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Abstract

In spectrum cartography, also known as radio map estimation, one constructs maps that

provide the value of a given channel metric such as as the received power, power spec-

tral density (PSD), electromagnetic absorption, or channel-gain for every spatial location

in the geographic area of interest. The main idea is to deploy sensors and measure the

target channel metric at a set of locations and interpolate or extrapolate the measure-

ments. Radio maps find a myriad of applications in wireless communications such as

network planning, interference coordination, power control, spectrum management, re-

source allocation, handoff optimization, dynamic spectrum access, and cognitive radio.

More recently, radio maps have been widely recognized as an enabling technology for

unmanned aerial vehicle (UAV) communications because they allow autonomous UAVs

to account for communication constraints when planning a mission. Additional use cases

include radio tomography and source localization.

A number of approaches have been developed to construct power, PSD, and channel-

gain maps, mainly relying on machine learning tools. Unfortunately, the ability of the

existing schemes to obtain accurate map estimates is severely impaired by small- and

large-scale fading. Specifically, one of the limitations of all existing schemes is that they

require accurate knowledge of the sensor locations. However, location is seldom known in

practice and, therefore, must be estimated from localization features such as the received

signal strength (RSS), the time of arrival (ToA), the time difference of arrival (TDoA), or

the direction of arrival (DoA), of positioning pilot signals transmitted by satellites (e.g. in

GPS) or terrestrial base stations (e.g. in LTE or WiFi). Unfortunately, accurate location

estimates are often not available in practice since fading corrupts those pilot signals,

thereby hindering the applicability of existing map estimation techniques, especially in

indoor and dense urban scenarios. A second limitation is that existing approaches build

upon interpolation schemes unable to learn how radio frequency signals propagate and,

therefore, their performance heavily degrades in strong fading channels.

To overcome the first limitation, this thesis introduces a novel paradigm termed

location-free radio map estimation, where maps are constructed by relying on features

of the positioning signals rather than on location estimates. Within this paradigm, spe-

cific learning algorithms are developed here and offer a markedly improved estimation

performance as compared with existing approaches, which rely on localization, as demon-

strated by simulation studies in an urban canyon and indoor scenarios.

In order to circumvent the second limitation, this thesis proposes a novel approach

in which the spatial structure of propagation phenomena such as shadowing (large-scale

fading) is learned beforehand from a data set of past measurements. Capitalizing on

vii
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the manifold structure of radio maps, a deep completion neural network with an encoder-

decoder architecture is proposed to estimate PSD maps. Remarkably, this is the first work

to estimate radio maps using deep neural networks. Learning the structure of propagation

phenomena through a realistic data set is seen to yield estimators that require fewer

measurements to attain a target performance relative to existing schemes. Conversely,

when the same number of measurements are given, the proposed data-driven approach

significantly outperforms state-of-the-art alternatives by a wide margin.
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Chapter 1

Introduction

This chapter introduces the research carried out in this thesis. To this end, Sec. 1.1

reviews spectrum cartography and its motivating applications. Sec. 1.2 outlines existing

radio map estimation techniques. Sec. 1.3 describes the limitations of these approaches

and how the present thesis addresses them. Finally, the structure of this dissertation is

provided in Sec. 1.4.

1.1 Spectrum cartography

Spectrum cartography or radio map estimation deals with constructing maps of a certain

channel metric such as the received power, power spectral density (PSD), electromagnetic

absorption, or channel-gain for every spatial location across the geographic area of interest;

see e.g. [2–6]. For example, Fig. 1.1 illustrates a power map in dBm of a channel with

carrier frequency f = 1400MHz, where the received power is high at spatial locations

close to the three transmitters and becomes lower with distance to the transmitters. The

main idea in radio map estimation is to first deploy sensors to measure the target channel

metric at some locations in the considered area and then construct a map by interpolating

or extrapolating these measurements.
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Figure 1.1: Power map at 1400MHz
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The constructed radio maps are instrumental in numerous applications within wireless

communications. For instance, the transmitter locations [2,7,8] or the kind of propagation

terrain [9, 10] can be inferred by inspecting a map; see Fig. 1.1. Power maps can also be

useful in network design and planning since the former reveal areas of weak coverage,

therefore suggesting deployment of new base stations in those areas. PSD maps, which

describe the RF signal power as a function of frequency over space, can play a major

role in interference mitigation by increasing frequency reuse. This kind of maps may

also be of interest to optimize handoff procedures in cellular networks since they allow

mobile users to determine the power of all channels in advance. Other applications may

include cognitive radio, where radio maps can be informative to secondary users aiming at

exploiting underutilized spectrum resources in the space-frequency-time domain. Because

they allow autonomous UAVs to account for communication constraints when planning

a mission, radio maps have been widely recognized as an enabling technology for UAV

communications.

1.2 State-of-the-art

There has been substantial amount of work in the area of radio map estimation, mainly

focusing on mapping three channel metrics: power, PSD, and channel-gain. A brief review

of existing approaches for each of them is presented next.

Power maps have been constructed by applying interpolation or regression techniques

to power measurements acquired by spatially distributed sensors. Some of these schemes

include kriging [4, 11–13], which allows to estimate the power at unmeasured locations

with a weighted linear combination of the power measurements. The kriging weights

are given by the linear minimum mean square error estimator [14] based on an assumed

statistical relation among the measurements, for instance captured by a spatial covariance

function. In [15], the unobserved power values are obtained by formulating the power map

estimation problem as a matrix completion task, which is addressed via nuclear norm

minimization. Power maps have been also constructed based on compressive sensing [5]

by exploiting the sparse spatial distribution of primary users. The works in [16, 17]

adopt a dictionary learning approach by decomposing the power measurements into linear

combinations of channel-gains and transmit-power to construct power maps. In [18, 19],

power maps have been constructed non-parametrically by estimating the received power

at each location as a weighted linear combination of radial basis functions (RBFs). Both

the RBF parameters and weights were jointly optimized there. After modeling the path

loss with a Laplacian function, a sparse Bayesian learning method is presented in [20] to

obtain power maps. A kernel-based learning algorithm is devised in [21], where the power

map estimation task involves multiple kernels for capturing pathloss and shadowing.

Since the works mentioned so far can only map the power distribution across space

but not across frequency, different approaches have been developed to construct PSD

maps. For instance, the schemes in [2, 22] use a basis expansion model and exploit the

sparsity of power distributions over space and frequency. The work in [23] leverages the

framework of kernel-based learning, where power measurements are linearly compressed





and quantized to construct PSD maps. In [24,25], PSD map estimation is addressed as a

tensor completion task.

Instead of mapping power, there exist other approaches that map channel-gain. A

representative subset of them are briefly described next. To track the transmit-power

and locations of an unknown number of primary users (PUs) via sparse regression in

a cooperative cognitive radio (CR) sensing problem, channel-gain maps are constructed

and tracked using kriged Kalman filtering (KKF) in [26]. In [27], channel-gain maps

are modeled as tomographic “accumulations” of the spatial loss field (SLF) scaled by a

weight function, where the former models the absorption of the radio frequency waves

at every location in the area of interest. The same work assumes that the SLF has a

low-rank structure with sparse deviation and leverages the matrix nuclear norm for esti-

mating the SLF. To avoid introducing heuristic assumptions on the SLF and performing

a separate calibration step with measurements in free space, as required in [27, 28], the

work in [10] employs kernel-based learning tools to simultaneously learn the SLF and the

weight function from attenuation measurements collected by spatially distributed sensors.

In order to cope with heterogeneous propagation environments, channel-gain maps have

been constructed in [29] by introducing a hidden Markov random field that models a

piecewise homogeneous SLF. Moreover, an uncertainty sampling scheme is devised in the

same work to adaptively collect informative measurements.

This section described briefly existing radio map estimation schemes. The next section

will present their limitations and how the work in this thesis circumvents them.

1.3 Motivation and contributions of the thesis

The ability of all the aforementioned schemes to obtain accurate map estimates is severely

impaired by small- and large-scale fading. In particular, one limitation of all existing

schemes is that they require accurate knowledge of the sensor locations. For this rea-

son, they are collectively referred to here as location-based (LocB) radio map estimation.

However, location is rarely known in practice and, therefore, must be estimated from

localization features such as the received signal strength (RSS), the time of arrival (ToA),

the time difference of arrival (TDoA), or the direction of arrival (DoA), of positioning pi-

lot signals transmitted by satellites (e.g. in GPS) or terrestrial base stations (e.g. in LTE

or WiFi [30]) [31, 32]. Unfortunately, accurate location estimates are often not available

in practice since fading corrupts those pilot signals, thereby hindering the applicability of

existing map estimation techniques, especially in indoor and dense urban scenarios. To

see the intuition behind this observation, Figs. 1.2a and 1.2b respectively show the x and

y coordinates of the location estimates obtained by applying a state-of-the-art localiza-

tion algorithm to TDoA measurements of 5 pilot signals received in free space (details of

the specific simulation setting can be found in Paper B, Sec. B.5). On the other hand,

Figs. 1.2c and 1.2d depict the same estimates but in an indoor propagation scenario. As

observed, the estimates in the second case are neither accurate nor smooth across space,

which prevents any reasonable estimate of a function of them such as a radio map.





(a) (b)

(c) (d)

Figure 1.2: Estimation of spatial coordinates using time difference of arrival (TDoA):

(a)-(b) in free space, (c)-(d) indoor where the solid black lines represent the walls of the

building; the black dots represent the locations of the anchor base stations. The color of

each pixel represents the value of the estimated location coordinate at each point in the

150×150 grid area. Because location estimates in (a)-(b) coincide with the true locations,

they can act as colorbars to the estimates in (c)-(d).

In the context of indoor localization, there are three main types of systems [33] to

counteract this difficulty: (i) those based on ultra-wideband (UWB) [34–36], which re-

quire a dedicated infrastructure and, therefore, relatively high costs since synchronized

anchor nodes need to be deployed. Thus, localization cannot be carried out in an area

where such hardware is not present. (ii) Other indoor positioning systems are based on

fingerprinting [33, 37, 38], which involves a manual collection and storage of a data set.

This data set may comprise the measured power of multiple beacons at a set of known

locations. Note that this process is time consuming and typically expensive because a

human or robot should physically go through several known locations to take measure-

ments. Furthermore, if there are significant changes in the propagation environment,

these methods would require the acquisition of a new data set. (iii) There exist other

indoor positioning systems that combine UWB or fingerprinting with ultrasound [39] or

RFID [40]. Thus, they inherit the limitations of (i) and (ii) and require furthermore

special sensors and/or line-of-sight propagation conditions.





To sum up, all existing radio map estimation schemes require accurate location in-

formation, but this information is not available in dense multipath and indoor scenarios

when there are no special localization infrastructure or fingerprinting data sets.

A second limitation of existing radio map estimation approaches is that they rely on

interpolation schemes incapable of learning from data and, therefore, are highly ineffective

when a map needs to be estimated in channels with a significant fading component. Thus,

a substantial performance improvement is expected by learning the spatial signature of

relevant propagation effects from past measurements in other environments.

This thesis addresses these limitations along two main directions:

C1. By proposing the framework of location-free (LocF) radio map estimation, where

radio maps are constructed by relying on features of the positioning signals rather

than on location estimates. Along this direction, additional contributions of this

thesis comprise:

(a) application of kernel-based learning to devise radio map estimators within this

framework;

(b) design of pilot signal features suitable for multipath environments;

(c) development of a dimensionality reduction scheme motivated by the structure

of TDoA measurements to reduce the number of features prior to estimation

in order to counteract the so-called curse of dimensionality [41, 42];

(d) design of a special technique to accommodate scenarios where only a subset of

the aforementioned features can be extracted due to low signal-to-noise ratio

(SNR) of the localization pilot signals at some measurement locations.

C2. By proposing the paradigm of data-driven radio map estimation methods, where

the spatial structure of relevant propagation phenomena such as shadowing, reflec-

tion, and diffraction is learned using a data set of past measurements in different

environments. Along these lines, additional contributions of this thesis are:

(a) development of radio map estimators adhering to this paradigm based on deep

neural networks;

(b) extension to estimate PSD maps by exploiting the usual parametric structure

of wireless communication signals;

(c) design of training procedures for learning from a small number of measure-

ments.

Remarkably, this is the first work to estimate radio maps using deep neural networks.

1.4 Structure of the thesis

This dissertation is composed of two parts. Part I, which comprises Chapters 1-5, intro-

duces the research carried out in this thesis, summarizes the main findings, and presents





conclusions. Part II collects the research papers which present the contributions of this

thesis in detail.

The remaining chapters in Part I are as follows:

• Chapter 2 deals the algorithm devised in Papers A and B to develop contribution

C1 of this thesis;

• Chapter 3 briefly describes the approach developed in Papers C and D, which

cover contribution C2 of this thesis;

• Chapter 4 presents the main results and summarizes the performance evaluation

carried out in Papers A-D to assess the performance of the algorithms introduced

in Chapters 2 and 3;

• Chapter 5 emphasizes the main conclusions and suggests future research directions.

Part II contains the following research papers:

• Paper A presents contributions C1, C1a, and C1b. The resulting scheme offers

improved prediction performance relative to existing location-based alternatives, as

demonstrated by a simulation study in a street canyon scenario. This paper is the

conference version of Paper B.

• Paper B is an extended version of Paper A, which additionally includes contri-

butions C1c and C1d as well as a much more extensive empirical study in dense

multipath and indoor environments.

• Paper C presents contributions C2 and C2a. Learning the structure of propagation

phenomena from past measurements yields estimators that require fewer measure-

ments to attain a target performance relative to existing schemes. This paper is the

conference version of Paper D.

• Paper D is an extended version of Paper C, which furthermore includes contribu-

tions C2b and C2c as well as an extensive empirical validation and comparison with

existing algorithms in propagation scenarios heavily impaired by large-scale fading.





Chapter 2

Location-Free Radio Map Estimation

As described in Chapter 1, existing radio map estimation schemes rely on accurate location

information, which is not available in dense multipath and indoor scenarios. To overcome

this limitation, this chapter presents a novel paradigm for radio map estimation, which

relies on features of the positioning signals rather than on location estimates. To this

end, Sec. 2.1 describes the system model, states the problem, and reviews the basics of

LocB radio map estimation. Sec. 2.2 introduces LocF radio map estimation along with

the proposed map estimation algorithm, whereas Sec. 2.3 deals with feature design.

2.1 Problem formulation

This section states the general radio map estimation problem and reviews the basics of

LocB radio map estimation.

In power map estimation, the goal is to determine the power p(x) of a certain channel,

termed channel-to-map (C2M), at every location x ∈ X of a geographical region of

interest X ⊂ R2. To this end, a certain number of sensors collect N power measurements

{p̃n}Nn=1 at locations {xn}Nn=1 ⊂ X not necessarily known, where p̃n represents the noisy

measurement of the power p(xn) at location xn.

In LocB radio map estimation [2,4,5,11,15–18,20,22,23,27,29,43], given {(xn, p̃n), n =

1, . . . , N}, a fusion center needs to obtain a function estimate p̂(x) that provides the power

of the C2M at any query location x ∈ X . With this function, a node at location x can

determine the power of the C2M if it knows x. Note that the above measurement set

includes the exact sensor locations {xn}Nn=1. In practice, however, location is typically

unknown and, hence, the sensor at the n-th measurement point must obtain an estimate

x̂n := x̂(Yn) of xn by means of some localization algorithm; e.g. [31,32]. Here, Yn contains

the received pilot signals at the n-th measurement location.

A fusion center then uses {(x̂n, p̃n)}Nn=1 to obtain an estimate p̂(x) of the function

p(x). Therefore, if the location estimates {x̂n}Nn=1 are noisy, so will be p̂(x). If a node

at an unknown test location wishes to determine the power of the C2M, it will use the

pilot signals Y ∈ Y to obtain an estimate x̂ := x̂(Y ) of its location and will evaluate the

map estimate as p̂(x̂). Due to multipath propagation effects impacting the pilot signals

in Y , x̂(Y ) may differ considerably from x, which drastically hinders the estimation of
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(a) (b)

Figure 2.1: Multi-lateration using ToA measurements with circles as possible sensor lo-

cations: (a) consistent ToA with the sought sensor location being the intersection of the

circles (black square) and (b) inconsistent ToA measurements. The red stars represent

the locations of the anchor base stations.

p. Thus, in those cases where the location estimates {x̂(Yn)}Nn=1 are noisy, the resulting

estimate p̂, will also be noisy.

2.2 Location-free approach

This section outlines the location-free (LocF) radio map estimation framework, developed

in Papers A and B to bypass the localization step involved in all existing radio map

estimation approaches. To this end, the LocF radio map estimation problem is formulated

in Sec. 2.2.1 and solved via kernel-based learning in Sec. 2.2.2.

2.2.1 Formulation

As discussed in Sec. 2.1, existing radio map estimation techniques are heavily impaired by

localization errors since the maps they construct are functions of noisy location estimates.

The main idea of the proposed framework is to bypass such a dependence.

