D CNNs and 3D CNNs have already been built and trained on images. For
the detection of video anomalies, Gutoski et al. [177] performed a comparative study of
transfer learning approaches using twelve different pre-trained 2D CNN models on seven
datasets. For example, AlexNet [178] was among the first networks used for transfer
learning, of which [179, 180] used to extract high-level features for abnormal events
in crowded scenes. VGGNet [181] improved upon AlexNet by introducing a deeper
architecture of up to 19 layers, and was used by several works to extract spatial features
of input videos [182, 183, 184, 185, 186]. An exceedingly deeper network of up to 152
layers, dubbed ResNet (Residual Network) [187], was later proposed and used to train
several crowd anomaly detection methods [188, 189, 190, 191, 192|. To additionally
capture behavior in the temporal domain as well, modifications of the aforementioned
models have been proposed to perform 3D convolutions. As such, Zheng-ping et al.
[193] used a pre-trained 3D VGGNet model for anomaly detection, and a 3D version of
ResNet [194] was applied by some authors for video anomaly detection [129, 195, 196].

LSTM-based. The use of 3D convolutions to capture spatio-temporal features can
result in time-consuming training [197]. As a result, LSTMs have been used for tem-
poral modeling to reduce computation time. A CNN used to extract features and an
LSTM used as a mechanism for memory was proposed by [198]. In their work, Zhou et
al. [199] used a ConvLSTM-based unit to learn spatio-temporal features for the detec-
tion of abnormal events. Additional works have also studied the impact of ConvLSTMs
for anomaly detection [200, 201, 202]. Furthermore, Alahi et al. [203] was inspired by
RNNs and introduced Social-LSTM for human trajectory prediction in crowded scenes.

Autoencoders. Among this work, [204, 205, 206, 207, 208] proposed Variational
Autoencoders (VAE) [209] for abnormal event detection. VAEs describe the potential
latent state in a probabilistic way, and as such provide a reliable way of detecting
anomalies given their small probability of appearing [204]. Furthermore, 2D CAEs
have been employed in combination with GMMs [210] or LSTMs [211]. Similarly to
that of CNNs, 3D CAEs overcome the problem of losing temporal information and has
seen use for video anomaly detection [212, 213, 214].
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Chapter 3

State of the Art

This chapter presents the current state-of-the-art in the fields of optical flow estimation and
crowd anomaly detection using deep learning fused with optical flow.

3.1 Deep Learning for Optical Flow

At present, optical flow methods based on deep learning have completely outperformed the
traditional methods in both accuracy and run time [82]. Among these, the current state-
of-the-art is largely supervised methods that build upon novel concepts already adopted by
traditional methods, or extending previous works. This section aims to describe a few of the
most popular ones.

3.1.1 FlowNet

In the earliest FlowNet, the authors propose and compare two CNN-based architectures:
FlowNetS and FlowNetC illustrated in Figure 3.1. In FlowNetS, the authors simply stack
both input images together and feed them through a convolutional architecture, allowing the
network itself to decide how to extract motion information from the image pair. FlowNetC
on the other hand is based on two separate, yet identical processing streams for each in-
put image later combined by a “correlation” layer. This layer performs multiplicative patch
comparisons between two feature maps. More specifically, given two multi-channel feature
maps, the correlation of two patches are computed similarly to that of a convolutional step,
but instead of convolving data with a filter, it convolves data with other data and thus has
no trainable weights. The result is an end-to-end architecture with matching capabilities.
Moreover, each of the two proposed architectures include a refinement step of “upconvolu-
tional” layers. As pooling results in reduced resolutions, this step is required in order to
provide dense per-pixel predictions. As such, the feature maps are extended by unpooling
and a convolution, then concatenated with their corresponding feature maps. This way,
the authors preserve both high-level information and fine local information. They were the
first to show that deep learning could directly predict optical flow, and both architectures
outperformed traditional methods such as DeepFlow [114] and EpicFlow [215].

Building upon the works of [115], Ilg et al. proposed FlowNet2 less than a year later in
2016 [216]. Their work had four main contributions. First, the authors were able to improve
the results of both FlowNet architectures just by modifying the datasets, as they observed
that the schedule of presenting data with different properties mattered during the training
process. Second, they proposed stacking multiple FlowNetS and FlowNetC architectures. To
this extent, the authors experiment with both the order of networks, and an image warping
technique of the second input image towards the first image using the computed flow estimate
of the previous network and bilinear interpolation. Third, they created a new dataset with
small displacements to further fine-tune the best performing stacked architectures. Fourth,
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FlowNetSimple

Figure 3.1: The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom) [115]

a fusion network of a stacked architecture consisting of one FlowNetC and two FlowNetS
architectures and a modified FlowNetS denoted FlowNet2 was proposed. The final result
was an architecture that runs orders of magnitude faster than the previous state-of-the-art,
with higher accuracy and without compromise for small and large displacements or noise.

The drawback of FlowNet2 is that it comprises over 160 million parameters to achieve ac-
curate flow estimation. To combat this issue, Hui et al. proposed the refined CNN-based
encoder-decoder network LiteFlowNet in 2018 [217], as illustrated in Figure 3.2. The authors
achieved this by introducing two general concepts, namely pyramidal feature extraction to
infer flow fields, and feature warping. The former is a common feature extraction technique
that takes an input and outputs proportionally sized feature maps at multiple levels in a
convolutional fashion [218], which leads to a lighter network compared to that of FlowNet2.
The latter improves upon FlowNet2’s image warping technique by directly warping the fea-
ture maps of the second image. This way, the authors achieved performance on par with
that of FlowNet2 while faster in run-time, and being 30 times smaller in model size.
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Figure 3.2: The network structure of LiteFlowNet [217]
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The authors of LiteFlowNet further improved their work a year later and introduced Lite-
FlowNet2 [219]. By optimizing their previous network architecture, they attained better
flow accuracy than their previous work while being 2.2 times faster in run-time. As such,
they outperformed the previous state-of-the-art FlowNet2. Another year later in 2020, two
of the previous authors of LiteFlowNet2 Hui and Loy proposed LiteFlowNet3 as illustrated
in Figure 3.3, aimed at solving ambiguous correspondences caused by challenges such as
occlusion or illumination changes [220]. To address these issues, they introduced specialized
CNN modules to improve feature matching, while remaining a fast, lightweight network.
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Figure 3.3: Simplified network architecture of LiteFlowNet3 [220]

