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Summary

This master thesis is divided into two main parts. The first part focuses on the identification and
modeling of a Bosch Rexroth variable piston pump in both frequency and time domain. The second
part presents a hydraulic load circuit which is mounted inside a test container. The load circuit
is used to test the pump in a suitable load situation which represents a small scale Active Heave
Compensation (AHC) scenario.

The considered pump is named A4VSG, and the internal swash plate angle is controlled with a
hydraulically driven control system delivered by Bosch Rexroth. Several frequency response tests
have been carried out to identify the swash plate angle dynamics. In the time domain, a stochastic
input signal have been used to evaluate and verify the time domain response of the internal pump
states.

In addition to the traditional frequency response test, a proposed method to identify the swash
plate dynamics using a single chirp signal test is presented. The chirp signal is a multi-cycle sine
wave with a linearly increasing frequency with time. The chirp test analysis have proven promising
results, and should be investigated further in other system identification applications.

The two main pump modeling techniques proposed are; a Black box model using a linear transfer
function and a non-linear Grey box model, where all the unknown model parameters have been
identified through non-linear optimization in MATLAB. The accuracy of the proposed models are
quantified using the mean and maximum deviation between measured and simulated response in
both time and frequency domain.

An accurate Grey box model have been identified through non-linear parameter optimization, and
a corresponding SimulationX model is created. The simulation model also includes a simplified
ripple flow. The simplified ripple flow is found through a mechanical study of the internal piston
movements. To quantify the ripple flow effect on the surrounding hydraulic components, two system
simulations have been studied and discussed.

The second part of the thesis proposes a hydraulic load circuit using a 4/3-way directional servo
valve to control the load pressure across a variable displacement piston motor. The motor is
connected to a secondary motor using a mechanical coupling. The secondary motor is placed in
a closed hydraulic loop which is controlled using the A4VSG pump described in the first part.
The load circuit’s purpose is to apply a load torque at the mechanical coupling as the A4VSG’s
output flow controls the rotational velocity of the coupling. The couplings velocity reference signal
is supposed to represent an offshore crane’s wire drum motion during AHC.

The two control systems controlling the load pressure and the shaft speed respectively, are designed
based on linear control theory. The controllers were tuned using MATLAB’s controller tuning

ii



toolbox. In order to use this tool, the systems were described using linearized transfer functions.
The resulting controllers have been implemented using a National Instruments LabVIEW program.

In the end the friction torque in both motors combined have been modeled using a non-linear
friction model. This model have been used to represent both the stiction and Coulomb friction in
the SimulationX model representing the load circuit. The simulation results are compared with
real-life experiments to validate the accuracy of the SimulationX model.
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NOMENCLATURE

Variable Unit Explanation

y(ref) − Input signal to the system.
A − Amplitude of the input sine wave.
f Hz Frequency of the input sine wave.
O − Offset of the input sine wave.
t s The time.
y

(ref)
chirp − Chirp signal.
AC − Amplitude of the chirp signal.
f0 Hz Initial frequency of the chirp signal.
kchirp Hz/s The frequency ramp gradient.
f1 Hz Final frequency of the chirp signal.
t1 s The time where the sine wave frequency reaches f1.
ŷ(t) − Estimated system response.
y(t) − Measured system response.
Â − Estimated amplitude of the sine wave.
φ̂ rad Estimated phase angle of the sine wave.
Ô − Estimated offset of the sine wave.
ci − Element i in vector ~c.
Mf dB Magnitude of the system at a given frequency.
Â@0.1Hz % Amplitude of the optimized sine α̂ at f = 0.1Hz.
b0 − Constant value describing the TF numerator.
a4 . . . a0 − Constant value describing the TF denominator.
Mtop,i dB Magnitude of the top chirp response.
Mbot,i dB Magnitude of the bottom chirp response.
MC,i dB Mean magnitude of the chirp response.
ytop,i − Response at positive peak i.
ybot,i − Response at negative peak i.
OC − Offset of the chirp signal.
Ptop,i deg Phase of the top chirp response.
Pbot,i deg Phase of the bottom chirp response.
PC,i deg Mean phase of the chirp response.
∆ttop,i s Time lag between input and response positive peak i.
∆tbot,i s Time lag between input and response negative peak i.
ftop,i Hz Frequency of the input signal at time of positive input signal peak i.
fbot,i Hz Frequency of the input signal at time of negative input signal peak i.
fC,i Hz Frequency of magnitude MC,i and phase PC,i.
~Φ − Parameter vector.
f(~Φ) − Objective value with a certain parameter vector.
~Lb − Lower linear bounds of ~Φ
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NOMENCLATURE

Variable Unit Explanation

~Ub − Upper linear bounds of ~Φ
B(~Φ, µ) − Barrier function.
µ − Small positive scalar often called the “barrier parameter”.
i − Implies element i in the given vector.
m − Length of the vector.
ftime(~Φ) − Time domain objective function.
~y − Measured system response.
~ysim − Simulated system response.
ffreq.(~Φ) − Frequency domain objective function
~M dB Measured response magnitude.
~φ deg Measured response phase.
~Msim dB Simulated response magnitude.
~φsim deg Simulated response phase.
90
20 − Weighting factor of magnitude deviations.
fcomb.(~Φ) − The combined time and frequency domain objective function
ĒX − Average absolute deviation between the experiments and the simulation.
∆Xi − Deviation measurement i between the experiments and the simulation

model.
Ns − Total number of compared samples.
E

(max)
X − Maximum deviation between the simulated and the experiments.

Q1 m3/s Volume flow into cylinder chamber 1.
Q2 m3/s Volume flow out of cylinder chamber 2.
pP Pa Pressure on the P-port.
pT Pa Pressure on the T-port.
p1 Pa Pressure in cylinder chamber 1.
p2 Pa Pressure in cylinder chamber 2.
u − Valve spool position.
K(u) m2 Effective valve opening area.
ρ kg/m3 Density of the oil.
k1 . . . k3 m2 Flow area coefficients.
ṗ1 Pa/s Pressure gradient in cylinder chamber 1.
ṗ2 Pa/s Pressure gradient in cylinder chamber 2.
β Pa Oil stiffness.
V0 m3 Dead volume on each cylinder side.
Ap m2 Cylinder pistons effective area.
xp m Cylinder piston position.
ẋp m/s Cylinder piston velocity.
QLeak m3/s Leakage flow from cylinder chamber 1 to 2.
KL m2 Effective orifice opening between cylinder chamber 1 and 2.
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NOMENCLATURE

Variable Unit Explanation

a m Normal distance between the cylinder rod and the swash plate.
α rad Swash plate tilt angle.
αmax rad Maximum swash plate tilt angle.
L m Cylinder stroke length.
ẍp m/s2 Cylinder piston acceleration.
k N/m Spring coefficient in cylinder.
b Ns/m Damping coefficient in cylinder.
meff kg Effective translational mass.
α̇ rad/s Swash plate tilt angular velocity.
α̈ rad/s2 Swash plate tilt angular acceleration.
~x − State vector representing all internal states.
f(~x, u) − State equations.
~̇x − Time derivative of the state vector.
g(~x, u) − Output function.
x1 . . . x4 − The four states in ~x.
GPD − Transfer function describing the PD-controller.
Kd − Proportional gain.
Td s Time constant.
GP − Transfer function describing the P-controller.
Kp − Proportional gain.
Gv(s) − Transfer function for the valve.
u(s) − Actual valve spool position.
u(ref)(s) − Valve spool reference signal
ωv rad/s Natural frequency of the valve.
ζv − Damping ratio of the valve.
GI(s) − Inner transfer function.
e−τs − The time delay transfer function.
e(s) rad Error between α(ref) and α.
Q̄ m3/s Mean steady state flow produced by the pump.
ω rad/s Motoring shaft speed.
Vd,max m3/rev Maximum pump displacement.
~r0,n m Vector from origin to axial axis of piston n.
~xp,n m Vector from end of ~r0,n to the revolute joint center.
~rn m Vector from origin to revolute joint.
θn rad Angular position of piston n in the x-y plane.
r0 m Length of ~r0,n.
xp,n m Length of ~xp,n.
ϕn rad Angle between ~r0,n and ~rn.
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NOMENCLATURE

Variable Unit Explanation

rn m Length of ~rn.
ϕ0 rad Angle between horizontal and ~xp,n.
ϕ̇n rad/s Angular velocity of the angle between ~r0,n and ~rn.
θ̇n rad/s Angular velocity of piston n.
ṙn m/s Change in length of ~rn.
ẋp,n m/s Velocity of piston n.
Leff m Effective stroke length of each piston.
θA,O rad Opening angle on port A.
θA,C rad Closing angle on port A.
θB,O rad Opening angle on port B.
θB,C rad Closing angle on port B.
Dp m2 Piston diameter.
θ rad Angular position of the input shaft.
θ0 rad Initial rotation of the input shaft.
θopen rad Opening angle on the port plate.
R m Radius of the port plate.
γ rad Pressure carry over angle [10].
n − Piston number.
∆θ rad Separation angle between each neighboring piston.
Np − Total number of pistons in the pump.
uA,n − Opening between piston chamber n and port A.
uB,n − Opening between piston chamber n and port B.
Qn m3/s Flow generated by piston n.
QP,A m3/s Flow through port A.
QP,B m3/s Flow through port B.
Q̄P,A m3/s Steady State flow from port A.
Q̄P,B m3/s Steady State flow from port B.
∆Q(Simp)

P,A m3/s Simplified ripple flow.
Ar m3/s Simplified ripple amplitude.
fr rad/s Ripple frequency.
Or m3/s Simplified ripple offset.
ψ − Empirical ratio of the ripple flow amplitude.
ωs rad/s The rotational velocity of the shaft/coupling.
α(ref) % The reference control signal to the A4VSG pump.
∆T s The measured time between each rising pulse.
Qsv m3/s The flow through the servo valve.
usv − Actual servo valve spool opening.
ps,L Pa Load circuit supply pressure.
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NOMENCLATURE

Variable Unit Explanation

pL Pa Load pressure across the motor.
Kqu m3/s Spool opening flow gain coefficient.
Kqp m4s/kg Pressure flow gain coefficient.
QL m3/s The load flow through the motor.
KL(αL) m3/rad Motor gain coefficient.
ωL rad/s Motor shaft rotational speed.
αL rad Motor swash plate angle.
TL Nm Load torque.
αL,max rad Maximum swash plate angle of the Parker V12 motor.
Vm,max m3/rev Maximum motor displacement.
ṗL Pa/s Load pressure gradient.
VL0 m3/s The dead volume on each side of the motor.
ω̇L rad/s2 Motor shaft acceleration.
Ts Nm Supply torque generated by the hydraulic supply circuit.
Jeff kgm2 The effective inertia of both the motors and the connecting shaft.
c − Rotational friction coefficient.
QP m3/s The delivered flow from the A4VSG variable piston pump.
KP m3/(rad · s) Flow/pressure gain coefficient as function of α.
α(ref)(s) rad Swash plate angle reference signal.
Gest(s) − Estimated Black box transfer function in Section 4.2.1.
Qs m3/s Supply circuit flow.
ps Pa Pressure difference across the motor.
Ks(αs) m3/rad Supply circuit motor gain.
αs rad Supply circuit motor swash plate angle.
pA,s Pa Hydraulic pressure at pump port A.
pB,s Pa Hydraulic pressure at pump port B.
αs,max rad The maximum swash plate angle of the supply circuit motor.
ṗs Pa/s Supply pressure gradient.
Vs0 m3 Dead volume on each side of the motor.
ω̇s rad/s2 Rotational acceleration of the shaft.
Ti s Integration time constant.
u(k) − The current cycle control signal.
u(k − 1) − The previous cycle control signal.
e(k) − The current cycle error signal.
e(k − 1) − The previous cycle error signal.
∆t s Time between each cycle interrupt.
α(feed) rad A4VSG swash plate angle feed-forward signal.
ω

(ref)
s rad/s Rotational shaft speed reference signal.
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NOMENCLATURE

Variable Unit Explanation

u
(feed)
sv − Servo valve opening feed forward signal.
KL(αs) − Supply circuit motor gain.
N − Number of wave components.
zv(t) m The stochastic wave propagation in the heave direction.
zv,n(t) m Each single wave component n given by the stochastic wave energy spec-

trum.
z̈PL m/s2 z-directional acceleration of the payload.
FL N The force due to the wire tension.
Fbuoy N Buoyancy force.
Fdrag N Drag force due to viscous friction in the sea water.
mPL kg Gravitational mass of the payload.
ρs kg/m3 The sea water density.
Cd − The drag force coefficient, dependent to the payload shape.
APL m2 Payloads projected area in the z-direction.
żPL m/s z-directional velocity of the payload.
g m/s2 Earth’s gravity constant.
VPL m3 The submerged volume of the payload.
kw N/m Wire spring stiffness.
Ew Pa Wire elasticity modulus.
Aw m2 Wire cross-section area.
Lw m Length of the wire.
cw Ns/m Wire damping force coefficient.
zv m Motion of the floating vessel.
rd m Wire drum radius.
θs rad Wire drum rotation angle.
τf (ωs) Nm Model friction torque due to the rotational shaft velocity.
τs Nm The maximum friction exceeded in the model due to stiction.
τc Nm Coulomb friction during high rotational velocities.
τ0 Nm Friction at ω0.
ω0 rad/s The rotational velocity at τ0.
r − Gradient factor describing the steepness of the tanh curve.
ω̇s rad/s2 Rotational acceleration found from numerical differentiation.
~τf (~Φf , ωs) Nm The calculated friction torque due to the friction model parameters ~Φf .
~Tf (ω̇s) Nm Experimental friction at a given rotational velocity ωs.
~Φf − Vector containing the unknown friction model parameters.
Sx m2/s Stochastic wave spectrum.
ωst rad/s Frequency of a stochastic wave part.
Hs m Significant wave height.
Tp s Significant wave period.
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NOMENCLATURE

Variable Unit Explanation

Cn m Amplitude of sine wave n.
ωs,n rad/s Frequency of sine wave n.
∆ωs rad/s Frequency between ωs,n+1 and ωs,n.
xn(t) m Wave component n.
ε rad Random number ∈ [0, 2π].
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Chapter 1
Introduction
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1.1. PROBLEM STATEMENT AND MOTIVATION

1.1 Problem Statement and Motivation

MacGregor is a huge supplier of offshore cranes. Their demand for accurate simulation models
increases continuously since their solutions need to be more complex and accurate. A method to
identify the dynamic behavior of the core components such as hydraulic pumps, valves and motors
is needed in order to meet such demands.

This master thesis present two methods to identify the swash plate dynamics of a variable piston
pump (A4VSG) produced by Bosch Rexroth. The pistons inside the pump are attached to a swash
plate which rotates with the input shaft. As this swash plate is tilted, the pistons are forced to
move axially and suck oil from one port and push it out through another. This is illustrated in
Figure 1.1 where the tilt angle of the swash plate is demonstrated. The tilt angle is controlled
using a separate hydraulic circuit including a 4/3-way proportional valve and a cylinder. The
cylinder is mechanically connected to the swash plate which makes it tilt. The task is to identify
the parameters in a model of this circuit which should have matching dynamic characteristics of
the real pump. The methods used will also be applicable to identify other components such as
hydraulic valves and motors.

x

z

Swash 

plate

Tilt

angle

Shaft spin

Piston

Port Port

Figure 1.1: Schematic of a variable axial piston pump.

In addition, the company requires a functional load circuit which can apply a load scenario to the
pump. The motivation for constructing such a load circuit is that the company lacks a practical
and cost efficient method of testing newly developed control systems. Also the load circuit can be
used to train newly hired service and engineering personnel.

The dynamic model of the swash plate dynamics will be verified through real life tests in both
the frequency and time domain. Since SimulationX is the preferred simulation software used by
MacGregor today, a SimulationX model of the A4VSG pump is constructed. The load circuit will
be designed and constructed, tested and verified with a suitable control system. The master thesis
can be seen as two main parts where the system identification of the swash plate dynamics plays
the major role, and the load circuit design and verification part plays a minor role.
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1.2. KEY ASSUMPTIONS AND LIMITATIONS

The problem is illustrated using a schematic figure describing the load circuit and the Bosch
Rextroth A4VSG variable piston pump. The hydraulic load circuit consist of a supply pump,
a servo valve and two motors connected to each other using a mechanical coupling. Figure 1.2
shows the two main hydraulic circuits within their area of red stapled lines.

M

M

Hydraulic Load Circuit Bosch A4VSG

Figure 1.2: Simplified overview of the loading circuit and the closed loop pump.

The main objectives in this thesis are divided in two main parts. The two tasks to be carried out
are:

• System identification and modeling of the variable hydraulic piston pump (A4VSG) produced
by Bosch Rextroth. Several identification procedures are investigated.

• Design and construction of the hydraulic load circuit. A control system should also be de-
veloped in order to generate an appropriate load scenario. The load circuit should also be
tested and verified through real life test using a physical test bench.

The master thesis also includes practical work such as electrical wiring and instrumentation. How-
ever, this part will not be documented in detail.

1.2 Key Assumptions and Limitations

A model describing the hydraulic pump swash plate dynamics in both time and frequency domain
should be established. The pump should interact with a load circuit which shall reproduce a small
scale offshore AHC scenario. There are some key assumptions and limitations considered in both
parts of the project. They are listed and described in Tables 1.1 and 1.2.
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1.2. KEY ASSUMPTIONS AND LIMITATIONS

Table 1.1: Key assumptions and limitations associated with pump system identification process.

System Identification of the Bosch Rexroth A4VSG Variable Displacement Pump
Key Assumptions

1. Create a fully functional LabVIEW test program to carry out several tests on the closed
loop pump.

2. Determine the swash plate angle dynamics using a frequency response test.
3. Identify several Black box models describing the dynamics in all tested offsets and ampli-

tudes individually.
4. Model the pump using a Grey box model, and identify the model parameters using non-

linear optimization techniques.
5. Investigate several methods to identify the swash plate angle dynamics.
6. Identify the bundled pump controller cards internal controller gains.
7. Model the internal piston kinematics, and model the ripple flow effect using the pistons

movement as function of the input shaft velocity and the swash plate angle.
8. Create a non-linear SimulationX model describing both the swash plate dynamics and

ripple flow.
9. Verify the Black and Grey box models in time and frequency domain.

Associated Limitations

1. The bundled pump controller card only includes two analog test outputs to measure the
internal states of the pump.

2. Not possible to account for the temperature deviations during the testing.
3. It is not guarantied that a linear Black box model described using a transfer function will

fit the frequency response tests.
4. Almost all soft and hard parameters are unknown and the pump mechanism design is not

specified in detail.
5. Some of the more sophisticated system identification methods described in theory, requires

expert knowledge in both mathematics and control theory.
6. The control loop design is specified, but it is not possible to find the control gains in the

pump controller cards software due to manufacturers security settings.
7. Almost all the internal geometry describing the piston barrel and swash plate are unknown,

which means they are protected by Bosch Rexroth.
8. SimulationX handles time delays in an inefficient way. This will slow down the simulation

performance drastically, if such features are needed in the non-linear Grey box model.
9. It is not possible to measure all the internal states in the pump during a frequency response

test, due to a maximum of two analog test outputs.
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1.2. KEY ASSUMPTIONS AND LIMITATIONS

Table 1.2: Key assumptions and limitations associated with the load circuit design and verification
process.

Design and Verification of the Hydraulic Load Take Of Circuit
Key Assumptions

1. A functional test bench which connects the A4VSG closed loop pump to the hydraulic load
circuit have to be designed.

2. All components have to be mechanically mounted and instrumented using a suitable DAQ
unit. Also a suitable test program have to be developed using LabVIEW.

3. Both the load and the supply circuit side have to be analyzed in terms of linearized dy-
namical behavior. This is necessary to design a sufficient control system controlling each
side.

4. The two control systems controlling the connecting shaft velocity and the load pressure
respectively have to be tuned and tested in real life.

5. The friction in both the motors combined have to be identified and implemented in the
SimulationX model of the load circuit.

6. The SimulationX model have to be verified by comparing the simulation and real life
experiments.

7. A small scale simulation of an offshore AHC have to be developed. The test bench shall
be used to reproduce such scenario in real-life.

Associated Limitations

1. The load circuit should be designed using mainly hydraulic components which is frequently
used by MacGregor.

2. All the components are not present at the project start, and have to be ordered. Such
orders may fail, and create a delay in the project progress.

3. The components used are not fully described in terms of both dynamic and static behavior.
4. If non-linear components such as a servo valve is introduced, a linear control system may

not be an ideal solution.
5. The friction may be hard to measure, since it depends on many unknown soft physical

parameters.
6. Due to lack of precise component models, the SimulationX model may not be sufficiently

accurate.
7. Due to further implementation in a PLC, the AHC simulation have to be simplified, since

complex simulations may not run real-time on a PLC.
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1.3. DESIGN CRITERIA

1.3 Design Criteria

The accuracy of a Grey or Black box model is assessed in Section 2.7 in time and frequency
domain. The accuracy is determined with a mean and maximum deviation between measurements
and simulations. In the frequency domain, the requirements for the model in terms of magnitude
and phase deviations are shown in Table 1.3.