Recall that the estimated location x̂(Y ) is the result of applying a localization algo-

rithm to the pilot signals Y . For most existing algorithms, x̂(Y ) can be thought of as the

composition of two functions: a function φ : Y → F ⊂ RM that obtains M features from

Y ∈ Y , such as ToA, TDoA, or DoA, and a function l̂ : F → X that provides a location

estimate l̂(φ) given a feature vector φ ∈ F . The location estimate x̂(Y ) = l̂(φ(Y )) is

inaccurate in multipath environments because the algorithm that evaluates l̂ adopts a

model where there is a certain “agreement” among features φ(Y ). To see this, consider

Fig. 2.1, which illustrates the task of estimating the location of a sensor in an area with

L = 3 base stations. The features in φ ∈ RM , with M = L = 3, used in this example

are ToA features. For each pilot signal, there is a circle centered at the base station and

whose radius equals c times the ToA, where c is the speed of light. Thus, when there is





no multipath, the ToA features are accurate and the sensor to be located must lie in the

intersection of the three circles, as shown in Fig. 2.1a. Hence, the localization algorithm

(embodied in l̂) just needs to return the location at which these circles intersect. However,

in multipath environments, the ToA features obtained from Y do not generally equal the

time it takes for an electromagnetic wave to propagate from the corresponding base sta-

tion to the sensor. As a result, the aforementioned circles will not generally intersect; see

Fig. 2.1b. In other words, the expected agreement among features is absent and, hence,

the localization algorithm will return an inaccurate estimate of the position.

In view of these arguments, the problem in Papers A and B is to find an estimate

d̂(φ) given {(φn, p̃n)}Nn=1, where φn := φ(Yn). By following this approach, the estimated

map d̂(φ(Y )) does not depend on the location estimate. For this reason, this approach

will be referred to as location-free (LocF) radio map estimation.

For simplicity, the discussion here and in Papers A and B is based on mapping the

power of a single channel. However, the framework is general enough to accommodate

PSD or channel-gain maps.

2.2.2 Kernel-based power map learning

This section applies kernel-based learning to provide an algorithm capable of learning the

function d̂ introduced in Sec. 2.2.1. This is a popular learning approach, mainly due to

its simplicity, universality, and typically good performance. Besides, kernel methods have

been extensively applied in radio map estimation [10,21,23].

In kernel-based learning, one typically seeks d̂ in a set of functions known as a

reproducing-kernel Hilbert space (RKHS) H and solves a problem of the form

d̂ = arg min
d∈H

1

N

N∑
n=1

L (p̃n,φn, d(φn)) + ω (‖d‖H) , (2.1)

where L is a loss function quantifying the deviation between the observations {p̃n}Nn=1 and

the predictions {d(φn)}Nn=1 returned by a candidate d; and ω is an increasing function.

The first term in the right hand side of (2.1) promotes function estimates that fit the data

and the second term promotes estimates that generalize well to unseen data by limiting

overfitting. A prominent estimator arises when L(p̃n,φn, d(φn)) = (p̃n − d(φn))2 and

ω(‖d‖H) = λ‖d‖2
H, where λ > 0 is a regularization parameter that balances smoothness

and goodness of fit. The resulting d̂ is termed kernel ridge regression estimate [44, Ch.

4] and is the one used in our experiments in Papers A and B for simplicity.

The goal is therefore to solve (2.1). However, since H is generally infinite dimensional,

such a task cannot be directly accomplished. Fortunately, one can invoke the so-called

representer theorem [45], which states that the solution to (2.1) is of the form

d̂(φ) =
N∑
n=1

αnκ(φ,φn) (2.2)

for some {αn}Nn=1, where κ is a symmetric and positive definite function in H known

as reproducing kernel [45]. Although the representer theorem does not provide {αn}Nn=1,





these coefficients can be obtained by substituting (2.2) into (2.1) and solving the resulting

problem with respect to them since they are finite in number. Applying this procedure

for kernel ridge regression results in the problem

α̂ = arg min
α

1

N
‖p̃−Kα‖2 + λα>Kα, (2.3)

where α := [α1, ..., αN ]>, p̃ := [p̃1, ..., p̃N ]>, and K is a positive-definite N ×N matrix

whose (n, n′)-th entry is κ(φn,φn′). Problem (2.3) can be readily solved in closed-form

as α̂ = (K + λNIN)−1 p̃. The estimate d̂ solving (2.1) for kernel ridge regression can

be recovered by substituting the resulting {αn}Nn=1 into (2.2). To obtain the predicted

power of the C2M at a query location x where the pilot signals are given by Y , one just

evaluates the LocF estimate d̂(φ(Y )).

2.3 Location-free features

As described in Sec. 2.1, LocB radio map estimation algorithms learn a function of the

location estimates. In the machine learning terminology, the features are the spatial

coordinates of the sensor locations. On the other hand, the features used by LocF radio

map estimation are the entries of φ(·). In principle, φ(Y ) could be set to contain the

same features as the ones used by l̂(·). However, it is generally preferable to use features

specifically tailored to LocF radio map estimation. This section discusses briefly the

design of these features.

2.3.1 Feature extraction

To simplify the exposition, the scenario where sensors are synchronized with the base

stations is presented first. A more practical setup, where this synchronization is not

required, will be considered next.

2.3.1.1 Sensors are synchronized with base stations

As discussed in Sec. 2.2.1, features used by typical localization algorithms (hence by LocB

radio map estimators) (see also Paper B, Sec. B.4.1) are not desirable for LocF radio

map estimation. Instead, as an alternative feature inspired by the fact that the ToA may

be estimated from the maximum of the channel impulse response, a sensor at the n-th

measurement point may extract the center of mass (CoM) from the l-th pilot signal as

CoMl,n :=

∑K−1
k=0 |ĥl,n[k]|2k∑K−1
k=0 |ĥl,n[k]|2

,

where ĥl,n[k] is the estimate of the k-th sample of the discrete-time channel impulse

response between the l-th base station and the sensor at the n-th location whereas K is

the number of samples. In this case, with L base stations, the feature vector at the n-th

sensor location becomes φn = [CoM1,n, . . . ,CoML,n]>. The key advantage of the CoM

feature is that it evolves smoothly over space as demonstrated in Paper B, Sec. B.4.1.1

and, therefore, is preferable for LocF radio map estimation.





2.3.1.2 Sensors are not synchronized with base stations

To avoid assuming synchronization of the sensors with the base stations, which requires

more expensive equipment and becomes especially challenging in multipath scenarios, the

proposed features are of the form

CoMl,l′,n :=

∑K−1
i=−K+1 |cl,l′,n[i]|2 i∑K−1
i=−K+1 |cl,l′,n[i]|2

, (2.4)

where CoMl,l′,n is the CoM of the cross-correlation cl,l′,n between the l-th and l′-th pilot

signals, with l 6= l′. With this choice, the feature vector at the n-th measurement location

becomes

φn = [CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,CoM2,3,n, . . . ,CoML−1,L,n]>. (2.5)

The proposed feature has three advantages: i) it is smooth across space as portrayed in

Chapter 4, Sec. 4.1.2.1, ii) it does not require synchronization between the localization

base stations and the sensors, and iii) it does not require the knowledge of the impulse

responses.

2.3.2 Radio map reconstruction from a reduced set of features

As argued in Paper B, Sec. B.3.1, learning becomes difficult when the number of input

features is high. This section sketches the scheme developed in Paper B, Sec. B.4.2, to

reduce this number of features in order to improve estimation performance in LocF radio

map estimation.

As mentioned in the previous section, in LocB radio map estimation, the feature

vectors correspond to the coordinates of the estimated location. Application of the lo-

calization algorithm represented by the function l̂ naturally reduces dimensionality from

the original M features to just 2 or 3. On the other hand, in the case of LocF radio map

estimation, a larger number N of measurements to learn d̂ may be necessary to attain

a target accuracy if M is large. This observation calls for a dimensionality reduction

step that condenses the information of the feature vectors {φn}Nn=1 ⊂ RM into vectors

{φ̄n}Nn=1 ⊂ Rr of a reduced size r.

In the cases where the feature vectors {φn}Nn=1 lie close to a low-dimensional subspace,

the coordinates of these vectors with respect to a basis for such a subspace may constitute

a suitable reduced set of features. First, by considering the scenario of TDoA features,

it can be observed (see Paper B, Sec. B.4.2) that the rank of Φ := [φ1, . . . ,φN ] is at

most L − 1 or, equivalently, the vectors {φn}Nn=1 lie in a subspace of dimension L − 1.

When effects of noise are noticeable, one would expect that the vectors {φn}Nn=1 lie close

to (rather than in) a subspace of dimension L− 1.

Similarly, one can expect that when the entries of the vectors {φn}Nn=1 are given by

(2.4), these vectors also lie close to a low-dimensional subspace since CoM features are

proportional to the TDoAs in absence of multipath; see Paper B, Sec. B.4.1. This phe-

nomenon can be analyzed through simulation (see Paper B, Sec. B.5, for more details).

To this end, Fig. 2.2 depicts the singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0 of Φ in non-

increasing order for a multipath environment described in Paper B, Sec. B.5, with L = 4.





Figure 2.2: Singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0 of Φ in non-increasing order for a

multipath environment with L = 4 transmitters.

As expected, roughly r = L−1 = 3 directions capture almost all the energy of the vectors

{φn}Nn=1.

When a set of random vectors lie close to a subspace, a standard approach for dimen-

sionality reduction is principal component analysis (PCA) [42, Ch. 12], which obtains

the reduced feature vectors by projecting the input data vectors onto the subspace that

preserves most of the energy. This subspace can be determined using the singular value

decomposition (SVD) of Φ; see Paper B, Sec. B.4.2. With this technique, the reduced

dimensionality feature vectors will be given by {φ̄n}Nn=1, where φ̄n := U>r φn and the

columns of Ur are the left singular vectors of Φ corresponding to its r largest singular

values.

The length r of the new feature vectors {φ̄n}Nn=1 may be potentially much smaller

than M and is therefore expected to boost estimation performance meaningfully. For

instance, when {φn}Nn=1 are given by (2.5), this reduction is from M = L(L − 1)/2

features to r = L − 1 features. The LocF map estimate d̂ with the aforementioned

dimensionality reduction technique is obtained from the pairs {(φ̄n, p̃n)}Nn=1 using the

approach in Sec. 2.2.2. To evaluate the resulting map at a query location where the

received pilot signals are given by Y , one must simply obtain d̂(U>r φ(Y )).

2.3.3 Handling unavailable features

Due to propagation effects, the signal-to-noise ratio (SNR) of some of the received pilot

signals may be too low, which implies that the features extracted from these pilot signals

may be unreliable or simply unavailable. This section summarizes the techniques devised

in Paper B, Sec. B.4.3, to cope with such missing features.

Let Ωf ⊂ {1, . . . ,M} × {1, . . . , N} be such that (m,n) ∈ Ωf iff the m-th feature

is available at the n-th measurement location and define the “incomplete” feature ma-

trix Φ̆ ∈ (R ∪ {FiM})M×N as

(Φ̆)m,n =

{
(φn)m + ςm,n if (m,n) ∈ Ωf

FiM otherwise,
(2.6)





where ςm,n explicitly models error in the feature extraction and the symbol FiM represents

that the corresponding feature is missing. Since the matrix Φ̆ contains missing features,

the LocF radio map estimation scheme presented so far is not directly applicable. The

missing features must be filled first. Hence, the goal is, given Φ̆, find Φ ∈ RM×N that

agrees with Φ̆ on Ωf . A popular approach to address such a matrix completion task is

based on rank minimization [46]. Although the resulting problem, described in Paper B,

Sec. B.4.3, is non-convex, efficient solvers exist based on convex relaxation [47,48].

In spite of the fact that the rank minimization approach could, in principle, be used,

it suffers from two limitations. First, it does not exploit the prior information that Φ

can be well approximated by a matrix of rank r, where r is typically L− 1; see Fig. 2.2.

Second, the reconstructed matrix is sensitive to the noise present in Φ̆; see Paper B,

Sec. B.4.3, for more details. Thus, an appealing alternative would be

Φ̊ :=argmin
Φ

1

2
||PΩf (Φ)− PΩf (Φ̆)||2F

subject to Φ ∈Mr,

(2.7)

where Mr := {Φ ∈ RM×N : rank(Φ) = r} is the smooth manifold of r-rank M × N

matrices and

PΩf : (R ∪ {FiM})M×N −→ RM×N

Φ̆ 7−→ PΩf (Φ̆)

is a projection operator with

(
PΩf (Φ̆)

)
m,n

:=

{
(Φ̆)m,n if (m,n) ∈ Ωf

0 if (m,n) /∈ Ωf .

There exist algorithms to find local minima of the non-convex problem (2.7). One

example based on manifold optimization [49] is the linear retraction-based geometric

conjugate gradient (LRGeomCG) method from [50]. A less computationally expensive

alternative is the singular value projection (SVP) method in [51], which is based on the

traditional projected subgradient descent method.

After solving (2.7), all the columns of Φ̊ := [φ̊1, . . . , φ̊N ] clearly lie in a subspace

of dimension r. From the arguments in Sec. 2.3.2, learning the map can be improved

by suppressing this redundancy. Estimating a map using the proposed LocF approach in

presence of missing features proceeds as follows. First, the completed matrix Φ̊ is obtained

from matrix Φ̆ using LRGeomCG or SVP. Then, one learns d̂ from {(φ̄n, p̃n)}Nn=1, where

φ̄n := Ů>r φn, using the approach in Sec. 2.2.2. Here, the columns of Ůr are the left

singular vectors of Φ̊ corresponding to its r largest singular values.

To evaluate the estimated map at a test location, one would require in principle the

feature vector φ ∈ RM at that location or, alternatively, its reduced-dimensionality version

φ̄ ∈ Rr. However, due to the propagation phenomena described earlier, only some of the

features of φ may be available, which can be collected in the vector φ̆ ∈ (R ∪ {FiM})M .

The problem now is to find the reduced-dimensionality feature vector φ̄ given φ̆. By

exploiting the fact that the feature vector at the testing point φ ∈ RM approximately lies





in the subspace for which the columns of Ůr form an orthonormal basis, the sought vector

is found by using the well-known regularized least squares (RLS) method; see Paper B,

Sec. B.4.3, for more details.





Chapter 3

Data-Driven Radio Map Estimation

As indicated in Chapter 1, Sec. 1.3, existing radio map estimation schemes rely on inter-

polation algorithms unable to learn from data. In contrast, the novel approach in this

chapter learns the spatial structure of propagation phenomena such as shadowing using

a data set of past measurements. Notably, this is the first work to estimate radio maps

using deep neural networks. This chapter outlines the framework developed in Papers

C and D, which constitutes the second main contribution of this thesis; see Sec. 1.3.

To this end, Sec. 3.1 formulates the problem of PSD map estimation, whereas Sec. 3.2

introduces the proposed data-driven radio map estimation paradigm and proposes a deep

neural network architecture based on completion autoencoders.

3.1 PSD map estimation problem

This section formulates the problem of PSD map estimation. The problem where power

maps must be estimated can be recovered as a special case of PSD map estimation in a

single frequency.

Consider L transmitters, or sources, located in a geographic region of interest X ⊂ R2

and operating in a certain frequency band. Let Υl(f) denote the transmit PSD of the

l-th source and let Hl(x, f) represent the frequency response of the channel between the

l-th source and a receiver with an isotropic antenna at location x ∈ X .

If the L transmitted signals are uncorrelated, the PSD at x ∈ X is

Ψ(x, f) =
∑L

l=1 Υl(f)|Hl(x, f)|2 + υ(x, f), (3.1)

where υ(x, f) aggregates the effects of thermal noise, background radiation noise, and

interference from remote sources. A certain number of devices with sensing capabilities,

e.g. user terminals in a cellular network, collect PSD measurements {Ψ̃(xn, f)}Nn=1 at

N locations {xn}Nn=1 ⊂ X and at a finite set of frequencies f ∈ F . These frequency

measurements can be obtained using e.g. periodograms or spectral analysis methods such

as the Welch method [52].

These measurements are sent to a fusion center, which may be e.g. a base station, a

mobile user, or a cloud server, depending on the application. Given {(xn, Ψ̃(xn, f)), n =

1, . . . , N, f ∈ F}, the problem that the fusion center needs to solve is to find an estimate

Ψ̂(x, f) of Ψ(x, f) at every location x ∈ X and frequency f ∈ F .
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Figure 3.1: Model setup and area discretization.

3.2 Data-driven radio map estimation

All existing map estimators rely on interpolation algorithms that do not learn from data.

However, it seems natural that an algorithm can be trained to learn how to solve the

problem in Sec. 3.1 using a record of past measurements, possibly in other geographic

regions. Specifically, besides D:={(xn, Ψ̃(xn, f)),xn ∈ X , f ∈ F , n = 1, . . . , N},
a number of measurement records of the form Dt:={(xnt, Ψ̃t(xnt, f)), xnt ∈ Xt, f ∈
F , n = 1, . . . , Nt}, t = 1, . . . , T , may be available, where Dt contains Nt measurements

collected in the geographic area Xt and T is the number of training examples. With this

additional data, a better performance is expected when estimating Ψ(x, f).

The rest of this section summarizes the deep learning estimators developed in Paper

D, Sec. D.3, to address this data-aided formulation. To this end, Sec. 3.2.1 starts by

reformulating the problem at hand as a tensor completion task amenable to application of

deep neural networks. Subsequently, Sec. 3.2.2 addresses unique aspects of tensor/matrix

completion via deep learning. Sec. 3.2.3 discusses briefly how to exploit structure in the

frequency domain. Finally, Secs. 3.2.4 and 3.2.5 respectively describe how to learn the

spatial structure of propagation phenomena via the notion of completion autoencoders

and how these networks can be trained in real-world scenarios.