3.1.2 Recurrent All-Pairs Field Transforms

Aiming to design an effective architecture for optical flow estimation, Teed and Deng intro-
duced Recurrent All-Pairs Field Transforms (RAFT) in 2020 [221]. While previous works
have often relied on end-to-end CNNs, the authors proposed a convolutional recurrent ar-
chitecture to iteratively update a flow field as illustrated in Figure 3.4. Comprised of three
components, a feature encoder extracts per-pixel feature vectors from both input images,
along with a context encoder extracting features only from the first frame. Similar to that
of FlowNet, a correlation layer produces a correlation volume for all pairs of pixels in a
pyramid-fashion to compute visual similarity. Finally, a GRU-based iterative approach es-
timates a sequence of flow estimates based on the features retrieved from the correlation
pyramid and the context network. By maintaining and updating a single fixed flow field
at high resolution, RAFT is both lightweight and robust against challenges such as small
fast-moving objects. Given its state-of-the-art performance, several authors have based their
optical flow work on RAFT [222, 223, 224, 225, 226, 227].
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Figure 3.4: The network structure of RAFT [217]
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3.1.3 Global Motion Aggregation

Jiang et al. proposed Global Motion Aggregation (GMA) in 2021 directed at solving the
occlusion problem [228]. In contrast to other state-of-the-art methods, GMA is inspired by
the recent success of transformer-based NNs [229], in which the idea of attention is the key
contribution to the optical flow problem. Existing as a self-contained addition to the RAFT
architecture as illustrated in Figure 3.5, the network has added flexibility towards choosing
between or combining the local and global motion features depending on the needs of specific
pixel locations. To achieve this, the GMA module globally aggregates motion features based
on appearance self-similarity of the first input image, and concatenates them with the local
motion features and the context network to be decoded by the GRU. As such, local image
regions such as those caused by occlusion could preference the global motion features.
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Figure 3.5: The self-contained GMA module added to the RAFT architecture [228]

3.2 Datasets for Optical Flow

Well-defined datasets play a crucial role in computer vision tasks, and optical flow is no
outlier. In fact, the field of optical flow was among the first to introduce standard data-
sets for quantitative comparisons in 1994 [230]—four years earlier than the classic MNIST
handwritten digits database [231] commonly used for supervised learning tasks. As optical
flow estimation techniques have improved over the last decade, the demand for more chal-
lenging datasets grew, and the first dense ground truth dataset Middlebury was introduced
by Baker et. al [232] in 2011. With new evaluation standards, this work was followed by
the current state-of-the-art benchmarking datasets KITTI [233, 234|, MPI-Sintel [235], and
Flying Chairs [115] in following years. These present their own sets of challenges, and as
such have an impact on the scenes one wishes to estimate the optical flow of.

3.2.1 KITTI

The KITTT dataset was first created by Geiger et al. in 2012 [233] (thus oftentimes referred to
as KITTI-2012), comprised of 194 training and 195 test image pairs. All images are grayscale
and include complex lighting conditions and large displacements, and were gathered from
stereo videos of realistic road scenes. Later in 2015, Menze and Geiger introduced the
extended KITTI-2015 dataset comprised of 200 training and 200 test scenes, obtained by
annotating 400 dynamic scenes from the KITTI-2012 raw data collection using detailed 3D
CAD models for all vehicles in motion [234]. In general, the ground truth was obtained
by combining recordings from calibrated cameras and a 3D laser scanner. For KITTI-2015,
the 3D CAD models are fitted to the point clouds obtained by the laser. However, given
occlusion or distant objects, the ground truth remains an approximation which is taken into
account for evaluation metrics.
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Figure 3.6: Frame and the corresponding ground truth from the KITTI-2015 dataset [233]

3.2.2 MPI-Sintel

Before the introduction of KITTI-2015, MPI-Sintel was the largest optical flow dataset
created by Butler et al. in 2012. Derived from the open source 3D animated short film
Sintel, this dataset is completely synthetic and includes scenes under conditions of varying
complexity to pose new challenges for estimation methods. To this end, the dataset is
comprised of three versions given different render passes: albedo, clean, and final. In the
albedo version, frames consist of flat, unshaded surfaces exhibiting constant albedo over time.
The clean version introduces illumination and specular reflections, and the final version is a
fully realized render with intricate features such as depth of field and atmospheric effects.
In total, each version contains 1064 training and 564 test frames. For research purposes,
the clean and final versions are the most commonly used, as they provide the most realistic
image sequences.

Figure 3.7: Frame and the corresponding ground truth from the MPI-Sintel dataset [235]

3.2.3 Flying Chairs

Designed specifically for training CNN-based optical flow estimation methods, Flying Chairs
was introduced as a synthetic dataset by the authors of FlowNet [115]. As previous datasets
proved too small to train CNNs, a larger dataset was required. As such, the authors applied
affine transformations to real images and synthetically rendered chairs based on randomly
sampled parameters, resulting in 22,872 image pairs and flow fields.

Figure 3.8: Frames and their corresponding ground truths from the Flying Chairs dataset [115]
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3.3 Deep Learning for Crowd Anomaly Detection

The ability of dense optical flow to capture motion patterns in videos has shown effective
results in the detection of anomalies in crowds. This section outlines both the state-of-the-art
deep learning methods for crowd anomaly detection fusing optical flow between 2019-2022,
and commonly used performance metrics.

3.3.1 Methods Fusing Optical Flow

In their work, Duman and Erdem [9] proposed an LSTM-based CAE, using dense optical flow
to obtain velocity and direction information to detect anomalies in an unsupervised manner.
The authors used the Farneback algorithm to obtain optical flow maps of eight consecutive
video frames, to be used as input to the deep learning model. Nguyen and Meunier [230]
use a pre-trained FlowNet2 model to estimate optical flow and propose an end-to-end CNN-
based architecture for anomaly detection in video sequences. For this purpose, their model
incorporates two processing streams. The first is a CAE used to learn spatial structures,
while the second is a U-Net based structure used to predict instant motion given an input
video frame. A shared encoder forces the model to learn correspondence. To this end,
their approach exploits the correspondence between pattern appearances and their motions.
Direkoglu [18] used optical flow vectors to propose motion information images. The author
observed that the optical flow angles were different when comparing abnormal situations to
normal situations. As such, the author estimated the optical flow at each frame using the
Lucas-Kanade algorithm, and calculated the angle difference between optical flow vectors
in consecutive frames. To this end, there is a significant difference between abnormal and
normal motion information images. The proposed method was evaluated using a simple CNN
and popular pre-trained CNNs. Lucas-Kanade was likewise used by Sabih and Vishwakarma
[237] to estimate optical flow, and used a supervised bidirectional ConvLSTM to classify
normal and abnormal frames.