Table 1.3: Performance criteria of models in the frequency domain.

Description Criteria Upper Limit Unit
Mean magnitude deviation ĒM 0.5 dB
Maximum magnitude deviation E

(max)
M 2 dB

Mean phase deviation ĒP 5 deg
Maximum phase deviation E

(max)
P 35 deg

In the time domain, the requirements are given in Table 1.4.

Table 1.4: Performance criteria of models in the time domain.

Description Criteria Upper Limit Unit
Mean error Ēt 2 %
Maximum error E

(max)
t 10 %

The load pressure and speed controllers on the load circuit and supply circuit must be able to
remove all steady-state error on a step input. The requirements were found through discussions
with MacGregor, and the criteria must be fulfilled in a model for it to be verified.
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1.4. REPORT STRUCTURE

1.4 Report Structure

This section presents a short summary of each chapter to give an overview of the master thesis.
Each chapter is described using the following bullet points:

• Chapter 1 - Introduction
This chapter presents the problem statement together with the main motivation. The key
assumptions and limitations briefly list the expected outcome and the corresponding consid-
ered limitations. In the end, the main verification criteria in terms of average and maximum
model deviations are presented.

• Chapter 2 - Method
The Method chapter presents the different methods used to test and analyze the various
hydraulic components. All the analytical methods used to analyze and process the measured
data are also explained. If the reader is familiar with least squares techniques, optimization
and frequency response analysis related to system identification techniques, this chapter can
be skipped.

• Chapter 3 - Hydraulic Pump Model
In this chapter all the governing equations needed to describe the pump dynamics using a
Grey box model are presented. The ripple flow effect which is caused by the internal piston
movement in the pump is analyzed, and a simplified model is proposed. A SimulationX model
describing the A4VSG pump is descried in the end.

• Chapter 4 - Results from Hydraulic Pump Model
All the experimental results related to the hydraulic pump model are presented here. The
results are mainly given as optimized model parameters and transfer function coefficients.
This section also compares the results against the design criteria given in Tables 1.3 and 1.4.

• Chapter 5 - Hydraulic Load Simulation Circuit
A hydraulic load circuit is presented here. The physical construction is discussed and the
corresponding mathematical models for both the load and the supply side are presented in
this chapter. Suitable control systems and a non-linear friction model are proposed. In the
end a complete SimulationX model is described.

• Chapter 6 - Results from Hydraulic Load Simulation Circuit
The resulting control parameters describing the control systems introduced in Chapter 6 are
presented here. The mapped friction torque is presented and the accompanying friction model
parameters are presented. In the end a time domain comparison between the SimulationX
model and the physical test set up is presented.

• Chapter 7 - Discussion and Conclusions
In this chapter our main conclusions and findings are elaborated.

7



1.4. REPORT STRUCTURE
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Chapter 2
Method

This chapter presents the main methods used in this master project. These methods are used when
applicable in the main body of the report and will be referenced when necessary. Section 2.1 covers
the various reference signals used to test the physical system in different ways. These include a
frequency response test, a chirp signal and a stochastic wave. In Section 2.2 an effective least
squares method used to fit an analytical sine curve to noisy measurements is presented. Further,
Section 2.3 describes a procedure for identifying the linear dynamics of a plant in the frequency
domain using a frequency response analysis. Using the frequency response data, Section 2.4 covers
the software used to identify a linear transfer function of the plant. A frequency response test and
analysis isn’t the only way of identifying the dynamics of a plant in the frequency domain; Section
2.5 presents a new method of identifying the dynamics based on the response of a chirp signal test.
Section 2.6 explains the algorithm and techniques used to determine parameters for a non-linear
model. Based on the identified model, the accuracy is determined using techniques in Section 2.7.
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2.1. CONSIDERED TEST TYPES

2.1 Considered Test Types

This section describes three different input signals frequently used. The first one is a frequency
response test which is the prerequisite for performing a frequency response analysis. The second is
a description of a chirp signal that is a multi-cycle sine wave based signal that have a continuously
increasing frequency. The last test input signal is a stochastic wave used to test various frequencies
on a system.

2.1.1 Frequency Response Test

A frequency response test is a method for measuring the plant response when subjected to sine
waves with various frequencies. It is the prerequisite for performing a frequency response analysis
that identifies the linear responses in the frequency domain. In order to perform a frequency
response test on a system, a user defined sine wave signal is used as the reference signal. The
response of the system is measured for further analysis. The sine wave is given in Equation (2.1).

y(ref) = A sin(2πft) +O (2.1)

where: y(ref) Input signal to the system.
A Amplitude of the input sine wave.
f Frequency of the input sine wave.
O Offset of the input sine wave.
t The time.

For the frequency response tests in this project, test frequencies of the sine waves are chosen to be
between 0.1 and 30 Hz to fully investigate the entire dynamic range. A typical test procedure is
shown in Figure 2.1:

1. The input reference starts at 0% for half a second before it is ramped to the desired offset.
The signal is kept constant at this offset for a second to stabilize the system.

2. At t = 2 seconds, the sine wave is used as input around the desired offset, and the measurement
system starts to measure the input signal and the response. This happens between the two
stapled lines.

3. After several sine wave periods, the sine wave stops and the measurement service stops. Then
the reference signal is ramped down to 0%.

4. For the next sine wave frequencies, the entire process is repeated.
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Figure 2.1: Typical reference input signal used in a frequency response test.
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2.2. SINE FITTING USING LEAST SQUARES METHOD

2.1.2 Chirp Signal Test

A chirp signal is a multi-cycle sine wave based signal that have a continuously increasing frequency.
The linearly increasing frequency chirp signal is defined in Equation (2.2).

y
(ref)
chrip = AC sin

[
2π
(
f0 + kchirp

2 t

)
t

]
+OC (2.2)

where: y
(ref)
chirp Chirp signal.
AC Amplitude of the chirp signal.
f0 Initial frequency of the chirp signal.
t The time.
kchirp The frequency ramp gradient.
OC Offset of the chirp signal.

The frequency ramp gradient is given by Equation (2.3)

kchirp = f1 − f0
t1

(2.3)

where: f1 Final frequency of the chirp signal.
t1 The time where the sine wave frequency reaches f1.

This signal is used to uncover the frequency response of a system from a single test as described in
Section 2.5.

2.1.3 Stochastic Wave Test

In order to test the system response during different sine wave frequencies to get a general idea
of the dynamic response, a stochastic wave is used as an input to the system. The theory behind
stochastic waves is given in Appendix A. In this test, a stochastic wave spectra is first generated
based on a significant wave height HS and a significant wave period TS . From this spectra, a
stochastic signal is generated and used as input to the system. This input reference can be used to
verify time responses of a model.

2.2 Sine Fitting using Least Squares Method

The measured data from the frequency response test described in Section 2.1.1 contains measure-
ment noise. The measured sine wave, describing the system frequency response can be processed
by a filtering process. However, using a filter will introduce an additional phase lag which also have
to be considered. A backward-forward filtering process should be applied if the data should keep
the original phase. This is a time consuming process and the result is still in the form of a data set
where the phase and magnitude have to be found by comparing the input and output curves.
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2.2. SINE FITTING USING LEAST SQUARES METHOD

A more sophisticated method to find the response is to fit an analytical sine wave to the noisy
measurements [11]. The analytical sine wave is expressed using Equation (2.4).

ŷ(t) = Â sin(2πft+ φ̂) + Ô ≈ y(t) (2.4)

where: ŷ(t) Estimated system response.
y(t) Measured system response.
f Current test frequency.
Â Estimated amplitude of the sine wave.
φ̂ Estimated phase angle of the sine wave.
Ô Estimated offset of the sine wave.
t Time.

The sine wave is expressed in a more convenient form by expending the equation using the sum
difference formula. The expanded form is given in Equation (2.5).

ŷ(t) = Â cos(φ̂) sin(2πft) + Â sin(φ̂) cos(2πft) + Ô (2.5)

This expression is decomposed and described using a matrix form given by Equation (2.6).

ŷ(0)
...

ŷ(t)


︸ ︷︷ ︸

~b

=

 0 1 1
...

...
...

sin(2πft) cos(2πft) 1


︸ ︷︷ ︸

A

Â cos(φ̂)
Â sin(φ̂)

Ô


︸ ︷︷ ︸

~c

(2.6)

The unknown vector ~c is finally solved using a Least Squares method [12]. The solution vector ~c is
found by solving Equation (2.6) in the form of Equation (2.7).

~c = (ATA)−1AT~b (2.7)

Since the approximated sine ŷ(t) should mimic the test data y(t), ~b is swapped with y(t). Then
Equation (2.7) is solved. The result is given by numerical values for the three components in
vector ~c. These three numerical values are used to find the estimated sine wave parameters. The
parameters are given by the three Equations: (2.8) to (2.10).

Â =
√
c2

1 + c2
2 (2.8)

φ̂ = tan−1
(
c2
c1

)
(2.9)

Ô = c3 (2.10)

where: ci Element i in vector ~c.

The result of this method is a set of parameters that represents an optimized fit of the analytical
sine wave. An illustration of the fitted sine wave and the measured signal is given by Figure 2.2.
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Figure 2.2: Reference signal, measured and fitted system response input frequencies at 10 and 30
Hz.

2.3 Frequency Response Analysis

After a frequency response test as described in Section 2.1.1 is finished, the measured response is
analyzed to identify the dynamic characteristics in the frequency domain. During such a test, sine
waves at different frequencies are used as reference signals, and the actual response is measured.
The name of the log files contain the frequency tested and the contents are three columns: time,
reference signal and measured response. A MATLAB script analyzes all the log files individually
in an increasing frequency order. For each file, time, reference signal and the measured response
are loaded into memory as t, y(ref) and y respectively. Since y contains some measurement noise, a
sine wave is fitted on top of the measured data using a least squares method described in Section
2.2.

After the sine wave is identified using the least squares method described in Section 2.2, the
approximated system response ŷ is given by Equation 2.11:

ŷ = Â sin(2πft+ φ̂) + Ô (2.11)

where: Â Amplitude of the optimized sine wave
f Current test frequency
φ̂ Phase angle of the sine wave
Ô Offset of the sine wave

Figure 2.2 shows examples at f = 10Hz and f = 30Hz including reference signal, measured
response and approximated system response. The green signal is the input signal, the red signal
is the measured response and the blue signal is the approximated response based on a sine wave.
The reference signal is a sine wave with 50% offset and 10% amplitude. These examples show that
the approximated response ŷ is very close to the measured response y and should therefore be a
good approximation. The phase and amplitude of the approximated response can therefore with
acceptable precision be used to calculate the measured magnitude and phase.

If the analyzed test frequency is f = 0.1Hz, the amplitude of the approximated response is stored
in a variable Â@0.1Hz. This amplitude reference is used to calculate the gain of the system to get
a bode plot that starts at 0 dB. This is a fair reference because the actual angle should be equal
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to the reference angle at low frequencies as shown in Figure 2.3a. As the frequency of the input
signal is increased, the phase and amplitude difference between the input and output signal gets
larger as shown in Figure 2.3b. This is the basis for mapping the dynamic response in a bode plot.
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(a) Sine input and output at low frequencies.
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(b) Sine input and output at high frequencies.

Figure 2.3: Sine input and output at low and high frequencies.

Next the magnitude of the plant is calculated the following Equation 2.12:

Mf = 20 log10

(
Â

Â@0.1Hz

)
(2.12)

where: Mf Magnitude of the system at a given frequency.
Â@0.1Hz Amplitude of the optimized sine α̂ at f = 0.1Hz.

and the phase of the plant is given by Equation (2.13)

φf = φ̂ (2.13)

This information is used to generate a bode plot of the system response which characterize the
systems behavior around the tested offset and amplitude. An example of a bode plot generated
from a test at 50% offset and 10% amplitude is shown in Figure 2.4.
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Figure 2.4: Example of a bode plot at 50% offset and 10% amplitude.
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2.4 Black Box Transfer Function Estimation

It is desirable to identify a time continuous Transfer Function (TF) by using the results from
Section 2.3. MATLAB is used to estimate a TF that matches the frequency response data in a best
possible way. This functionality is included in MATLAB’s “System Identification Toolbox” and the
considered tool is named “System identification tool”. This tool requires the user to import a set
of three vectors including magnitude, phase and frequency of the test data and the desired number
of poles and zeros in the estimated TF. This is the only information required to estimate a transfer
function. After the estimation is finished, the output is an estimated TF and a fit percentage
describing how good the fit is. More information about the tool is given in Appendix B. For a TF
with 5 poles and no zeros, the TF is given by Equation (2.14).

Gest(s) = b0
s5 + a4s4 + a3s3 + a2s2 + a1s+ a0

(2.14)

where: b0 Constant value describing the TF numerator.
a4 . . . a0 Constant value describing the TF denominator.

A comparison between an estimated fifth order TF and actual test data is shown in Figure 2.5. The
test data shown in red dots are found from a frequency response analysis at 50% offset and 10%
amplitude. This estimated TF shown as a blue line has a percentage fit of 89.81% which indicates
a good estimation.
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Figure 2.5: Comparison between an estimated TF and discrete frequency response test.
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2.5 Frequency Response Analysis using Chirp Signal

In this section a second method is presented to estimate the frequency response of a system based
on a linear chirp signal input test. The chirp signal is defined in Section 2.1.2 and it is a continuous
sine signal with a linearly increasing frequency as time passes. Since the system responds to all
the frequencies in the chirp signal, it should be possible to make a bode plot of the system based
on the response. In this section the new method is described and it is compared with a traditional
frequency response analysis to verify its performance.

At first a signal y(ref)
chirp that consist of a chirp signal as described in Section 2.1.2 is sent to a plant

and the response is measured and stored as y(t). During the chirp signal, the performance of the
response decreases as the frequency increases. This is observable on the responding amplitude and
phase. The following text will describe the algorithm as shown in Figure 2.6.
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Figure 2.6: Illustration of chirp test analysis.

The algorithm starts by iterating its way through y(t) until it reaches a top (i.e. the highest point
between two x-axis intersections) and saves the response into memory as ytop,1. From this point of
time, y(ref)

chirp(t) is iterated backwards in time until itself reaches a maximum point. Using the time
of maximum response and input signal, a time lag is observed and saved into memory as ∆ttop,1.
This process is repeated for the next maxima which is a bottom response as displayed by ybot,1 and
∆tbot,1. For the next top, the index number increases from 1 to 2 as shown by the index 3 used on the
third top and bottom. After the algorithm finishes locating all the bottoms and tops, the gain and
phase of the plant is calculated. Since a frequency response analysis is often conducted at various
offsets to investigate nonlinearities in the plant, the response may not be symmetrical around the
offset of the input signal. This is easily corrected in a regular frequency response analysis as the
responding offset is always optimized to find an analytical sine wave. However in this algorithm,
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the asymmetries are countered by calculating a mean phase and magnitude from two consecutive
tops and bottoms. The magnitude of the top and bottom values of the chirp response, as well as
the mean magnitude is calculated in Equations (2.15), (2.16) and (2.17) respectively.

Mtop,i = 20 log10

(
ytop,i
AC

)
(2.15)

Mbot,i = 20 log10

(
ybot,i
AC

)
(2.16)

MC,i = Mtop,i +Mbot,i

2 (2.17)

where: Mtop,i Magnitude of the top chirp response.
Mbot,i Magnitude of the bottom chirp response.
MC,i Mean magnitude of the chirp response.
ytop,i Response at positive peak i.
ybot,i Response at negative peak i.
OC Offset of the chirp signal.
AC Amplitude of the chirp signal.

The phase of the top and bottom values of the chirp response, as well as the mean phase is calculated
in Equations (2.18), (2.19) and (2.20) respectively.

Ptop,i = −∆ttop,iftop,i · 360◦ (2.18)
Pbot,i = −∆tbot,ifbot,i · 360◦ (2.19)

PC,i = Ptop,i + Pbot,i
2 (2.20)

where: Ptop,i Phase of the top chirp response.
Pbot,i Phase of the bottom chirp response.
PC,i Mean phase of the chirp response.
∆ttop,i Time lag between input and response positive peak i.
∆tbot,i Time lag between input and response negative peak i.
ftop,i Frequency of the input signal at time of positive input signal peak i.
fbot,i Frequency of the input signal at time of negative input signal peak i.

And finally the frequency at the mean magnitude and phase is calculated in Equation (2.21).

fC,i = ftop,i + fbot,i
2 (2.21)

where: fC,i Frequency of magnitude MC,i and phase PC,i.

From a test at 75% offset and 20% amplitude, the frequency response was identified using a standard
frequency response analysis as described in Section 2.1.1 and a chirp signal frequency response
analysis as described in this section. The identified dynamics from the standard frequency response
analysis is assumed to be correct and is therefore the reference in order to validate the performance
of the chirp frequency response analysis. The comparison is shown in Figure 2.7 where the black
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dots shows the dynamics from a standard frequency response analysis, the blue line shows the mean
response and the green and red lines shows the top and bottom responses respectively.
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Figure 2.7: Bode plot comparison between frequency response analysis and chirp response analysis.

As shown in the figure the black dots and the blue line are almost identical, which proves the
performance of the proposed algorithm. This means that the frequency response of a plant can be
identified using just one signal input test, i.e. a chirp signal moving through the frequency range
of the plant. Note however that the green and red line form an envelope around the frequency
response test data, and that the red line gives the best response in the magnitude plot. This
indicates that for the plant that it’s easier to move towards zero (From +75% offset to 0%) than
from zero. This should be the case in this system as a mechanical spring drags the cylinder back
to zero position. This gives a second usage of this algorithm as directional based dynamics may
also be identified.

2.6 Parameter Estimation

This section presents the techniques used to identify unknown parameters in non-linear models.
Several methods for system identification are available in the theory, and one of the simple and
popular methods are based on linear regression techniques. However, the models presented in this
report includes both linear and non-linear relationships. Therefore a gradient based minimization
algorithm have been chosen to determine unknown parameters. The optimization algorithm, as
well as three different optimization objectives are presented in the following subsections.
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2.6.1 Non-Linear Optimization Algorithm

The numerical optimization problem encountered when searching for optimal parameters in a model
is classified using Equation (2.22) :

arg min
~Φ

f(~Φ) subject to ~Lb ≤ ~Φ ≤ ~Ub (2.22)

where: ~Φ Parameter vector.
f(~Φ) Objective value with a certain parameter vector.
~Lb Lower linear bounds of ~Φ
~Ub Upper linear bounds of ~Φ

As mentioned in the preliminary of this section, the choice of optimization algorithm is a gradient
based one named the Interior-point algorithm [13, 14, 15]. This algorithm minimizes a logarithmic
barrier function rather than the objective function itself. The barrier function is given by Equation
2.23.

B(~Φ, µ) = f(~Φ)− µ
(

m∑
i=1

ln(Ub,i − Φi) +
m∑
i=1

ln(Φi − Lb,i)
)

(2.23)

where: B(~Φ, µ) Barrier function.
µ Small positive scalar often called the “barrier parameter”.
i Implies element i in the given vector.
m Length of the vector.

As µ converges to zero, the minimum of B(~Φ, µ) should converge to a solution of the minimization
problem. From an initial guess of ~Φ, the gradient of the barrier function is evaluated at every
iteration. By using this gradient, the algorithm determines which direction it should travel in
terms of ~Φ. Since the barrier function B(~Φ, µ) should be minimized, the negative gradients are
chosen. The algorithm tries to find (~Φ, µ) for which the gradient of the barrier function is zero, i.e.
a local minima. At this point the algorithm stops and present the resulting parameters in ~Φ. More
detailed information about the algorithm is found in the referenced articles [13, 14, 15].

2.6.2 Optimization Objective Functions

In Section 2.6.1 an interior point optimization algorithm was briefly discussed. This algorithm
requires an objective function describing the error between a simulated model and measurements.
The idea behind the objective function is illustrated with a simple block digram given by Figure
2.8.
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Figure 2.8: Schematic illustration of the optimization objective.

Figure 2.8 illustrates that the objective function f(~Φ) is found by comparing the response between
the physical model and the simulated model. The error is quantified using three main techniques
given as:

1. Pure time domain. The deviations are described by comparing the time domain signals in
the model. The objective function is described using Equation (2.24).

ftime(~Φ) =
∑
|~y − ~ysim| (2.24)

where: ftime(~Φ) Time domain objective function.
~y Measured system response.
~ysim Simulated system response.

2. Pure frequency domain. This method sum up the difference between the measured and
simulated magnitude and phase lag in all test frequencies. The objective function is given by
Equation (2.25).

ffreq.(~Φ) = 90
20
∑
| ~M − ~Msim|+

∑
|~φ− ~φsim| (2.25)

where: ffreq.(~Φ) Frequency domain objective function
~M Measured response magnitude.
~φ Measured response phase.
~Msim Simulated response magnitude.
~φsim Simulated response phase.
90
20 Weighting factor of magnitude deviations.