3.2.1 Map estimation as a tensor completion task

Observe that N and Nt depend on the number and movement of the sensors. As argued in

Paper D, Sec. D.3.1, using a separate estimator for each possible value of N is inefficient

in terms of memory, computation, and yields high estimation error. Instead, it is more

practical to rely on a single estimator that can accommodate an arbitrary number of

measurements.

Given their well-documented merits in a number of tasks, deep neural networks consti-

tute a sensible framework to develop radio map estimators. However, regular feedforward

neural networks cannot directly accommodate inputs of a variable size. To bypass this

difficulty, the approach pursued here relies on a spatial discretization amenable to appli-

cation of feedforward architectures [53, Ch. 6]. Similar discretizations have been applied

in [15,24,54,55].

This discretization is briefly outlined next for D; the extension to Dt follows the same

lines. Define an Ny×Nx rectangular grid over X , as depicted in Fig. 3.1, where ξi,j is the





(i, j)-th grid point, with i = 1, . . . , Ny, j = 1, . . . , Nx. After assigning the measurement

locations to the grid points (as detailed in Paper D, Sec. D.3.1), one can therefore collect

the true PSD values at the grid points in matrix Ψ(f) ∈ RNy×Nx , f ∈ F , whose (i, j)-th

entry is given by [Ψ(f)]i,j = Ψ(ξi,j, f). By letting F = {f1, . . . , fNf}, it is also possible to

concatenate these matrices to form the tensor Ψ ∈ RNy×Nx×Nf , termed true map, where

[Ψ]i,j,nf = Ψ(ξi,j, fnf ), nf = 1, . . . , Nf . The PSD measurements at the grid points can

also be collected into Ψ̃(f) ∈ RNy×Nx , defined as

[Ψ̃(f)]i,j =

{
Ψ̃(ξi,j, f) if (i, j) ∈ Ω

0 otherwise,
(3.2)

where Ω ⊂ {1, . . . , Ny} × {1, . . . , Nx} contains the locations of the measurements. The

entries of Ψ̃(f) corresponding to grid points where no measurements are collected may

be filled with zeros, yet other possibilities are discussed in Papers C and D. As before,

the matrices Ψ̃(f), f = 1, . . . , Nf , can be concatenated to form Ψ̃ ∈ RNy×Nx×Nf , termed

sampled map, where [Ψ̃]i,j,nf = [Ψ̃(fnf )]i,j. With this notation, the radio map estimation

problem stated in Sec. 3.1 will be approximated as estimating Ψ given Ω and Ψ̃.

3.2.2 Deep completion networks for radio map estimation

The given data in the problem formulation at the end of Sec. 3.2.1 cannot be handled

by plain feedforward neural networks since they cannot directly accommodate set-valued

inputs like Ω. This section summarizes how this difficulty is addressed.

Papers C and D start by analyzing the simplest possibilities for completing the tensor

of measurements Ψ̃ using a deep neural network. Specifically, it is observed that the

number of parameters of the neural network in [56] is prohibitively large, which renders

the network challenging to train for a given T . To alleviate this limitation, a simple

alternative would be to directly feed Ψ̃ to the neural network and train by solving

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̃t)

)∥∥∥2

F
, (3.3)

where pw is the neural network function with weights collected in the vector w, ||A||2F :=∑
i,j,nf

[A]2i,j,nf is the squared Frobenius norm of tensor A, and PΩ(A) is defined by

[PΩ(A)]i,j,nf =

{
[A]i,j,nf if (i, j) ∈ Ω

0 otherwise.

After (3.3) is solved, Ψ̃ can be completed just by evaluating pw(Ψ̃). However, because

the completion pw(Ψ̃) does not account for Ω, poor performance is expected since the

network cannot distinguish missing entries from measurements close to the filling value.

Hence, a preferable alternative is to complement the input map with a binary mask that

indicates which entries are observed, along the lines of some works in the image inpainting

literature [57]. Specifically, a mask MΩ ∈ {0, 1}Ny×Nx can be used to represent Ω by

setting

[MΩ]i,j =

{
1 if (i, j) ∈ Ω

0 otherwise.
(3.4)





To simplify notation, let Ψ̌ ∈ RNy×Nx×Nf+1 denote a tensor obtained by concatenating Ψ̃

and MΩ along the third dimension. The neural network can therefore be trained as

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̌t)

)∥∥∥2

F
, (3.5)

and, afterwards, a tensor Ψ̃ can be completed just by evaluating pw(Ψ̌). Then, this scheme

is simple to train, inexpensive to test, and is aware of the locations of the measurements.

In addition to the mask containing the information about the locations of the mea-

surements, a certain number Nm − 1 of additional masks can be formed to accommodate

additional side information, such as the height of buildings at ξi,j or the kind of propaga-

tion terrain (e.g. urban, suburban, etc) where ξi,j lies, that may assist in map estimation;

see Remark 7 in Paper D, Sec. D.3.2. Like MΩ, these masks can be concatenated to Ψ̃

to form an augmented tensor Ψ̌. The rest of this dissertation will use symbol Ψ̌ to refer

to the result of concatenating Ψ̃ with the available masks.

3.2.3 Exploiting structure in the frequency domain

In practice, different degrees of prior information may be available when estimating a

PSD map. This section summarizes the techniques devised in Paper D, Sec. D.3.3, to

exploit such prior information.

3.2.3.1 Frequency separation

When the number of frequencies Nf is significant, Paper D, Sec. D.3.3.1, first argues

that the plain training approach in (3.5) is likely to be ill-posed in practical scenarios

when the network does not enforce or exploit any structure in the frequency domain. In

this case, it may be preferable to separate the problem across frequencies, in other words,

estimate Nf power maps rather than a single PSD map, by noting that propagation effects

at similar frequencies are expected to be similar. Building upon this principle, pw can

operate separately at each frequency f . This means that training can be accomplished

through

minimize
w

1

TNf

T∑
t=1

∑
f∈F

∥∥∥PΩt

(
Ψ̃t(f)− pw(Ψ̌t(f))

)∥∥∥2

F
, (3.6)

where the input Ψ̌t(f) ∈ RNy×Nx×(1+Nm) is formed by concatenating Ψ̃t(f) and Nm masks.

As observed, the number of variables is roughly reduced by a factor of Nf , whereas

the “effective” number of training examples has been multiplied by Nf ; cf. number of

summands in (3.6). This is a drastic improvement especially for moderate values of Nf .

Although such a network would not exploit structure across the frequency domain, the

fact that it would be better trained is likely to counteract this limitation in many setups.

3.2.3.2 Output layers for parametric PSD expansions

Real-world communication systems typically adhere to standards that specify transmis-

sion masks by means of carrier frequencies, channel bandwidth, roll-off factors, number
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Figure 3.2: PSD Ψ(x, f) at location x using a basis expansion model with Gaussian

functions.

of OFDM subcarriers, and so on. It seems, therefore, reasonable to capitalize on such

prior information for radio map estimation by means of a basis expansion model in the

frequency domain like the one in [23,58,59]. Even when the frequency form of the trans-

mit PSD is unknown, a basis expansion model is also motivated due to its capacity to

approximate any PSD to some extent; e.g. [2, 22].

Under a basis expansion model, the transmit PSD of each source is expressed as

Υl(f) =
∑B−1

b=1 πlbβb(f), (3.7)

where πlb denotes the expansion coefficients and {βb(f)}B−1
b=1 is a collection of B− 1 given

basis functions such as raised-cosine or Gaussian functions. Substituting (3.7) into (3.1),

the PSD at x ∈ X is written as

Ψ(x, f) =
L∑
l=1

B−1∑
b=1

πlbβb(f)|Hl(x, f)|2 + υ(x, f).

Now assume that |Hl(x, f)|2 remains approximately constant over the support of each

basis function, i.e., |Hl(x, f)|2 ≈ |Hlb(x)|2 for all f in the support of βb(f). Then, the

PSD at x can be written as

Ψ(x, f) =
B−1∑
b=1

πb(x)βb(f) + υ(x, f), (3.8)

where πb(x):=
∑L

l=1 πlb|Hlb(x)|2. More explanations and justification of the assumption

made are provided in Paper D, Sec. D.3.3.2.

Observe that the noise PSD υ(x, f) can be similarly expressed in terms of a basis

expansion. To simplify the exposition, suppose that υ(x, f) is expanded with a single

term as υ(x, f) ≈ πB(x)βB(f), which in turn implies that (3.8) becomes

Ψ(x, f) =
B∑
b=1

πb(x)βb(f). (3.9)
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Figure 3.3: Estimation with Nλ = 4 latent variables: (left) true map, (middle) sampled

map portraying the locations of the measurements, and (right) map estimate.

Fig. 3.2 illustrates this expansion for B = 5 when {βb(f)}4
b=1 are Gaussian radial basis

functions and β5(f) is set to be constant to model the PSD of white noise. Note that

the adopted basis expansion furthermore allows estimation of the noise power πB(x) at

every location (see more details in Paper D, Sec. D.3.3.2), thereby solving a fundamental

problem in applications such as cognitive radio [60].

With the above expansion, the tensor Ψ ∈ RNy×Nx×Nf introduced in Sec. 3.2.1 can

be expressed as [Ψ]i,j,nf =
∑B

b=1 [Π]i,j,b βb(fnf ), where tensor Π ∈ RNy×Nx×B contains the

coefficients [Π]i,j,b = πb(ξi,j). In a deep neural network, this structure can be naturally

enforced by setting all but the last layer to obtain an estimate Π̂ of Π and the last layer

to produce Ψ̂; see Fig. 3.4 in Sec. 3.2.4. Specifically, the neural network can be expressed

schematically as

L
p̄w
−−−→ RNy×Nx×B

p(L)

−−−→ RNy×Nx×Nf

Ψ̌ −−−→ Π̂ −−−→ Ψ̂,

where L ⊂ RNy×Nx×(Nf+Nm) is the input space, function p̄w(Ψ̌):=p
(L−1)
wL−1 (. . . p

(1)
w1(Ψ̌))

groups the first L − 1 layers, and p(L) denotes the last layer. With this notation, Π̂ =

p̄w(Ψ̌) and Ψ̂ = p(L)(Π̂) ∈ RNy×Nx×Nf , where [Ψ̂]i,j,nf =
∑B

b=1[Π̂]i,j,bβb(fnf ). Observe

that, as reflected by the notation, the last layer p(L) does not involve trainable parameters.

The network structure presented in this section entails a significant reduction in the

number of parameters of the network and, as discussed in Sec. 3.2.3.1, contributes to

improve estimation performance for a given T .

3.2.4 Deep completion autoencoders

The previous section summarized the proposed approach to complete the tensor of mea-

surements using a deep neural network. This section discusses briefly the architecture

of such a network. To capitalize on the manifold structure of radio maps, the proposed

architecture is based on deep completion autoencoders.

A (conventional) autoencoder [53, Ch. 12] is a neural network pw that can be expressed

as the composition of a function εw termed encoder and a function δw called decoder,

pw(Φ) = δw(εw(Φ)) ∀Φ. The output of the encoder λ:=εw(Φ) ∈ RNλ is referred to as
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Figure 3.4: Autoencoder architecture.

the code or vector of latent variables and is, in the typical undercomplete form, of a much

lower dimension than the input Φ. An autoencoder is trained to reproduce its input.

Since the goal in this work is to complete the tensor of measurements Ψ̃, a completion

autoencoder is proposed. It adheres to the same principles as conventional autoencoders

except for the fact that the encoder must determine the latent variables from a subset of

the entries of the input.

As indicated before, undercomplete autoencoders are useful only when most of the

information in the input can be condensed in Nλ variables, i.e., when the possible inputs

lie close to a manifold of dimension Nλ. To see that this is indeed the case in radio

map estimation, an illustrating toy example is presented next. Consider two sources

transmitting with a different but fixed power at arbitrary positions in X and suppose that

propagation occurs in free space. All possible spectrum maps in this setup can therefore

be uniquely identified by Nλ = 4 quantities, namely the x and y coordinates of the two

sources. Fig. 3.3 illustrates this effect, where the left panel of Fig. 3.3 depicts a true map

Ψ and the right panel shows its estimate using the proposed completion autoencoder

when Nλ = 4. The quality of the estimate clearly supports the aforementioned manifold

hypothesis. Details about the network and simulation setup are provided in Paper D,

Sec. D.4. In a real-world scenario, there may be more than two sources, their transmit-

power may not always be the same, and there are shadowing effects, which means that

Nλ > 4 will be generally required.

The proposed architecture mainly comprises convolutional and pooling layers for the

encoder with the corresponding convolution transpose and up-sampling layers for the





decoder. The architecture adopted in Paper C comprises also fully connected layers,

whereas the one in Paper D is fully convolutional as shown in Fig. 3.4.

3.2.5 Training approaches

After discussing the proposed deep neural network architecture in the previous section,

this section discusses possible training approaches.

3.2.5.1 Synthetic training data

Since collecting a large number of training maps may be slow or expensive, one can instead

generate maps using a mathematical model or simulator that captures the structure of

propagation phenomena such as path loss and shadowing; see e.g. [61]. In this case, the

neural network can be trained on the data {(Ψ̌t,Ψt)}Tt=1 by solving

minimize
w

1

T

T∑
t=1

∥∥Ψt − pw(Ψ̌t)
∥∥2

F
. (3.10)

3.2.5.2 Real training data

In practice, real maps may be available for training. However, in most cases, it will not

be possible to collect measurements at all grid points. To bypass this difficulty, one may

only fit the map at the observed grid points. To improve the training of the autoencoder,

the approach proposed here is to use part of the measurements as the input and another

part as the output (target). Specifically, for each t, t = 1, . . . , T , construct Qt pairs of

(not necessarily disjoint) subsets Ω
(I)
t,q ,Ω

(O)
t,q ⊂ Ωt, q = 1, . . . , Qt. Using these subsets,

subsample Ψ̃t to yield Ψ̃
(I)

t,q :=P
Ω

(I)
t,q

(Ψ̃t) and Ψ̃
(O)

t,q :=P
Ω

(O)
t,q

(Ψ̃t).

With the resulting
∑

tQt training instances, one can think of solving

minimize
w

1∑
tQt

∑T
t=1

∑Qt
q=1

∥∥∥P
Ω

(O)
t,q

(
Ψ̃

(O)
t,q − pw

(
Ψ̌

(I)

t,q

))∥∥∥2

F
, (3.11)

where Ψ̌
(I)

t,q is formed by concatenating Ψ̃
(I)
t,q and M

Ω
(I)
t,q

.

3.2.5.3 Hybrid training

In practice, one expects to have real data, but only in a limited amount. It then makes

sense to apply the notion of transfer learning [53, Ch. 15] as follows: first, learn an initial

parameter vector w∗ by solving (3.10) with synthetic data. Second, solve (3.11) with

real data, but using w∗ as initialization for the optimization algorithm. The impact of

choosing this initialization is that the result of solving (3.11) in the second step will be

generally closer to a “better” local optimum than if a random initialization were adopted.

Hence, this approach combines the information of both synthetic and real data sets.





Chapter 4

Evaluation

The previous two chapters introduced the frameworks of LocF and data-driven map esti-

mation and presented special algorithms based on them that respectively rely on kernel-

based learning and deep completion autoencoders. This chapter summarizes the perfor-

mance evaluation of these algorithms. In particular, Sec 4.1 assesses the performance of

the LocF scheme in urban canyon and indoor scenarios whereas Sec 4.2 evaluates the

proposed deep neural network architecture in scenarios heavily impaired by large-scale

fading.

4.1 Location-free radio map estimation

The performance of the LocF radio map estimation approach summarized in Chapter 2

is evaluated in urban canyon and indoor scenarios, where localization algorithms cannot

achieve accurate location estimates. To better illustrate the merits of the LocF framework,

kernel ridge regression is used for both LocB [18, 21, 23] and LocF (see Sec. 2.2.2 and

Paper B) radio map estimation. Both algorithms use Gaussian kernels because of their

universality [62]. Quantitative evaluation compares the normalized mean square error

(NMSE), defined as

NMSE =
E{|p(x)− p̂(Y (x))|2}

E{|p(x)− p̄|2}
,

where p̄ is the spatial average of p(x) and E{·} denotes expectation over the locations of

the sensors and noise.

4.1.1 Urban canyon

In this case, the urban canyon comprises two parallel vertical planes modeling the walls

(or buildings) at each side of the street and a horizontal plane modeling the ground.

Propagation is characterized by the so called six-ray model [63]. More details of the

simulation setting can be found in Paper A, Sec. A.4.

For simplicity and robustness to multipath, the features used in this section by the

proposed LocF algorithm are those in Chapter 2, Sec. 2.3.1.1. For localization, the square-

25



True map at 800Mhz

-10 0 10
x[m]

0

50

100

150

200

250
y[

m
]

Localization-free 
 estimated map

-10 0 10
x[m]

0

50

100

150

200

250

Localization-based 
 estimated map

-10 0 10
x[m]

0

50

100

150

200

250

-50

-45

-40

-35

-30

-25

-20

-15

-10

dB
W

Figure 4.1: (a) True map, (b) LocF, and (c) LocB estimated maps, N = 160.
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Figure 4.2: Performance comparison between the LocF and LocB radio map estimation

curves.

range-based least squares (SR-LS) algorithm [64] is applied to the ToA measurements

obtained from the pilots.