3.3.2 Performance Metrics

While a large number of performance evaluation metrics have been used across literature
depending on both the dataset and detection method [5], a few are more prevalent than
others. Further used for the evaluation of methods in this thesis, these are defined as follows:

e True Positive (TP). The number of anomalous frames correctly predicted.
e True Negative (TN). The number of normal frames correctly predicted.

e False Positive (FP). The number of normal frames predicted as anomalous.
e False Negative (FIN). The number of anomalous frames detected as normal.

e Accuracy. The ratio of correct predictions to the total number of predictions, com-
puted as:

TN+TP
TP+TN+ FP+ FN

Accuracy = (3.1)

e Precision. The ratio of correctly predicted positive observations to the total predicted
positive observations. Precision is intuitively the ability of the classifier not to label as
positive a sample that is negative [238]:

TP
Precision = TP+ FP (3.2)
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e Recall. The ratio of correctly predicted positive observations to all observations for
a given label. Recall is intuitively the ability of the classifier to find all the positive
samples [239)]:

TP
RGC(I,ZZ = m—m (33)

e F'1 Score. The harmonic mean of precision and recall, often used for uneven class
distributions:

F—2x precision X recall (3.4)

precision + recall

e Receiver Operating Characteristic (ROC). Defined as a curve showing the per-
formance of a classification model by plotting the true positive rate against the false
positive rate at different thresholds [240].

e Area Under the ROC Curve (AUC). The AUC is one of the most widely used
metrics for crowd anomaly detection. It is an aggregate measure of performance across
all possible classification thresholds by calculating the area under the ROC curve [240].
As such, an AUC of 0 indicates that all predictions are wrong, whereas an AUC of 1
indicates all predictions are correct.

e Regularity Score (RGS). Commonly used for reconstruction tasks. Defined as the
reconstruction error of a pixel’s intensity value I at location (z,y) in frame t of a video
sequence [241]:

e(z,y,t) = [[1(z,y,t) — fw(l(z,y, 1), (3.5)

where [ is the input frame and fw is the reconstructed frame. Given a frame ¢, the
sum of all pixel-wise errors in a frame is subsequently derived as:

e(t) =) e(x,y,t) (3.6)
(z,y)
and a following regularity score s(t) of a frame ¢ is computed as:

e(t) — minge(t)
maxe(t)

s(t)=1- (3.7)
To this end, a lower value signifies a higher chance of an anomaly occurring for a given
frame, as a result of significant error between an input frame and the reconstructed
output frame.

3.4 Datasets for Crowd Anomaly Detection

Real world datasets of crowded scenes are comprised of observational videos commonly
collected from mounted cameras or CCTVs. Every area of crowd analysis has their own
respective datasets, each with their own set of distinctive crowd features to take account of.
This section looks at the most widely used state-of-the-art datasets that include abnormal
events, namely UCSD [242|, CUHK Avenue [159], ShanghaiTech Campus [243], Subway [244],
and UCF-Crime [245].
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3.4.1 UCSD

The UCSD (University of California San Diego) anomaly detection datasets are the most
widely used datasets in current literature. Split into two subsets named Pedestrian 1 (Ped1)
and Pedestrian 2 (Ped2), both training frames and test frames were acquired with a station-
ary camera mounted at an elevation, overlooking pedestrian walkways. Specifically, Ped1
contains 34 training video sequences and 36 testing video sequences of pedestrians walking
towards or away from the camera. Ped2 contains 16 training video sequences and 12 testing
video sequences of pedestrian movement parallel to the camera plane. In both datasets, the
training frames are regarded as normal with varying crowd density. In addition to normal
frames, the testing sets contain abnormal events that include non-pedestrian entities such
as bikers, skaters, carts, or people walking on the grass, and anomalous pedestrian motions.
Both datasets include ground truth annotations indicating whether an anomaly is present
at a given frame.

(a) A cart in UCSDPed1 (b) A cart in UCSDPed2

Figure 3.9: Anomalous examples from the UCSD datasets [246]

3.4.2 CUHK Avenue

The videos of this dataset were captured at the CUHK (Chinese University of Hong Kong)
campus avenue, and contains 16 training video sequences and 21 testing video sequences.
The training videos capture normal situations, whereas testing videos include both normal
and abnormal events such as strange actions, wrong directions, or abnormal objects. In
addition, the dataset contains challenges such as a slight camera shake, a few outliers in the
training data, and some normal patterns that seldom appear in the training set [159]. The
ground truth dataset includes abnormal events marked in rectangles.

Figure 3.10: Anomalous example from the CUHK Avenue dataset (wrong direction) [159]

3.4.3 ShanghaiTech Campus

Collected at the ShanghaiTech University campus, this dataset is comprised of 13 scenes with
complex light conditions and camera angles. Comprised of 330 training and 107 test videos,
of which there are 130 abnormal events and over 270,000 training frames, it is considered
one of the largest and most challenging datasets available for anomaly detection in videos
[247]. Abnormal events are produced by strange objects in the scene, pedestrians moving
at anomalous speed (e.g. running or loitering), moving in unexpected directions, sudden
motion, chasing, or brawling [6, 248|.
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Figure 3.11: Anomalous example from the ShanghaiTech Campus dataset

3.4.4 Subway

The Subway dataset was collected from the recordings of an entrance platform and an exit
platform in an underground train station. The videos are 2 hours long in total, and contain
209,150 frames of which anomalies are represented by wrong directions, loitering, or avoiding
payment [159]. Both videos are annotated at frame-level.

(a) A person tries to exit through the entrance gate (b) A person tries to enter through the exit gate

Figure 3.12: Anomalous examples from the Subway dataset

3.4.5 UCF-Crime

The UCF (University of Central Florida) crime dataset consists in total of 1900 untrimmed
real-world surveillance videos that cover 13 abnormal events: abuse, arrest, arson, assault,
road accident, burglary, explosion, fighting, robbery, shooting, stealing, shoplifting, and
vandalism. These were chosen due to their impact on public safety. It is divided into a
training set consisting of 800 normal and 810 anomalous videos, and a testing set which
includes the remaining 150 normal and 140 anomalous videos.

Figure 3.13: Anomalous examples from the UCF-Crime dataset [1]
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Chapter 4

Method

Besides the authors of [236] who estimated optical flow using FlowNet2, there seems to be
a lack in literature experimenting with state-of-the-art deep optical flow estimation meth-
ods. While this may simply be due to computational costs for real-time systems, it is an
intriguing area to explore nonetheless. As a result, the goal of this thesis is to evaluate
how different deep learning approaches to optical flow estimation may have an effect on the
performance of different crowd anomaly detection methods, represented by popular image
or video classification architectures. This chapter will discuss the methods used to attain
this goal.

4.1 PyTorch

PyTorch is an open source machine learning framework for Python [249], standing as an
alternative to popular frameworks such as Caffe [250] or TensorFlow [251]. It strives to
make writing models, data loaders, and optimizers as easy and productive as possible, while
remaining performant. As such, it provides an imperative and Pythonic programming style
that supports code as a model, while remaining efficient and supporting hardware acceler-
ators (e.g. GPUs).

4.2 Dataset

The UCSD Ped1 dataset provides a simple set of videos where anomalies are easily recog-
nizable. While it may not reflect that of real-world surveillance footage given its videos were
recorded at the same time of day during similar weather conditions, it is easily approach-
able. All videos are recorded in grayscale at a resolution of 238 x 158, and adds up to 6800
individual training frames and 7200 test frames. 4005 frames of the test set are deemed ab-
normal. This is in stark contrast to, for example, the ShanghaiTech Campus dataset which
contains 274,515 training frames of size 856 x 480. In consideration of that, the UCSD Ped1
dataset allows for both faster estimation of optical flow and model training given its size.
Moreover, it includes a binary flag per frame indicating whether an anomaly is present at
that frame, allowing development of supervised models with ease.