3. Combined time and frequency domain error. This method ensures that both time and fre-
quency domain characteristics will fit the measured data properly. The expression describing
the combined objective function is expressed using a combination of Equation (2.24) and
(2.25). The combined objective function is given by Equation (2.26).

fcomb.(~Φ) = ftime(~Φ) + ffreq.(~Φ) (2.26)

where: fcomb.(~Φ) The combined time and frequency domain objective function
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All three objective functions can be used to find the unknown parameters in ~Φ. However in this
project, the combined time and frequency objective function fcomb. is used to identify the unknown
parameters. When the optimization algorithm ends up in a local minimum, the model is validated in
both time and frequency domain to ensure that the model gives satisfactory results. It is clear that
the third method will give the highest probability of finding a set of satisfying model parameters,
as it optimizes for both domains at the same time.

2.7 Model Accuracy Verification

To state that the model is within the requirements given in Section 1.2 it is necessary to define an
overall method to calculate the deviation between the simulated model and the lab measurements.
It is chosen to validate the model in both frequency and time domain. The deviations are quantified
in two main categories where the first one is the absolute average deviation which is calculated using
Equation (2.27), and the second deviation is the maximum deviation between the lab experiments
and the simulated response given in Equation (2.28).

ĒX = 1
Ns

Ns∑
i=1
|∆Xi| (2.27)

where: ĒX Average absolute deviation between the experiments and the simulation.
∆Xi Deviation measurement i between the experiments and the simulation model.
Ns Total number of compared samples.

E
(max)
X = max(∆ ~X) (2.28)

where: E
(max)
X Maximum deviation between the simulated and the experiments.

∆ ~X The deviation vector from all the compared samples.

Both these verification procedures are performed in the two results chapters where applicable.
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Chapter 3
Hydraulic Pump Model

This chapter presents a mathematical model of a Bosch Rexroth A4VSG closed loop hydraulic
pump. This pump is located in a test container at MacGregor in Kristiansand, Norway. The first
Section 3.1 shows an overview of the test setup including instrumentation and physical layout.

On top of the A4VSG pump there is an actuating circuit that controls the swash plate angle. This
hydraulic circuit is described using a non-linear mathematical model in Section 3.2. This actuating
circuit is controlled using a Bosch Rexroth control card. The control system inside this card is
modeled in Section 3.3.

Now that the actuating circuit is covered, the next step is to model all the pistons inside the pump
that are attached to the swash plate. The complete kinematics of the piston barrel as well as a
simplification of the Ripple flow is presented in Section 3.4. Finally a complete non-linear model
of the pump including the actuating circuit and the ripple flow is detailed in Section 3.5.
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3.1 Test Setup

This section covers the setup used to test the dynamics of the swash plate angle on the A4VSG
closed loop pump. The physical layout of the test bench is described including the hydraulic circuit
and wiring schematic. However, a more detailed hydraulic drawing is found in Appendix H. Then a
method to measure signals at high speeds using software and hardware from National Instruments
is described.

3.1.1 Location

MacGregor is located just outside of Kristiansand in Norway, about 45 minutes in a car from the
University of Agder. The test bench is located here inside a blue container. The container is split
into three parts:

1. A backside containing a hydraulic supply pump and an oil tank.

2. A middle part accessible from the front containing the A4VSG closed loop pump and the
load circuit.

3. A front part with control cabinets, parts and a computer. The front and middle part is
separated with plexiglass to maintain the user safety during testing.

3.1.2 Physical Layout

The dynamics of the swash plate angle is tested using a setup shown in Figure 3.1. The figure is
explained using the red numbers, corresponding to the list below the figure. Most of the components
are also described in detail in Appendix D, and references to the different sections within are given
in parentheses after the respective component is mentioned. This physical layout will be used on
all tests of the pump.
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Figure 3.1: Physical test setup. Picture of NI myRIO and BR VT-VPCD are taken from [1] and
[2] respectively.

1. The variable displacement axial piston closed loop pump (1) is a Bosch Rexroth A4VSG
pump (Appendix D.1) with a theoretical maximum displacement of 71cm3/rev.

2. The pump is driven by a 4-pole induction motor (2) set at a constant speed of 1450rpm.

3-4. In order to control the displacement, a 4/3-way valve (3) (Appendix D.2) is manipulated
to achieve a desired position on a symmetrical cylinder (4) (Appendix D.2) which directly
controls the swash plate angle.

5. The pump (1) is connected to a load (5) on both sides which could include nothing (no load),
an orifice, a flow sensor (Appendix D.7) or a Parker V12-060 motor (Appendix D.4).

6. In between the load and the pump, there is a refill solution (6) which keeps the pressures on
either side at a minimum of 25 bar. There are also two pressure transmitters (Appendix D.8)
on each side of the pump.

7. The Bosch Rexroth pump controller card (7) (Appendix D.3) measures the feedback signals
and controls the valve (3).

8. The swash plate angle reference α(ref) is sent from the National Instruments (NI) myRIO (8)
(Appendix D.9) to the pump controller card (7). Test jacks x1 and x2 on the pump controller
card (7) are used to monitor the status of two internal parameters. Usually, test jack x1 is
used to monitor the actual swash plate angle α and test jack x2 is set to monitor the actual
valve position up.

9. The computer (9) (Appendix D.10) is used in combination with NI myRIO (8) to manage
high speed data transfers through a direct memory access (DMA) channel. The computer
also monitors the status of the pump via an RS232 connection on the pump controller card
using a program called “Bodac”.
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3.1.3 Software Layout

In order to perform a test on the pump, two LabVIEW programs are used. The first program
is located on the host computer (hereby called “host”) and the second program is located on the
target FPGA (Field Programmable Gate Array) on the NI myRIO (hereby called “target”). The
target program contains a routine to send a signal via an analog port and receive analog signals
through others. The other purpose of this program is to log the signals into a DMA buffer which
the host can read at certain intervals.

The host program initializes the target and decides the shape of the swash plate angle reference.
It also stores the measured signals in a textfile so that they can be analyzed. If two test jacks are
not enough to measure all the desired signals, the host may also log signals directly from the pump
controller via the “Bodac” program. The downside is that the logging frequency is limited to 250
times per second for one signal, and 70 times per second for four signals. This software layout will
be used for all tests carried out on the pump.
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3.2 Hydraulic Actuating Circuit

3.2.1 Governing Equations

The actuating circuit is modeled based on the schematic in Figure 3.2.
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Figure 3.2: Hydraulic actuating mechanism.

The hydraulic circuit consist of a 4/3-way directional proportional valve controlling Q1 and Q2.
These two flows affects the two pressures p1 and p2 in each of the two control volumes. The swash
plate is connected to the piston rod through a linking/sliding mechanism. The governing equations
for the actuating circuit is set up in order to analyze the dynamics and simulate the response in
the time domain. The two flows are expressed using Equations (3.1) and (3.2):

Q1(p1, u) =

sign(pP − p1)K(u)
√

2
ρ |pP − p1| u ≥ 0

sign(pT − p1)K(u)
√

2
ρ |pT − p1| u < 0

(3.1)

Q2(p2, u) =

sign(p2 − pT )K(u)
√

2
ρ |p2 − pT | u ≥ 0

sign(p2 − pP )K(u)
√

2
ρ |p2 − pP | u < 0

(3.2)
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where: Q1 Volume flow into cylinder chamber 1.
Q2 Volume flow out of cylinder chamber 2.
pP Pressure on the P-port.
pT Pressure on the T-port.
p1 Pressure in cylinder chamber 1.
p2 Pressure in cylinder chamber 2.
u Valve spool position.
K(u) Effective valve opening area.
ρ Density of the oil.

The flow area coefficient K(u) is dependent on the actual spool position u. The opening curve is
extracted from the proportional valves data sheet [16], and a third order polynomial is fitted using
a least squares method. The fitted polynomial describing the flow area K(u) is given by Equation
(3.3).

K(u) = k1|u3|+ k2u
2 + k3|u| (3.3)

where: k1 . . . k3 Flow area coefficients.

This opening characteristic introduces an additional non-linearity in addition to the non-linear
nature of the orifice equation itself. The pressure gradients in each cylinder chamber is expressed
using Equations (3.4) and Equation (3.5).

ṗ1 = β

V0 +Apxp
(Q1(p1, u)−Apẋp −QLeak(p1, p2)) (3.4)

ṗ2 = β

V0 −Apxp
(QLeak(p1, p2) +Apẋp −Q2(p2, u)) (3.5)

where: ṗ1 Pressure gradient in cylinder chamber 1.
ṗ2 Pressure gradient in cylinder chamber 2.
β Oil stiffness.
V0 Dead volume on each cylinder side.
Ap Cylinder pistons effective area.
xp Cylinder piston position.
ẋp Cylinder piston velocity.
QLeak Leakage flow from cylinder chamber 1 to 2.

Note that the capacitance of the pressure gradients in Equations (3.4) and (3.5) does not include
the static Ap L2 part. This part have been removed to increase the freedom of V0 since some of the
volume in the cylinder is occupied with a spring etc. The leakage flow is most probably laminar,
but since this flow is small compared to Q1 or Q2, it have been modeled as a turbulent orifice
described in Equation (3.6).

QLeak(p1, p2) = sign(p1 − p2)KL

√
2
ρ
|p1 − p2| (3.6)

where: KL Effective orifice opening between cylinder chamber 1 and 2.
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3.2. HYDRAULIC ACTUATING CIRCUIT

The linkage mechanism between the cylinder and the swash plate is modeled using a slider mech-
anism. The mechanism is described using Equation (3.7) and shown in Figure 3.3.

a



px

Figure 3.3: Geometry of the sliding connection between the swash plate and the cylinder.

xp = a tan(α) (3.7)

where: a Normal distance between the cylinder rod and the swash plate.
α Swash plate tilt angle.

Since the maximum angle of the swash plate is restrained to be ±αmax it is possible to use Equation
(3.7) to find the relationship between the stroke length L and the distance a. The relationship is
given by Equation (3.8).

a = L

2 tan(αmax) (3.8)

where: αmax Maximum swash plate tilt angle.
L Cylinder stroke length.

The mechanical piston movement can be described using Newton’s second law. It should be noted
that all the rotational inertia from the swash plate and the attached pistons are included in a
combined translational effective mass meff . The governing differential equation describing the
piston acceleration ẍp is given by Equation (3.9).

ẍp = (p1 − p2)Ap − xpk − ẋpb
meff

(3.9)

where: ẍp Cylinder piston acceleration.
k Spring coefficient in cylinder.
b Damping coefficient in cylinder.
meff Effective translational mass.
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3.2. HYDRAULIC ACTUATING CIRCUIT

The connection between the actuating cylinder rod and the swash plate is modeled without any
mechanical flexibility. By assuming such a connection, the relationship between the piston stroke
xp and the swash plate angle α is described using Equation (3.10).

α = tan−1
(
xp
a

)
(3.10)

By evaluating the derivative of Equation (3.10) with respect to time, the angular velocity α̇ is
described by Equation (3.11).

α̇ = ẋp(1 + cos(2α))
2a (3.11)

where: α̇ Swash plate tilt angular velocity.

In the end the angular acceleration can be obtained by differentiating Equation (3.11) with respect
to time. The resulting angular acceleration α̈ of the swash plate is given by Equation (3.12).

α̈ = cos(α)[cos(α)ẍp − 2α̇ sin(α)ẋp]
a

(3.12)

where: α̈ Swash plate tilt angular acceleration.

3.2.2 Non-Linear State Space Model

All the non-linear differential equations in Section 3.2.1 are here expressed using a non-linear state
space model. The non-linear model is given in a compact form by Equations (3.13) and (3.14).

~̇x = f(~x, u) (3.13)
α = g(~x, u) (3.14)

where: ~x State vector representing all internal states.
f(~x, u) State equations.
~̇x Time derivative of the state vector.
g(~x, u) Output function.

An overview of the change of variables of each state is given by:

x1 = p1 x3 = xp

x2 = p2 x4 = ẋp

where: x1 . . . x4 The four states in ~x.

By using this change of variables it is possible to construct a non-linear state space model given by
Equation (3.15).

~̇x =


β

V0+Apx3
(Q1(x1, u)−Apx4 −QLeak(x1, x2))

β
V0−Apx3

(QLeak(x1, x2) +Apx4 −Q2(x2, u))
x4

(x1−x2)Ap−x3k−x4b
meff

 (3.15)

30
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Where all the flows are described using Equations (3.1), (3.2) and (3.6) where all the states are
substituted. The output α is also non-linear and is given by Equation (3.16).

α = tan−1
(
x3
a

)
(3.16)

This non-linear state-space model is solved using softwares like MATLAB, Simulink and Simula-
tionX by applying numerical solving techniques. This model consist of 4 states in total and only
includes the states describing the hydraulic actuating piston and the mechanical movement of the
swash plate. To complete the simulation model, it is necessary to introduce the dynamics of the
directional control valve spool position u, as well as the dynamics of the control circuit. These
dynamics are introduced in Section 3.3.

3.3 Microcontroller Control Circuit

The hydraulic pump is operated by a pump controller card as shown in Figure 3.1. It is therefore
necessary to identify the control loop and the accompanying control parameters if the complete
response should be described. The complete pump model describes the relationship between the
swash plate reference angle α(ref) and the actual swash plate angle α. The complete control circuit
is illustrated using a simplified block diagram given by Figure 3.4.

P PD Gv(s)
+

‐

+

‐

GI(s)

e ( )ref ( )refu u ( , )x f x u 

( , )y g x u se 

Figure 3.4: Block diagram of the hydraulic circuit and the accompanying control loop.

The control loop in Figure 3.4 consist of two closed loops, where the inner loop introduces a time
delay that represents the combined time delay due to the sensors and pump controller card. The
inner loop which later will be described using GI(s) consist of the dynamics of a directional control
valve Gv(s) placed in a closed loop with a PD-controller. The error between the reference spool
position and actual position is minimized using a classical PD-controller given by Equation (3.17)

GPD(s) = (KdTds+Kd) (3.17)

where: GPD Transfer function describing the PD-controller.
Kd Proportional gain.
Td Time constant.

Further the outer loop controls the actual swash plate angle α using a unity feedback, and the error
is minimized using a simple P-controller given by Equation (3.18).

GP (s) = Kp (3.18)
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3.4. INTERNAL PUMP MODEL

where: GP Transfer function describing the P-controller.
Kp Proportional gain.

The valve dynamics is described using a second order transfer function given by Equation (3.19).

Gv(s) = u(s)
u(ref)(s)

= ω2
v

s2 + 2ζvωvs+ ω2
v

(3.19)

where: Gv(s) Transfer function for the valve.
u(s) Actual valve spool position.
u(ref)(s) Valve spool reference signal
ωv Natural frequency of the valve.
ζv Damping ratio of the valve.

These parameters can be found from a frequency response plot of the valve in a catalog, but they
are also treated as unknowns since such catalog parameters might not be accurate. By assuming a
second order system describing the valve dynamics the control loop is simplified by evaluating the
inner loop and describe it using a single transfer function GI(s). The inner loop is illustrated in
Figure 3.4 using the red dotted line, and the corresponding transfer function is given by Equation
(3.20).

GI(s) = u(s)
e(s) = e−τs

Kpω
2
v(KdTds+Kd)

s2 + (2ζvωv +KdTdω2
ve
−τs)s+ (1 +Kde−τs)ω2

v

(3.20)

where: GI(s) Inner transfer function.
e−τs The time delay transfer function.
e(s) Error between α(ref) and α.

The inner transfer function describes the dynamics from the error e(s) to the actual valve spool
position u(s). In the next Section, 3.4, the relationship between the swash plate angle and the
output flow is described.

3.4 Internal Pump Model

In this section the relation between the swash plate angle α and the direction and magnitude of the
output volume flow is described. First the mechanisms relying on the swash plate angle is described
in Section 3.4.1, and also how the hydraulic fluid is transferred across the pump using the pistons
inside the pump. In Section 3.4.2, the mechanical movement of each piston as a function of the
swash plate angle and input shaft speed is described. The movement of these pistons is the source
of pump flow. The final component of producing flow is the opening area between the two pump
ports and the pistons as described in Section 3.4.3. This port plate opening model produces a ripple
flow that is compared with the mean flow in Section 3.4.4. Since simulating the piston kinematics
in the pump is computationally heavy, an empirical simplification of the ripple flow is presented in
Section 3.4.5.
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3.4. INTERNAL PUMP MODEL

3.4.1 Swash Plate Mechanism

The pistons inside the pump are sliding in a cylindrical barrel that rotates around the z-axis. The
movement of each piston in their axial direction is manipulated by tilting the swash plate. The
swash plate is controlled into a given angle which will move the pistons up and down as the plate
rotates around the z-axis. This is the basis for a variable piston pump. The mechanism allows the
operator to choose which direction the flow should move and how much per second, even if the
driving motor has a fixed speed and direction. An illustration of such a pump is shown in Figure
3.5.

( )r

( )t

x

z

R

pD
0

Figure 3.5: Illustration of a variable displacement piston pump.

The pistons are connected via ball joints to the swash plate in a radius r(α) from the axis center.
When α 6= 0, this spinning movement of the shaft forces the pistons to move in their axial direction.
The ones going backward (positive z) sucks oil from one port, and pushes it out through the other
port when their axial movement is reversed. The maximum angle determines how far the pistons
move, and in the A4VSG pump, the maximum swash plate angle is given by (3.21)

αmax = ±15◦ (3.21)

where: αmax Maximum swash plate tilt angle.
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3.4. INTERNAL PUMP MODEL

Now that the mechanics of the swash plate is described, the next step is to identify how each piston
moves as a consequence of the tilt angle. This is important because the movement of each piston is
responsible for sucking oil from one port and push it out another. The movement of each piston as
a function of the swash plate angle and input shaft rotation velocity is described in Section 3.4.2.

3.4.2 Piston Kinematics

In a steady-state situation, the flow from a pump is often simplified to a mean flow as given by
Equation (3.22).

Q̄ = ω
α

αmax
Vd,max (3.22)

where: Q̄ Mean steady state flow produced by the pump.
ω Motoring shaft speed.
α Swash plate angle.
Vd,max Maximum pump displacement.

However the simplification in Equation (3.22) does not include the ripple flow from the internal
pistons. The consequences of pistons moving from one port to another causes a ripple effect in
the flow with high frequencies. This effect is often damped out in the first hose, but it could
trigger nearby components resonance frequency. Therefore it is desirable to model and simulate
this behavior. The axial movement of piston n is given by the following vector loop as shown in
Figure 3.6 and described in Equation (3.23).

~r0,n + ~xp,n − ~rn = ~0 (3.23)

where: ~r0,n Vector from origin to axial axis of piston n.
~xp,n Vector from end of ~r0,n to the revolute joint center.
~rn Vector from origin to revolute joint.

nr


,p nx


x

z

0,nr


Figure 3.6: 2D vector loop of each axial piston.

This figure only shows how the pistons move in a single plane. By extending this figure into three
dimensions, the endpoint of each piston is tracked as the swash plate rotates around the z-axis.
This vector movement is shown in Figure 3.7.
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n

0

x

y

z n

nr


,p nx


0,nr


Figure 3.7: Illustration of the piston kinematics.

In Figure 3.7, θn describes the angular position of the n’th piston. By knowing the angular position
of each single piston around the swash plate and the swash plate tilt angle, the piston position and
velocity of all pistons can be determined in a time simulation. The 3D vector loop from Figure 3.7
is given by Equation (3.24).

r0

cos(θn)
sin(θn)

0

+ xp,n

cos(ϕ0) cos(θn)
cos(ϕ0) sin(θn)

sin(ϕ0)

− rn
cos(ϕn) cos(θn)

cos(ϕn) sin(θn)
sin(ϕn)

 = ~0 (3.24)

where: θn Angular position of piston n in the x-y plane.
r0 Length of ~r0,n.
xp,n Length of ~xp,n.
ϕn Angle between ~r0,n and ~rn.
rn Length of ~rn.
ϕ0 Angle between horizontal and ~xp,n.

Note that the length r0 is equal for all n pistons, therefore an index is not required of it. The angle
ϕn and its derivative is given by:

ϕn = α cos(θn) (3.25)
ϕ̇n = α̇ cos(θn)− θ̇nα sin(θn) (3.26)

where: ϕ̇n Angular velocity of the angle between ~r0,n and ~rn.
θ̇n Angular velocity of piston n.