Figure 4.3: (left) True map, (middle) LocB, and (right) LocF estimated maps; N = 300.

The black crosses indicate the sensor locations and the solid white lines represent the

walls of the building.

The true map generated through the canyon model is depicted in the left panel of

Fig. 4.1. The middle and right panels respectively show the LocF and LocB map estimates.

Visually, the quality of the LocF estimate is higher than that of the LocB estimate.

Fig. 4.2 shows the NMSE as a function of the number of sensor measurements N . With

significant evidence, one may claim that the proposed LocF radio map estimation scheme

outperforms its LocB counterpart when N > 60 since the error bars in Fig. 4.2 span over

6 standard deviations of the NMSE across realizations.

4.1.2 Indoor

The simulations are carried out in a structure comprising several parallel vertical planes

modeling the walls of a building. Propagation adheres to the Motley-Keenan multi-wall

radio propagation model [65]. More details of the simulation setup can be found in Paper

B, Sec. B.5.

4.1.2.1 LocF vs. LocB

To avoid the need for synchronization between transmitters and sensors, the LocF algo-

rithm utilizes the features in Chapter 2, Sec. 2.3.1.2. Additionally, these features provide

robustness to multipath and evolve smoothly over space. Since the center of mass that

they obtain can be thought of as a lag, it is scaled by the sampling period T and speed

of light c to obtain the corresponding range difference, i.e.:

φn := Tc [CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,

CoM2,3,n, . . . ,CoML−1,L,n]>.
(4.1)

For localization, the iterative re-weighting squared range difference-least squares (IRWSRD-

LS) algorithm [66] is applied over TDoA features extracted from pilots.

Fig. 4.3 (left) depicts the true map generated through the multi-wall model, the middle

and right panels respectively show the LocB and LocF map estimates. It is observed that

the quality of the LocF estimate is considerably higher than that of the LocB estimate.

The cause for the poor performance of the LocB algorithm is that the location estimates

evolve in a non-smooth fashion across space and, then, attempting to learn the C2M from





Figure 4.4: Maps of the M = 10 LocF features with L = 5. The solid black lines represent

the walls of the building and the black stars represent the transmitter locations.

such non-smooth features is more challenging; see Figs. 1.2c and 1.2d and the discussion

in Sec. 1.3. To illustrate how the LocF approach alleviates this issue, Fig. 4.4 depicts the

features used by the LocF estimator across X . Specifically, if φ(x) denotes the feature

vector, obtained as in (4.1) for location x, then the m-th panel titled ϕm in Fig. 4.4

corresponds to the m-th entry of φ(x) for each x ∈ X . It is observed that the evolution

of these proposed features across space is significantly smoother than the one in Figs. 1.2c

and 1.2d.

A quantitative comparison is provided in Fig. 4.5, which shows the NMSE as a function

of the number of sensor locations N for L = 4 and 7 transmitters. It is observed that, with

high significance, the proposed LocF radio map estimation scheme outperforms its LocB

counterpart for both values of L when N > 150. This thesis also studies the impact of

multipath on the LocF and LocB radio map estimation approaches by varying the number

of walls. More details about this experiment can be found in Paper B, Sec. B.5.1.

4.1.2.2 Feature design

This section summarizes the empirical support in Paper B, Sec. B.5.2, for the consid-

erations in Sec. 2.3.2. After investigating the impact of the number of features, which

in the simulations of Sec. 4.1.2 was equal to M = L(L − 1)/2, it is observed in Paper

B, Sec. B.5.2, that the NMSE remains approximately the same for M ≥ 7 in a setup

with L = 5. Clearly, this effect motivates the feature dimensionality reduction techniques

proposed in Sec. 2.3.2. The first step to apply these techniques is to determine the num-

ber of reduced features to be used. It is found that r = 4 retains at least 99% of the

energy of the original features (for more details, please see Paper B, Sec. B.5.2). Thus,

in principle, a map can be learned using the reduced features φ̄n := U>4 φn ∈ R4 without

meaningfully sacrificing estimation performance. In the same section in Paper B, it is

observed that the reduced features inherit the spatial smoothness of the original features.

To quantify the impact of reducing the dimensionality of the feature vectors, Fig. 4.6

compares the NMSE of the LocF map estimate that relies on the original features (M =

10) with the one that relies on the reduced features (r = 2, 3, 4). As observed, using

just the 4 reduced features attains a similar performance to the estimator built on the 10





Figure 4.5: Performance comparison between the LocF and LocB radio maps estimation

curves.

original features.

4.1.2.3 LocF map estimation with missing features

This section assesses the performance of the approach devised in Sec. 2.3.3 to cope with

missing features.

A feature is deemed missing at a given sensor location if the received power of at least

one of the two associated pilot signals is below a sensitivity threshold Γ. The top panel of

Fig. 4.7 depicts the average number of missing features as a function of Γ. The average is

taken with respect to the sensor locations and noise. The bottom panel of Fig. 4.7 shows

the LocF map NMSE also as a function of Γ. The matrix completion problem in (2.7) is

solved with both singular value projection (SVP) and linear retraction-based geometric

conjugate gradient (LRGeomCG); the implementation for the latter is the one provided

in the ManOpt toolbox [67]. For higher values of N , the performance of both algorithms

is clearly strongly determined by the average number of missing features. SVP seems

to outperform LRGeomCG in terms of NMSE. Besides, the computation time of SVP is

roughly half the one of LRGeomCG.





Figure 4.6: Estimated map NMSE with reduced features for different r and without

reduced features; L = 5.

Figure 4.7: (top) Average number of missing features and (bottom) estimated map NMSE,

both as a function of Γ with L = 5.





4.2 Data-driven radio map estimation

This section summarizes the performance assessment of the proposed deep neural network

architecture in scenarios heavily impaired by shadowing.

The region of interest X is a square area of side 100 m, discretized into a grid with

Ny = Nx = 32. Two data sets are constructed as summarized next. First, T = 4 · 105

maps are generated where propagation adheres to the Gudmundson correlated shadowing

model [68]. A second data set of T = 1.25 · 105 maps is generated using Remcom’s

Wireless InSite ray tracing software. The network proposed in Chapter 3, Sec. 3.2.4, is

implemented in TensorFlow and trained using the ADAM solver [69]. More details of the

simulation setup can be found in Paper D, Sec. D.4. Quantitative evaluation compares

the root mean square error (RMSE), defined as

RMSE =

√
E{||Ψ− Ψ̂||2F}

NxNyNf

, (4.2)

where Ψ is the true map, Ψ̂ is the map estimate, and E{·} denotes expectation over maps,

noise, and sensor locations.

4.2.1 Power map estimation

To analyze the most fundamental radio map estimation aspects, F is set to the singleton

F = {1400 MHz} in this section.

The proposed algorithm is compared against a representative set of competitors, which

includes the kriging algorithm in [4], the multikernel algorithm in [21], the matrix com-

pletion via nuclear norm minimization in [1], and the k-nearest neighbors (KNN) algo-

rithm [42].

4.2.1.1 Gudmundson data set

The performance is assessed next using the training approach in Sec. 3.2.5.1 with {(Ψ̌t,Ψt)}Tt=1

given by the Gudmundson data set.

To analyze estimation of real maps when the proposed network is trained over synthetic

maps, the first experiment shows two map estimates when the true (test) map is drawn

from the Wireless Insite data set. Specifically, the first panel of Fig. 4.8 depicts the true

map, the second shows Ψ̃, and the remaining two panels show estimates using different

numbers of measurements. Observe that with just |Ω| = 52 measurements, the estimate

is already of a high quality. The second experiment here compares the RMSE of the

proposed method with that of the competing algorithms. From Fig. 4.9, the proposed

scheme performs approximately a 25 % better than the next competing alternative. Due

to the high RMSE of the matrix completion algorithm in [1] for the adopted range of |Ω|
in Fig. 4.9, its RMSE is shown in Fig. 4.10 along with that of the proposed algorithm for

larger values of |Ω|. The proposed method still outperforms this competitor by a wide

margin except when the number of measurements is very large, close to NyNx = 1024.
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Figure 4.8: Power map estimate with the proposed neural network. (left): true map,

(center left): sampled map portraying the locations of the measurements; (center right)

and (right): map estimates. White areas in the true and reconstructed maps represent

buildings.
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Figure 4.9: Comparison with state-of-the-art alternatives. Training and testing maps

drawn from the Gudmundson data set.
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Figure 4.10: Performance comparison of the proposed scheme with that of the matrix

completion algorithm in [1]. Training and testing maps drawn from the Gudmundson

data set. The number of grid points in X is NyNx = 1024.

4.2.1.2 Wireless Insite data set

To investigate how the proposed network would perform in real-world scenarios, training

uses the Wireless Insite data set in combination with the technique in Sec. 3.2.5.2, where

the sets Ω
(I)
t,q and Ω

(O)
t,q are drawn from Ωt uniformly at random without replacement with

|Ω(I)
t,q | = |Ω

(O)
t,q | = 1/2|Ωt|, q = 1, . . . , Qt, and Qt = 10 ∀t. Fig. 4.11 shows the RMSE as a

function of |Ω| for the proposed scheme and competing alternatives. By the performance





100 200 300 400
| |

5

10

15

RM
SE

 (d
B)

Proposed
Kriging
Multi-kernel
KNN

Figure 4.11: Comparison with state-of-the-art alternatives. The training and testing maps

were obtained from the Wireless InSite data set.
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Figure 4.12: Performance comparison of the proposed scheme with that of the matrix

completion algorithm in [1] where the training and testing maps were obtained from the

Wireless InSite data set, Qt = 10.

degradation of all four approaches relative to Fig. 4.9, it follows that estimating real maps

is more challenging than estimating maps in the Gudmundson data set. The performance

gap is increased, where the proposed approach now performs roughly 50 % better than

the next competing alternative. Again, the algorithm in [1] is not displayed for the same

reason as in Fig. 4.9. Its RMSE is shown in Fig. 4.12 along with that of the proposed

algorithm. The later still outperforms this competitor except when |Ω| is very large, close

to NyNx, as in Fig. 4.10.

To justify the main design decisions regarding the proposed network such as the choice

of an autoencoder structure, the type of the last layer of the encoder, the number of

layers, and the choice of the activation functions, four experiments have been carried

out. The findings of these experiments are reported in Paper D, Sec. D.4.2. Although

neural networks are mainly treated as black boxes, some visualization techniques offer

interpretability of the features that they extract and, therefore, shed light on the nature

of the information that is learned. To this end, the experiment in Paper D, Sec. D.4.3,

studies the decoder output when different latent vectors λ ∈ RNλ are fed at its input.

4.2.2 PSD map estimation

This section summarizes the empirical support in Paper D, Sec. D.4.4, for PSD recon-

struction. To this end, two types of signal basis functions are investigated: Gaussian

and raised-cosine functions. This summary presents the findings with the raised-cosine

functions. The simulation results with the Gaussian functions are provided in Paper
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Figure 4.13: Maps of the true and estimated coefficients {πb(x)}Bb=1 over X , B = 4.
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Figure 4.14: PSD reconstruction at a random location x ∈ X with a signal basis formed

by using raised-cosine functions.

D, Sec. D.4.4.1. Each sensor samples the received PSD at Nf = 32 uniformly spaced

frequency values in the band of interest. The performance of the proposed method is

compared with that of the non-negative Lasso radio map estimator in [2].

4.2.2.1 Gudmundson data set

The first part of this section summarizes the performance assessment of the proposed

scheme using the training approach in Sec. 3.2.5.1 when the training and testing maps

were obtained from the Gudmundson data set.

The top row of Fig. 4.13 portrays the maps of the true coefficients {πb(x)}4
b=1 over X ;

the second and last rows show their estimates with both schemes when |Ω| = 512. Visu-

ally, the proposed scheme produces better estimates. To demonstrate the reconstruction

quality of the proposed scheme, Fig. 4.14 shows the true and estimated PSDs at a random

location x ∈ X . As observed, the PSD estimate produced by the proposed scheme follows
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Figure 4.15: Performance comparison of the proposed scheme with that of the algorithm

in [2].
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Figure 4.16: Map estimate RMSE of the proposed scheme for PSD cartography. The

training and testing maps were obtained from the Wireless InSite data set, Qt = 5.

the true PSD more closely compared to the one produced by the competing algorithm.

A quantitative comparison is provided in Fig. 4.15, which shows the RMSE as a function

of the number of measurements |Ω|. As observed, the proposed method outperforms the

competing approach with significant margin for small |Ω|.

4.2.2.2 Wireless Insite data set

The second part of this section summarizes the performance evaluation of the proposed

scheme using the training approach in Sec. 3.2.5.2, where the sets Ω
(I)
t,q and Ω

(O)
t,q are

drawn from Ωt uniformly at random without replacement with |Ω(I)
t,q | = |Ω

(O)
t,q | = 1/2|Ωt|,

q = 1, . . . , Qt, and Qt = 5 ∀t. The training and testing maps were obtained from the

Wireless InSite data set.

Fig. 4.16 shows the RMSE of the proposed method as a function of the number of

measurements |Ω|. Because of the high RMSE of the competing approach [2], its perfor-

mance is not shown on the figure. As observed, the proposed scheme yields a low RMSE

in this realistic scenario which emulates training with real measurements.







Chapter 5

Conclusions and Future Work

This chapter summarizes the main contributions (Sec. 5.1) and puts forth a list of future

research directions (Sec. 5.2).

5.1 Summary of contributions

A considerable number of algorithms have been devised to construct power, PSD, and

channel-gain maps in the literature. Unfortunately, their ability to obtain accurate map

estimates is drastically impaired by small- and large-scale fading. In particular, one

of the limitations of all existing schemes is that they require accurate knowledge of the

sensor locations, which is not available in practice due to propagation phenomena affecting

localization pilot signals such as multipath. A second limitation is that existing approaches

rely on interpolation schemes incapable of learning how radio frequency signals propagate

and, therefore, they fare poorly in strong fading channels. This thesis circumvents these

limitations with the following contributions:

• Location-free (LocF) radio map estimation is proposed as an alternative to classical

location-based (LocB) schemes. The central idea is to learn a map as a function

of certain features of the localization pilot signals instead of location estimates.

Building upon this approach, a map estimator based on kernel ridge regression is

developed to estimate power maps from these features. Simulations corroborate the

merits of LocF radio map estimation relative to LocB alternatives.

• Features comprising the center of mass of the impulse response or sample cross-

correlation of the localization pilots are proposed. In addition to being robust to

multipath, the proposed features evolve smoothly over space and, therefore, are

preferable for LocF radio map estimation. Inspired by the structure of TDoA mea-

surements, this thesis develops a dimensionality reduction scheme to reduce the

number of features prior to learning in order to counteract the curse of dimension-

ality, thereby improving the estimation performance in the LocF approach. Due

to propagation effects, the signal-to-noise ratio of some of the received pilot signals

may be too low, which means that the features extracted from these pilots may be

unreliable or simply unavailable. This thesis also devises an approach to cope with

such missing features based on low-rank matrix completion techniques.
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• Data-driven radio map estimation is proposed to learn the spatial structure of prop-

agation phenomena such as shadowing (large-scale fading), reflection, and diffrac-

tion. Motivated by the observation that radio maps lie close to a low-dimensional

manifold embedded in a high-dimensional space, a deep completion network with

an encoder-decoder architecture is proposed to estimate PSD maps. The resulting

schemes significantly outperform state-of-the-art alternatives. Notably, this is the

first work to propose a deep learning approach for radio map estimation.

• By exploiting the usual parametric structure of wireless communication signals, this

thesis develops a methodology for PSD estimation with basis expansion models.

Furthermore, training approaches are designed for learning from a small number of

measurements.

5.2 Limitations and future work

A few limitations of the algorithms in this thesis are presented next along with possible

future research directions.

Concerning the LocF scheme:

• If the location estimates of the measurement sensors are accurate, then the LocB

radio map estimation scheme will perform well. In these cases, to attain the same

performance, the LocF counterpart may require a higher number of measurements.

This motivates hybrid LocB-LocF schemes.

• All the missing features need to be filled prior to learning. Instead of completing

them, one could devise schemes which first obtain local maps based on available

features and then find a global map from the locally estimated maps.

Regarding the data-driven approach:

• If the area of interest is densely discretized, the required size of the kernels of convo-

lutional layers of the neural network may be large, which can render the number of

training parameters correspondingly large. Therefore, a larger training size would

be required to attain a target accuracy. To address this limitation, alternative ar-

chitectures that do not involve discretizations may be pursued.

• As required in deep neural networks, the size of the training data set is typically

large. Collecting such a high number of data samples can be slow or expensive.

Furthermore, training neural networks from scratch can be time consuming. Al-

though we started to look into means to effectively acquire measurements in [13],

more sophisticated techniques are required.