4.3 Convolutional Neural Networks

Two different CNN architectures are used for the detection of anomalies in crowds—a simple
2D CNN with no regard to the temporal dimension, and a 3D CNN to capture spatio-
temporal features. The former treats the issue as a regular binary image classification task.
The latter views each video as a 3D image and classifies each frame given the learned 3D
filters. For both architectures and the rest discussed in this chapter, each model receives
an input of grayscale images (one channel) in the case of regular frames, or RGB images
(three channels) for optical flow. For demonstrative purposes, all illustrations are based on
an input with three channels.
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4.3.1 2D CNN

The 2D CNN architecture is very simple, and takes only a single image as an input and
outputs the probability that the image is either normal or abnormal. This model relies on
the feature extraction ability of 2D convolutions to capture spatial features representing an
anomaly. The 2D CNN receives an image of size 227 x 227 x 3, and feeds it through an
end-to-end architecture comprised of three convolutional blocks. Each block represents a 2D
convolutional with the following layers:

1. A 2D convolutional layer with a kernel size of 5 x 5, 3 x 3 and 3 x 3 respectively, each
with a stride of 1.

2. A batch normalization layer to make training faster and more stable by standardizing
the outputs of hidden units across an entire batch [252].

3. The non-linear Rectified Linear Unit (ReLU) [253] activation function, defined as fol-
lows:

f(x):{o if 2 <0 (1)

z ifz>0

4. Dropout is a technique where randomly selected neurons are ignored during training.
While the authors of [252, 254] suggest batch normalization eliminates the need for
dropout, other studies disagree [255]. Furthermore, the use of dropout has proven
effective for datasets of limited size to avoid overfitting [256, 257]. As a result, each
convolutional block consists of a dropout layer with a probability p = 0.25.

The last convolutional block is followed by a max pool of size 2 x 2 with a stride of 2, fed
into a final convolutional layer with a kernel size of 56 x 56 instead of a flattened feature
map fed to a dense layer as illustrated in Figure 4.1. The cross entropy loss is computed
between the input and the target and returns two values representing the probability of the
output being either normal or abnormal.
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Figure 4.1: 2D CNN architecture for crowd anomaly detection
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4.3.2 3D CNN

While the 2D CNN takes a single image as an input, the 3D CNN takes an entire video of
frames as input. As a consequence of this, it requires a significant memory footprint and
thus both the model size and image dimensions are reduced. To this end, with the UCSD
dataset in mind where each video consists of 200 frames, the 3D CNN receives an input of
size 164 x 164 x 3 x 200.

Similarly to that of the 2D CNN;, it is comprised of two blocks of 3D convolutions with kernel
sizes of 5 x 5 x 5 and 3 x 3 x 3 with a stride of 2 respectively. However, this model has a
higher dropout probability of p = 0.7 and flattens the output of the second block, feeding
the result into two dense layers of 32 neurons with a final dense layer of 200 neurons (the
amount of frames for each UCSD video) at the end as illustrated in Figure 4.2. Typically for
action recognition and other video classification tasks, there is a wide variety of labels each
frame has a given probability of belonging to. The most commonly occurring label is then
used as classification for the video as a whole. In this instance, given only two labels, each
individual frame of a video has a probability between 0 and 1 to be abnormal. Thus, for the
video as a whole, the Sigmoid activation function shown in Equation 4.2 is used together
with binary cross entropy loss to determine the probability of each frame being abnormal.
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Figure 4.2: 3D CNN architecture for crowd anomaly detection
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4.4 Convolutional Recurrent Neural Network

The CRNN model is comprised of a 2D CNN-based encoder and an RNN-based decoder as
illustrated in Figure 4.3. In short, a sequence of images are passed to the CNN such that
every 2D image x(t) is compressed into a 1D vector z(t). The RNN receives a sequence of
input vectors z(t) from the CNN encoder and outputs a final sequence h(t) passed to a fully-
connected network. To this end, the CNN extracts spatial features and the RNN extracts
temporal features, forming a model able to capture the spatio-temporal nature of crowd
anomalies. Moreover, The CRNN requires a smaller memory footprint when compared to
that of the 3D CNN due to its ability to compress data.

x(t+n)

H(t+3)

x(t+2)

Video Frames

Figure 4.3: CRNN encoder-decoder overview

The CNN-based encoder is comprised of four convolutional blocks similar to that of the
previous models. The output of the final convolutional block is flattened and passed to two
dense layers. These are followed by a dropout with a probability of p = 0.6, and a final dense
layer representing the latent space extracted by the 2D CNN. The RNN-based decoder is a
simple LSTM-based architecture with three recurrent layers, i.e. three LSTMs are stacked
wherein each takes the output of the previous LSTM. The hidden state vector is represented
by a size of 512 neurons. The output of the final recurrent layer is followed by a dense
layer with a ReLLU activation and an additional dropout. A final dense layer with a Sigmoid
activation function is used together with binary cross entropy loss as with the 3D CNN as
illustrated in Figure 4.4.

A second CRNN model employs a pre-trained ResNet-152 [258] model using the ImageNet

[259] dataset. To achieve this, the convolutional layers of the encoder are replaced by the
learned weights of the ResNet-152 model.
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Figure 4.4: CRNN architecture for crowd anomaly detection

4.5 Autoencoder

The AE architecture follows the work by [260]. For a sequence of 8 consecutive images as
input, an encoder-decoder architecture is comprised as follows:

1. A spatial encoder of two convolutional layers with the non-linear tanh activation func-
tion as shown in Equation 4.3.

2

=— — 4.3

fa) = (13
2. The encoded features of 8 consecutive frames are fed into a ConvLSTM-based temporal
encoder-decoder with three recurrent layers. Each layer has a hidden state vector of
64, 32, and 64 neurons respectively, with an additional dropout of p = 0.5. In a
convolution-based LSTM, the internal matrix operations are replaced by convolution

operations.

3. The encoded representation by the final recurrent layer represents the compressed
spatio-temporal latent space. As such, the temporal decoder mirrors the encoder to re-
construct the video volume, followed by a spatial decoder of two deconvolutional layers
[261] using the tanh activation function. The final result as illustrated in Figure 4.5 is a
spatio-temporal autoencoder that outputs a reconstruction of an input video sequence.
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Figure 4.5: AE architecture for crowd anomaly detection

4.6 Data Preprocessing

The data pre-processing stage was among the largest undertakings for this thesis. During
early stages of the project, several datasets comprised of either video or image files were used
to evaluate optical flow performance. With that in mind, extensive and reusable tools were
written such that different optical flow methods could be used to estimate either frame-level
or video-level optical flow depending on the dataset. This section will detail the process and
some of the challenges that came with it.