35



3.4. INTERNAL PUMP MODEL

Equation (3.24) is re-arranged to extract the desired variables in Equation (3.27).

cos(ϕn) cos(θn) − cos(ϕ0) cos(θn)
cos(ϕn) sin(θn) − cos(ϕ0) sin(θn)

sin(ϕn) − sin(ϕ0)

[ rn
xp,n

]
= r0

cos(θn)
sin(θn)

0

 (3.27)

Solving Equation (3.27) for rn and xp,n yields the following two Equations (3.28) and (3.29).

rn = r0 sin(ϕ0)
sin(ϕ0 − ϕn) (3.28)

xp,n = r0 sin(ϕn)
sin(ϕ0 − ϕn) (3.29)

These equations describe the radial and axial position of each piston. Since the velocity of each
piston will describe how much flow enters and leave each piston chamber, the above equations are
differentiated with respect to time in Equations (3.30) and (3.31):

ṙn = ϕ̇n
r0 cos(ϕn − ϕ0) sin(ϕ0)

(sin(ϕn − ϕ0))2 (3.30)

ẋp,n = −ϕ̇n
2r0 sin(ϕ0)

cos(2(ϕn − ϕ0))− 1 (3.31)

where: ṙn Change in length of ~rn.
ẋp,n Velocity of piston n.

The velocity of each piston is described in Equation (3.31) together with the diameter Dp of the
pistons, describes the flow generated by each piston as the barrel rotates. Since the piston openings
are closed when transferring from port A to port B and vice versa, an effective piston stroke length
have to be derived using the effective opening angle. The effective piston stroke length is given by
Equation (3.32).

Leff = r0 sin(αmax cos(θA,O))
sin(ϕ0 − αmax cos(θA,O)) −

r0 sin(αmax cos(θA,C))
sin(ϕ0 − αmax cos(θA,C)) (3.32)

where: Leff Effective stroke length of each piston.
θA,O Opening angle on port A.
θA,C Closing angle on port A.
θB,O Opening angle on port B.
θB,C Closing angle on port B.

The effective length is now known and dependent on the effective openings which is discussed in
more detail in Section 3.4.3. The variable pumps maximum displacement Vd,max is further expressed
using the effective stroke length Leff and the piston diameter Dp. This relationship is given by
Equation (3.33).

Vd,max = NpLeff
π

4D
2
p (3.33)
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where: Dp Piston diameter.
Vd,max Maximum pump displacement volume.

The length r0 is solved by combining Equations (3.32) and (3.33) into Equation (3.34). With a
known maximum tilt angle, αmax, theoretical displacement volume, Vd,max, piston diameter, Dp

and number of pistons, Np, the length of vector ~r0,n is calculated using Equation (3.34).

r0 = 4Vd,max
NpπD2

p

[
sin(αmax cos(θA,O))

sin(ϕ0 − αmax cos(θA,O)) −
sin(αmax cos(θA,C))

sin(ϕ0 − αmax cos(θA,C))

]−1

(3.34)

With the length calculated in Equation (3.34), the displacement of each piston chamber is known.
This is a necessary prerequisite because the length r0 was not known through the spec sheet of the
pump.

In the above equations the movement of each piston and the piston volumes are described. However
the openings between the piston chambers and the two ports of the pump have not yet been
discussed. The port openings as a function of the position of each piston is described in Section
3.4.3.

3.4.3 Ripple Flow Modeling

The pump piston control volumes interferes with the A and B port through a ported lens plate.
The piston orifice opening connects the piston control volumes to the two pump ports A and B, and
they are modeled using two variable orifices. The orifice opening depends on the location of each
piston. An overview of the geometric layout describing the ported lens plate is given by Figure 3.8.

A-port B-port

open

R

x

y





Figure 3.8: Illustration of the porting lens plate.

37



3.4. INTERNAL PUMP MODEL

The rotation angle of the input shaft is expressed using Equation (3.35).

θ(t) = θ0 +
∫
ω(t)dt (3.35)

where: θ Angular position of the input shaft.
θ0 Initial rotation of the input shaft.
ω Angular velocity of the input shaft.

The opening angle is calculated on a knowledge that each piston chamber should be connected to
either port A or port B at all times in order to reduce the high pressure gradients in the chamber.
The opening angle is given by Equation (3.36)

θopen = π − Dp

R
(3.36)

where: θopen Opening angle on the port plate.
Dp Diameter of the piston chamber.
R Radius of the port plate.

Since the piston chambers extend further than this opening angle, an opening and closing angle for
each port is calculated. These calculations are shown below through Equations (3.37) to (3.40).

θA,O = γ − Dp

2R (3.37)

θA,C = θopen + γ + Dp

2R (3.38)

θB,O = π + γ − Dp

2R (3.39)

θB,C = γ − Dp

2R (3.40)

where: γ Pressure carry over angle [10].

By using these angles it is possible to describe the A and B opening for each single piston in the
barrel. It is necessary to express the angle of each single piston as a function of pump pistons np.
The angle of each piston θn(t) is given by Equation (3.41).

θn(t) = θ(t) + (n− 1)∆θ (3.41)

where: θn Angular position of piston n.
n Piston number.
∆θ Separation angle between each neighboring piston.

The separation angle between each piston is expressed using Equation (3.42).

∆θ = 2π
Np

(3.42)
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where: Np Total number of pistons in the pump.

Each opening of piston number n can now be expressed using a simplified relationship. The openings
uA,n and uB,n is expressed using Equations (3.43) and (3.44).

uA,n =


0 mod(θn, 2π) ∈ [0, θA,O]
1 mod(θn, 2π) ∈ [θA,O, θA,C ]
0 mod(θn, 2π) ∈ [θA,C , 2π]

(3.43)

uB,n =


1 mod(θn, 2π) ∈ [0, θB,C ]
0 mod(θn, 2π) ∈ [θB,C , θB,O]
1 mod(θn, 2π) ∈ [θB,O, 2π]

(3.44)

where: uA,n Opening between piston chamber n and port A.
uB,n Opening between piston chamber n and port B.

The function mod(θn, 2π) produce a repeating angle ranging from 0 to 2π radians. Note however
that the opening definitions in Equations (3.43) and (3.44) are valid for γ ≥ Dp

2R . With a smaller
γ, the opening and closing bounds must be changed. The openings can have only two possible
configurations, open and closed. This is a simplified description of the openings. The flow is
simplified and considered as a direct product of the area and axial speed of the piston. With this
definition, the flow generated by piston n is given by:

Qn = −ẋp,n
π

4D
2
p (3.45)

where: Qn Flow generated by piston n.
ẋp,n Axial movement speed of piston n.
Dp Diameter of each piston.

The positive flow direction is out of the pump, i.e. the volume flow that is pushed out of a piston
chamber. This is accomplished with the negative sign in Equation (3.45) because the piston velocity
is defined positive with expanding volume, refer to Figure 3.7 which shows the positive direction
of ~xp,n. The complete volume flow going out or in of the two ports are given by the following two
equations:

QP,A =
Np∑
n=1

(uA,nQn) (3.46)

QP,B =
Np∑
n=1

(uB,nQn) (3.47)

where: QP,A Flow through port A.
QP,B Flow through port B.

In order to isolate the ripple flow, the mean theoretical flow going through port A and B is calcu-
lated:

Q̄P,A = −Q̄P,B = ω

2π
α

αmax
Vd,max (3.48)
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where: Q̄P,A Steady State flow from port A.
Q̄P,B Steady State flow from port B.
α Swash plate tilt angle.
αmax Maximum swash plate tilt angle.
Vd,max Maximum displacement of the pump.
ω Shaft rotation speed.

Using the complete pump flow and theoretical flow the ripple flow is isolated:

∆QP,A = QP,A − Q̄P,A (3.49)
∆QP,B = QP,B − Q̄P,B (3.50)

Depending on the usage, the model can include the ripple flow using Equations (3.46) and (3.47),
or use the theoretical volume flow in Equation (3.48). Bear in mind that the theoretical volume
flow is much easier to calculate as the piston kinematics are not necessary. In the next subsection
an example of the ripple flow is shown compared to the theoretical flow.
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3.4.4 Ripple Flow Amplitude Analysis

In this section the difference between the mean flow and ripple flow is displayed. With the basis of
an A4VSG pump described in Appendix D.1 the ripple flow is created. The pump flow is calculated
using these parameters:

Shaft speed ω = 1450rpm
Swash plate angle α = 15◦
Number of pistons Np = 9
Diameter of each piston Dp = 20.5mm
Piston tilt angle ϕ0 = 85◦
Pressure cross over angle γ = 20◦
Port plate radius R = 33.1mm

Using the kinematic equations in Section 3.4, the total flow through port A and B on the pump is
calculated. The mean volume flow through port A is calculated with Equation (3.48). The resulting
ripple flow from Equations (3.49) and (3.50) using the above parameters are shown in Figure 3.9.
The ripple flow is simulated to represent one full revolution of the input shaft.
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Figure 3.9: Ripple flow in port A and port B.

A ratio between the ripple flow and the theoretical flow is defined as the maximum value of the
ripple flow divided by the value of the mean flow:

ηr = max(∆QP,A)
Q̄P,A

(3.51)
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From the configuration in Figure 3.9 the ratio between the ripple flow ∆QP,A and the theoretical
flow Q̄P,A is roughly

ηr = 2.063l/min
102.95l/min ≈ 2% (3.52)

This finding is consistent with Manring in [10], page 283, where a graph states that 2% ripple flow
is present when having 9 pistons. The ripple flow ratio ηr with different number of pistons is shown
in Figure 3.10.
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Figure 3.10: Ratio between ripple flow and mean flow.

As shown in Figure 3.10 the ratio is much larger for even number of pistons than with odd num-
bers. This comes from a doubling of ripple-frequency with odd number of pistons as illustrated
in Figure 3.9 where a single revolution with 9 pistons shows 18 spikes. That is why pump and
motor manufacturers generally uses odd number of pistons, as it decreases the ripple amplitudes
compared to even numbers. Also using odd number of pistons makes the ripple less likely to trigger
the resonance frequency of a nearby component because of the doubled ripple frequency.

Since the time simulation of the piston kinematics is computationally heavy, it is desirable to make
a simplification of the ripple flow. This simplification is presented in the next subsection.

3.4.5 Empirical Simplification of the Ripple Flow

Calculating the ripple flow during a simulation requires a great deal more processing power than
just using the theoretical mean flow. The reason is the high frequency of the ripple spikes occurring
with 9 pistons and a 1450rpm shaft speed. With this configuration the ripple signal has a frequency
of 1450

60 ·18 = 435Hz, which makes variable time step solvers run much slower than before the ripple
effects were added. To counter this, a simplification of the ripple signal is here proposed to lessen
the computational power needed to simulate the ripple flow. The ripple signal shown in Figure 3.9
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resembles the absolute value of a sine curve, and therefore the simplified ripple is based on this.
The simplified ripple flow ∆Q(Simp)

P,A is given in Equation (3.53).

∆Q(Simp)
P,A = |Ar sin(2πfrt)|+Or (3.53)

where: ∆Q(Simp)
P,A Simplified ripple flow.

Ar Simplified ripple amplitude.
fr Ripple frequency.
Or Simplified ripple offset.

The ripple frequency fr is given by the shaft speed ω and number of pistons Np in Equation (3.54).

fr = Np
ω

4π (1 + mod(Np, 2)) (3.54)

The offset Or and amplitude Ar needs to be determined by examining the ripple flow generated by
the full kinematic model. Since the mean value of the ripple flow should be zero, the relationship
between the offset Or and amplitude Ar is determined by integrating the ripple stroke a half
revolution and set to zero. This is shown in Equations (3.55) through (3.57).

π∫
θ=0

(Ar sin(θ) +Or) dθ = 0 (3.55)

[−Ar cos(θ)]π0 + [Orθ]π0 = 0 (3.56)

Or = − 2
π
Ar (3.57)

where: θ Input shaft angle.

The ripple amplitude relies heavily on the number of pistons as shown in Figure 3.10. Because of
the large and complex equations required to determine the ripple flow amplitude analytically, an
empirical approximation is chosen to determine the simplified ripple amplitude Ar. This approxi-
mation is a function of the ratio ηr between the ripple flow and the theoretical mean flow. From
Figure 3.9 the simplified ripple flow must be tangent to ∆QP,A most of the time, and the smooth
top should be equal. From this figure, the smooth top is at ≈ 0.6392, and the maximum value of
the simplified ripple flow from Equation (3.53) must be as high:

max(∆Q(Simp)
P,A ) = Ar +Or = 0.6392 (3.58)

By substituting Equation (3.57) for Or in Equation (3.58), Equation (3.59) is formed.

Ar −
2
π
Ar = 0.6392 (3.59)

Since the simplified ripple stroke should be functional for any setup of swash plate angle and number
of pistons, it is desirable that the ripple amplitude is a function of the ratio between maximum
ripple flow and mean flow. This relationship is given by Equation

Ar = ψηrQ̄P,A (3.60)

where: ψ Empirical ratio of the ripple flow amplitude.
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ψ is an empirically determined factor that adjusts the amplitude of the simplified ripple. By
substituting Equation (3.60) for Ar in Equation (3.59), Equation (3.61) is formed.

ψηrQ̄P,A

(
1− 2

π

)
= 0.6392 (3.61)

→ ψ = 0.6392
ηrQ̄P,A

(
1− 2

π

) (3.62)

With the value of ηr from Figure 3.10 and the theoretical flow this ratio is determined to be:

ψ = 0.6392
0.0198 · 102.95 · (1− 2

π )
= 0.8638 (3.63)

Now that the ratio ψ is known, the actual simplified ripple amplitude is calculated with the following
equation granted that ηr is known:

Ar = ψηrQ̄P,A (3.64)

The total flow including simplified ripple and mean flow is given by:

Q
(Simp)
P,A = Q̄P,A + ∆Q(Simp)

P,A (3.65)

The flow through port B is set to be the negative of flow through port A:

Q
(Simp)
P,B = −Q(Simp)

P,A (3.66)

A comparison between true kinematic ripple and simplified ripple is shown in Figure 3.11.
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Figure 3.11: Comparison of simplified vs. actual ripple flow with 9 pistons.

As shown in this figure, the simplified ripple flow follows the actual ripple flow closely, but does
not include the short spikes at the bottom.

After making this ripple flow simplification, the A4VSG pump is now mathematically modeled
from swash plate angle input to flow generation. How this model is stitched together into a single
non-linear model is shown in the next section.
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3.5 SimulationX Model

From the pump model in Chapter 3 a SimulationX model is created. An overview of the model is
shown in form of a block diagram in Figure 3.12.
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Figure 3.12: Block diagram of the A4VSG pump model.

In this figure, there is just one input, which is the reference swash plate angle α(ref). The deviation
between the actual swash plate angle and the reference is used as input to a controller as detailed in
Section 3.3. The output of this controller is the valve reference, and the deviation between the valve
reference and the actual valve is the input to the valve controller. This controller is also detailed
in Section 3.3. The output of this controller is sent to the valve in the physical system. This block
contains all the governing equations of the system, as well as the time integration necessary to
produce the states at next time step. The physical model is detailed in Section 3.2. There are
three outputs from this model; the actual valve position u, the actual swash plate angle α and the
mean volume flow. The actual swash plate angle and valve position is used as feedback to the two
control systems. The mean flow Q̄ is summed up with the simplified ripple flow to produce the
total output flow. The ripple flow is detailed in Section 3.4.

This SimulationX model is further detailed in Appendix F, where the SimulationX blocks used and
references to the governing equations are detailed.

The next Chapter focuses on every result from performing tests on the pump or in the simulation
model.

45



3.5. SIMULATIONX MODEL

46



Chapter 4
Results from Hydraulic Pump Model

This chapter contains all the results gathered by using the methods, information and algorithms
as described in the Method Chapter 2 and the hydraulic pump model in Chapter 3. Every result
subsection includes references to the method and/or parts of the simulation model used to achieve
the results. This chapter is organized as follows. Section 4.1 presents measured flow versus swash
plate angle to verify the rotational speed of the induction motor and the maximum pump dis-
placement. Section 4.2 presents results from Black box modeling of the pump based on frequency
response analysis. Section 4.4 presents results from the non-linear Grey box modeling of the swash
plate dynamics. Section 4.5 presents results and findings from using the SimulationX model of the
pump.
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4.1. STEADY STATE PUMP FLOW MEASUREMENTS

4.1 Steady State Pump Flow Measurements

The oil flow of the A4VSG closed loop pump have been measured using two HYDAC Flow sensor
as presented in the components Appendix D.7. Because of the various measurement intervals of
the two flow sensors, both have been installed in the hydraulic system. The two sensors replaced
the load which is displayed in Figure 3.1 in order to measure the output flow of the pump. From
the two sensors, two graphs were obtained that shows the measured flow up to 20 l/min and from
40 l/min. These two graphs are shown in Figure 4.1.
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Figure 4.1: Comparison between flow measurement and theoretical flow at no load.

In this figure the blue line is the theoretical flow expected at normal conditions, the red and green
line shows the measured flow using the two flow sensors and finally the black stapled line indicates
an assumed linear flow between the measurements of the two sensors. On this figure there are also
three red colored numbers which are explained here:

1. Here the small flow sensor gets outside its measurement area which is 20 l/min, and the large
flow sensor starts at 40 l/min.

2. As seen here, the slope of the measured flow is different than the theoretical flow. If the
motor driving the pump is actually faster than 1450 rpm, it would explain the larger flow.

3. Finally the flow gradient stops near 95% swash plate angle which could be due to a physical
stop inside the pump.

From these flow measurements, the pump is assumed give correct amount of flow. In the next
subsection the swash plate dynamics are uncovered using a frequency response analysis and a
transfer function estimation.
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4.2 Black Box Model

In this section a Black box model of the swash plate dynamics is identified by performing a frequency
response test and analysis. At first the dynamics are assumed independent on the pump pressure
in Section 4.2.1, but the load dependency is checked in Section 4.2.2. Finally the dynamics while
the pump is under load vs no-load is compared in Section 4.2.3 and a performance assessment of
the Black box model is performed in Section 4.2.4.

4.2.1 No-Load Situation

The results in this section is based on a test using the physical layout described in Section 3.1.2
without any load. 18 frequency response tests were first performed using the method in Section
2.1.1, and the data was analyzed with a frequency response analysis described in Section 2.3. The
magnitude and phase derived from the analysis is used to estimate 18 transfer functions (TFs)
using a TF estimation toolbox described in Section 2.4.

The 18 frequency response tests were carried out at ±[25, 50, 75]% offset with [5,10,20]% amplitude
in order to look for nonlinearities in the swash plate dynamics at different offsets and amplitudes.
For this estimation, a TF with 5 poles and no zeros was chosen to describe the system. The
template for this TF is shown in Equation (4.1):

Gest(s) = b0
s5 + a4s4 + a3s3 + a2s2 + a1s+ a0

(4.1)

where: b0 Constant value describing the numerator.
a4 . . . a0 Constant values describing the denominator.

The reason for using a fifth order TF is that the pump model described in Chapter 3 introduces
5 states if the pressure on each side of the actuating control piston is combined to single pressure
difference state. The estimation toolbox returns the five constant values and a percentage which
tells how good the fit is. For the 18 tests, the resulting constant values are given in Table 4.1.
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Table 4.1: Estimated TFs describing the dynamics of the swash plate during no load.

O [%] A [%] b0 [106] a4 [100] a3 [100] a2 [103] a1 [106] a0 [106]
-75 5 63158 216 89266 12047 1426 61788
-75 10 69756 214 88918 12283 1425 69153
-75 20 78475 254 101964 15226 1521 79129
-50 5 60963 196 89134 11583 1397 59702
-50 10 67935 201 86374 11841 1373 66457
-50 20 78762 243 101944 15372 1540 79809
-25 5 62091 191 88408 11612 1429 60185
-25 10 70880 208 88674 12347 1452 69731
-25 20 82994 231 104369 15665 1608 82857
25 5 62091 191 88408 11612 1429 60185
25 10 70880 208 88674 12347 1452 69731
25 20 82994 231 104369 15665 1608 82857
50 5 60963 196 89134 11583 1397 59702
50 10 67935 201 86374 11841 1373 66457
50 20 78762 243 101944 15372 1540 79809
75 5 63158 216 89266 12047 1426 61788
75 10 69756 214 88918 12283 1425 69153
75 20 78475 254 101964 15226 1521 79129

Bode plots of the transfer functions in Table 4.1 are shown in Appendix C together with actual
frequency response and two Grey box models. The Grey box models are identified later in this
results chapter in Section 4.4. The next subsection presents results from performing a frequency
response test and analysis on the swash plate dynamics during a load situation.

4.2.2 Load Situation

These results comes from a test using the physical layout described in Section 3.1.2 with a load.
The load is created using an orifice creating a pressure drop between port A and port B of the
pump. The pressure drop at different intervals are shown in Table 4.2.

Table 4.2: Pressure drop over the orifice with a certain swash plate angle.

Angle α [%] Pressure Drop ∆p [bar]
65 32
70 41
75 52
80 63
85 75

As shown by the table, the load pressure is varying between 32 and 75 bar over the swash plate
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angle region between 65% and 85% of maximum angle. A frequency response test and analysis
described in Sections 2.1.1 and 2.3 is conducted on the swash plate angle of the pump while the
orifice is the load. The offset was set to 75% max angle to reach the largest load pressures. Two
tests at 5% and 10% amplitude were performed and the resulting transfer functions using the TF
estimator in Section 2.4 are given in Table 4.3.