Since the studied data-driven approach is location-based, meaning that input to the

neural network contains information about the locations of the measurements, a possibility

to extend the work in this thesis is to devise a data-driven location-free approach, which

combines the strengths of the two main contributions of this thesis. This approach can

possibly be developed within the framework of federated learning or collaborative learning,





where the training is executed in a decentralized fashion across multiple edge devices or

servers storing local data samples.
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Localization-Free Power Cartography

Yves Teganya, Luis Miguel Lopez-Ramos, Daniel Romero,
and Baltasar Beferull-Lozano

Abstract —Spectrum cartography constructs maps of metrics such as chan-

nel gain or received signal power across a geographic area of interest using

measurements of spatially distributed sensors. Applications of these maps in-

clude network planning, interference coordination, power control, localization,

and cognitive radio to name a few. Existing spectrum cartography methods

necessitate knowledge of sensor locations, but such locations cannot be ac-

curately determined from pilot positioning signals (such as those in LTE or

GPS) in indoor or dense urban scenarios due to multipath. To circumvent

this limitation, this paper proposes localization-free cartography, where spec-

tral maps are directly constructed from features of these positioning signals

rather than from location estimates. The proposed algorithm capitalizes on

the framework of kernel-based learning and offers improved prediction perfor-

mance relative to existing alternatives, as demonstrated by a simulation study

in a street canyon.

Keywords— Spectrum cartography, localization-free cartography, kernel-based learn-

ing, spectrum map.

A.1 Introduction

Spectrum cartography constructs maps of a certain channel metric, such as received sig-

nal power, interference power, or channel gain over the geographical area of interest [1–3].

Spectral maps are of utmost interest in wireless networks, especially for tasks such as

network planning, interference coordination, power control, and dynamic spectrum ac-

cess [4–6]. Further applications include source localization [2].

Existing approaches typically apply some spatial interpolation or regression technique

to measurements collected by spatially distributed sensors. Examples of these approaches

for mapping power over space include kriging [1, 7, 8], compressive sensing [3], matrix

completion [9], dictionary learning [10, 11], Bayesian models [12], and adaptive radial

basis functions [13]. Schemes to map power spectral density (PSD) have also been de-

vised by exploiting the sparsity of power distribution over space and frequency [2] and by

leveraging the frameworks of thin-plate spline regression [4, 14] and kernel-based learn-

ing [4]. Further schemes have been proposed to map alternative metrics such as channel

gain [15–17].

Since all the aforementioned schemes rely on the knowledge of the sensor locations,

they will be collectively referred to as localization-based cartography. In practice, lo-

cation is seldom known and therefore it must be estimated from features such as the

RSSI, the time (difference) of arrival, or the direction of arrival of positioning pilot sig-

nals transmitted by satellites (e.g. in GPS) or terrestrial base stations (e.g. in LTE or
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WiFi [18]). Unfortunately, accurate location estimates are often not available in prac-

tice due to propagation phenomena affecting those pilot signals such as multipath, which

limits the applicability of existing cartography techniques, especially in indoor and dense

urban scenarios.

The main contribution of this paper is to circumvent this limitation by proposing

localization-free cartography. The idea is that the localization step introduces significant

errors in the spectrum map estimation when the aforementioned features are not reliable.

Bypassing this step, the proposed approach obtains spectrum maps indexed directly by

(or as a function of) the features of the received pilots. As a byproduct of skipping

the localization step, the resulting cartography algorithm is also computationally less

expensive than its localization-based counterparts. For simplicity, this work focuses on

constructing power maps, but the proposed algorithm carries over to other metrics. Such

an algorithm is developed within the framework of kernel-based learning not only because

of the high simplicity, flexibility, and performance of kernel-based estimators, but also

because it has well-documented merits in spectrum cartography [4,14].

The rest of this paper is organized as follows: Sec. A.2 describes the problem and

reviews location-based cartography. Sec. A.3 presents the main contribution of the pa-

per, which is localization-free cartography. Simulations and conclusions are respectively

provided in Sec. A.4 and Sec. A.5.

A.2 Preliminaries

The goal is to determine the power p(x) of a certain channel, termed channel-to-map

(C2M), at every location x ∈ X of the geographical region X ⊂ R2 of interest. To this

end, N sensors are deployed across X at locations {xn}Nn=1 not necessarily known. The

n-th sensor acquires a measurement p̃n of the power p(xn) at its location xn.

In localization-based cartography, a fusion center is ideally given pairs {(xn, p̃n)}Nn=1,

which include the exact sensor locations {xn}Nn=1, and obtains a function estimate p̂(xq)

that provides the power of the C2M at any query location xq ∈ X . With this function,

a node at xq can determine the power of the C2M if it knows xq. In practice, however,

location is typically unknown and hence the n-th sensor must estimate xn by relying on

pilot signals {ym,n[k]}Mm=1, where ym,n[k] denotes the k-th sample of the m-th pilot signal

received by the n-th sensor. For convenience, form the M ×K matrix Yn whose (m, k)-th

entry is ym,n[k]. From Yn, the n-th sensor computes an estimate x̂n(Yn) of xn by means

of some localization algorithm; see Sec. A.4 for a specific example. The fusion center

then uses {(x̂n, p̃n)}Nn=1 to obtain an estimate p̂(x) of the function p(x). Therefore, if

the location estimates {x̂n}Nn=1 are noisy, so will be p̂(x). If a node at a query location

xq wishes to know the power of the C2M, it will use the pilot signals Yq to obtain an

estimate x̂q := x̂(Yq) of its location and will evaluate the map estimate as p̂(x̂q). Here,

Yq is a matrix whose (m, k)-th entry is given by the k-th sample of the m-th pilot signal

ym,q[k] at the query location xq. Thus, such an evaluation has two sources of error: first,

the location estimation error in x̂q and, second, the map estimation error in p̂(xq).

From a more general perspective, the function that is actually learned in this approach
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can be expressed as p(Y ) := p(x̂(Y )), where x̂(Y ) denotes the output of the chosen

localization algorithm when the pilot signals are given by Y . From this perspective,

the problem that is being solved is: given {(Yn, p̃n)}Nn=1, find an estimate p̂(Y ) of p(Y ).

Indeed, localization-based cartography seeks an estimate for the latter function within a

certain family of functions that can be expressed as p(Y ) = g(x̂(Y )) for some function

g : X → R. The next section investigates estimates with alternative forms, which will be

preferable whenever x̂(Y ) is not an accurate estimator of x.

Remark 1 One may argue that a node can determine the power of the C2M at its location

more efficiently by measuring it rather than by locating itself and evaluating a map. While

this may be the case for a single C2M, determining the power of many C2Ms, or other

channel parameters such as the impulse response, may incur a higher cost. In these cases,

the benefits of spectrum cartography would be more significant.

A.3 Localization-free Cartography

This section proposes localization-free cartography, which bypasses the localization step

involved in all existing cartography approaches. To this end, the localization-free cartog-

raphy problem is formulated as a function estimation task in Sec. A.3.1 and solved via

kernel-based learning in Sec. A.3.2.

A.3.1 Map Estimate as a Function Composition

From an abstract perspective, spectrum cartography amounts to learning a function p :

CM×K → R that provides the power p(Y ) of the C2M at a location in X where the

pilot signals Y are received. The direct approach to spectrum cartography would be

to learn such a function directly from data {(Yn, p̃n)}Nn=1. Since learning a multivariate

function up to a reasonable accuracy generally requires the number of data points to

be several times larger than the number of input variables, the direct approach would

need N to be significantly larger than MK, which is prohibitively large since MK is

typically in the order of hundreds or thousands. For this reason, existing (localization-

based) cartography schemes do not follow such a direct approach. Instead, they avoid

its complexity by confining the search for estimates of p(Y ) to those functions that can

be expressed as the composition of a fixed function x̂ : CM×K → X ⊂ R2, where x̂(Y )

corresponds to the output of a localization algorithm when the pilot signals are Y , and a

map function g : X ⊂ R2 → R that needs to be determined; (cf. Sec. A.2). Clearly, finding

g requires a significantly smaller N than learning the general function p : CM×K → R
since g has only two scalar inputs. When x̂(Y ) is a reasonable estimate of the location x

at which Y has been observed, such a localization-based approach works well. However,

due to propagation effects impacting the pilot signals in Y , x̂(Y ) may be very different

from x and it is easy to see that this drastically hinders the estimation of g. From this

observation, it can be concluded that the two scalar outputs of x̂(Y ) fail to capture the

relevant information in Y : more outputs are needed. In summary, neither the above

direct approach, which estimates a function with MK inputs, nor the localization-based
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approach, which estimates a function of 2 inputs, are appropriate in presence of multipath

effects, as is the case in indoors or urban scenarios.

To tackle this difficulty, the proposed approach is to estimate a function whose number

of inputs is larger than 2 and smaller than MK. To answer the question on which

inputs should be used, it is worth delving further into why the above localization-based

approach fails. Localization algorithms typically proceed in two steps: first, they extract

some features from Y , and then they feed these features to an algorithm L that exploits

a spatial model to determine the location. Those features comprise e.g. estimates of

distance, time (difference) of arrival, or angle of arrival. If φ(Y ) ∈ D ⊂ RM denotes the

vector stacking these M features and l(φ) denotes the output of algorithm L, it follows

that x̂(Y ) = l(φ(Y )). The root of the problem is therefore that the model assumed by

L is inaccurate: it typically assumes free space propagation, which would imply a certain

consistency between the features in φ(Y ) that does not hold in presence of multipath.

Combining these observations, a sensible approach is to (i) preserve the dimensionality

reduction capability of φ (from MK to M); and (ii) avoid the error introduced by l(φ).

Thus, one can seek localization-free function estimates of the form p̂LF(Y ) = f(φ(Y )) for

some f : D ⊂ RM → R. In this localization-free setup, φ(Y ) comprises M features of the

pilot signals, but they need not be those used by the localization algorithms (e.g. time

(difference) or angle of arrival). In short, whereas localization-based cartography learns a

function of the spatial location estimated from features of the pilot signals, the proposed

localization-free approach directly learns a function of such features.

A.3.2 Kernel-based Power Map Learning

This section provides a kernel-based learning algorithm to learn the function f introduced

in Sec. A.3.1. Given pairs {(φn, p̃n)}Nn=1, where φn := φ(Yn), the regression problem is

informally to find f such that f(φ(Y )) ≈ p(Y ) for all Y . To address this problem,

one must specify in which family of functions such an f must be found. In kernel-based

learning, one seeks f in a set known as a reproducing-kernel Hilbert space (RKHS) and

given by

F :=

{
f : f(φ) =

∞∑
i=1

αiκ(φ, φ̄i), φ̄i ∈ D, αi ∈ R

}
,

where κ : D×D → R is a symmetric and positive definite function known as reproducing

kernel [19]. A common choice is the so-called Gaussian radial basis function κ(φ,φ′) :=

exp [−‖φ− φ′‖2/(2σ2)], where σ is a parameter selected by the user. Like any Hilbert

space, F has an associated inner product and norm. For an RKHS function f(φ) =∑∞
i=1 αiκ(φ, φ̄i), the latter is given by

‖f‖2
F :=

∞∑
i=1

∞∑
j=1

αiαjκ(φ̄i, φ̄j). (A.1)

Kernel-based learning typically solves a problem of the form

f̂ = arg min
f∈F

1

N

N∑
n=1

L (p̃n,φn, f(φn)) + Ω(‖f‖F), (A.2)
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where L is a loss function quantifying the deviation between the observations {p̃n}Nn=1

and the predictions {f(φn)}Nn=1 returned by a candidate f ; and Ω is an increasing

function. The first term in (A.2) promotes function estimates that fit well the data

whereas the second term promotes “smooth” estimates; where the notion of smoothness is

determined by the RKHS norm ‖·‖F . Typical choices are L (p̃n,φn, f(φn)) = (p̃n−f(φn))2

and Ω(‖f‖F) = λ ‖f‖2
F , where λ > 0 is termed regularization parameter and balances

smoothness and goodness of fit. For this choice, f̂ is termed kernel ridge regression

estimate [20], and is the one pursued here for simplicity. The goal is therefore to solve

(A.2). However, since F is infinite dimensional in general, (A.2) cannot be directly solved.

Fortunately, one can invoke the representer theorem [19], which states that the solution

to (A.2) is of the form

f̂(φ) =
N∑
n=1

αnκ(φ,φn). (A.3)

for some {αn}Nn=1. Although the representer theorem does not provide the coefficients

{αn}Nn=1, they can be obtained by substituting (A.3) into (A.2) and solving the result-

ing problem with respect to these coefficients. Applying this procedure for kernel ridge

regression results in the problem

α̂ = arg min
α

1

N
‖p̃−Kα‖2 + λα>Kα, (A.4)

where α := [α1, ..., αN ]>, p̃ := [p̃1, ..., p̃N ]>, and K is an N ×N matrix whose (n, n′)-th

entry is κ(φn,φn′). Problem (A.4) can be solved in closed form as

α̂ = (K + λNIN)−1 p̃. (A.5)

The estimate f̂ solving (A.2) for kernel ridge regression can be recovered by substituting

(A.5) into (A.3). To obtain the predicted power of the C2M at a query location xq where

the pilot signals are given by Yq, one just evaluates p̂LF(Yq) = f̂(φ(Yq)).

A.4 Numerical tests

This section evaluates the performance of localization-free cartography in a scenario with

multipath. The latter is a urban canyon or street canyon, which comprises two parallel

vertical planes modeling the walls (or buildings) at each side of the street and a hori-

zontal plane modeling the ground. Propagation is characterized by the so called six-ray

model [21], which accounts for the direct path, the ground reflection, 2 first-order wall

reflections, and 2 wall-to-wall second-order reflections. The sensors are spread uniformly

at random over the street, which is 250 m long and 30 m wide.

For simplicity, the pilot signals are impulses centered at time 0 filtered to the pilot

channel with bandwidth 5 MHz and carrier frequency 800 MHz, which implies that Yn
comprises the impulse responses of the bandlimited channels between the M transmitters

of pilot signals and the n-th sensor. For simplicity and robustness to timing errors, the
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Figure A.1: (a) True map, (b) localization-free, and (c) localization-based estimated maps

(λ = 3× 10−3, N = 160).

features used by the proposed localization-free algorithm equal the center of mass of the

corresponding impulse responses, that is,

[φn]m :=

∑K
k=1 tk|ym,n[k]|2∑K
k=1 |ym,n[k]|2

,

where tk is the time of the k-th sample.

The proposed algorithm, which uses Gaussian radial basis functions with σ = 30

m, is compared with its localization-based counterpart, which is a special case of the

estimators in [2, 4, 22] for estimating power maps. We use Gaussian RBFs because they

are universal kernels [23], i.e., able to approximate arbitrary functions. For localization,

the square-range-based least squares (SR-LS) algorithm [24] is applied to the time-of-

arrival measurements obtained from the pilots {Yn}Nn=1. Function g (cf. Sec. A.2) is

obtained by applying a similar procedure as in the proposed localization-free algorithm:

Given {(x̂n, p̃n)}Nn=1, the estimate of g is given by g(x̂q) = κ′>(x̂q)β̂ where κ′(x̂q) :=
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[κ′(x̂q, x̂1), ..., κ′(x̂q, x̂N)]>, β̂ = (K′ + λNIN)−1p̃, and K ′ is an N × N matrix with

(n, n′)-th entry κ′(x̂n, x̂n′) and κ is a Gaussian radial basis function with σ = 35 m.

Quantitative evaluation will compare the normalized mean square error (NMSE) de-

fined as

NMSE =
E{|p(x)− p̂(Y (x) + Υ, T )|2}

E{|p(x)− p̄|2}
,

where Y (x) comprises the received pilot signals at location x, Υ represents noise, p̄ is the

spatial average of p(x), and T is the training set, defined as T := {(Yn+Υn, p̃n+ εn)}Nn=1

with Υn and εn representing noise. Specifically, {εn}Nn=1 are independent log-normal

random variables with zero-mean and standard deviation 0.5 dB (p̃n is measured in dBW).

Furthermore E{·} denotes expectation over a random location x uniformly distributed

across X , the locations of the sensors, and noise.

The true map generated through the canyon model is depicted to the left of Fig.

A.1. The middle and right panels respectively show the localization-free and localization-

based map estimates, which are obtained by placing a query sensor at each location. Black

crosses indicate the positions of the N sensors used to estimate the map. As expected, the

estimation is better in areas with more sensors. Visually, the quality of the localization-

free estimate is higher than that of the localization-based estimate due to multipath.

Fig. A.2a shows the NMSE as a function of N for different numbers M of pilot sig-

nals. Each point is obtained by averaging 200 independent Monte Carlo iterations. As

anticipated, performance improves with N . Furthermore, for fixed N , the NMSE is non-

increasing with M , yet M = 2 and 3 yield roughly the same NMSE because of the

geometry of the simulation setup.

Fig. A.2b shows the NMSE as a function of the number of sensors N used to estimate

pLF and pLB. With significant evidence, one may claim that the proposed localization-free

cartography scheme outperforms its localization-based counterpart when N > 60 since

the error bars in Fig. A.2 span over 6 standard deviations of the NMSE across realizations.

The reason for a poorer performance of the localization-based scheme is that multipath

propagation can mislead the localization algorithm, inducing errors in location estimation

that increase deviations in the map estimation as well.

A.5 Conclusions

Localization-free cartography has been proposed as an alternative to classic localization-

based schemes, which do not operate properly when multipath impairs the propagation of

localization pilot signals. Kernel-ridge regression was applied to estimate power maps from

features of those pilot signals collected by a number of sensors. Simulations corroborate

the merits of localization-free cartography relative to localization-based methods. Future

research will include an extensive simulation study in indoor environments and develop

distributed and online extensions.