4.6.1 Optical Flow Estimation

The consideration of which deep optical flow estimation methods to use relied on one as-
pect: their placing on the MPI-Sintel benchmark. To perform an adequate assessment of
the impact various optical flow methods cause, it was desirable to use the state-of-the-art of
varying quality. GMA, RAFT, and LiteFlowNet3 are placed at 8th, 29th, and 84th respect-
ively. The degree to which their quality differ is in terms of the estimated per-pixel features
for matching moving objects, given the challenges posed in Subsection 2.2.2.

In practice, each of the aforementioned methods take two images as input, and output a
respective optical flow map. As such, for a given directory of images, the optical flow of each
two consecutive frames can broadly be estimated in a similar fashion y = f(z,x2) where
x1 is the first image, x5 is the second image, and y is the output. With this in mind, a
command line tool was made such that one can specify a path of images or videos to run
optical flow inference of with any pre-trained model. Listing 1 shows an example of how to
estimate the optical flow of a directory of images using GMA pre-trained on the MPI-Sintel
dataset. Moreover, the save argument decides whether to save the output as images, a video,
or a custom .flo format [262].

1 py process_video.py --path ./Datasets/UCSD/Test/Test024
2 --flow GMA --model sintel --save images

Listing 1: Command line tool for optical flow estimation
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This tool is able to extract optical flow of either images or video files, and will automatic-
ally accustom to whether the path points to a single directory of files, or a directory with
sub-directories of files. For the example above, each flow output of the model is saved as
an image using an optical flow visualization technique based on [263]. Important to note is
that LiteFlowNet3 only comes with a pre-trained model on the MPI-Sintel dataset, whereas
RAFT and GMA include Flying Chairs and KITTI models as well. The examples below il-
lustrate optical flow visualizations of an anomalous frame using each aforementioned method.

(a) RAFT (b) GMA

Figure 4.7: Optical flow pre-trained on the Flying Chairs dataset

(a) RAFT (b) GMA

Figure 4.6: An example
anomalous frame from Figure 4.8: Optical flow pre-trained on the KITTI dataset

the UCSD dataset

(a) LiteFlowNet3 (b) RAFT (c) GMA

Figure 4.9: Optical flow pre-trained on the MPI-Sintel dataset

The downside of the UCSD dataset is that there are often very small motions, i.e. the low
resolution of images and slow-walking pedestrians cause little to none flow vectors to be
estimated. This problem is worsened by the flow visualization technique if motion is barely
apparent for two given frames. As illustrated in Figure 4.10, insignificant motion causes
the optical flow map to produce unreliable results, which if used for classification can cause
major discrepancies in anomaly detection performance. To remedy this, [264] suggested to
normalize the visualized flow using a fixed value denoted below as n instead of the maximum
flow magnitude.

(a) Default (by n=10.5 (¢)n=1.0 (d)n=20

Figure 4.10: Visualized optical flow map of insignificant motion at different normalization values
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While this issue largely relies on the context and may cause deviation of magnitude (similar
to example the example shown in Figure 4.10b where the intensity of the green color is
high) in regular optical flow maps, a normalization value of n = 2.0 yielded the best results
overall for further experiments. Based on the previous discoveries and results, LiteFlowNet3,
RAFT, and GMA pre-trained on MPI-Sintel is the method in which optical flow is estimated
for the remainder of this thesis.

4.6.2 PyTorch Datasets & DataLoaders

PyTorch provides two data primitives in the form of Datasets and DatalLoaders. While a
Dataset stores samples of data and their corresponding labels, a Datal.oader wraps an iter-
able around the Dataset to enable easy access to the samples [265]. These are at the core
of PyTorch’s deep learning pipeline, and provide utility functions for ease of use. A Dataset
represents a map from indices or keys to data samples with optional augmentations, whereas
DataLoaders provide utility functions in the form of batching or shuffling the data, as well as
enabling multiprocessing or hardware acceleration. Therefore, a model’s performance heav-
ily relies on the data scheme it is presented.

For the supervised methods discussed in the previous section, there are two approaches.
First, the 2D CNN uses PyTorch’s generic Dataset named ImageFolder [266]. Simply put,
an ImageFolder Dataset is comprised of a number of directories acting as the label to their
corresponding contents. To this end, the UCSD images are split in the pre-processing stage
into an anomaly directory and a normal directory. Second, both the 3D CNN and CRNN
models use the UCSD dataset as it is presented—each index represents a folder of images
stacked together, with each image’s corresponding label. The Dataset used for the unsuper-
vised AE is derived from the work of [260]: the input to the model is in the shape of stacked
image volumes, where each volume consists of 8 consecutive frames with various skipping
strides.

4.6.3 Data Augmentation

Data augmentation is a technique used to either modify existing data, or artificially generate
additional data samples from existing data. A problem with the UCSD dataset is that it
is comprised of very few samples with a large class imbalance. Roughly one third of the
images are classified as anomalies, and thus given its size has a large tendency to overfit. As
a result, both dropout as discussed earlier, together with data augmentation, is key to help
resolve class imbalance and reduce overfitting.

In PyTorch, this is a two-step process. Image transformations, called transforms in PyTorch
[267], apply randomized transformations to all images of a given batch. In other words, for
each transform provided, each image in a batch will receive the same transformations, while
the next batch is applied new random transformations, and so on. As such, transforms do
not artificially generate additional samples, and requires a manual process to introduce new
samples. For each of the architectures described in the previous sections, the following data
augmentation techniques are used.

First, all RGB images (i.e. optical flow) are normalized such that each channel has the same
distribution by subtracting the mean from each pixel and dividing the result by a standard
deviation. In most cases, pixels are defined by 8-bit integers such that their value is between
0 and 255 for all three channels. To make networks learn faster, it is desired to bound the
values of each pixel such that they are in the same range as a network’s activation functions.
While results seem to vary across literature, it is common practice to normalize images using
the ImageNet mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225] standards [268] for
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each channel respectively that are based on millions of images. While optical low maps are a
particular case of special images, this normalization technique performed well. All grayscale
images are normalized with a mean of 0.375 and standard deviation of 0.2.

Second, each supervised model introduces additional data samples in the form of augmented
images of anomalies to counteract the class imbalance. More specifically, instead of experi-
menting with the result of different transformations by hand, an AutoAugment [269] policy
is used on an additional subset of the UCSD dataset comprised of abnormal samples only.
For the 2D CNN, these samples are additional, abnormal images. For the 3D CNN and
RNN architectures based on a sequence of inputs, the introduced samples are additional test
videos, i.e. videos that contain both normal and abnormal images. These subsets are con-
catenated with the original PyTorch Dataset through the use of PyTorch’s ConcatDataset
[270]. The transformations applied by the AutoAugment policy include, but are not limited
to, rotation, sharpness, color variations, affine, and more.