Table 4.3: Estimated TFs describing the dynamics of the swash plate during load.

O [%] A [%] b0 [106] a4 [100] a3 [100] a2 [103] a1 [106] a0 [106]
75 5 72118 236 96809 13310 1594 70028
75 10 81114 231 97740 13468 1630 79655

In order to compare whether the dynamics of the swash plate angle have changed with the inclusion
of the load, the next subsection compares the two setups side by side.

4.2.3 Comparison Between Load and No-Load Situations

The pump was tested without any load and with an orifice as a load in Sections 4.2.1 and 4.2.2
respectively. In this section the measured frequency responses between them are compared to check
if the dynamic response is different with the added load to the swash plate. Figure 4.2 and 4.3
shows these comparisons at 5% and 10% amplitude respectively.
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Figure 4.2: Frequency response comparison between a load and a no-load situation at 5% amplitude.
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Figure 4.3: Frequency response comparison between a load and a no-load situation at 10% ampli-
tude.

For both figures, the blue dots shows the frequency response during the load-situation and the
red dots shows the frequency response during a no-load situation. As shown on the figure, the
differences in dynamics between the two situations are negligible. The small deviations between
them may even arise from temperature differences, and not because of the load. Therefore the Black
box models describing the swash plate dynamics during no load is used in the next subsection to
assess their performance.

4.2.4 Black Box Model Accuracy

The accuracy of each swash plate transfer function presented in Section 4.2.1 is checked with a
mean deviation and maximum deviation as described in Section 2.7. Both the magnitude and
phase is checked against the actual frequency response at the given offset and amplitude. The
result is shown in Table 4.4.

In Table 4.4, the six columns describe the following from left to right:

1. Offset of the test sine input.

2. Amplitude of the test sine input.

3. Mean magnitude deviation between measured frequency response and model response.

4. Max magnitude deviation between measured frequency response and model response.

5. Mean phase deviation between measured frequency response and model response.

6. Max phase deviation between measured frequency response and model response.
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Table 4.4: Black Box model verification - Frequency domain.

O [%] A [%] ĒM[dB] E(max)
M [dB] ĒP[deg] E(max)

P [deg] Verification
-75 5 0.34 1.98 4.6 22.9 X

-75 10 0.21 1.29 4.2 21 X

-75 20 0.15 0.61 4.1 29.3 X

-50 5 0.35 2.04 4.7 25.7 5

-50 10 0.23 1.41 4.4 22.4 X

-50 20 0.14 0.69 4.1 29.3 X

-25 5 0.35 1.96 4.7 25.6 X

-25 10 0.21 1.29 4.4 21.7 X

-25 20 0.15 0.76 4.2 31 X

25 5 0.35 1.96 4.7 25.6 X

25 10 0.21 1.29 4.4 21.7 X

25 20 0.15 0.76 4.2 31 X

50 5 0.35 2.04 4.7 25.7 5

50 10 0.23 1.41 4.4 22.4 X

50 20 0.14 0.69 4.1 29.3 X

75 5 0.34 1.98 4.6 22.9 X

75 10 0.21 1.29 4.2 21 X

75 20 0.15 0.61 4.1 29.3 X

7. A Xis shown if the model is within the criteria in Section 1.3, or a 5 is shown if the model
does not satisfy all criteria.

The accuracy of each Black box model is compared to the design criteria in Section 1.3, and the
result is shown in the rightmost column in Table 4.4. Two of the models do not pass the accuracy
test on the criteria of maximum 2 dB magnitude deviation, and are therefore not verified.

A frequency response analysis isn’t the only way to map the dynamic response of a system. In the
next section, the results from the frequency response tests are used to investigate the performance
of a chirp response analysis.
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4.3 Chirp Test Compared to Traditional Frequency Response Test

In the previous section the swash plate dynamics in the A4VSG pump was identified with a fre-
quency response analysis. In this section the pump is tested with a chirp signal and the response
is used to identify the dynamics with the algorithm described in Section 2.5. The result from this
algorithm is compared with a standard frequency response analysis which is described in Section
2.3. The two following Figures 4.4 and 4.5 shows the comparison between the two methods. The
title in each figure shows the test configuration and the x-axis is the frequency in Hz. The black
dots are the reference dynamics from a standard frequency response analysis, the blue line shows
the mean magnitude and phase from a chirp response analysis, and the green and red lines shows
the top and bottom responses respectively. The top and bottom responses are shown to compare
the dynamics in each direction.

In Figure 4.4 the positive offset configurations are shown with an amplitude of 20%. The blue line
which is the mean chirp analysis response is very close to the reference data, the black dots. The
bottom response (red curve) shows a faster response than the blue curve because it’s easier for the
pumps actuating circuit to move the swash plate to zero angle than from zero.

In Figure 4.5 the results from the chirp response test on negative offsets deviates a bit more from
the standard frequency response analysis. The chirp response analysis reports a better response
on the magnitude plot than the frequency response test. The reason may be minor mistakes in
the algorithm or temperature/system differences between the chirp test and the frequency response
test.

The biggest problem with estimating a linear transfer function for a non-linear system like the
A4VSG swash plate mechanism, is that a separate Black box model is created for each linearization
point. Instead, a non-linear Grey box model of the system can be identified to reproduce the same
results around all linearization points. In the next subsection, the parameters for such a non-linear
Grey box model is identified through optimization.
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Figure 4.4: Frequency response analysis compared to chirp response analysis @ A = 20%.
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Figure 4.5: Frequency response analysis compared to chirp response analysis @ A = 20%.
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4.4 Optimization of Non-Linear Grey Box Model

4.4.1 Resulting Model Parameters

The Grey box model of the pump is described in Section 3.2 and the control system for the swash
plate tilting is described in Section 3.3. These two combined is the non-linear Grey box model of
the pump. This model is optimized using an interior point algorithm as explained in Section 2.6.1.
The objective function combines deviations in the time domain and frequency domain, as explained
in point 3 in Section 2.6.2. The time domain part is the total deviation between measured valve
position and simulated valve position. To get time domain data, a stochastic wave with Tp = 1s
and Hs = 100% was used as input to the pump. The stochastic wave test is descried in Section
2.1.3.

The frequency domain part of the objective function is obtained by first performing a frequency
response test and analysis of the pump as described in Section 2.1.1 and 2.3 respectively. The
result from this is frequency data of the dynamics between swash plate angle reference and actual
swash plate angle. Such a test was performed at offsets ∈ [−75,−50,−25, 25, 50, 75]% and am-
plitudes ∈ [5, 10, 20]% to cover nonlinearities in the pump. To get simulated frequency data, the
same frequency response test and analysis is performed from simulation data of the pump. The
frequency domain objective part is therefore the deviations between the true frequency responses
and simulated ones.

Using this objective function, the unknown parameters are optimized using an interior-point algo-
rithm. The known/static parameters such as oil stiffness β and oil density ρ is given in Appendix E
for reference. Two models were optimized; one model that keeps the cylinder data from Appendix
D.2 as constant values, and one model were these values are variable in the optimization. The
Grey box model with the locked cylinder data is hereby called the “Locked Grey box
model” and the Grey box model with the cylinder area and stroke length as optimize-
able parameters is hereby called the “Free Grey box model”. The reason for optimizing
two models is to see whether or not there is an advantage in measuring/acquiring hard parameters
and lock them in the model. For the first model with locked cylinder data, the unknown parameters
together with their upper and lower linear bounds as well as the final value are shown in Table 4.5.
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Table 4.5: Estimated Parameters for the Locked Grey Box Model.

Parameter Lower bound Upper bound s Final value Unit
ωv 18 35 34.14 Hz

ζv 0.3 2 1.4461 −
L - - 34.2 mm

Ap - - 1260 mm2

V0 0.01 0.5 0.0211 dm3

meff 20 700 500 kg

k 0 30 17.485 N/mm

b 0 30 5.609 Ns/mm

Kp 0 100 27.493 −
KD 0.01 1 1 −
Td 0.005305 0.0159 0.00354 −
KL 0.02 5 0.0850 mm2

τ 0 50 5.797 ms

For the second model that keeps the cylinder data free, the unknown parameters together with
their upper and lower linear bounds as well as the final values are shown in Table 4.6.

Table 4.6: Estimated Parameters for the Free Grey Box Model.

Parameter Lower bound Upper bound Final value Unit
ωv 18 35 28.05 Hz

ζv 0.3 2 0.82031 −
L 30 120 47.011 mm

Ap 314.15 5026.54 401.33 mm2

V0 0.01 0.5 0.0607 dm3

meff 20 700 62.384 kg

k 0 30 13.445 N/mm

b 0 30 13.422 Ns/mm

Kp 0 100 42.445 −
KD 0.01 1 0.24111 −
Td 0.0035368 0.0159 0.0040576 −
KL 0.02 5 0.02 mm2

τ 0 50 3.83 ms

As shown from Tables 4.6 and 4.5, there are some differences between the two models. Especially
the effective mass meff is much larger on the locked Grey box model compared to the free Grey
box model. This difference is most likely caused by the larger piston area on the locked Grey box
model, which in turn requires a larger inertia to limit the acceleration. Bode plots of the Free and
Locked Grey box models are shown in Appendix C.

Although the models are identified in this section, the accuracy of either model have not been
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elaborated yet. A comparison of the two models is given in the next subsection to identify the
superior model.

4.4.2 Grey Box Model Accuracy

In the previous Section, two Grey box models were presented, namely a Locked Grey box model and
a Free Grey box model. The difference between the two is whether or not the area and stroke length
of the cylinder should be optimizeable parameters or not. In order to validate the performance of
the two models in the frequency domain, a model verification procedure described in Section 2.7 is
used. The output of this procedure is essentially the mean and maximum difference between the
frequency response of the model and the physical pump. Table 4.7 shows the frequency domain
accuracy of the Locked Grey box model.

Table 4.7: Locked Grey Box model verification - Frequency domain.

O [%] A [%] ĒM[dB] E(max)
M [dB] ĒP[deg] E(max)

P [deg] Verification
-75 5 0.78 2.43 7.6 57.1 5

-75 10 0.32 0.93 8.3 51.2 5

-75 20 0.29 1.14 10.4 63.2 5

-50 5 0.57 1.97 7.8 58.9 5

-50 10 0.46 1.83 8.9 50.8 5

-50 20 0.36 1.91 11.6 57.3 5

-25 5 0.45 1.43 6.8 54.3 5

-25 10 0.59 2.13 8.6 49.1 5

-25 20 0.44 2.03 11.3 54.2 5

25 5 0.45 1.43 6.8 54.3 5

25 10 0.59 2.13 8.6 49.1 5

25 20 0.44 2.03 11.3 54.2 5

50 5 0.57 1.97 7.8 58.9 5

50 10 0.46 1.83 8.9 50.8 5

50 20 0.36 1.91 11.6 57.3 5

75 5 0.78 2.43 7.6 57.1 5

75 10 0.32 0.93 8.3 51.2 5

75 20 0.29 1.14 10.4 63.2 5

The verification column in Table 4.7 indicates that the model does not meet the specification criteria
in Section 1.3. This is mostly due to the large deviations on mean and maximum phase. In order to
verify the accuracy of the Free Grey box model to identify if it have the same accuracy problems,
the same procedure is executed for the free Grey box model. The results are shown in Table 4.6.
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Table 4.8: Free Grey Box model verification - Frequency domain.

O [%] A [%] ĒM[dB] E(max)
M [dB] ĒP[deg] E(max)

P [deg] Verification
-75 5 0.39 1.17 3.4 32.4 X

-75 10 0.23 0.75 3.4 26 X

-75 20 0.33 1.15 4.6 36.7 5

-50 5 0.18 0.4 3.1 32.9 X

-50 10 0.25 0.62 4 23.3 X

-50 20 0.17 0.62 4.6 32.1 X

-25 5 0.19 0.39 3.2 27.3 X

-25 10 0.37 1.01 4.2 20.8 X

-25 20 0.21 0.58 4.6 30.4 X

25 5 0.19 0.39 3.2 27.3 X

25 10 0.37 1.01 4.2 20.8 X

25 20 0.21 0.58 4.6 30.4 X

50 5 0.18 0.39 3.1 32.9 X

50 10 0.25 0.62 4 23.3 X

50 20 0.17 0.62 4.6 32.1 X

75 5 0.39 1.17 3.4 32.4 X

75 10 0.23 0.75 3.4 26 X

75 20 0.33 1.15 4.6 36.7 5

From the verification column in Table 4.8 it is shown that the accuracy of this model is much better
than the locked Grey box model. Only in the two most extreme situations with ±75% offset and
20% amplitude, the accuracy of the model is below the criteria. A possible explanation for this is
that the modeled spring in the cylinder is linear, but it may be non-linear.

Also in order to verify the time response of the two models, a test with a stochastic wave input
with Hs = 100% and Tp = 0.5s is used as input to the pump. Recall that during the optimization
a similar dataset was used, albeit with a slower significant wave period, and therefore these mea-
surements have not been used to optimize the model. The resulting swash plate angle α and the
internal valve position u have been logged using Bodac software. For the Locked Grey box model
(Table 4.5), the following comparison plots are created, see Figure 4.6
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Figure 4.6: Comparison of internal measured and simulated values for the locked parameter model.

As shown in Figure 4.6 there are three plots from top to bottom: A comparison of measured angle α
and simulated angle α(sim), a comparison of measured valve position u and simulated valve position
u(sim) and a plot showing the two simulated internal pressures p(sim)

1 and p
(sim)
2 . From this plot

it is shown that the simulated response of the swash plate angle follows the measured response,
and the simulated internal pressures are within limits of 0-170 bar. However, the model does not
catch the measured internal position of the valve; the simulated valve u(sim) have a larger response
than the measured valve position. The reason for this may be an inaccurate model of the cylinder
chamber volumes in relation with the cylinder area.

To further strengthen this theory, lets move the focus to the free Grey box model. Comparison
plots in the time domain using the free Grey box model is shown in Figure 4.7.
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Figure 4.7: Comparison of internal measured and simulated values for the free parameter model.

In Figure 4.7, it is shown that the Free Grey box model manages to adjust its parameters so that
the measured and simulated valve position is similar. A huge contribution to this is the freedom
to change the cylinder area, as the free Grey box model have a third of the cylinder area compared
to the locked Grey box model.

The accuracy of two models in the time domain is also assessed using the verification method in
Section 2.7. The maximum and mean deviation between the measured and simulated valve position
is shown for the two models in Table 4.9

Table 4.9: Grey Box model verification - Time domain.

Model Ēt[%] E(max)
t [%] Verification

Locked 7.86 18.49 5

Free 1.83 9.47 X
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The upper limits for mean and maximum deviations in percentage is given in the design criteria in
Section 1.3. The locked Grey box model does not pass the upper limit in terms of either maximum
deviation or mean deviation. The free Grey box model passes the design criteria.

After this verification procedure, the free Grey box model appears to be the best model to repro-
duce the dynamics in the swash plate angle actuating circuit. Therefore the free Grey box model
parameters are used as initial values in the SimulationX model of the pump. In the next section,
the ripple flow effect is analyzed to determine whether it is necessary to include the ripple flow in
a simulation.
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4.5 Analysis of the Ripple Flow Effect

In this section, the effect of the ripple flow is analyzed in two situations. The ripple flow is generated
from the piston movements inside the pump and consists of high-frequent, low-amplitude flow
spikes. This behavior is further explained back in Subsections 3.4.3 through 3.4.5. In order to
produce the results in this chapter, the SimulationX model of the pump from Section 3.5 is used.
This model includes the simplified ripple flow.

The ripple flow is shown to have a high frequency and a low amplitude. This brings up the question
whether a simulation of this ripple flow is really necessary. If the output of the pump is connected
to a hose, the damping may cancel the effect of the ripple before it reaches any component. This
is tested using a simple SimulationX diagram with the modeled pump with ripple flow included.
The block diagram is shown in Figure 4.8.

Figure 4.8: Block diagram of the SimulationX program used to test ripple frequencies over a hose.

The block diagram in Figure 4.8 contains from left to right a swash plate angle command, the
A4VSG pump connected to a tank on port B and a hose and flow sensor on port A. The purpose
of this simulation is to compare the flow generated by the pump with the measured flow after the
hose. The hose is 3m long with an inner diameter of 10mm and standard settings for damping and
wall roughness. The output of this simulation is shown in Figure 4.9.
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Figure 4.9: Comparison of flow before and after hose.

As shown in Figure 4.9 the effects of the ripple is canceled out in the hose. This concludes the
inefficiency of simulating the ripple flow if a hose is used on the output of the pump. Another
scenario worth investigation is a pressure relief valve connected to the output of the pump. If its
resonance frequency is triggered by the ripple flow it could case large noises and perhaps damage
the valve. This is tested using a different SimulationX program which is shown in Figure 4.10.
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Figure 4.10: Simulation X Block diagram for pressure relief valve test.

This block diagram has two hydraulic circuits; the left part contains an A4VSG pump with ripple
simulation and the right part contains an A4VSG without ripple simulation. Each of the two
pumps are connected to an identical set of a volume and a pressure relief valve. The volume
is sized to 0.1dm3. The pressure relief valves are configured with an undamped opening time
equal to the period of the ripple strokes. This is done to provoke a resonance behavior in the
valve when subjected to the ripple strokes. With the pumps configuration the ripple frequency is
2fr = 435Hz. fr is doubled because one simplified ripple period contains two ripple strokes. The
undamped opening is therefore set to 1/435Hz ≈ 2.3ms. The angle command to the pump is static
at 50%. The result from this simulation is shown in Figure 4.11.
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Figure 4.11: Simulated pressure relief valve opening percentage.

In Figure 4.11 the opening of the two pressure relief valves are shown. The blue curve is connected
to the pump with ripple and the red is connected to the pump without ripple. During the end
of the simulation from t = 0.15s the blue curve clearly shows signs of resonance compared to the
baseline which is the red curve. Near the end the oscillations reaches steady state between 35%
and 48%. This simulation shows that the relief valve tested is affected by the ripple strokes, but
whether this could be reproduced in a real experiment have not been tested.

65



4.5. ANALYSIS OF THE RIPPLE FLOW EFFECT

Since the ripple flow makes such a small difference when the pump is connected to a hose, it can
be favorable to neglect this to preserve computational power.

This result concludes the non-linear simulation model of the A4VSG pump, and the next chapter
will focus on the design and control of a hydraulic load circuit.

66



Chapter 5
Hydraulic Load Simulation Circuit

In this chapter the second part of the master thesis is presented. The purpose of this chapter is
to elaborate the dynamics of the two hydraulic circuits and present a control system design which
should control the shaft torque on one circuit and the rotational shaft speed using the second circuit.
The shaft torque controller circuit is hereby called the “load circuit” and the speed control circuit
is hereby called the “supply circuit”. An overview of the test setup for the two hydraulic circuits
is presented in Section 5.1. Afterwards in Sections 5.2 and 5.3, a mathematical model of the load
circuit and supply circuit is presented. These models are linearized to design linear control systems
to control the shaft speed and load pressure in Section 5.4. In order to make an accurate non-linear
simulation model of the two hydraulic circuits, the friction in the two motors is modeled in Section
5.5. To summarize the entire simulation model of the setup, a SimulationX model is presented
in Section 5.6. Finally, an active heave compensation simulation model is presented which can be
used to generate the load pressure and shaft speed reference in Section 5.7.
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5.1 Physical Test Bench Description

To simulate a physical load scenario acting on the Bosch Rexroth A4VSG pump during active heave
compensation, a physical simulation circuit is developed. The main idea is to use two hydraulic
circuits that are connected to each other via a mechanical shaft. One of the circuits is controlled
using the closed loop pump described in Chapter 3, and the second circuit is controlled using a
Parker servo valve described in Appendix D.6. The two Parker motors are described in Appendix
D.4. These two motors are connected using a mechanical coupling, which connects the two closed
hydraulic loops. Both Parker motors are variable displacement motors, however they are fixed
during the project to the maximum of 60cm3/rev. An illustration of the physical test bench is
given in Figure 5.1.

Figure 5.1: Picture of the physical test bench, where the two motors are connected using a me-
chanical coupling.

In Figure 5.1, both Parker motors are shown mounted on the test bench with a mechanical coupling
fitted between them. All instrumentation as well as mounting of the physical test bench was carried
out during the master thesis.

The pressure transmitters are of the 2-wire current transmitters type. They had to be connected
to a PLC since the NI myRIO DAQ does not support current sensing at the I/O ports. The PLC
reads the current signal from the pressure transmitters and provide the NI myRIO with voltage
signals ranging between 1V − 5V . The control systems are programmed using NI’s LabVIEW
programming environment, and run on the NI myRIO. The control systems are implemented using
a difference equation which will reduce the complexity of implementing the controller later on a
PLC if the company would like to do so. A picture showing the PC running the LabVIEW interface
is given in Figure 5.2.
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Figure 5.2: Laptop running LabVIEW for monitoring and control of the load circuit. The hand
held controller to the left is used to set speed and load references.