REFERENCES 56

20 40 60 80 100 120 140 160

Number of sensors, N

0.6

0.8

1

1.2

1.4

N
M

S
E

M=1

M=2

M=3

(a)

20 40 60 80 100 120 140 160

Number of sensors, N

0.6

0.8

1

1.2

N
M

S
E

LocFree

LocBased

(b)

Figure A.2: (a) Estimated map NMSE for different values of number of features, M and

sensors, N ; and (b) Performance comparison between the localization-free cartography

and the localization-based cartography (λ = 3× 10−3,σ = 30 m).
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Location-Free Spectrum

Cartography

Yves Teganya, Daniel Romero, Luis Miguel Lopez-Ramos,
and Baltasar Beferull-Lozano

Abstract —Spectrum cartography constructs maps of metrics such as channel

gain or received signal power across a geographic area of interest using spa-

tially distributed sensor measurements. Applications of these maps include

network planning, interference coordination, power control, localization, and

cognitive radios to name a few. Since existing spectrum cartography tech-

niques require accurate estimates of the sensor locations, their performance

is drastically impaired by multipath affecting the positioning pilot signals, as

occurs in indoor or dense urban scenarios. To overcome such a limitation,

this paper introduces a novel paradigm for spectrum cartography, where esti-

mation of spectral maps relies on features of these positioning signals rather

than on location estimates. Specific learning algorithms are built upon this

approach and offer a markedly improved estimation performance than existing

approaches relying on localization, as demonstrated by simulation studies in

indoor scenarios.

Keywords—Spectrum cartography, location-free cartography, kernel-based learning,

spectrum map.

B.1 Introduction

Spectrum cartography constructs maps of a certain channel metric, such as received sig-

nal power, power spectral density (PSD), or channel gain over a geographical area of

interest by relying on measurements collected by radio frequency (RF) sensors [1–3]. The

obtained maps are of utmost interest in a number of tasks in wireless communication

networks, such as network planning, interference coordination, power control, and dy-

namic spectrum access [4–6]. For instance, power maps can be useful in network planning

since the former indicate areas of weak coverage, thus suggesting locations where new

base stations must be deployed. Since PSD maps characterize the distribution of the RF

signal power per channel over space, they can play a major role in increasing frequency

reuse to mitigate interference. These maps may also be of interest to speed up hand-off

in cellular networks since they enable mobile users to determine the power of all channels

at a given location without having to spend time measuring it. Additional use cases may

include cognitive radios, where secondary users aim at exploiting underutilized spectrum

resources in the space-frequency-time domain, or source localization, where the locations

of certain transmitters may be estimated by inspecting a map [2].

Manuscript received December 14, 2018; revised May 1, 2019; accepted May 22, 2019.
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Existing methods for mapping RF power apply spatial interpolation or regression

techniques to power measurements collected by spatially distributed sensors. Some of

these methods include kriging [1, 7, 8], orthogonal matchning pursuit [3], matrix com-

pletion [9], dictionary learning [10, 11], sparse Bayesian learning [12], or kernel-based

learning [13, 14]. Since these works can only map power distribution across space but

not across frequency, different schemes have been devised to construct PSD maps, for

instance by exploiting the sparsity of power distributions over space and frequency with a

basis expansion model [2,15] or by leveraging the framework of kernel-based learning [4].

Rather than mapping power, other families of methods construct channel-gain maps us-

ing Kriged Kalman filtering [16], non-parametric regression in reproducing kernel Hilbert

spaces (RKHSs) [17], low rank and sparsity [18], or hidden Markov random fields [19].

All the aforementioned schemes require accurate knowledge of the sensor locations.

For this reason, they will be collectively referred to as location-based (LocB) cartography.

However, location is seldom known in practice and therefore must be estimated from fea-

tures such as the received signal strength, the time (difference) of arrival (T(D)oA), or

the direction of arrival (DoA) of positioning pilot signals transmitted by satellites (e.g.

in GPS) or terrestrial base stations (e.g. in LTE or WiFi [20]) [21, 22]. Unfortunately,

accurate location estimates are often not available in practice due to propagation phe-

nomena affecting those pilot signals such as multipath, which limits the applicability of

existing cartography techniques, especially in indoor and dense urban scenarios. To see

the intuition behind this observation, Figs. B.1a and B.1b respectively show the x and

y coordinates of the location estimates obtained by applying a state-of-the-art localiza-

tion algorithm to TDoA measurements of 5 pilot signals received in free space (details of

the specific simulation setting can be found in Sec. B.5). On the other hand, Figs. B.1c

and B.1d depict the same estimates but in an indoor propagation scenario. As observed,

the estimates in the second case are neither accurate nor smooth across space, which

precludes any reasonable estimate of a spectrum map based on them.

To counteract this difficulty, there are three main types of indoor positioning sys-

tems [23]: (i) Those based on ultra-wideband (UWB) [24–26], which require a dedicated

infrastructure and relatively high costs, e.g. synchronized anchor nodes in the area where

the map has to be constructed. Therefore, localization cannot be carried out in an area

where such hardware is not present. (ii) Other indoor positioning systems are based on

fingerprinting [23, 27, 28], which involves a manual collection and storage of a dataset.

This dataset may comprise the measured power of multiple beacons at a set of known

locations. Note that this process is time consuming and typically expensive because a

human or robot should physically go through several known locations to take measure-

ments. Furthermore, if there are significant changes in the propagation environment,

these methods would require the acquisition of a new dataset. (iii) There exist other

indoor positioning systems that combine UWB or fingerprinting with ultrasound [29] or

RFID [30]. Thus, they inherit the limitations of (i) and (ii) and require furthermore

special sensors and/or line-of-sight propagation conditions. To sum up, all existing car-

tography schemes require accurate location information, which is not available in dense

multipath and indoor scenarios when there are no special localization infrastructure or

fingerprinting datasets.
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The main contribution of this paper is to address this limitation by proposing the

framework of location-free (LocF) cartography. The key observation is that inaccurate

location estimates introduce significant errors in spectrum map estimation. To bypass

this limitation, the proposed approach obtains spectrum maps indexed directly by (or as

a function of) features of the received pilot signals. Although many algorithms can be

devised within this framework, the present paper develops an algorithm based on kernel-

based learning for the sake of exposition. This is not only because of the simplicity,

flexibility, and good performance of kernel-based estimators, but also because they have

well-documented merits in spectrum cartography [4,15]. Similarly, the discussion focuses

on constructing power maps, but the proposed paradigm carries over to other metrics

such as PSD. Remarkably, as a byproduct of skipping the localization step, the resulting

cartography algorithm is typically computationally less expensive than its LocB counter-

parts and does not require additional localization infrastructure or the costly creation of

fingerprinting datasets. The second main contribution is a design of pilot signal features

tailored to multipath environments. The third contribution is a special technique to ac-

commodate scenarios where a sensor can only extract a subset of those features due to

low signal-to-noise ratio (SNR). Finally, the proposed LocF cartography scheme is studied

through Monte Carlo simulations in realistic propagation environments. As expected, the

proposed scheme outperforms LocB cartography in multipath scenarios, but traditional

LocB approaches are still preferable when accurate location estimates are available.

The rest of this paper is structured as follows: Sec. B.2 describes the system model,

states the problem, and reviews LocB cartography. Sec. B.3 introduces LocF cartography

along with the proposed map estimation algorithm, whereas Sec. B.4 deals with feature

design. Numerical tests are presented in Sec. B.5, and conclusions in Sec. B.6.

Notation: Scalars are denoted by lowercase letters. Bold uppercase (lowercase) letters

denote matrices (column vectors), IN is the N × N identity matrix and 1 is the vector

of all ones of appropriate dimension. The symbol  :=
√
−1 is the imaginary unit, (·)∗

stands for the complex conjugate, while ∗ denotes convolution. Furthermore, operators

(·)> and || · ||F represent transposition and the Frobenius norm, respectively.

B.2 Problem Formulation and LocB Cartography

This section formulates the general spectrum cartography problem and reviews the basics

of LocB cartography.

The goal is to determine the power p(x) of a certain channel, termed channel-to-

map (C2M), at every location x ∈ X of a geographical region of interest X ⊂ Rd, with

d = 2 or 3. For example, this C2M can be an uplink or downlink channel of a cellular

network as well as a radio or TV broadcasting channel. To this end, a collection of

sensors gather N measurements at locations {xn}Nn=1 ⊂ X not necessarily known. The

noisy measurement of the power p(xn) at location xn will be represented as p̃n. Since

the sensors collect measurements at multiple locations in X , the number of measurements

may be significantly greater than the number of sensors.
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(a) (b)

(c) (d)

Figure B.1: Estimation of spatial coordinates using TDoA: (a)-(b) in free space, (c)-(d)

indoor where the solid black lines represent the walls of the building; the black dots

represent the locations of the anchor base stations. The color of each pixel represents

the value of the estimated location coordinate at each point in the 150 × 150 grid area.

Because location estimates in (a)-(b) coincide with the true locations, they can act as

colorbars to the estimates in (c)-(d).

In LocB cartography [1–4, 8–12, 14, 15, 17–19], a fusion center is ideally given pairs

{(xn, p̃n)}Nn=1, which include the exact sensor locations {xn}Nn=1, and obtains a function

estimate p̂(x) that provides the power of the C2M at any query location x ∈ X . With

this function, a node at location x can determine the power of the C2M if it knows

x. In practice, however, location is typically unknown and hence the sensor at the n-th

measurement point must estimate xn by relying on pilot signals {yl,n[k]}Ll=1, where yl,n[k]

denotes the k-th sample of the pilot signal transmitted by the l-th base station1 and

received at the n-th measurement point. For convenience, form the L×K matrix Y n whose

(l, k)-th entry is yl,n[k]. Note that these pilot signals are generally transmitted through

a separate channel, not necessarily the C2M. However, both channels may coincide, as it

occurs in certain cellular communication standards.

1Although the discussion assumes for simplicity that the pilot signals are transmitted by terrestrial

base stations, the proposed scheme can also be applied when these pilot signals are transmitted by

satellites.
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From Y n, the sensor at the n-th measurement point obtains the estimate x̂n :=

x̂(Y n) of xn by means of some localization algorithm [21, 22]. A fusion center then uses

{(x̂n, p̃n)}Nn=1 to obtain an estimate p̂(x) of the function p(x). Therefore, if the location

estimates {x̂n}Nn=1 are noisy, so will be p̂(x). If a node at an unknown query location

wishes to determine the power of the C2M, it will use the pilot signals Y to obtain an

estimate x̂ := x̂(Y ) of its location and will evaluate the map estimate as p̂(x̂). In this

case, Y is a matrix whose (l, k)-th entry is given by the k-th sample of the l-th pilot signal

yl[k] at the query location. Thus, such an estimation has two sources of error: first, the

location estimation error in x̂ and, second, the map estimation error in p̂(x).

Remark 2 One may argue that a node can determine the power of the C2M at its loca-

tion more efficiently by measuring it rather than by receiving the pilot signals, applying

a localization algorithm, and evaluating the map. Whereas this may be the case for a

single C2M, if the aim is to determine the PSD, the power of many C2Ms, or the im-

pulse response, then the associated measurement time may be prohibitive, which favors the

adoption of spectrum cartography approaches.

B.3 Location-Free Cartography

This section proposes LocF cartography, which bypasses the localization step involved

in all existing cartography approaches. To this end, the LocF cartography problem is

formulated as a function estimation task in Sec. B.3.1 and solved via kernel-based learning

in Sec. B.3.2.

B.3.1 Map Estimate as a Function Composition

As detailed in the previous section, existing spectrum cartography techniques are heavily

impaired by localization errors since the maps they construct are functions of noisy loca-

tion estimates. The main idea of the proposed framework is to bypass such a dependence.

To this end, it is worth interpreting LocB cartography from a more abstract perspec-

tive. As detailed in Sec. B.2, the LocB map estimate is of the form p̂(x̂) with x̂ := x̂(Y )

denoting the output of the selected localization algorithm when the pilot signals are given

by Y ∈ Y . Thus, this estimate can be seen as a function of Y , i.e. p̂Y (Y ) := p̂(x̂(Y )),

which can be expressed schematically as:

Y
x̂

−−−→ X
p̂

−−−→ R
Y −−−→ x̂(Y ) −−−→ p̂(x̂(Y )).

(B.1)

As mentioned in Sec. B.2, existing (LocB) cartography approaches obtain an estimate

p̂ of p using the data {(x̂(Y n), p̃n)}Nn=1 for instance by searching for a function in an

RKHS [4, 13, 14]. When x̂(Y ) is a reasonable estimate of the location x at which Y

has been observed, such a LocB approach works well. However, due to multipath prop-

agation effects impacting the pilot signals in Y , x̂(Y ) may be very different from x,

which drastically hinders the estimation of p. Thus, in those cases where the location
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(a) (b)

Figure B.2: Multi-lateration using ToA measurements with circles as possible sensor

locations: (a) consistent ToA with the sought sensor location being the intersection of the

circles (black square) and (b) inconsistent ToA measurements. The red stars represent

the locations of the anchor base stations.

estimates {x̂(Y n)}Nn=1 are noisy, the resulting estimate p̂, and consequently p̂Y , will be

correspondingly noisy.

Since the source of such an error is the dependency of p̂Y (Y ) = p̂(x̂(Y )) on the esti-

mated location x̂(Y ), one could think of bypassing this dependence by directly estimating

p̂Y as a general function of Y :

Y
p̂Y
−−−→ R

Y −−−→ p̂Y (Y ).
(B.2)

When pursuing an estimate of this general form, p̂Y (Y ) would not be confined to depend

on Y only through the estimated location. However, finding such an estimate given

{(Y n, p̃n)}Nn=1 by searching over a generic class of functions such as an RKHS would be

extremely challenging due the so-called curse of dimensionality [31, 32]. To intuitively

understand this phenomenon, note that the number of input variables of function p̂Y (Y )

is LK, typically in the order of hundreds or thousands. Since learning a multivariate

function up to a reasonable accuracy generally requires that the number of data points

be several orders of magnitude larger than the number of input variables, this approach

would need N to be significantly larger than LK, and therefore prohibitively large.

To summarize, the structure imposed by (B.2) is too generic, whereas the one imposed

by (B.1) is too restrictive. To attain a sweet spot in this trade-off, it is worth decomposing

x̂(Y ) as detailed next. Recall that x̂(Y ) is the result of applying a localization algorithm

to the pilot signals Y . For most existing algorithms, x̂(Y ) can be thought of as the

composition of two functions: a function φ : Y → F ⊂ RM that obtains M features from

Y , such as T(D)oA or DoA, and a function l̂ : F → X , that provides a location estimate
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l̂(φ) given a feature vector φ ∈ F . In this case, p̂Y (Y ) can be decomposed as:

Y
φ

−→ F
l̂

−→ X
p̂

−→ R

Y −→ φ(Y ) −→ l̂(φ(Y )) −→ p̂(̂l(φ(Y ))).
(B.3)

Observe that the reason why the location estimate x̂(Y ) = l̂(φ(Y )) is inaccurate in

multipath environments is because the algorithm that evaluates l̂ adopts a model where

there is a certain “agreement” among features φ(Y ). To see this, consider Fig. B.2,

which illustrates the task of estimating the location of a sensor in an area with L = 3

base stations. The features in φ ∈ RM , with M = L = 3, used in this example are

noiseless ToA features. For each pilot signal, there is a circle centered at the base station

and whose radius equals c times the ToA, where c is the speed of light. Thus, when

there is no multipath, the ToA features are accurate and the sensor to be located must

lie in the intersection of the three circles, as shown in Fig. B.2a. Thus, the localization

algorithm (embodied in l̂) just needs to return the location at which these circles intersect.

However, in multipath environments, the ToA features obtained from Y do not generally

equal the time it takes for an electromagnetic wave to propagate from the corresponding

base station to the sensor. As a result, the aforementioned circles will not generally

intersect; see Fig. B.2b. In other words, the expected agreement among features is absent

and, hence, the localization algorithm will return an inaccurate estimate of the position.

In view of these arguments, the key idea in this paper is to pursue estimates p̂Y (Y )

of the form:

Y
φ

−−−→ F
d̂

−−−→ R

Y −−−→ φ(Y ) −−−→ d̂(φ(Y )).
(B.4)

In this setting, the problem is find an estimate d̂(φ) given {(φn, p̃n)}Nn=1, where φn :=

φ(Y n). By following this approach, the estimated map p̂(Y ) = d̂(φ(Y )) does not involve

a high number of inputs as in (B.2) and does not depend on the location estimate as

in (B.1). For the latter reason, this approach will be referred to as LocF cartography.

Since this approach does not need the agreement among entries of φ(Y ) illustrated in

Fig. B.2b, it is expected to outperform traditional spectrum cartography methods when

such an agreement is not present, as occurs in multipath environments.

B.3.2 Kernel-based Power Map Learning

This section applies kernel-based learning to provide an algorithm capable of learning the

function d̂ introduced in Sec. B.3.1.