Third, a data augmentation technique to generate additional samples for the unsupervised
AE is derived from [260] following the practice of [241]. As previously mentioned, skipping
strides are used for each video volume. As such, data augmentation is performed in the
temporal dimension to increase the size of the training dataset. For example, the first stride
sequence is made up of frame {1,2,3,4,5,6,7,8}, the second stride sequence is made up of
frame {1,3,5,7,9,11, 13,15}, the third stride would contain frame {1,4,7,10, 13,16, 19,22},
and so on. No additional transformations are applied.
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Chapter 5

Experiments & Results

Due to how each architecture described in the previous chapter are different, the experiments
conducted vary in terms of hyperparameters and evaluation techniques. In total, 20 different
models have been evaluated—each model trained using GMA, RAFT, and LiteFlowNet3 op-
tical flow maps, in addition to regular images. As a general rule, each model used a standard
split ratio of training and testing samples, except for the AE. Moreover, two videos in their
entirety are excluding from the training and testing stage and used solely for validation of
each final model, using samples the models have yet to observe. Finding the best performing
split ratios have mostly relied on trial-and-error due to the nature of training with very few
video samples in their entirety. Additionally, each model used the Adam [271] optimizer, a
stochastic gradient descent-based method to update weights.

Each model regardless of whether it was trained and tested on optical flow maps or regular
frames used the same hyperparameters, with the exception of epochs. As such, the following
sections generalize each model of the same type unless stated otherwise. Furthermore, the
results presented are based on weighted averages to account for class imbalance. Altogether,
this chapter presents the experiments conducted and the results obtained by each model. A
further discussion of the results overall is presented in the next chapter.

5.1 2D CNN

The 2D CNN architecture is an outlier as it relies only on single frames as input, in contrast
to all the other architectures. Instead of splitting by videos, an 80:20 split ratio of all frames
were used, i.e. 80% of frames are used for training, while 20% are used for testing. A
learning rate of 0.05 was used, with a batch size of 16. Experiments showed that regular
frames converged almost twice as fast than that of optical flow maps, i.e. 40 epochs and
100 epochs respectively. Likely, this is a result of training on grayscale images versus RGB
images. An overview of the loss and accuracy across epochs, and a visualization of the
results on each validation video, is shown in Appendix A. A noteworthy observation is that
the model trained on regular frames has a test loss that is less than that of the training loss,
whereas the models trained on optical flow maps show an indication of overfitting as the
test loss grows larger than the training loss. As summarized in Table 5.1, the regular model
far outperforms the models using optical flow maps. However, based on the results on the
validation set as summarized in Table 5.2, it generalized poorly for unseen frames and showed
a large tendency to classify normal images as abnormal. Surprisingly, even with overfitting
in mind, LiteFlowNet3 performed best on both the test set and validation set in terms of
optical flow methods, regardless of the noisy images generated. Overall, each method likely
overfits and generalizes poorly, but optical flow performs better on the validation set.
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Test Set

Frames TP TN FP FN Accuracy Precision Recall F1 Score
Regular 1941 763 9 7 0.99 0.99 0.99 0.99
LiteFlowNet3 1875 610 78 157 0.91 0.91 0.91 0.91
RAFT 1826 607 127 160 0.89 0.89 0.89 0.89
GMA 1820 520 133 247 0.86 0.86 0.86 0.86

Table 5.1: Summarization of the 2D CNN results on the test set

Validation Set

Frames TP TN FP FN Accuracy Precision Recall F1 Score
Regular 151 30 139 80 045 0.52 0.45 0.48
LiteFlowNet3 226 13 64 97 0.59 0.55 0.60 0.57
RAFT 196 14 94 96 0.52 0.52 0.53 0.52
GMA 221 10 69 100 0.57 0.53 0.58 0.55

Table 5.2: Summarization of the 2D CNN results on the validation set

5.2 3D CNN

The dataset used for the 3D CNN performed best when using a 90:10 split of the video
samples, compared to 80:20. This model was trained using a learning rate of 0.005, with
a batch size of 4 due to the memory constraints imposed by storing full video samples in
memory. While higher epoch counts were experimented with, the model converged extremely
fast compared to any other method, usually between 3 to 6 epochs. Beyond this point, the
accuracy plateaued as the model started to overfit. To evaluate the performance on the test
set, an ROC curve was calculated for each video, with the best performing threshold used
to determine the final classifications. Shown in Table 5.3, each method performed similarly,
with RAFT and GMA slightly ahead. Given that GMA is an extension of RAFT, similar
results were to be expected. Interestingly, of optical flow methods, GMA performs best at
classifying abnormal frames and worst at classifying regular frames. The opposite is true
for LiteFlowNet3. The model may be picking up on distinct features in the GMA videos
representing anomalies, whereas the LiteFlowNet3 videos include less distinct features due
to the noisy frames such that anomalies are hard to pick up. In terms of the validation set
summarized in Table 5.4, regardless of the worse performance on the test set, the model
performs better than the 2D CNN. Clearly shown in the examples provided in Appendix B,
the temporal feature extraction gives rise to temporal windows deemed anomalous, causing a
significant decrease in false positives. Seemingly, the largest problem of each method used is
the ability to recognize anomalous objects entering or leaving the frame. When considering
the videos as a whole, the upper and lower regions are generally comprised of individuals
leaving or entering the frame, and thus anomalous objects may be deemed indistinguishable
from said individuals. This is less of an issue when the object in mind is clearly featured in
the center. For the most part, each method performs similarly on the validation set.
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Test Set

Frames TP TN FP FN Accuracy Precision Recall F1 Score AUC
Regular 356 580 511 153 0.58 0.62 0.60 0.57 0.62
LiteFlowNet3 396 540 553 111 0.58 0.66 0.58 0.57 0.67
RAFT 476 490 473 161 0.60 0.65 0.60 0.60 0.66
GMA 514 452 435 199 0.60 0.63 0.60 0.61 0.67

Table 5.3: Summarization of the 3D CNN results on the test set

Validation Set

Frames TP TN FP FN Accuracy Precision Recall F1 Score
Regular 94 195 16 95 0.72 0.81 0.72 0.74
LiteFlowNet3 92 173 18 117 0.66 0.78 0.66 0.68
RAFT 76 212 34 78 0.72 0.76 0.72 0.73
GMA 95 178 15 112 0.68 0.79 0.68 0.70

Table 5.4: Summarization of the 3D CNN results on the validation set

5.3 CRNN

Among the various methods explored in this thesis, the CRNN models proved most difficult
to tune. Several variations of splits, augmentations, and network depths were attempted to
overcome sporadic and hard to interpret results. Each of the CRNN models were trained
across 200 epochs, and while the results showed an increase in test accuracy, a dramatic
increase in loss as the model started to overfit was observed no matter the steps performed
to alleviate said problem. Furthermore, there were seemingly random dips and rises in both
loss and accuracy on the test set. To this end, the model proved counter-intuitive and thus
the results presented in this section are not necessarily representative of other CRNN ap-
proaches, and more a product of uncertainty. The final results are based on an 80:20 split
trained with a learning rate of 0.0001, and a batch size of 30.