It is desirable to adjust the shaft rotational speed and the load pressure across the load motor
using analog inputs. A radio controller have been reconfigured to use the two potentiometers
located in the right joystick to generate such analog voltage signal. The joystick movements have
been configured as shown in Figure 5.3.
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+‐

‐

Figure 5.3: Overview of the analog joystick controllers.
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The rotational speed of the coupling is measured using the time between two rising pulses from
an inductive sensor. The inductive sensor is mounted in such way that the signal is positive when
the inductive sensor is positioned over the metal part of the coupling. A picture of the mounting
is given in Figure 5.4.

Figure 5.4: Inductive sensor fitting. Here shown when the output signal is false.

The equation describing the measured rotational speed due to the inductive pulse signal is given
by Equation (5.1).

ωs = 2π
10∆T sign(α(ref)) (5.1)

where: ωs The rotational velocity of the shaft/coupling.
α(ref) The reference control signal to the A4VSG pump.
∆T The measured time between each rising pulse.
10 The number 10 represents the number of pulses per revolution.

It is important to note that the measured speed around zero velocity will result in inaccurate mea-
surements. Also a logic switch between positive and negative speed is added via the sign(α(ref))
since a single pulse sensor can not provide information about the direction. In future implementa-
tion/installation, MacGregor should introduce a more sophisticated sensor to measure the coupling
rotational velocity. A complete schematic of the setup is shown in Figure 5.5.
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Figure 5.5: Load circuit electronic layout. Picture of NI myRIO, BR VT-VPCD and Siemens PLC
is taken from [1], [2] and [3] respectively.

Now that the test setup is described, the next section focuses on a mathematical model of the
hydraulic load circuit.
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5.2 Load Circuit Analysis

This section presents a simplified mathematical model of the hydraulic circuit that is controlled to
generate a mechanical load on the coupling between the two motors, also known as the load circuit.
The circuit consist of a Parker servo valve described in Appendix D.6 and a Parker motor described
in Appendix D.4. The valve is controlled to control the load torque on the motor shaft. To design
an accurate controller, a linearized model of the hydraulic load circuit is found by setting up the
mathematical model of the hydraulic circuit. A simplified overview of the hydraulic load circuit is
shown in Figure 5.6.

svu

S,Lp

LQ

L

svQ svQ

,A Lp

B,Lp

LT L

ST

Figure 5.6: Simplified overview of the hydraulic load circuit.

From the figure, several equations are presented to model the hydraulic circuit. The first equation
describes the hydraulic flow trough the servo valve, and it is given by Equation (5.2).

Qsv = usvKsv

√
1
ρ

(ps,L −
usv
|usv|

pL) (5.2)

where: Qsv The flow through the servo valve.
usv Actual servo valve spool opening.
Ksv Servo valve orifice opening coefficient.
ps,L Load circuit supply pressure.
pL Load pressure across the motor.

The load pressure pL introduced in Equation (5.2) is defined by Equation (5.3).

pL = pA,L − pB,L (5.3)
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The orifice equation describing the flow through the servo valve is non-linear and has to be linearized
in order to obtain a linear expression of the valve flow. Bear in mind that the linearized model
of the valve flow is used to design a control system in a later section. The linearized valve flow is
given by Equation (5.4).

Qsv ≈ Kquusv −KqppL (5.4)

where: Kqu Spool opening flow gain coefficient.
Kqp Pressure flow gain coefficient.

The coefficients Kqu and Kqp describing the linearized valve flow given by Equations (5.4) is found
by using first order Taylor expansions. The coefficients are given by Equation (5.5) and (5.6).

Kqu = ∂Qsv
∂usv

∣∣∣∣
(ss)

= Ksv

√√√√1
ρ

(ps,L −
u

(ss)
sv

|u(ss)
sv |

p
(ss)
L ) (5.5)

Kqp = ∂Qsv
∂pL

∣∣∣∣
(ss)

= |u(ss)
sv |Ksv

2
√
ρ(ps,L − u

(ss)
sv

|u(ss)
sv |

p
(ss)
L )

(5.6)

When the motor shaft rotates, a flow trough the motor is present. This flow is refereed to as the
load flow and it is expressed using Equation (5.7).

QL = KL(αL)ωL (5.7)

where: QL The load flow through the motor.
KL(αL) Motor gain coefficient.
ωL Motor shaft rotational speed.
αL Motor swash plate angle.

Due to the pressure drop across the motor a resulting torque on the shaft is present. This torque
is described using Equation (5.8).

TL = KL(αL)pL (5.8)

where: TL Load torque.
pL Load pressure across the motor.

Equations (5.7) and (5.8) uses a gain coefficient which is dependent on the swash plate angle of the
motor αL. This gain is expressed using Equation (5.9).

KL(αL) = αL
αL,max

Vm,max
2π (5.9)

where: αL,max Maximum swash plate angle of the Parker V12 motor.
Vm,max Maximum motor displacement.
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The dynamic behavior of the hydraulic load circuit is described by setting up the main governing
equations describing the pressure gradients and the shaft acceleration. The load pressure gradient
is given by Equation (5.10).

ṗL = 2β
VL0

(Qsv −QL) (5.10)

where: ṗL Load pressure gradient.
β The hydraulic fluid bulk modulus.
VL0 The dead volume on each side of the motor.

The acceleration of the shaft is a result of difference between the load torque TL and the supply
torque Ts. The shaft acceleration is described using Equation (5.11).

ω̇L = TL − Ts − ωLc
Jeff

(5.11)

where: ω̇L Motor shaft acceleration.
Ts Supply torque generated by the hydraulic supply circuit.
Jeff The effective inertia of both the motors and the connecting shaft.
c Rotational friction coefficient.

Bear in mind that the rotational friction coefficient c is introduced to have a linear friction model.
A non-linear friction model is introduced later in Section 5.5 which will be used in the non-linear
simulation model of the hydraulic load circuit. The aim is to obtain a linearized model which is
used to find a suitable control system that provides sufficient performance. The linearized model is
found by taking the Laplace transform of the two governing differential equations given in Equations
(5.10) and (5.11). The resulting two equations in the s-domain are given in Equations (5.12) and
(5.13).

pL(s) = 1
s

2β
VL0

(Kquusv(s)−KqppL(s)−KL(αL)ωL(s)) (5.12)

ωL(s) = 1
s

KL(αL)pL(s)− Ts(s)− ωL(s)c
Jeff

(5.13)

These two equations are combined and used to find linear relationships between input and output
in the load circuit. To extract these transfer functions, a block model is drawn to illustrate the
load circuit dynamics. The block model is shown in Figure 5.7.
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Figure 5.7: Load circuit block diagram.

From the block diagram in Figure 5.7 two main transfer functions are found. The first one describes
the relationship between the input servo valve reference u(ref)

sv and the load pressure pL. In this
situation the shaft speed ωL can be seen as a disturbance to the plant. This transfer function is
given in Equation (5.14).

GpL(s) = pL(s)
u

(ref)
sv (s)

= Gsv(s)
Kqu

2β
VL0

s+ 2β
VL0

Kqp

(5.14)

The second transfer function describes the relationship between the input servo valve reference
u

(ref)
sv and the output shaft speed ωL. In this situation the torque Ts generated by the supply

circuit can be seen as a disturbance to the plant. The transfer function is shown in Equation
(5.15).

GωL(s) = ωL(s)
u

(ref)
sv (s)

= Gsv(s)
KquKL(αL) 2β

VL0Jeff

s2 + 2βJeffKqp+cVL0
VL0Jeff

s+ 2βKqpc+2βK2
L(αL)

VL0Jeff

(5.15)

The two transfer functions GpL(s) and GωL(s) are useful when designing a control system to either
control the load pressure pL or the shaft speed ωL. However, both plants are originally non-linear,
and the controllers should be designed in a conservative way when using linearized models.

In this section the non-linear load circuit was described. From the non-linear model, a linearized
plant was identified for the sole purpose of designing a linear control system. The design of the
control system is described in Section 5.4. However in the next section, a model of the supply
circuit is introduced.

5.3 Supply Circuit Analysis

As for the load circuit described in Section 5.2, a simplified model of the supply circuit is also
created. This circuit should be able to control both the shaft speed with a suitable A4VSG swash
plate angle controller. A drawing of the simplified hydraulic supply circuit is given in Figure 5.8.
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Figure 5.8: Supply circuit diagram.

By analyzing Figure 5.8, several equations are set up to describe the behavior of the hydraulic
circuit. First the pump flow delivered by the Bosch Rexroth A4VSG is modeled using Equation
(5.16).

QP = KP α (5.16)

where: QP The delivered flow from the A4VSG variable piston pump.
KP Flow/pressure gain coefficient as function of α.
α The actual swash plate angle of the variable piston pump.

The flow/pressure gain KP introduced in Equation (5.16) is given by Equation (5.17).

KP = 1
αmax

Vd,max
2π ω (5.17)

where: αmax Maximum swash plate angle of the variable piston pump.
Vd,max Maximum pump displacement.
ω A4VSG pump shaft speed.

The variable piston pump have been analyzed in details in Chapter 3 where the swash plate dy-
namics was identified using a Black box model and a non-linear gray box model. In this part
of the project the most conservative Black box model is used, since a linear model is needed to
design a sufficient control system. The equation describing the swash plate dynamics is given in
Equation (5.18). The transfer function of the pump was identified in the Results Section 4.2.1.
The referenced Equation (4.1) is the template of the transfer function, and the values for the five
constants are extracted from Table 4.1 where Amplitude = 5% and Offset = 25%.

GPump(s) = α(s)
α(ref)(s)

= Gest(s) (5.18)

where: α(ref)(s) Swash plate angle reference signal.
Gest(s) Estimated Black box transfer function in Section 4.2.1.
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Further the supply flow and torque across the motor is expressed using two simplified expressions
in Equations (5.19) and (5.20).

Qs = Ks(αs)ωs (5.19)
Ts = Ks(αs)ps (5.20)

where: Qs Supply circuit flow.
Ts Supply circuit torque.
ωs Rotational speed of the shaft, ωs = −ωL.
ps Pressure difference across the motor.
Ks(αs) Supply circuit motor gain.
αs Supply circuit motor swash plate angle.

In Equation (5.20) the supply pressure ps is present. This pressure is defined as the pressure
difference across the supply motor. The pressure is defined using Equation (5.21).

ps = pA,s − pB,s (5.21)

where: pA,s Hydraulic pressure at pump port A.
pB,s Hydraulic pressure at pump port B.

The motor gain Ks(αs) is found by using Equation (5.22).

Ks(αs) = αs
αs,max

Vm,max
2π (5.22)

where: αs,max The maximum swash plate angle of the supply circuit motor.

Using the equations presented in this section, it is possible to set up the main governing differential
equations describing the supply circuit dynamics. The supply pressure gradient is expressed in
Equation (5.23).

ṗs = 2β
Vs0

(Qp −Qs) (5.23)

where: ṗs Supply pressure gradient.
β Hydraulic fluid bulk modulus.
Vs0 Dead volume on each side of the motor.

Since the shaft speed should be controlled, the differential equation describing the rotational ac-
celeration of the shaft is described. The rotational acceleration of the shaft is given in Equation
(5.24).

ω̇s = Ts − TL − ωsc
Jeff

(5.24)
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where: ω̇s Rotational acceleration of the shaft.

To represent the hydraulic supply circuit using a block diagram, the Laplace transformed equations
of the two governing differential equations are evaluated. The resulting two equations in the Laplace
domain are given by Equations (5.25) and (5.26).

ps(s) = 1
s

2β
Vs0

(KP α(s)−Ks(αs)ωs(s)) (5.25)

ωs(s) = 1
s

Ts(s)− TL(s)− ωs(s)c
Jeff

(5.26)

These two equations are used to construct a block digram describing the linear dynamics of the
supply circuit. The block digram is shown in Figure 5.9.

+
‐

+
‐

1

s0

2

SV


( )s sK 

( )s sK 

1

effJ
1

s

s

LT

sTsp( )ref 
( )PumpG s

PK

c

‐

Figure 5.9: Supply circuit block diagram.

Figure 5.9 is used to find two transfer functions describing the dynamics. The first transfer function
defines the relationship between the input swash plate angle reference α(ref) and the output supply
pressure ps. The resulting transfer function is given in Equation (5.27).

Gps(s) = ps(s)
α(ref)(s)

= GPump(s)
KP

2β
Vs0

s
(5.27)

Since the shaft speed is controlled using the variable displacement pump, the dynamics between
the input swash plate reference α(ref) and the output ωs is described by the transfer function in
Equation (5.28).

Gωs(s) = ωs(s)
α(ref)(s)

= GPump(s)
KP

2βKs(αs)
Vs0Jeff

s2 + c
Jeff

s+ 2βK2
s (αs)

Vs0Jeff

(5.28)

In this section, a linear model of the load circuit was presented. Using this model, a transfer
function describing the system was identified and will in the next section be used to design a linear
control system.
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5.4 Control System Design

In Sections 5.2 and 5.3 both the load and the supply circuit was analyzed in terms of linearized
equations. These two hydraulic circuits are controlled using two separate Single Input, Single
Output (SISO) control systems.

The load side control system is supposed to create a load situation by controlling the pressure dif-
ference across the Parker motor unit. This torque is seen as a disturbance in the supply circuit. The
supply circuit shall control the rotational speed of the connection shaft between the two hydraulic
loops analyzed in Sections 5.2 and 5.3. The rotational speed will again create a disturbance to the
load circuit side, since the shaft rotation will generate a flow across the motor. A brief overview of
the control loops are given in Figure 5.10, where the red stapled boxes contain the two respective
control loops.
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Figure 5.10: Control loops; using the load circuit to control the force/pressure and the supply
circuit to control the shaft rotational speed.

In Figure 5.10, both controllers are chosen to be PI-controllers. The reason for using such a
controller is explained by analyzing both of the plants GpL(s) and Gωs(s) in open-loop. The control
loops shall remove all steady state deviation for a step input when feedback is included. By looking
at the transfer functions GpL(s) and Gωs(s) it is clear that both of them are of type 0-systems,
which means that the plant have no free integrators in the denominator. To ensure zero steady-
state error for a step input, the open loop transfer function should have a free integrator in the
denominator i.e. a type 1.system. This free integrator can be introduced by a PI-controller which
is why a PI-controller is chosen. It should also be noted that the chosen servo valve linearization
point is given by Equation (5.29).

u(ss)
sv = 0.1 and p

(ss)
L = 0.0 (5.29)

The two respective transfer functions are recalled from Equations (5.14) and (5.28) into Equations
5.30 and 5.31 respectively.

GpL(s) = pL(s)
u

(ref)
sv (s)

= Gsv(s)
Kqu

2β
VL0

s+ 2β
VL0

Kqp

(5.30)

Gωs(s) = ωs(s)
α(ref)(s)

= GPump(s)
KP

2βKs(αs)
Vs0Jeff

s2 + c
Jeff

s+ 2βK2
s (αs)

Vs0Jeff

(5.31)
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The variables that are used to describe the transfer function coefficients are found by taking sim-
plified measurements of the test set up. All the variables used are given in Table 5.1.

Table 5.1: Transfer function parameters.

Parameter Value Unit
Kqu 0.0035 -
Kqp 5.61 · 10−12 -
β 1400 MPa
VL0 1.01 l
Vs0 1.52 l
KP 0.0066 -
Ks(αs) 9.5493 · 10−6 -
c 0.2600 Ns/rad
Jeff 0.0733 kgm2

By introducing a PI-controller in both control loops, it is possible to achieve zero steady-state error
for a step input, since the PI-controller inclusion will make both plants a type 1-system. Also
both plants are at all times subjected to disturbance from each other, and in such situations, a
PI-controller is suitable since it is robust to reject noise/disturbance in the control loop. The tuning
of the PI-controllers is carried out using bode shaping techniques. MATLAB offers an automated
tuning algorithm to find suitable control parameters as long as the plant is known. In our situation,
both plants are described using linearized transfer functions, and this gives us the ability to use
MATLAB’s tuning algorithm to tune the controller gains.

The PI-controller used in both control loops is described using the standard serial representation
as shown in Equation (5.32).

GPI(s) = Kp

(
1 + 1

Tis

)
(5.32)

where: Kp Proportional gain part.
Ti Integration time constant.

The practical implementation of the PI-controller is chosen to be described as a difference equation.
The PI-controller difference equation is given by Equation (5.33).

u(k) = u(k − 1) +Kpe(k) +
[
Kp

Ti
∆t−Kp

]
e(k − 1) (5.33)

where: u(k) The current cycle control signal.
u(k − 1) The previous cycle control signal.
e(k) The current cycle error signal.
e(k − 1) The previous cycle error signal.
∆t Time between each cycle interrupt.
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To further increase the performance of both control loops, a feed forward signal is introduced in
both control loops. By assuming that the delivered pump flow QP should be equal to the supply
flow Qs which is given by Equation (5.34), a feed forward signal describing the swash plate angle
α(feed) as a function of the reference velocity input signal ω(ref)

s is created. The feed forward swash
plate angle is given by Equation (5.35).

QP ≈ Qs (5.34)

α(feed) = Ks(αs)
KP

ω(ref)
s (5.35)

where: α(feed) A4VSG swash plate angle feed-forward signal.
Ks(αs) Supply motor gain.
ω

(ref)
s Rotational shaft speed reference signal.

The feed forward signal in the load circuit is dependent on both the servo valve spool opening usv,
as well as the load pressure pL across the load motor. The following assumption can be set up to
find a suitable feed forward signal controlling the servo valve opening.

QL = −KL(αL)ωs ≈ Qsv ≈ Kquusv −KqppL (5.36)

If the conservative steady state situation where u(ss)
sv = p

(ss)
L = 0 is used to calculate the two

linearized gains Kqu and Kqp, a conservative feed forward signal can be expressed using Equation
(5.37).

u(feed)
sv = −KL(αL)

Kqu
ω(ref)
s (5.37)

where: u
(feed)
sv Servo valve opening feed forward signal.
KP Flow/pressure gain coefficient.
KL(αs) Supply circuit motor gain.
Kqu The linearized servo valve opening gain.

By implementing both feed forward control signals after the controller as shown in Figure 5.10, it is
possible to reduce the deviations from the reference control systems drastically. Also the controllers
will compensate for less errors than without the feed forward. A more sophisticated and robust
control system could be tuned if the time had allowed a deeper analysis of the control loops. This
is one of the tasks that have to be further analyzed in order to achieve a fast and robust control
system. Especially the load circuit is currently controlled using linear control theory, but the plant
is heavily non-linear, and therefore a non-linear controller should be considered to control this loop
in a satisfactory way [19].

The friction in the two Parker motors are until now described using a linear friction coefficient
c. This was a simplification used to design a linear control system. However in the non-linear
simulation model of the two circuits, a more accurate friction model is necessary. Therefore in the
next section a non-linear friction model is presented.
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5.5 Friction Model

The friction which is observed in the system is clearly a combination of a stiction friction and
a static Coulomb friction as the rotational shaft velocity reaches higher speeds. It is desirable to
combine the friction in both motors and find a relationship between the shaft speed and the friction.
This is carried out by proposing a friction model [20], and map the friction in different rotational
velocities. The proposed friction model is illustrated in Figure 5.11.

s

s

c

0

0

( )f s 

Figure 5.11: Illustration of the friction model.

Figure 5.11 introduce some new parameters describing the friction model used. The stiction friction
τs describes the maximum friction torque which must be exceeded before the rotational coupling
starts to rotate. At faster rotational velocities, the friction model reaches a steady state friction τc
which is the constant Coulomb friction. Also a friction τ0 exceeded at a given rotational speed ω0 is
specified since this is needed to find a suitable gradient on the curve. The mathematical description
of the friction model is given in Equation (5.38).

τf (ωs) = tanh(rωs)
(
τc + (τs − τc)e

− |ωs|
ω0

)
(5.38)

where: τf (ωs) Model friction torque due to the rotational shaft velocity.
τs The maximum friction exceeded in the model due to stiction.
τc Coulomb friction during high rotational velocities.
τ0 Friction at ω0.
ω0 The rotational velocity at τ0.
r Gradient factor describing the steepness of the tanh curve.

The unknown friction model parameters are included in the unknown parameter vector ~Φf , and it
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is described using Equation (5.39).

~Φf =


r
ω0
τc
τs

 (5.39)

The parameters can be tuned using optimization if the actual friction torque Tf is calculated
through measurements of load pressures and accelerations during different velocities ωs. By per-
forming a manual test where the flow across the supply motor is manually controlled using the
closed loop pump A4VSG, the load pressure pL and the supply pressure ps is measured as a func-
tion of the velocity ωs. From Sections 5.2 and 5.3, the torques TL and Ts are described as functions
of the load pressures. An isolated model of the two Parker motors and the connecting shaft is given
in Figure 5.12.

s

,B sp

A,sp

,A Lp

,B Lp

LT

sT

fT

Figure 5.12: Simplified test bench model used to identify the friction.