Given pairs {(φn, p̃n)}Nn=1, where φn := φ(Y n), the problem can be informally stated

as finding a function d̂ that satisfies two conditions: CO1) d̂ fits the data, that is,

d̂(φn) ≈ p̃n, n = 1, . . . , N ; and CO2) d̂ generalizes well to unseen data, i.e., if a new pair

(φN+1, p̃N+1) is received, then d̂(φN+1) ≈ p̃N+1. A popular approach to solve the afore-

mentioned function learning problem is kernel-based learning, mainly due to its simplicity,

universality, and good performance [33]. Furthermore, multiple works have demonstrated

the merits of this framework for spectrum cartography; see Sec. B.1.
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The first step when attempting to learn a function is to specify in which family of

functions d̂ must be sought. In kernel-based learning, one seeks d̂ in a set known as a

reproducing-kernel Hilbert space (RKHS), which is given by:

H :=

{
d : d(φ) =

∞∑
i=1

αiκ(φ,φ′i), φ
′
i ∈ F , αi ∈ R

}
, (B.5)

where κ : F ×F → R is a symmetric and positive definite function known as reproducing

kernel [34]. Although kernel methods can use any reproducing kernel, a common choice

is the so-called Gaussian radial basis function κ(φ,φ′) := exp [−‖φ− φ′‖2/(2σ2)], where

σ > 0 is a parameter selected by the user. As any Hilbert space, H has an associated

inner product and norm. For an RKHS function d(φ) =
∑∞

i=1 αiκ(φ,φ′i), the latter is
given by:

‖d‖2
H :=

∞∑
i=1

∞∑
j=1

αiαjκ(φ′i,φ
′
j). (B.6)

Kernel-based learning typically solves a problem of the form:

d̂ = arg min
d∈H

1

N

N∑
n=1

L (p̃n,φn, d(φn)) + ω (‖d‖H) , (B.7)

where L is a loss function quantifying the deviation between the observations {p̃n}Nn=1 and

the predictions {d(φn)}Nn=1 returned by a candidate d; and ω is an increasing function.

The first term in (B.7) promotes function estimates satisfying CO1. The second term

promotes estimates satisfying CO2 by limiting overfitting. Intuitively, ‖ · ‖H captures a

certain form of smoothness that limits the variability of d.

Although there exist different candidate functions for L and ω in kernel-base learning,

typical choices are L(p̃n,φn, d(φn)) = (p̃n − d(φn))2 and ω(‖d‖H) = λ‖d‖2
H, where λ > 0

is a regularization parameter that balances smoothness and goodness of fit. For this

choice, d̂ is termed kernel ridge regression estimate [33, Ch. 4], and is the one used in

our experiments for simplicity. The goal is therefore to solve (B.7). However, since H
is generally infinite dimensional, (B.7) cannot be directly solved. Fortunately, one can

invoke the representer theorem [34], which states that the solution to (B.7) is of the form:

d̂(φ) =
N∑
n=1

αnκ(φ,φn), (B.8)

for some {αn}Nn=1. Although the representer theorem does not provide {αn}Nn=1, these

coefficients can be obtained by substituting (B.8) into (B.7) and solving the resulting

problem with respect to them. Applying this procedure for kernel ridge regression results

in the problem:

α̂ = arg min
α

1

N
‖p̃−Kα‖2 + λα>Kα, (B.9)

where α := [α1, ..., αN ]>, p̃ := [p̃1, ..., p̃N ]>, and K is a positive-definite N ×N matrix

whose (n, n′)-th entry is κ(φn,φn′). Problem (B.9) can be readily solved in closed-form
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as α̂ = (K + λNIN)−1 p̃. The estimate d̂ solving (B.7) for kernel ridge regression can

be recovered by substituting the resulting {αn}Nn=1 into (B.8). To obtain the predicted

power of the C2M at a query location x where the pilot signals are given by Y , one just

evaluates the LocF estimate p̂Y (Y ) = d̂(φ(Y )).

B.4 Location-Free Features

As described in Sec. B.3.1, LocB cartography algorithms learn a function of the location

estimate. In the machine learning terminology, the features are the spatial coordinates of

the sensor locations. On the other hand, the features used by LocF cartography are the

entries of φ(·). In principle, φ(Y ) could be set to contain the same features as the ones

used by l̂(·); see Sec. B.3. However, it is generally preferable to use features specifically

tailored to LocF cartography. This section accomplishes the design of these features in

several steps.

B.4.1 Feature Extraction

In Sec.B.3.1, φ(Y ) comprised M features used by typical localization algorithms, e.g.

T(D)oA or DoA. The key observation is that, although these features are appropriate

for localization, a different set of features may be preferable for LocF cartography. To

come up with a natural feature design, this section first reviews the features used by typ-

ical localization algorithms (hence for LocB cartography) and analyzes their limitations.

Inspired by this analysis, a novel feature extraction approach is proposed. To simplify

the exposition, the scenario where sensors are synchronized with the base stations is pre-

sented first. A more practical setup, where this synchronization is not required, will be

considered next.

B.4.1.1 Sensors are Synchronized with Base Stations

The received pilot signal is generally modeled as:

yl,n[k] := al[k] ∗ hl,n[k] + wl,n[k], (B.10)

where al[k] is the k-th sample of the l-th transmitted pilot signal, hl,n[k] is the discrete-

time channel impulse response between the l-th base station and the sensor at the n-

th location, and wl,n[k] is the noise term. The discrete-time impulse response hl,n[k] is

obtained next from its analog counterpart hl,n(t), which follows the conventional multipath

channel model with Pl,n components:

hl,n(t) =

Pl,n∑
p=1

α
(p)
l,nδ

(
t− t(p)l,n

)
, (B.11)

where δ(·) is the Dirac delta distribution and α
(p)
l,n ∈ R and t

(p)
l,n are respectively the

amplitude and delay of the p-th path. After up-conversion to the carrier frequency fc,

the pilot signal of the l-th base station is transmitted and received by the sensor at the
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(a) (b)

Figure B.3: Extraction of ToA from digital impulse response measured at two points that

are spatially close. In (a), the ToA estimate is proportional to k2; whereas in (b), the

ToA estimate is proportional to k1.

n-th measurement point, which bandpass-filters with bandwidth B, down-converts, and

samples at the Nyquist rate T = 1/B. Therefore, the received noiseless samples are given

by yl,n[k] in (B.10), where [35,36]:

hl,n[k] =

Pl,n∑
p=1

α
(p)
l,ne
−2πfct(p)l,n sinc

(
k −

t
(p)
l,n

T

)
. (B.12)

In view of these expressions, one of the most natural estimators for the ToA τ l,n := t
(1)
l,n

is:

τ̂l,n := T ·min{k : |ĥl,n[k]| ≥ γ}, (B.13)

where ĥl,n[k] is an estimate of hl,n[k] and γ is typically set as a function of the signal-to-

noise ratio [26].

It will be argued next that such a ToA feature does not evolve smoothly over space in

presence of multipath, and therefore, this may negatively impact estimation performance,

as occurs with LocB cartography; see discussion about Fig. B.1 in Sec. B.1. For simplicity,

assume that al[k] = δ[k], where δ[k] is the Kronecker delta. In this case, one can directly

estimate hl,n[k] as ĥl,n[k] = yl,n[k] = hl,n[k]+wl,n[k], which is a noisy version of hl,n[k]. To

see the impact of multipath, consider a simple example where the measurement points xn1

and xn2 lie close to each other and the channel impulse responses are given by ĥl,n1 [k] =

α
(1)
l,n1
δ[k−k(1)

l,n1
]+α

(2)
l,n1
δ[k−k(2)

l,n1
]+wl,n1 [k] and ĥl,n2 [k] = α

(1)
l,n2
δ[k−k(1)

l,n2
]+α

(2)
l,n2
δ[k−k(2)

l,n2
]+

wl,n2 [k]. Due to their spatial proximity, it follows that:

α
(1)
l,n1
≈ α

(1)
l,n2
, α

(2)
l,n1
≈ α

(2)
l,n2
, (B.14a)

k
(1)
l,n1
≈ k

(1)
l,n2
≈ k1, k

(2)
l,n1
≈ k

(2)
l,n2
≈ k2, (B.14b)

for some k1 and k2. Assuming for simplicity that the effects of noise are negligible, if
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|α(1)
l,n1
| < γ < |α(2)

l,n1
| and γ < |α(1)

l,n2
|, then the ToA estimates are:

τ̂n1 := T ·min{k : |ĥl,n1 [k]| ≥ γ} = Tk
(2)
l,n1
≈ Tk2,

τ̂n2 := T ·min{k : |ĥl,n2 [k]| ≥ γ} = Tk
(1)
l,n2
≈ Tk1.

This scenario is illustrated in Fig. B.3. Despite how close their locations and observed

impulse responses are, the ToA estimates at locations xn1 and xn2 can be quite different,

which establishes that the ToA estimate in (B.13) is not a smooth function of the spatial

location.

Since this non-smoothness negatively affects the performance of the proposed LocF

cartography estimator (and since the latter does not need ToA estimates that are propor-

tional to the distance, as occurs in LocB cartography), a promising candidate for feature

would be the center of mass (CoM) of the estimated impulse response:

CoMl,n :=

∑K−1
k=0 |ĥl,n[k]|2k∑K−1
k=0 |ĥl,n[k]|2

,

where K is the number of samples. To see why such a feature evolves smoothly over space,

suppose that the effects of noise are negligible and note that this CoM feature applied to

the channel impulse responses in the previous example yields:

CoMl,n1 =
k

(1)
l,n1
|α(1)
l,n1
|2 + k

(2)
l,n1
|α(2)
l,n1
|2

|α(1)
l,n1
|2 + |α(2)

l,n1
|2

,

CoMl,n2 =
k

(1)
l,n2
|α(1)
l,n2
|2 + k

(2)
l,n2
|α(2)
l,n2
|2

|α(1)
l,n2
|2 + |α(2)

l,n2
|2

.

From (B.14), it follows that CoMl,n1 ≈ CoMl,n2 , which indicates that the CoM is in-

deed a feature that evolves smoothly over space, and therefore preferable for LocF car-

tography. In this case, the feature vector at the n-th sensor location becomes φn =

[CoM1,n, . . . ,CoML,n]>.

B.4.1.2 Sensors are not Synchronized with Base Stations

Since synchronization requires more expensive equipment and becomes challenging in

multipath scenarios, TDoA estimates are generally preferred for localization. TDoA

estimates are typically obtained by extracting the lag corresponding to the maximum

cross-correlation of a pair of received pilot signals [37]. Assuming zero-mean, the cross-

correlation between two pilot signals received by the sensor at the n-th location is defined

as:

cl,l′,n[i] := E{yl,n[k]y∗l′,n[k − i]} with l 6= l′. (B.15)

With al[k] = al′ [k] a white process with power σ2
a and uncorrelated with wl,n[k] and

wl′,n[k], also uncorrelated with each other, it can be easily seen that:

cl,l′,n[i] = σ2
a

(
hl,n[i] ∗ h∗l′,n[−i]

)
.
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A common estimate of the TDoA ∆l,l′,n is (see e.g. [37]):

∆̂l,l′,n = T · arg max
i
{
∣∣ĉl,l′,n[i]

∣∣}, (B.16)

where ĉl,l′,n[i] is an estimate of cl,l′,n[i]. To see the intuition behind this estimator, note

that ĥl,n[k] = α
(1)
l,nδ[k − k

(1)
l,n ] and ĥl′,n[k] = α

(1)

l′,n
δ[k − k

(1)

l′,n
] in a free-space channel with

large bandwidth B. This implies that:

cl,l′,n[i] = σ2
aα

(1)
l,n

(
α

(1)

l′,n

)∗
δ
[
i−
(
k

(1)
l,n − k

(1)

l′,n

)]
= σ2

aα
(1)
l,n

(
α

(1)

l′,n

)∗
δ
[
i−∆l,l′,n/T

]
,

and therefore the lag of the maximum magnitude of cl,l′,n[i] provides the TDoA in this

simple scenario.

Similar arguments to those used in Sec. B.4.1.1 to conclude that the ToA estimates

are not spatially smooth can also be invoked to reach the same conclusion for TDoA.

Likewise, following the same rationale as in Sec. B.4.1.1, this section proposes alleviating

the aforementioned issue by adopting features of the form:

CoMl,l′,n :=

∑K−1
i=−K+1 |cl,l′,n[i]|2 i∑K−1
i=−K+1 |cl,l′,n[i]|2

, (B.17)

where CoMl,l′,n is the CoM of the cross-correlation between the l-th and l′-th pilot signals.

The proposed feature has three advantages: i) it is smooth, as portrayed later in Sec. B.5.1,

ii) it does not require synchronization between the localization base stations and the

sensors, and iii) it does not require the knowledge of the impulse responses. With this

choice, the feature vector at the n-th measurement location becomes:

φn =[CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,

CoM2,3,n, . . . ,CoML−1,L,n]>.
(B.18)

B.4.2 Cartography from a Reduced Set of Features

As argued earlier in Sec. B.3.1, learning becomes difficult when the number of input

features M is high. This section develops a scheme to reduce this number of features to

improve estimation performance in LocF cartography.

As stated in the previous section, in LocB cartography, the feature vectors correspond

to the coordinates of the estimated location. Application of the localization algorithm

represented by the function l̂ in (B.3) naturally reduces dimensionality from the originalM

features to just 2 or 3. On the other hand, in the case of LocF cartography, a larger number

N of measurements to learn d̂ in (B.4) may be necessary to attain a target accuracy if

M is large. This observation calls for a dimensionality reduction step that condenses the

information of the feature vectors {φn}Nn=1 ⊂ RM into vectors {φ̄n}Nn=1 ⊂ Rr of a reduced

size r. Intuitively, r should be the minimum number that preserves most information

while eliminating most of the noise in {φn}Nn=1. Even if some information is lost, the

reduction in the error entailed by the fact that the function to be estimated has fewer

input arguments may pay off in practice.
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Figure B.4: Singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0 of Φ in non-increasing order for a

multipath environment with L = 4 transmitters.

In the cases where the feature vectors {φn}Nn=1 lie close to a low-dimensional subspace,

the coordinates of these vectors with respect to a basis for such a subspace may constitute

a suitable reduced set of features. To see this, it is instructive to start by considering the

scenario of TDoA features. Suppose, for simplicity, that the effects of noise are negligible,

so that the TDoA estimates ∆̂l,l′,n approximately equal the true TDoAs ∆l,l′,n. Then,

the rows of Φ := [φ1, . . . ,φN ] are of the form ∆l,l′ := [∆l,l′,1,∆l,l′,2, . . . ,∆l,l′,N ]>. If

τ l := [τ l,1, . . . , τ l,N ]> collects the ToA from the l-th base station to all sensor locations,

then it clearly holds that ∆l,l′ = τ l−τ l′ . Consequently, ∆1,l−∆1,l′ = τ 1−τ l−(τ 1−τ l′) =

τ l′−τ l = ∆l′,l, which implies that all rows of Φ are linear combinations of the L−1 rows

{∆1,l}Ll=2. Thus, the rank of Φ is at most L− 1 or, equivalently, the vectors {φn}Nn=1 lie

in a subspace of dimension L− 1. When effects of noise are noticeable, one would expect

that the vectors {φn}Nn=1 lie close to a subspace of dimension L− 1.

Similarly, one can expect that when the entries of the vectors {φn}Nn=1 are given by

(B.17), these vectors also lie close to a low-dimensional subspace since CoM features are

proportional to the TDoAs in absence of multipath; see Sec. B.4.1. This phenomenon

can be illustrated through simulation (see Sec. B.5 for more details). Fig. B.4 depicts the

singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0 of Φ in non-increasing order for a multipath

environment described in Sec. B.5 with L = 4. As expected, roughly r = L − 1 = 3

directions capture almost all the energy of the rows of Φ.

When a set of random vectors lie close to a subspace, an appealing approach for

dimensionality reduction is principal component analysis (PCA) [31, Ch. 12], which

obtains the reduced feature vectors by projecting the input data vectors onto the subspace

that preserves most of the energy. Since in this paper no probabilistic assumptions have

been introduced on {φn}Nn=1, the typical formulation of PCA is not directly applicable.

However, as detailed next, it is not difficult to extend this idea to the fully deterministic

scenario, which furthermore provides intuition.

Assume w.l.o.g. a centered set of feature vectors, i.e., (1/N)
∑N

n=1φn = 0. If not

centered, just subtract the mean by replacing Φ with Φ − (1/N)Φ11>. The subspace

that captures most of the energy of the observations can be determined using the singular
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value decomposition (SVD) of Φ, which for M < N is given by:

Φ =
[
U1 U2

] [Σ1 0

0 Σ2

0

0

] [
V >1
V >2

]
, (B.19)

where Σ1 := diag {σ1, . . . , σr} contains the r largest singular values of Φ, Σ2 := diag {σr+1, . . . , σM}
contains the M − r smallest, and the columns of U :=

[
U1 U2

]
(respectively V :=

[V1,V2]) are the left (right) singular vectors of Φ. Clearly, if the data vectors {φn}Nn=1

are multiplied by the orthogonal matrix U>, the resulting vectors {φ′n}Nn=1, with φ′n :=

U>φn, contain the same information. Thus, one can replace Φ with Φ′ := U>Φ.