Regardless of the problems stated above, the CRNN models show signs of temporal windows
similar to that of the 3D CNN models, as visualized in Appendix C. While the results on
the validation set are more scattered than their 3D CNN counterparts, this may be the
attributing factor that causes the accuracy and AUC score of each CRNN model on the test
set as summarized in Table 5.5 to be higher than the 3D CNN models. IL.e., while the 3D
CNN is able to capture small, but consistent temporal windows, the CRNN casts a wider
net and thus classifies a few additional frames as abnormal when considering the test set as
a whole. Furthermore, albeit minor, optical flow performs better on both the test set and
the validation set. The latter, summarized in Table 5.6, shows that while able to predict
abnormal frames well, a significant amount of abnormal frames are still classified as normal.
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Test Set

Frames TP TN FP FN Accuracy Precision Recall F1 Score AUC
Regular 1577 384 425 414 0.70 0.70 0.70 0.70 0.68
LiteFlowNet3 1592 376 410 422 0.70 0.70 0.70 0.70 0.67
RAFT 1881 245 121 553 0.75 0.74 0.76 0.73 0.67
GMA 1844 220 158 578 0.73 0.71 0.74 0.70 0.57
Table 5.5: Summarization of the CRNN results on the test set
Validation Set
Frames TP TN FP FN Accuracy Precision Recall F1 Score
Regular 101 143 9 147 0.61 0.79 0.61 0.62
LiteFlowNet3 75 195 35 95  0.67 0.74 0.68 0.69
RAFT 84 170 26 120 0.63 0.74 0.63 0.65
GMA 100 144 10 146 0.61 0.79 0.61 0.62

Table 5.6: Summarization of the CRNN results on the validation set

5.4 CRNN-ResNet152

The CRNN model pre-trained on ResNet152 showed similar faults to the regular CRNN
model as visualized in Appendix D. Equal hyperparameters to the regular CRNN model
were used, and the best performing results were observed between epochs 40 and 50, ap-
proximately half the amount of the previous model. Regardless of overfitting, the results
from the test set summarized in Table 5.7 show a minor increase in accuracy for each model,
with LiteFlowNet3 classifying significantly less false positives than any other model. Fur-
thermore, the model trained on regular frames has both the highest AUC on the test set and
the highest accuracy on the validation set summarized in Table 5.8. Given that ResNet152
is trained on a large variety of normal images, it is reasonable to assume that this transfers
better to regular frames in contrast to optical flow maps.

Test Set
Frames TP TN FP FN Accuracy Precision Recall F1 Score AUC
Regular 1484 547 518 251 0.72 0.76 0.73 0.74 0.78
LiteFlowNet3 1924 384 78 414 0.82 0.83 0.82 0.81 0.61
RAFT 1874 272 128 526 0.76 0.75 0.77 0.74 0.65
GMA 1700 364 302 434 0.73 0.73 0.74 0.73 0.65
Table 5.7: Summarization of the CRNN-ResNet152 results on the test set
Validation Set
Frames TP TN FP FN Accuracy Precision Recall F1 Score
Regular 97 168 13 122 0.66 0.79 0.66 0.68
LiteFlowNet3 35 207 75 83  0.60 0.61 0.60 0.61
RAFT 86 171 24 119 0.64 0.75 0.64 0.66
GMA 105 155 5 135 0.65 0.82 0.65 0.66

Table 5.8: Summarization of the CRNN-ResNet152 results on the validation set
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5.5 Autoencoder

The AE models are different in that they are trained on normal videos, and tested on
abnormal videos. Thus the results presented in this section are based on computing a RGS
between an input and the reconstructed output, and based on a threshold, classify frames as
normal or abnormal. First, each AE model is trained across 50 epochs with a learning rate
of 0.0001, and a batch size of 64. Second, the RGS for each frame of a video is calculated.
Based on the final score for each video, a threshold to determine what classifies an anomaly
is computed by testing against a list of thresholds, and choosing the best performing one.
As such, the result of each video is not determined by a static threshold, but instead video-
dependent. However, this presents an interesting challenge as observed in Appendix E—if the
RGS is unable to capture spatiotemporal features, and a video overall is comprised largely
of anomalies, said threshold classifies the entire video as abnormal. An algorithm to smooth
local minima or maxima to improve performance, Persistence 1D [272], has been applied
by some works [273]. Experiments were conducted to test a large variation of smoothing
parameters, but in this instance, none increased the overall accuracy. Nevertheless, the
result of all test videos as summarized in Table 5.9 show impressive results, especially for
normal frames. While this thesis started with a belief that the spatial features of optical
flow maps would prove useful for reconstruction techniques, another likelihood is that not
enough features are captured. For example, the previous chapter visualized an anomaly
using each optical flow method. When considering regular frames, 11 pedestrians are visible
and encoded by the AE, whereas optical flow maps featured at best 4 or less. As a result,
there may not be enough information for a reconstructed output to contain significant errors
signifying an anomaly. Lastly, while the results summarized in Table 5.10 are not based on
unseen samples as the previous sections, they provide a view into the results on the same two
videos for comparison’s sake. Clearly, the AE outperforms every other method classifying
a large quantity of abnormal frames, while barely classifying any false positives. For the
most part, what separates the regular frames from optical flow maps is the amount of true
negatives classified.

Test Set
Frames TP TN FP FN Accuracy Precision Recall F1 Score AUC
Regular 3156 2452 517 750 0.81 0.82 0.82 0.82 0.81
LiteFlowNet3 3173 2078 892 733 0.76 0.76 0.76 0.76 0.75
RAFT 3251 2096 874 655 0.77 0.78 0.78 0.78 0.77
GMA 3135 2312 658 771 0.79 0.79 0.79 0.79 0.79

Table 5.9: Summarization of the AE results on the test set

Validation Set

Frames TP TN FP FN Accuracy Precision Recall F1 Score
Regular 277 81 20 4 0.94 0.94 0.94 0.94
LiteFlowNet3 270 26 75 11 0.77 0.76 0.77 0.73
RAFT 271 33 68 10 0.80 0.79 0.80 0.76
GMA 273 40 61 8 0.81 0.82 0.82 0.80

Table 5.10: Summarization of the AE results on the validation set
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5.6 Summary

While accuracy alone does not constitute the absolute effectiveness of the models detailed in
the previous sections, the results summarized below provide a general comparison between
each method. In summary, optical flow maps may improve upon regular frames by up to
10% during the testing stage, but is strongly dependent on method used. The largest dif-
ference was observed on the validation set of the 2D CNN, showing an increase of up to
14%. On average, both RAFT and GMA provide the best results, with RAFT surprisingly
ahead of its successor. Based on the visualizations of each optical low method provided in
Subsection 4.6.1, it is very hard to interpret why the performance of each method fluctuates
from different models, often from worst to best. One would imagine the optical flow maps
with the most clear and distinct features would consistently be ahead, but this is not the
case. However, it does show that when using deep optical flow methods, their performance
compared to each other is insignificant enough that for certain tasks one may favor a method
with a faster computation time with minimal loss to overall performance.