From Figure 5.12, a governing differential equation describing the shaft torque equilibrium is ex-
pressed in Equation (5.40).

ω̇s = Ts − TL − Tf
Jeff

(5.40)

where: ω̇s Rotational acceleration found from numerical differentiation.
Tf Measured experimental friction torque.

Equation (5.40) is used to evaluate the friction torque as a function of the rotational velocity.
By knowing the measured friction torque in our model, the objective is to find a set of friction
model parameters that satisfies (τf ≈ Tf ). The experimental friction torque Tf is calculated using
Equation (5.41).

Tf (ω̇s) = Ts − TL − ω̇sJeff = Ks(αs)ps −KL(αL)pL − ω̇sJeff (5.41)

WhereKs(αs) andKL(αL) are the gains due to the variable displacement of the Parker motors, and
these are described in Sections 5.2 and 5.3. Equation (5.41) suggest that the rotational acceleration
should be measured in order to calculate the friction torque. However, the measured rotational
velocity is filtered using a zero-phase low pass filter (i.e. a filter used forward and backward in

83



5.6. SIMULATIONX MODEL

time), and the rotational acceleration is obtained by numerically differentiating the filtered velocity
afterwards. The measured pressures pL and ps are also filtered using the zero phase low pass filter.
The results are used to identify the unknown parameters describing the friction model in Equation
(5.38). The resulting friction model parameters are identified in Section 6.2.

With a detailed mathematical overview of the two hydraulic circuits, the control systems and the
friction model, a complete SimulationX model is created in the next section.

5.6 SimulationX Model

From the load circuit model in Chapter 5 a SimulationX model is created. An overview of the
model is shown in form of a block diagram in Figure 5.13.
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Figure 5.13: Block diagram of the SimulationX model of the load circuit.

In this figure, two inputs are shown, namely the reference speed ω(ref)
s and reference load pressure

p
(ref)
L . These two inputs, subtracted with the actual value of the respective parameter, is used as

input to each controller, namely the speed controller and the load controller. These controllers
are detailed in Section 5.4. The reference swash plate angle is sent to the A4VSG pump via its
dynamics to produce flow on a closed loop motor. The Supply circuit model is detailed in Section
5.3. The reference valve position u(ref) controls the Parker servo valve which moves flow over its
open loop motor. The load circuit is explained in detail in Section 5.2. The forces over the two
motors are connected over a shaft where also a friction model is used as input. Finally a pulse
counter system is used to measure the speed of the shaft when a pulse occurs.

There is a much more detailed description of this model in Appendix G, and this model is used
to produce results in Section 6.3. In the next section, a simulation model of an active heave
compensated crane is presented.
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5.7 Active Heave Compensation Simulation Model

The main idea of constructing the hydraulic load circuit described in Chapter 5 is to simulate
a small scale heave compensation situation offshore. MacGregor currently delivers several cranes
that includes an Active Heave Compensation (AHC) ability. This system mainly consist of a winch
connected to several hydraulic motors, who are placed in series with closed loop pumps i.e. A4VSG
pumps analyzed in Chapter 3. The closed lop pump controls the direction and the magnitude of
the flow inside the closed loop, which in the end will affect the rotational velocity of the wire drum.
The small scale model is simplified to only use one single closed loop pump together with a single
motor. Figure 5.14 illustrates an offshore crane during AHC of a fully submerged payload.

PLz

PLA

PLm

effJ

ssT

LF

LF

vz

Figure 5.14: The AHC scenario offshore, where a payload shall be lowered and hoisted to the seabed
with a closed loop hydraulic actuating circuit.

Figure 5.14 consists of a crane placed on floating vessel offshore. The crane has lowered a payload to
reach a certain distance zPL above the seabed. The objective of the AHC system is to compensate
for the heave motion due to the vessels motion zv. The heave motion of the vessel is assumed to
follow a stochastic wave motion which is given by Equation(5.42).

zv(t) =
N∑
n=1

zv,n(t) (5.42)
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where: N Number of wave components.
zv(t) The stochastic wave propagation in the heave direction.
zv,n(t) Each single wave component n given by the stochastic wave energy spectrum.

The theory regrading the generation of the stochastic wave motion is further explained in Appendix
A. The rotational motion of the wire drum is given by recalling Equation (5.24) from Section 5.3,
which is shown in Equation (5.43).

ω̇s = Ts − TL − ωsc
Jeff

(5.43)

where: ω̇s Rotational acceleration of the wire drum.
Ts Torque supplied to the wire drum from the closed loop motor.
TL Torque due to the wire tension connected to the payload.
ωs Rotational wire drum velocity.
c Rotational damping coefficient.
Jeff Overall effective mass inertia of the combined motor and wire drum.

The rest of the differential equations needed are described in detail in Section 5.3. The main
idea in this section is to simulate the load disturbance which will affect the wire drum due to the
wire tension. The governing equation describing the payloads z-directional acceleration is given in
Equation (5.44).

z̈PL = FL + Fbuoy − Fdrag
mPL

(5.44)

where: z̈PL z-directional acceleration of the payload.
FL The force due to the wire tension.
Fbuoy Buoyancy force.
Fdrag Drag force due to viscous friction in the sea water.
mPL Gravitational mass of the payload.

A simplified drag force describing the drag force acting on the payload during movement in the sea
water is given by Equation (5.45) [21].

Fdrag = 1
2ρsCdAPLż

2
PL (5.45)

where: ρs The sea water density.
Cd The drag force coefficient, dependent to the payload shape.
APL Payloads projected area in the z-direction.
żPL z-directional velocity of the payload.

The payload is assumed to be fully submerged during the simplified AHC scenario. When the
payload is fully submerged in sea water, the payload will be subjected to a upwards force due to
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the buoyancy effect. The buoyancy force is given by Equation (5.46).

Fbuoy = ρsgVPL (5.46)

where: g Earth’s gravity constant.
VPL The submerged volume of the payload.

The wire force is modeled using a simple spring-damper model, where the spring stiffness is de-
scribed by the wire elasticity. The spring stiffness is given by Equation (5.47).

kw = EwAw
Lw

(5.47)

where: kw Wire spring stiffness.
Ew Wire elasticity modulus.
Aw Wire cross-section area.
Lw Length of the wire.

The damping coefficient is defined to be 10% of the spring stiffness, and is given by Equation (5.48).

cw = kw
10 (5.48)

where: cw Wire damping force coefficient.

The wire force is modeled using a piecewise function describing the wire force as a function of the
payloads position relative to the wire drum rotation. The wire force is given by Equation (5.49).

FL =
{

0 rdθs < zPL − zv
kw(zv − zPL + rdθs) + cw(żv − żPL + rdωs) rdθs ≥ zPL − zv

(5.49)

where: zv Motion of the floating vessel.
rd Wire drum radius.
θs Wire drum rotation angle.

The complete simulation is carried out by solving the above equations using numerical software such
as MATLAB, Octave or Scilab. If the simulation is intended to be used in a real-time application,
it should be implemented using a myRIO or a fast PLC.

An infinite fast control system is assumed to be controlling the wired drum in the simulation. This
will of course result in a static load pressure pL in the load circuit, since the payload stands more
or less still. In real life, a more inaccurate controller in the simulation should be considered to
create some varying load pressures. However, the given scenario is easy to implement in a PLC,
since it does not need to be simulated real-time. The simulation could be performed before the
test, and both the velocity and load pressure could be used as references in the load simulation
circuits described in Chapter 5. The stochastic heave motion is illustrated in Figure 5.15.
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Figure 5.15: Heave motion of the vessel due to a stochastic wave.

from the stochastic wave motion it is possible to generate a velocity reference signal based on the
heave motion and the wire drum radius. The velocity reference is described using Equation (5.50).

ω(ref)
s = − 1

rd

dzv
dt

(5.50)

The load pressure reference can be found by simulating the AHC using the stochastic wave input,
or set to a static value if an infinite fast control system is considered in the AHC simulation. The
load pressure reference, while assuming an infinite fast control system, is given by Equation (5.51).

p
(ref)
L = cst (5.51)

An illustration of the supply and load pressure during 15 seconds of AHC simulation is given in
Figure 5.16.
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Figure 5.16: Pressure difference during ideal heave compensation.

This AHC simulation is used to generate reference speed and load pressure on the supply and load
circuit respectively, and the results are measured and shown in the results in Section 6.3. This
AHC simulation concludes the theory of the load circuit design and control. The next chapter is
devoted to the results gathered using the methods and models in this chapter.
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Chapter 6
Results from Hydraulic Load Simulation
Circuit

This chapter contain all experiments and results from the hydraulic load and supply circuit as
detailed in Chapter 5 and also simulation results from using the SimulationX model of the two
circuits as detailed in Section 5.6. At first the control parameters for the two circuits are identified
in Section 6.1. The next step is to identify the parameters describing the friction, as shown in
Section 6.2. Finally after using the control parameters and the friction model in a non-linear
simulation model, it is verified by comparing to measurements in Section 6.3.
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6.1 Controller Tuning

In Section 5.4 a control system for both the load and the supply circuits was presented. A PI-
controller was chosen to control both hydraulic circuits, since such a controller gives zero steady
state error for a step input, and a PI-controller is also robust in terms of rejecting noise in the control
loop. MATLAB’s tuning toolbox have been used to find suitable control parameters. Afterwards,
the suggested control parameters were manually adjusted until the physical system behavior seemed
stable. The representative control parameters describing the two control loops are given in Table
6.1.

Table 6.1: Transfer function parameters.

Load Circuit MATLAB Tuned Manually Tuned
KP 1.01 · 10−9 1.98 · 10−9

Ti 0.023 0.03

Supply Circuit MATLAB Tuned Manually Tuned
KP 1.41 · 10−7 1.06 · 10−7

Ti 0.000159 0.000159

In Table 6.1 the manually tuned and the MATLAB tuned control parameters are shown. Because
of time limits, the controller gains had to be adjusted manually when testing the control system.
However, the manually tuned parameters were chosen since the theoretical parameters introduced
some instability in the control loops. Still the gains found using MATLAB indicates a very good
control gain guess. This clearly states the benefit of using modeling techniques when designing
control systems.

Two bode plots are used to illustrate the open and closed loop dynamics using the two different
tuned controllers. The bode plots are shown in Figures 6.1 and 6.2 for the load circuit controller
and supply circuit controller respectively.
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Figure 6.1: Bode plot illustrating load circuit tuning.
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Figure 6.2: Bode plot illustrating supply circuit tuning.

The two bode plots also states that the manually tuned control parameters represents a much more
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conservative control system than the one tuned using MATLAB’s toolbox. Figure 6.2 clearly shows
that the open loop dynamics of the supply circuit should give satisfying results, by only using an
open loop P-controller, since the open loop gain is maintained constant up to about 30Hz. However,
a feedback controller is needed since an open loop controller would struggle to reject noise created
by the load circuit.

When testing the control systems in a real life system and a simulation, it is obvious that the
load circuit is heavily disturbed by the flow generated in the load circuit due to the shaft rotation,
which again is controlled by the supply circuits velocity controller. This deviation could probably
be reduced if a flow sensor was placed in the load circuit’s hydraulic loop. Then a cascade controller
could be used on the load side to ensure that the servo valve always supplies enough flow to obtain
a constant load pressure pL given any rotational velocity of the connecting shaft. Another idea is
to ensure constant pressure difference across the servo valve at all times. This would physically
linearize the servo valve and a robust feed forward control system could be introduced to remove
the noise generated by the rotating shaft. This solution would probably give the best results, since
feed-forward signals tends to increase the control bandwidth drastically.

Now that the control parameters are identified, the two hydraulic circuits may be controlled. In
the next section the parameters describing the friction is identified.
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6.2 Identification of Friction Model Parameters

As mentioned in Section 5.5 where the friction in the motor was defined, the constant parameters
are unknown and must be identified by using measured data. The test bench described in Section
5.1 is used to gather the data necessary to identify the friction parameters. The experimental test
was performed by manually manipulating the supply flow using the A4VSG pump. The rotational
velocity, supply pressure and load pressure have been logged at all times. The friction torque
was calculated using Equation (5.41) together with the zero-phase filtered experimental data. The
experimental measurements (blue) is plotted together with the optimized friction model (red) in
Figure 6.3.
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Figure 6.3: Comparison between the measured and the modeled friction.

The friction model illustrated with the red line in Figure 6.3 is obtained using the non-linear
optimization algorithm described in Section 2.6.1. This ensures that the model parameters are
fitted in a sufficient way. The objective function used to find the set of unknown friction model
parameters introduced in Equation (5.38) are designed to minimize the squared error between
the measured friction torque and the friction model torque. The minimization problem using the
squared error is given by Equation (6.1).

arg min
~Φf

[~τf (~Φf , ωs)− ~Tf (ω̇s)]T [~τf (~Φf , ωs)− ~Tf (ω̇s)] (6.1)

where: ~τf (~Φf , ωs) The calculated friction torque due to the friction model parameters ~Φf .
~Tf (ω̇s) Experimental friction at a given rotational acceleration ω̇s.
~Φf Vector containing the unknown friction model parameters.
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The optimized model parameters found by minimizing Equation (6.1) is representing the model
shown by red in Figure 6.3, and the model parameters are given in Table 6.2.

Table 6.2: Optimized friction model parameters.

Parameter Value Unit
r 13.8806 [-]
ω0 8.3593 [rad/s]
τc 14.8939 [Nm]
τs 54.8258 [Nm]

The optimized friction model parameters are used together with the friction model described in
Section 5.5 to describe the friction torque in the SimulationX model. The friction model have been
tested during a small scale AHC simulation, and the results are presented in Section 6.3.

6.3 Verification of SimulationX Model

The objective and motivation to build and design the load circuit is to reproduce an active heave
compensation situation offshore. To find suitable reference signals for the load controller controlling
the load pressure pL and the supply circuit controller controlling the shaft rotational velocity, ωs,
the small scale AHC simulation model described in Section 5.7 have been used.

The AHC simulation should control the payload to remain a given height above the sea floor,
even though the floating vessel experiences a heave motion due to a stochastic wave motion. The
drum controlling the wire length at all times is actuated using the closed loop A4VSG pump inside
the simulation. To test the real life test bench, the same control reference is used to control the
rotational velocity of the shaft connection the supply motor and the load motor. At the same
time, a static load pressure pL have been applied to the load side, generating a constant torque TL
disturbing the supply circuit at all times during AHC.

The same scenario and reference inputs have been used in the SimulationX model which uses
the same control parameters found in Section 6.1 and the friction model found in Section 6.2.
A comparison between simulated and measured rotational velocity and load pressure is shown in
Figures 6.4 and 6.5 respectively.
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Figure 6.4: Comparison of measured and simulated rotational shaft velocity, when a stochastic
velocity reference signal is applied to simulate a small scale AHC.
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Figure 6.5: Comparison of measured and simulated load pressure, when a static pressure reference
signal is applied during AHC.
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From Figures 6.4 and 6.5 it is clear that the similarities between measurements and simulations
in terms of both rotational shaft velocity and load pressure are not perfectly equal. However, the
two result are not completely different, and should be a good approximation if the load circuit
simulation is used to further test and modify the hydraulic loops or the control system. Especially
the stiction friction which prevent the shaft from rotating when passing trough zero velocity is
maintained in quite a satisfying way. This can be seen of the curves in Figure 6.4 where the
rotational velocity is close to zero. This states that the friction model described in Section 5.5
is close to real, and it could be used to further improve the control system in the future through
simulations.

Also the supply pressure is measured and simulated. Therefore it would be interesting to compare
them as well to check the SimulationX model for errors. The compared supply pressures are
illustrated in Figure 6.6.
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Figure 6.6: Comparison of measured and simulated supply pressure during AHC.

Figure 6.6 also indicates some deviations between real-life experiments and the simulation results.
Anyhow, by examining the results, it is clear that the main trend in both the simulated and
measured supply pressure signal are quite similar. The simulation model is therefore seen as a
quite good representation of the real-life test bench behavior. However, if more time had been
available, a more accurate simulation model should be identified by examining the model in more
detail.
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6.4 Simulated Step Test Verification of Control Parameters

The results in this section is based on the SimulationX model of the load circuit and supply circuit
as described in Section 5.6. Using this model, a step test on the speed and load pressure reference
were performed one at a time. For the speed step test, a comparison of the reference speed and
measured speed is shown in Figure 6.7
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Figure 6.7: Load pressure reference step on simulation model.

As shown in Figure 6.7, the speed controller manages to get zero steady state error on the speed
step test. For the load pressure step test, the comparison between input and response in shown in
Figure 6.8.
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Figure 6.8: Speed reference step on simulation model.

Also in Figure 6.8 the load pressure controller removes any steady state error from the step input.
These step tests were not conducted on the physical system because of lack of safety valves due to
a misdelivery from Parker. From these tests it is shown that the controllers removes any steady
state error, and are therefore verified. However overshoot, rise time and settling time could be
better with a more sophisticated control system and/or tuning process.
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7.1. HYDRAULIC PUMP MODEL

7.1 Hydraulic Pump Model

In this project a mathematical simulation model of a variable displacement piston pump named
A4VSG manufactured by Bosch Rexroth have been presented. The simulation model includes the
internal piston kinematics that describes the volume flow through the pump, and the dynamics of
the hydraulic swash plate angle control circuit, hereby called the actuating circuit. The dynamics
of the actuating circuit is described using either a Black box model or a Grey box model. The
Black box model is represented with a linear transfer function from an input of a swash plate
angle reference to the actual swash plate angle. Since the actuating circuit is non-linear, several
Black box models have been identified around different linearization points in terms of swash plate
angle offsets and amplitudes. In order to identify the frequency response of the actuating circuit,
a frequency response test and analysis was conducted on the swash plate angle control circuit. To
identify the linear Black box model of the frequency response, MATLAB’s System Identification
Toolbox have been used to fit a fifth order transfer function to the frequency response data. Such
a linear Black box model is useful for designing a linear control system, however it falls short to
represent the true dynamics since the actuating circuit is non-linear.

To overcome this problem, a non-linear Grey box model of the actuating circuit is presented. This
model includes the internal valve control system and a hydraulic model of the actuating circuit. The
unknown parameters for this model are identified using a gradient based numerical optimization
algorithm that minimizes the deviation between measured and simulated responses in the time
and frequency domain. Two sets of unknown parameters are identified in total; one set where all
parameters are optimizeable (hereby called the Free Grey box model), and one set where two hard
parameters of the cylinder are locked based on a data sheet of the actuating circuit (hereby called
the Locked Grey box model).

In order to determine the accuracy of the models, predefined criteria for maximum and mean
deviation between simulated and measured response is used. In the frequency domain, the free
Grey box model and the Black box models passes the criteria, however the locked Grey box model
does not pass the criteria on any point. The same issue is revealed in the time domain where the
locked Grey box model does not manage to keep the simulated internal valve position close to the
measured one. Because of this, the free Grey box model is concluded to be the best non-linear
model of the swash plate angle control circuit.

The movement of the pistons attached to the swash plate is also described using three dimensional
kinematic equations. This allows for simulations of the high frequent, low magnitude ripple flow
that is included on top of a mean volume flow. Because of the numerical complexity of simulating
the piston movements, an empirical simplification of the ripple flow was presented. It was shown
however that the ripple flow is unnecessary to simulate if the pump is connected to a hose as the
damping will cancel out the ripple strokes.

With the basis of the free Grey box model and the simplified ripple flow, a complete SimulationX
model of the A4VSG pump have been created. This model is compounded into a single SimulationX
block that can be used in any simulation model. To create this model, the governing equations for
the system were used instead of the standard hydraulic block library to keep the model completely
similar to the optimized model.
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7.2 Hydraulic Load Simulation Circuit

The second part of this project focuses on the design and control of a hydraulic load simulation
circuit. The load circuit is a hydraulic circuit including an supply pump, a servo valve and a motor.
The shaft of this motor is mechanically connected to a second motor whose hydraulic ports are
connected to a closed loop circuit with the A4VSG pump. This hydraulic closed loop circuit is
hereby called the supply circuit. The servo valve in the load circuit is controlled to keep a reference
load pressure across the motor, and the swash plate angle on the A4VSG pump is controlled to
keep a reference speed on the shaft.

In order to design a linear control system for the two hydraulic circuits, mathematical models of the
two circuits were presented and linearized. The linearized models created the basis for designing
PI-controllers for the two circuits using MATLAB’s controller tuning toolbox. A PI-controller was
chosen to remove all steady state error from a step input. MATLAB was used to tune the controllers
theoretically based on the linearized models, however the suggested controller values introduced
some instability on the physical system. Therefore the controller gins were reduces manually with
the suggested values from MATLAB as initial guess to remove the instability. Both control systems
were verified through a simulation where a step input was applied, where both controllers removed
all steady-state error.