Additionally, the results are likely strongly tied to the UCSD dataset in particular. As ob-
served in the aforementioned visualizations, the dimensions of the images and the degree of
perceived motion drastically change the end result. For instance, pedestrians are often not
discernible due to small motions. Essentially, this is a product of the frame rate at which
the videos are recorded. Moreover, for datasets with larger images, the perceived motions
are likely more discernible as the quantity of per-pixel movement increases.

Test Set (Accuracy)

Method 2D CNN 3D CNN CRNN CRNN-ResNetl152 Autoencoder
Regular 0.99 0.58 0.70 0.72 0.81
LiteFlowNet3 0.91 0.58 0.70 0.82 0.76
RAFT 0.89 0.60 0.75 0.76 0.77
GMA 0.86 0.60 0.73 0.73 0.79

Table 5.11: Summarization of each model’s performance on the test set

Validation Set (Accuracy)

Method 2D CNN 3D CNN CRNN CRNN-ResNetl1l52 Autoencoder
Regular 0.45 0.72 0.61 0.66 0.94
LiteFlowNet3 0.59 0.66 0.67 0.60 0.76
RAFT 0.52 0.72 0.63 0.64 0.79
GMA 0.57 0.68 0.61 0.65 0.82

Table 5.12: Summarization of each model’s performance on the validation set
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Chapter 6

Discussion and Future Work

This thesis has explored several deep learning methods for the the crowd anomaly detec-
tion problem using a variety of normal frames and optical flow maps. Yet, the methods
presented suffer a variety of drawbacks. While the focus was to conduct experiments to
see whether optical flow maps would improve the performance of spatio-temporal networks
without additional tuning, overfitting proved an insurmountable challenge. With a total of
20 models to train, requiring significant time investment, the vast array of variables involved
for each model to improve generalization turned out of scope. For this reason, the results
presented in this thesis may be improved by a number of techniques. First, k-fold cross
validation as used by other works [274, 275, 276] may be essential in splitting the UCSD
dataset to improve generalization. The largest issue observed during the course of this thesis
was that data augmentation techniques for videos in particular is a challenging problem.
When one subset of videos consists of one class, while a second subset consists of two classes
in an unbalanced manner, image transformations alone are not viable. Introducing addi-
tional samples improved the results slightly, but not to the extent of eliminating overfitting.
Early experiments looked at video frame sampling as presented in [277], but said method
required extensive manual annotation and hindered the ability to capture spatio-temporal
features by providing only small video segments based on random frames. Second, neither
the CRNN model or the AE model were tested using GRU cells instead of LSTM cells.
While not necessarily a factor that would have improved performance, it would have been
interesting to experiment with to gauge their difference on videos. Third, as stated previ-
ously, there is a lack in literature exploring deep optical flow methods for the crowd anomaly
detection problem—commonly, earlier works have relied on feature-based methods tracking
sparse optical flow. Due to the already large amount of models to train, this was deemed
out-of-scope, but it would have been intriguing to compare the results of such methods, e.g.
Lucas-Kanade, to deep optical flow methods.

Another interesting area of current research is the use of vision transformers for image classi-
fication [278, 279]. Slowly emerging as a competitor to conventional CNNs, they show strong
preservation of spatial information [280], which could be a promising aspect when consid-
ering the spatio-temporal nature of crowd anomalies. Interpretability and anonymization
are additional aspects of utmost importance. The former is largely based on the ability to
explain what an anomaly is or why something is deemed an anomaly, and is crucial for fair
and ethical decision-making [281]. The latter seeks to preserve the privacy of individuals
as regulations regarding artificial intelligence expands across countries. On one hand, the
optical flow methods discussed in this thesis may arguably be considered an anonymization
technique as the risk of identifying features of individuals are significantly low. On the other
hand, the optical flow maps themselves are generated by deep learning methods—and thus
may violate potential future regulations. Altogether, there is a wide diversity of areas that
warrant further exploration as potential future work.
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Chapter 7

Conclusion

In conclusion, this thesis explores the use of dense optical flow maps estimated by deep
learning-based techniques for the crowd anomaly detection problem. The theoretical found-
ations of both areas are outlined, and recent efforts toward fusing crowd anomaly detection
with optical flow is reviewed. As a wide variety of models have been proposed for anomaly
detection across literature, a total of five different architectures are investigated using both
regular frames and optical flow maps. More specifically, a 2D convolutional network, a 3D
convolutional network, an LSTM-based convolutional recurrent network, a pre-trained vari-
ant of the latter using ResNet152 trained on the ImageNet dataset, and a ConvLLSTM-based
autoencoder. Each architecture is trained using regular frames, and optical flow maps es-
timated by LiteFlowNet3, RAFT, and GMA. In total, 20 models are trained on the UCSD
Pedestrian 1 dataset. While the results were prone to overfitting, they showed that optical
flow maps may provide an increase in accuracy of up to 10% using spatio-temporal models.
However, it is likely the results are heavily context-dependent on both the dataset and the
architecture used, and thus there is no one-method-fits-all. Furthermore, based on overall
performance across a test set and a validation set to account for generalization, an autoen-
coder approach proved both superior and easier to train, although the best performance
was the result of regular frames. The 2D convolutional network showed exceptional results
on the test set, but generalized very poorly when introduced to unseen data. To this end,
spatio-temporal models fusing optical flow maps may prove more effective than conventional
approaches using regular frames, but further experiments are required for more conclusive
results.
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Appendix A

2D CNN Results
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure A.1: 2D CNN results using regular frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure A.2: 2D CNN results using LiteFlowNet3 frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure A.3: 2D CNN results using RAFT frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure A.4: 2D CNN results using GMA frames
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Appendix B

3D CNN Results
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure B.1: 3D CNN results using regular frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure B.2: 3D CNN results using LiteFlowNet3 frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure B.3: 3D CNN results using RAFT frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure B.4: 3D CNN results using GMA frames
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Appendix C

CRNN Results
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure C.1: CRNN results using regular frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure C.2: CRNN results using LiteFlowNet3 frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure C.3: CRNN results using RAFT frames
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Figure C.4: CRNN results using GMA frames
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Appendix D

CRNN-ResNet152 Results
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure D.1: CRNN-ResNet152 results using regular frames
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(b) Validation on two unseen videos. Green indicates regular frames, red indicates abnormal frames.

Figure D.2: CRNN-ResNet152 results using LiteFlowNet3 frames
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Figure D.3: CRNN-ResNet152 results using RAFT frames
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Figure D.4: CRNN-ResNet152 results using GMA frames
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Appendix E

Autoencoder Results
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Figure E.1: Autoencoder results using regular frames
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Figure E.2: Autoencoder results using LiteFlowNet3 frames
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Figure E.3: Autoencoder results using RAFT frames
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Figure E.4: Autoencoder results using GMA frames
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