To illustrate the purpose of the load circuit, an Active Heave Compensation (AHC) simulation was
presented. This simulation consists of a closed loop pump in loop with a motor whose mechanical
shaft is connected to a wire drum. The aim is to compensate for heave motion of the offshore boat
by lowering and hoisting wire. The load circuit’s job is to reproduce the load subjected on the drum
during the AHC simulation in order to recreate the simulated load physically. From tests using this
simulation, the speed controller on the supply circuit managed to reproduce the reference speed
quite closely, however the performance of the load controller was not as good. This is due to the
non-linear nature of the servo valve. Therefore a non-linear control system could be implemented
instead.

From the non-linear model of the two hydraulic circuits, a SimulationX model of the setup was
created. This model includes a LuGre inspired friction model whose parameters were identified
using a gradient based numerical optimization algorithm. From comparisons between this model
and measured test data, it was shown that they are quite similar in terms of controller performance
and load pressures. The model consist of standard hydraulic library blocks to include the true
behavior on hoses, bulk pressure and oil density.
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A. STOCHASTIC WAVE GENERATION

A Stochastic Wave Generation

In order to test a system response with a stochastic wave input, a Pierson-Moskowitz [22] wave
spectrum is used to generate a stochastic wave. This wave spectra simulates a typical sea state
with a given significant wave weight and wave period. The spectrum is obtained by Equation (1).

Sx(ωst) = 5π4 · H
2
s

T 4
p

· 1
ω5
st

· exp
[
−20π4

T 4
p

· 1
ω4
st

]
(1)

where: Sx Stochastic wave spectrum.
ωst Frequency of a stochastic wave part.
Hs Significant wave height.
Tp Significant wave period.

By using Equation (1), the wave spectrum is plotted for a given sea state. Figure 1 shows an
example of a Pierson-Moskowitz spectrum with Hs = 10m and Tp = 2s.
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Figure 1: Example of a Pierson-Moskowitz spectrum.

A stochastic wave is generated from this spectrum using a summation of several sine components.
The sine components are identified by dividing the spectrum into appropriate intervals. For instance
the wave spectrum may be divided into N = 20 intervals. This evenly spaced interval is shown in
Figure 2

With this spaced spectrum, it is possible to calculate the amplitude of each sine wave signal. This
amplitude is given by Equation (2).

Cn(ωs,n) =
√

2 · Sx(ωs,n) ·∆ωs (2)
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Figure 2: Evenly spaced wave spectrum.

where: Cn Amplitude of sine wave n.
ωs,n Frequency of sine wave n.
∆ωs Frequency between ωs,n+1 and ωs,n.

When each wave amplitude is calculated, the different wave components can be calculated in the
time domain. The waves are given by:

xn(t) = Cn(ωn,s) · sin(ωn,s · t+ ε) (3)

where: xn(t) Wave component n.
ε Random number ∈ [0, 2π].

After all wave components are calculated, a summation is used to make the complete stochastic
wave, as shown in Equation (4).

x(t) =
N∑
n=1

xn(t) (4)

where: N Number of wave components the spectrum is divided into.

The final stochastic wave x(t) can be used in a time simulation by evaluating Equation (4) at every
time step. A stochastic wave generated from the spectrum shown in Figure 2 is shown in Figure 3.
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Figure 3: Stochastic wave.
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B Transfer Function Estimation

The system identification is performed using MATLAB’s System Identification Toolbox [23, 24, 25].
The toolbox presents a useful graphical user interface (GUI) which is used to import the frequency
domain data from the lab test results presented in Section 2.3. The toolbox is used to estimate
time continuous transfer functions from bode frequency response data, which should characterize
the dynamics between the reference swash plate angle and the measured swash plate angle. An
overview of the system identification toolbox is shown in Figure 4.

Figure 4: System identification toolbox layout [4].

Figure 4 shows seven steps which are necessary to produce an estimated transfer function using
the experimental test results. The seven steps are:

1. The data type is set to be frequency domain data.

2. The data format of the experimental data is given as three vectors containing the magnitude
M , phase φ and the frequency in rad/s.

3. Here the reference to the three vectors stored in MATLAB’s workspace is specified.

4. The sampling time is set 0 to get a time continuous transfer function, since the sampling of
the experimental data is much faster than the systems bandwidth, and should therefore give
satisfactory results.

5. Press this button to import the experimental frequency domain data.

6. Choose "Transfer Function Models" from the drop down menu, then specify number of poles
and zeros in your estimated transfer function.

7. The information about the approximated transfer function is found here.
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C Bode Plot Comparisons

In this appendix the Black box models from Section 4.2.1 and the Free and Locked Grey box models
from Section 4.4.1 are compared to a measured frequency response in order to assess their accuracy
side by side. Bode plots from all amplitudes, A ∈ [5, 10, 20]%, and all offsets, O ∈ ±[25, 50, 75]%
are presented here. The x-axis on all bode plots in this appendix is the frequency in Hz and the
test amplitude and offset is displayed in the title of the magnitude plot. Two subplots are together,
i.e. a magnitude and phase plot is displayed together under the same title. The legend is only
shown on the phase plot because of space limitations.

In all the bode plots, the black dots shows the magnitude or phase of the measured frequency
response at the given test sine amplitude and offset. The blue line shows the frequency response
of the free parameter Grey box model, the green line shows the frequency response of the locked
parameter Grey box model, and finally the red line shows the frequency response of the Black box
model.
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Figure 5: Test data compared with Black and Grey Box model @ O = 25%.
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Figure 6: Test data compared with Black and Grey Box model @ O = 50%.
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Figure 7: Test data compared with Black and Grey Box model @ O = 75%.
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Figure 8: Test data compared with Black and Grey Box model @ O = -25%.
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Figure 9: Test data compared with Black and Grey Box model @ O = -50%.
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Figure 10: Test data compared with Black and Grey Box model @ O = -75%.
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D Sensors and Components

This Appendix presents the core components which are used to perform the physical experiments in
the master project. The main parameters and specifications of each single component is extracted
from the data sheet and presented in a compressed form. This appendix gives an overview of the
main components and their specifications.

D.1 Bosch Rexroth A4VSG Closed Loop Pump

The variable axial piston pump used in this project is delivered by Bosch Rexroth. The complete
data sheet containing all the technical descriptions is given by Bosch Rexroth and can be found
in [5]. The order code is needed to find several specific specifications about the pump. Our units
specific order code is: A4VSG 71HS4KP/10R-PPB10K680N. The description of the order code is
found in the data sheet.

The pump is designed using a swash plate mechanism, and meant to be used within closed hydraulic
loops. Also the pump is configured to deliver a flow which is proportional to the drive speed and the
displacement. The displacement is variable by tilting the swash plate. The swash plate mechanism
is controlled by an external control circuit which is described in D.2. A illustration picture of the
pump is shown in Figure 11.

Figure 11: Bosch Rexroth axial piston variable pump A4VSG [5].

Bosch Rextroth is not specifying any of the parameters describing the internal components such as
the piston diameters, swash plate geometry, lens plate openings and so on. However, they supply
the most traditional technical data needed. The technical data of interest in this project is given
in Table 1.
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Table 1: A4VSG pump parameters.

Description Variable Value Unit
Max displacement Vg,max 71 cm3

Max speed nmax 3200 rpm

Max flow Qmax 227 l/min

Max pressure pmax 400 bar

Nominal pressure pnom 350 bar

Minimum pressure pmin 15 bar

Max power Pmax 132 kW

Maximum swash plate angle αmax 15 deg

D.2 Control Actuating Circuit with Proportional Valve

The axial piston pump described in D.1 requires a control system in order to adjust the swash
plate angle. The control system is also delivered by Bosch Rexroth, and the complete technical
description is found in the data sheet [6]. The complete order code for the unit used in this project
is given as HS4KP and it is located in the pump order code. The variable piston pump with the
control system and the servo valve is shown in Figure 12.

Figure 12: Pump control unit with a servo valve [6].

The specifications of the proportional valve shown in Figure 12 is found by searching in the pump’s
spare part list [26]. The order code of the proportional valve is 4WRE6V08-2X/G24K4/V-822 and
the data sheet is found in [16]. The data sheet includes two hard parameters; the control piston
stroke length and area as shown in Table 2.

Table 2: Hydraulic control circuit parameters.

Description Variable Value Unit
Control pistons stroke length L 34.2 mm

Control pistons area Ap 12.6 cm2
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D.3 Pump Microcontroller Control Card

The hydraulic control piston is controlled using a proportional valve which is controlled by a
electronic controller card produced by Bosch Rexroth. The complete specifications of the controller
card is found in [7]. The controller card supports a software in which the user can change several
parameters. The accompanying software is named BODAC and it can be downloaded from Bosch
Rexroth’s web pages for free. A picture of the controller card is shown in Figure 13.

Figure 13: Bosch Rexroth actuating circuit valve control card [7].

D.4 Parker V12 Variable Displacement Motor

The two hydraulic circuits which are supposed to simulate a load situation on the pump described
in D.1 consists of two hydraulic motors from Parker. The complete order code is 11005063 V12-060-
MS-SV-S-014-D-0-040/020-HOS011-010/000 and a simple picture of the motor is given in Figure
14.

Figure 14: Parker V12 bent axis variable displacement pump [8].

The main pump/motor properties needed in this project is given in Table 3.
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Table 3: Parker V12 data sheet specifications.

Description Variable Value Unit
Motor max displacement. Vmax 60 cm3/rev

Maximum swash plate angle. αmax 35 deg

Rotary moment of inertia. Jm 3.1 · 10−3 kgm2

D.5 Inductive Transmitter

On a shaft between two Parker motors an inductive transmitter is used to get the speed of the shaft.
Its technical name is NEB6-12GM50-E2-V1 manufactured by Pepperl+Fuchs [27]. This sensor is
placed close to the shaft coupling facing the coupling. When metal is in front of the sensor, the
output signal is high, else it’s low. The sensor may change this pulse signal ut to 800 times per
second.

D.6 Parker Servo Valve

The servo valve used in the load circuit is a Parker Servo Valve with the technical name D3FP.
The valve is shown in figure 15.

Figure 15: Parker D3FP Servo valve [9].

The valve dynamics is evaluated using a second order transfer function which is fitted to the catalog
data. The servo valve parameters needed in this project are given by Table 4.

Table 4: Parker servo valve specifications.

Description Variable Value Unit
Valve opening coefficient Ksv 1.863 · 10−5 m2

Natural frequency ωsv 78.1 Hz

Damping ratio ζsv 0.646 −

The servo valve dynamics have been chosen to be modeled using a second order transfer function.
The transfer function describing the servo valve dynamics is given by Equation (5).

Gsv(s) = usv(s)
u

(ref)
sv (s)

= ω2
sv

s2 + 2ζsvωsvs+ ω2
sv

(5)
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The comparison between the data sheet bode plot and the second order system valve dynamics
prescribed in Table 4 is given in Figure 16.
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Figure 16: Parker Servo Valve approximated dynamics.

D.7 HYDAC Flow Sensors

In order to measure the flow from the closed loop pump (A4VSG), two HYDAC flow sensors have
been used. The product name is HYDAC EVS 3100-H [28] and it is a turbine type flow measurer
which converts turbine speed to an electrical signal. The sensor is shown in Figure 17. Because the
oil flow from the pump is expected to be up to roughly 100 l/min, the flow measurement device
needs to be accurate up to this point. MacGregor’s test division have two such flow measurement
devices which are capable of flows between 1.2 to 20 l/min and 40 to 600 l/min respectively. Because
of the various measurement intervals, both devices are used to measure the flow. The accuracy of
the sensor type is less than 2% of the actual value.

Figure 17: HYDAC Flow sensor
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D.8 HYDAC Pressure Transmitter

HYDAC Pressure transmitters are used to measure the pressure at certain positions in the hydraulic
circuits. The product name is 7400 series and it measures pressures ranging from 0-400 bar with
less than 0.5% accuracy. The output is a current signal ranging from 4-20 mA.

D.9 National Instruments myRIO

The National Instruments (NI) myRIO is a compact computer with a System on a Chip (SoC) from
Xilinx that includes a dual core ARM Cortex A9 processor and a Field Programmable Gate Array
(FPGA) with 28,000 programmable logic cells [29]. It boasts 8 + 2 analog inputs with ranges from
0..5V and -10..+10V respectively, and 4 + 2 analog outputs with ranges from 0..5V and -10..+10V
respectively. Also, up to 40 Digital inputs/outputs can be configured. This box is programmed
using NI LabVIEW, and can run two different types of programs. The first type is similar to the
ones run able on a 32-bit windows computer, which uses the dual core A9 processor. The second
type is less flexible in complexity, data types and size, but can be compiled to run on the FPGA.
The advantage of using a FPGA is the high clock speed of 40 MHz and fast execution. It is ideal
for measuring analog and digital signals at high speeds.

D.10 Laptop Computer

A laptop running 64-bit Windows 8.1 is used to program and initiate the National Instruments
myRIO and monitor the pump controller card through BODAC.
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E Static Model Parameters

For static model parameters used in simulations of the A4VSG pump, refer to Table 5.

Table 5: Static model parameters used in all simulations of the A4VSG pump.

Parameter Description Value Unit
β Oil stiffness 1400 MPa

ρ Density of oil 875 kg/m3

αMax Maximum swash plate angle of the pump 15 deg
pP Supply pressure on the angle control circuit 170 bar
pT Tank pressure on the angle control circuit 0 bar
k1 Orifice opening area constant -4.67 mm2

k2 Orifice opening area constant 6.6454 mm2

k3 Orifice opening area constant 0.967 mm2
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F SimulationX Model of the A4VSG pump

From the pump model in Chapter 3 a SimulationX model is created. This is because MacGregor
wants to use the model of the pump as a single block in the simulation software. The interface of
this block is simple as it only includes inputs for a motoring shaft, two hydraulic ports and a drain
port. The interior however is complex and includes the swash plate dynamics and the flow ripple
generator. The parameters of the pump are adjustable through a user interface, but default values
should work with the tested pump. This model contains the swash plate dynamics and simplified
ripple effects as described in Chapter 3. The entire model is shown in Figure 18 and the equations
in the 5 numbered sections are explained in separate tables, namely Table 6 through 10. Any
variable that is not displayed, i.e. the eigenfrequency of the valve ωv, are considered user selected
parameters and are not displayed here. In Figure 18 part 1 contains static model parameters that
should not change. Part 2 includes the control system given in Section 3.3. Part 3 consists of most
of the differential equations describing the system together with time integration. Part 4 includes
the equations necessary to calculate the simplified ripple flow. Finally, part 5 handles the volume
flow calculation through the pump.

1

2

3

45

Figure 18: The SimulationX model of the pump.

The SimulationX model shown in this section is compromised into a Modelica block which may be
used in any model in SimulationX. The user may change up to 18 parameters in the pump, but the
default values of the parameters representing the swash plate dynamics are optimal to represent
the true dynamics. The Modelica block and 10 of the adjustable parameters are shown in Figure
19. In this figure two volumes are included to show the two hydraulic ports and a function which
shows the location of the swash plate angle command input.
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Table 6: Variable explanation of SimX Model part 1.

SimulationX Name Description Equation number
beta Oil stiffness β -
alphaMAX Maximum swash plate angle αmax 3.21
rho Oil density ρ -
pS Supply pressure pS -
a Distance from swash plate to cylinder a 3.8
pT Tank pressure pT -
psi Ratio of actual ripple used ψ 3.63
k1, k2, k3 Valve opening area constants kn -
xpMAX Maximum cylinder position practically -
xpMIN Minimum cylinder position practically -

Table 7: Variable explanation of SimX Model part 2.

SimulationX Name Description Equation number
alphaCMD Swash plate angle command between ±100. -
alphaRef Converted swash plate angle command to radians -
alpha Actual swash plate angle 3.10
P_Cont P-controller 3.18
u_Actual Actual spool position -
PD_Der & PD_Prop PD-controller 3.17
delay1 Time delay -

Table 8: Variable explanation of SimX Model part 3.

SimulationX Name Description Equation number
u_tt Spool acceleration 3.19
u_t Spool velocity -
u Spool position -
xp_tt Cylinder acceleration 3.9
xp_t Cylinder velocity -
xp Cylinder position -
p1_t Pressure gradient chamber 1 3.4
p1 Pressure chamber 1 -
p2_t Pressure gradient chamber 2 3.5
p2 Pressure chamber 2 -
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Table 9: Variable explanation of SimX Model part 4.

SimulationX Name Description Equation number
f_r Ripple frequency 3.54
A_r Ripple amplitude 3.64
O_r Ripple offset 3.57
QBar Mean flow 3.48
DQPA Ripple flow 3.53

Table 10: Variable explanation of SimX Model part 5.

SimulationX Name Description Equation number
K Opening area of the valve 3.3
Q1 Flow into cylinder chamber 1 3.1
Q2 Flow out of cylinder chamber 2 3.2
QL Leakage flow from cylinder chamber 1 and 2 3.6
uCMD Actual spool command -
QActual Pump flow with/without ripple -
pumpFlow Flow source with hydraulic ports -

Figure 19: The SimulationX Modelica block model of the pump.
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G SimulationX Model of the Hydraulic Load Circuit

The full SimulationX model of the test bench including the load side (Section 5.2) and the supply
side (Section 5.3) is described here in detail. A schematic of the model is shown in Figures 20 and
21. In these two figures, the model is divided into groups displayed by red numbers. There are a
total of seven groups and they are described below:

1 This part contains the friction model as described in Section 5.5. Details about every block
is given in Table 11.

2a This is the first part of the hydraulic system, i.e. the load circuit. It is controlled via the
Servo Valve to keep a reference pressure drop over the parker motor PumpL. This circuit is
explained in detail in Section 5.2.

2b This is the second part of the hydraulic system which is called the supply circuit. It is
controlled via the swash plate angle of the pump A4VSG to keep the shaft speed of PumpS
as the reference speed. This circuit is explained in detail in Section 5.3.

3 This is the controller for the swash plate angle of the A4VSG closed loop pump. The controller
is described in detail in Section 5.4 and all the blocks are explained in Table 12.

4 This is the controller for the directional control valve which keeps a reference pressure drop
over the pump. The control system is detailed in Section 5.4 and the blocks are explained in
Table 13.

5 This a model of the pulse counter system which mimics an inductive sensor that calculates
the speed every time a pulse is encountered on the coupling. The usage of this sensor is
explained briefly in Section 5.1 and the blocks are detailed in Table 15.

6 Other variables as shown in Table 15.

Table 11: Variable explanation of SimX Model part 1 - Friction model.

SimulationX Name Description Equation number
Ts Maximum static friction τs -
Tc Coulomb friction τc. -
r Gradient of change between negative and positive

speed r.
-

w0 Rotational velocity at τ0 -
Tf Friction torque due to the shaft velocity τf 5.38

127



G. SIMULATIONX MODEL OF THE HYDRAULIC LOAD CIRCUIT

1

2a

2b

Figure 20: SimulationX model of the Load Circuit test bench.

128



G. SIMULATIONX MODEL OF THE HYDRAULIC LOAD CIRCUIT

Table 12: Variable explanation of SimX Model part 3 - Swash plate angle controller.

SimulationX Name Description Equation number
omegaS Measured shaft speed from inductive sensor ωs 5.1
omegaS_ref Reference shaft speed ω(ref)

s -
masterSpeed Master gain to limit the theoretical control system -
abs_omegaS Absolute value of measured omegaS |ωs| -
ZeroSwitch Connects controller when speed is over a threshold -
PI PI-controller 5.33
alpha_feed Feed forward signal for angle control α(feed) 5.35
Gest Black box model of swash plate angle dynamics 5.18
alpha Desired swash plate angle in radians -
NormalizeSignal Desired swash plate angle converted to percentage -

Table 13: Variable explanation of SimX Model part 4 - Servo valve control system.

SimulationX Name Description Equation number
pL Actual pressure drop over the load site pump/motor

pL

5.3

pL_ref Reference pressure drop p(ref)
L -

masterLoad Master gain to limit the theoretical control system -
pI2 PI-controller 5.33
u_feed Feed forward signal for spool position control 5.37
limit1 Limiter of control signal -
Negate Negate the control signal to match mathematical

model

Table 14: Variable explanation of SimX Model part 5 - Coupling pulse counter system.

SimulationX Name Description Equation number
theta Actual coupling radial position θs -
sum5 Rotation since last pulse -
absMe Absolute value of input -
EventTheta Triggers one sampling of theta when absMe is larger

than the threshold 2π/10.
contOmega The actual rotation speed of the shaft ωs -
EventOmega Triggers one reading of continuous ωs when absMe

is larger than 2π/10.
-

discOmega Measured actual speed when event triggers. 5.1
Time Simulation time t -
EventTimer Triggers one sampling of time when absMe is larger

than the threshold 2π/10.
-

Timer Time since last event trigger. -
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Table 15: Variable explanation of SimX Model part 6 - Other variables.

SimulationX Name Description Equation number
Jeff Effective moment of inertia Table 5.1
Vm_max Maximum displacement of the pump/motor -
pS Load pressure over motor on supply side 5.21

3

4

5

6

Figure 21: SimulationX model of Controllers.
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H Detailed Overall Hydraulic Drawing
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