By applying this transformation, which can be thought of as a generalized rotation,

most of the energy of Φ′ is concentrated in its first r rows. To see this, note that the

energy of the first r rows of Φ′ is given by:

||U>1 Φ||2F = ||Σ1V
>

1 ||2F = Tr
(
Σ1V

>
1 V1Σ

>
1

)
= Tr

(
Σ1Σ

>
1

)
= ||Σ1||2F =

r∑
m=1

σ2
m,

whereas the energy of the last M − r rows of Φ′ is given by:

||U>2 Φ||2F = ||Σ2||2F =
M∑

m=r+1

σ2
m.

When r = L − 1, since the rows of Φ lie approximately in a subspace of dimension

r, it follows that σm ≈ 0 for m > r. Therefore
∑r

m=1 σ
2
m �

∑M
m=r+1 σ

2
m and, hence,

||U>1 Φ||2F � ||U>2 Φ||2F . Equivalently, most of the energy of the vectors {φ′n}Nn=1 is con-

centrated in their first r entries. This observation suggests using the first r entries of the

vectors {φ′n}Nn=1 as features, while discarding the rest. That is, the reduced dimension-

ality feature vectors will be given by {φ̄n}Nn=1, where φ̄n := U>1 φn. Note that φ̄n is just

the vector of coordinates of φn with respect to the basis composed of the columns of U1.

The number r of entries of the new feature vectors {φ̄n}Nn=1 may be potentially much

smaller than M and can therefore boost estimation performance meaningfully. For in-

stance, when {φn}Nn=1 are given by (B.18), this reduction is from M = L(L−1)/2 features

to r = L− 1 features.

In scenarios of very strong multipath, the rows of Φ may not lie close to any subspace

of dimension L − 1. In those cases, it may be worth choosing a value of r greater than

L− 1. A possibility is to specify a fraction η ∈ [0, 1] of the energy of Φ that must be kept

in Φ̄ := U>1 Φ, and choose r to be the smallest integer that guarantees this condition,

that is:

r = min

{
r′ :

∑r′

m̄=1 σ
2
m̄∑M

m=1 σ
2
m

≥ η

}
. (B.20)

To summarize, the problem of LocF cartography with the technique for reducing the set

of features introduced in this section is as follows. Given the original set of measurements

{φn}Nn=1 ⊂ RM , one must form the matrix Φ, compute U1 from the SVD in (B.19), and



B.4. LOCATION-FREE FEATURES 75

obtain the reduced features {φ̄n}Nn=1 ⊂ Rr where φ̄n = U>1 φn. Then, the function d̂ is

obtained form the pairs {(φ̄n, p̃n)}Nn=1 using the approach in Sec. B.3.2. To evaluate the

resulting map at a query location where the received pilot signals are given by Y , one

must simply obtain d̂(U>1 φ(Y )).

B.4.3 Dealing with Missing Features

Due to propagation effects, the signal-to-noise ratio of some of the received pilot signals

may be too low for feature extraction. In this case, the features associated with those

pilot signals may be unreliable or simply unavailable. This section develops techniques to

cope with such missing features.

Let Ω ⊂ {1, . . . ,M} × {1, . . . , N} be such that (m,n) ∈ Ω iff the m-th feature is

available at the n-th measurement location and define the “incomplete” feature ma-

trix Φ̆ ∈ (R ∪ {FiM})M×N as:

(Φ̆)m,n =

{
(φn)m + ςm,n if (m,n) ∈ Ω

FiM otherwise,
(B.21)

where ςm,n explicitly models error in the feature extraction and the symbol FiM represents

that the corresponding feature is missing. Since the matrix Φ̆ contains missing features,

the LocF cartography scheme presented so far is not directly applicable. The missing

features must be filled first. Hence, the goal is, given Φ̆, find Φ ∈ RM×N that agrees

with Φ̆ on Ω. A popular approach to address such a matrix completion task is via rank

minimization [38]:

minimize
Φ

rank (Φ)

subject to PΩ(Φ) = PΩ(Φ̆),
(B.22)

where

PΩ : (R ∪ {FiM})M×N −→ RM×N

Φ̆ 7−→ PΩ(Φ̆),

with (
PΩ(Φ̆)

)
m,n

=

{
(Φ̆)m,n if (m,n) ∈ Ω

0 if (m,n) /∈ Ω.

Although this problem is non-convex, efficient solvers exist based on convex relax-

ation [39, 40]. A legitimate question would be what is the minimum number of available

features required to recover a reasonable reconstruction of Φ. As a guideline, a result

in [41] establishes that, under certain conditions, the minimum number of available fea-

tures to recover Φ ∈ RM×N is O
(
Ñ rank(Φ) log(Ñ)

)
where Ñ = max(M,N).

Although the aforementioned rank minimization approach could, in principle, be used,

it suffers from two limitations. First, it does not exploit the prior information that Φ can

be well approximated by a matrix of rank r, where r is typically L − 1; see Fig. B.4.
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Second, the constraint in (B.22) would render the reconstructed matrix sensitive to the

noise {ςm,n}m,n present in Φ̆. Thus, an appealing alternative to (B.22) would be:

Φ̊ :=argmin
Φ

1

2
||PΩ(Φ)− PΩ(Φ̆)||2F

subject to Φ ∈Mr,

(B.23)

where Mr := {Φ ∈ RM×N : rank(Φ) = r} is the smooth manifold of r-rank M × N

matrices.

There exist algorithms to find local minima of the non-convex problem (B.23). One

example based on manifold optimization [42] is the linear retraction-based geometric con-

jugate gradient (LRGeomCG) method from [43]. A less computationally expensive al-

ternative is the singular value projection (SVP) method in [44], which is based on the

traditional projected subgradient descent method.

After solving (B.23), all the columns of Φ̊ := [φ̊1, . . . , φ̊N ] clearly lie in a subspace of

dimension r. From the arguments in Sec. B.4.2, learning the map can be improved by

suppressing this redundancy. To this end, one could use the technique in Sec. B.4.2,

which would obtain the reduced-dimensionality feature vectors as follows:

Φ̄ := [φ̄1, . . . , φ̄N ] = Ů>1 Φ̊. (B.24)

Here, the columns of Ů1 are the left singular vectors corresponding to the r largest singular

values of Φ̊. Nevertheless, since Φ̊ has rank r, it is not necessary to obtain Ů1 by means

of an SVD. Namely, the columns of Ů1 can be directly obtained by orthonormalizing the

first r linearly independent columns of Φ̊, e.g. through Gram-Schmidt.

To sum up, to estimate a map using the proposed LocF cartography in presence of miss-

ing features is as follows. First, matrix Φ̆ is formed with the available features. Then, the

completed matrix Φ̊ is obtained using LRGeomCG or SVP. Next, Ů1 is obtained through

Gram-Schmidt over this completed matrix. Finally, one learns d̂ from {(φ̄n, p̃n)}Nn=1,

where φ̄n is the n-th column of Φ̄ in (B.24), using the approach in Sec. B.3.2.

To evaluate the estimated map at a test location, one would require in principle the

feature vector φ ∈ RM at that location or, alternatively, its reduced-dimensionality version

φ̄ ∈ Rr. However, due to the phenomena described earlier, only some of the features of φ

may be available, which can be collected in the vector φ̆ ∈ (R ∪ {FiM})M . The problem

now is to find the reduced-dimensionality feature vector φ̄ given φ̆.

Since the columns of Φ̊ lie in an r-dimensional subspace for which the columns of Ů1

form an orthonormal basis, it is reasonable to say that the feature vector at the testing

point φ ∈ RM also lies in that subspace, meaning that this vector can be written as

φ = Ů1φ̄ for some φ̄. The procedure to recover φ̄ depends on whether φ̆ contains enough

observed features. Let Ω′ ⊂ {1, . . . ,M} be such that the m ∈ Ω′ iff the m-th feature

is available in φ̆. If M̆ := |Ω′| ≥ r, one can think of finding φ̄ using the well-known

regularized least squares (RLS) method as:

ˆ̄φ = arg min
φ̄

∥∥∥PΩ′(φ̆)− PΩ′(Ů1φ̄)
∥∥∥2

+ µ(φ̄− φ̄avg)>C−1(φ̄− φ̄avg),

(B.25)
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Figure B.5: (left) True map, (middle) LocB (λ′ = 3.3 × 10−3, σ′ = 0.5 m), and (right)

LocF (λ = 1.9 × 10−4, σ = 37 m) estimated maps; N = 300, L = 5, B = 20 MHz, and

K = 10. The black crosses indicate the sensor locations and the solid white lines represent

the walls of the building.

where

PΩ′ : (R ∪ {FiM})M −→ RM

φ̆ 7−→ φ, (φ)m =

{
(φ̆)m if m ∈ Ω′

0 if m /∈ Ω′,

µ > 0 is a regularization parameter, φ̄avg and C ∈ Rr×r are respectively the sample mean

vector and covariance matrix of the coordinates of the completed features in the traning

phase, that is, φ̄avg = (1/N)Φ̄1 and C = (1/N)(Φ̄ − φ̄avg1
>)(Φ̄ − φ̄avg1

>)>. To solve

Problem (B.25), let the elements of Ω′ be denoted as Ω′ := {m1, . . . ,mM̆}. Then:

ˆ̄φ =
(
Ů>1 S

>SŮ1 + µC−1
)−1

(
Ů>1 S

>SPΩ′(φ̆) + µC−1φ̄avg

)
,

(B.26)

where S ∈ {0, 1}M̆×M is a row selection matrix with all entries equal to zero except for

the entries (1,m1), . . . , (M̆,mM̆), which equal to 1. Thus, SPΩ′(Ů1φ̄) = SŮ1φ̄. On the

other hand, if M̆ := |Ω′| < r, it is not possible to identify φ̄ from φ̆. The extreme case

would be when M̆ = 0. A natural estimate at such point can be the spatial average of

the signal power (1/N)
∑

n p̃n.

B.5 Numerical tests

This section evaluates the performance of LocF cartography in presence of multipath,

where localization algorithms cannot achieve accurate location estimates. To this end,

the simulations are carried out in a 42 × 27 m structure comprising several parallel vertical

planes modeling the external and internal walls of a building, the latter is located in a 60

× 40 m rectangular area X .

All the experiments described in this paper can be reproduced with the MATLAB

code which is available at the first author’s homepage.

The simulation area contains L active transmitters. Some of these are positioned

inside the building, others outside. Matrix Y n ∈ CL×K containing the noisy received
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Figure B.6: Maps of the M = 10 LocF features with L = 5, B = 20 MHz, and K = 10.

The solid black lines represent the walls of the building and the black stars represent the

transmitter locations.

Table B.1: Parameters used for the experiment in Fig. B.8.

B (MHz) 50 100 200 700

K 25 50 100 350

LocB
σ′ (m) 10.1 8.9 9 7

λ′ 1.8× 10−3 9.1× 10−4 7.1× 10−4 2.1× 10−4

LocF
σ (m) 27 41 53 28

λ 3.81× 10−4 6.1× 10−5 1.1× 10−5 5× 10−4

pilot signals is generated according to (B.10), where K is adjusted depending on B to

capture all the multipath components. For simplicity, the pilot signals are given by2

al[k] = δ[k] which implies that the rows of Y n ∈ CL×K contain the impulse responses of

the bandlimited channels between the L transmitters and the n-th measurement location.

The channel hl,n[k] is generated following (B.12) with a carrier frequency of 800 MHz and

pilot channel bandwidth B = 1/T . The noise samples wl,n[k] are independent normal

random variables with zero-mean and variance -70 dBm. Propagation adheres to the

Motley-Keenan multi-wall radio propagation model [45], which accounts for the direct

path, up to 5 first-order wall reflections, and up to 5 wall-to-wall second-order reflections.

Remarkably, the model captures the impact of the angle of incidence on the power of

the reflected ray. For simplicity, the C2M is chosen to be the channel where localization

pilot signals are transmitted. In practice, this is the case in the downlink of a cellular

communication system such as LTE where the base stations transmit both communication

signals and localization pilots.

To ensure that the measurements are obtained in the far-field propagation region,

sensor locations are spread uniformly at random over X̄ , which comprises those points in

X lying at least 3 wavelengths away from all transmitters. Note that, although the number

of sensor locations is sometimes in the order of hundreds, this does not mean that a large

2Amplitude units are such that a signal x[k] = 1, ∀k, has power 1 W.
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Figure B.7: Performance comparison between the LocF cartography (λ = 1.9 × 10−4,

σ = 37 m) and the LocB cartography (λ′ = 3.3 × 10−3, σ′ = 0.5 m) with B = 20 MHz

and K = 10.

Figure B.8: LocF and LocB map NMSE as a function of the number of walls for different

values of the bandwidth, L = 5, N = 300.

number of sensing devices must be used since each device may gather measurements at

tens or hundreds of spatial locations. The power measurement pn (measured in dBW) of

the C2M at position xn is corrupted by additive noise εn to yield p̃n = pn + εn, where

{εn}Nn=1 are independent normal random variables with zero-mean and variance σ2
ε . This

variance is such that the signal-to-noise ratio defined as 10 log10(p̄2/σ2
ε ) ≈ 40 dB, where

p̄ :=
∫
X̄ p(x)dx/

∫
X̄ dx is the spatial average of p(x). This SNR is considered practical

since the measurement noise power σ2
ε can be driven arbitrarily close to zero in practice

by averaging over a sufficiently long time window.

Quantitative evaluation will compare the normalized mean square error (NMSE) de-

fined as:

NMSE =
E{|p(x)− p̂Y (Y (x), T )|2}

E{|p(x)− p̄|2}
, (B.27)

where p̂Y (Y (x), T ) (measured in dBW) denotes the result of evaluating the map con-

structed from the training set T := {(Yn, p̃n)}Nn=1 at the location x, where Y (x) comprises
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Figure B.9: LocF estimated map NMSE for different values of number of features M and

sensor locations N , with L = 5, B = 20 MHz, K = 10, λ = 1.9× 10−4, and σ = 37 m.

the received pilot signals at x. The denominator in (B.27) normalizes the square error of

the considered algorithm by the error incurred by the best data-agnostic estimator, which

estimates the spatial average p̄ at all points. Thus, the adopted performance metric is

higher than traditional NMSE, meaning that it is more challenging to obtain lower values.

Furthermore E{·} denotes the expectation over the sensor locations and noise.

B.5.1 LocF vs. LocB

To avoid the need for synchronization between transmitters and sensors, the LocF algo-

rithm utilizes the features in (B.17), which additionally provide robustness to multipath

and evolve smoothly over space; see Sec. B.4.1. Since this center of mass can be thought

of as a lag, it is scaled by the sampling period T and speed of light c to obtain the

corresponding range difference, i.e.:

φn := Tc [CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,

CoM2,3,n, . . . ,CoML−1,L,n]>.
(B.28)

Using these features, the LocF algorithm uses the kernel ridge regression technique in

Sec. B.3.2 with Gaussian radial basis functions with parameter σ. The reason is that this

universal kernel is capable of approximating arbitrary continuous functions that vanish at

infinity [46]. On the other hand, for LocB cartography, the feature vector φn = x̂n ∈ R2

comprises estimates of the spatial coordinates of the n-th sensor location obtained by the

iterative re-weighting squared range difference-least squares (IRWSRD-LS) algorithm [47],

which features state-of-the-art localization performance. This algorithm is applied over

TDoA features extracted from {Y n}Nn=1 through (B.16). At the n-th sensor location,

these features {∆̂1,l′,n}Ll′=2 comprise the TDoA between a reference base station and the

remaining L−1 base stations. Enlarging this set by including TDoA measurements ∆̂l,l′,n

with l 6= 1 would not be beneficial for the estimation performance as discussed in [48].
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(a)

(b)

Figure B.10: Maps of: (a) all the M = 10 features and (b) r = 4 reduced features with

L = 5, B = 20 MHz, and K = 10. The solid black lines represent the walls of the

building and the black stars represent the transmitter locations. The maps are obtained

by representing the value of the feature at every location in X .

The reason is the redundancy inherent to TDoA features described in Sec. B.4.2. To

ensure a fair comparison, LocB utilizes the same function learning algorithm as LocF; see

Sec. B.3.2. Specifically, given {(x̂n, p̃n)}Nn=1, the map is estimated as p̂(x̂) = κ′>(x̂)β̂

where κ′(x̂) := [κ′(x̂, x̂1), . . . , κ′(x̂, x̂N)]>, β̂ := (K ′+λ′NIN)−1p̃, and K ′ is an N ×N
matrix with (n, n′)-th entry κ′(x̂n, x̂n′) and κ′ is a Gaussian radial basis function with

parameter σ′. In this way, this benchmark LocB algorithm coincides with those in [4,13]

when a power map must be estimated on a single frequency and with a single kernel. In

all experiments, the values of λ, λ′, σ, and σ′ used by the LocF and LocB schemes were

tuned to approximately yield the lowest NMSE.

Fig. B.5 (left) depicts the true map generated through the multi-wall model, where

the black crosses indicate the sensor locations and the solid white lines represent the

walls of the building. The middle and right panels respectively show the LocB and LocF

map estimates, obtained by placing a query sensor at every location. It is observed that

the quality of the LocF estimate is considerably higher than that of the LocB estimate.

The cause for the poor performance of the LocB algorithm is that the location estimates

evolve in a non-smooth fashion across space, and attempting to learn the C2M from such

non-smooth features is more challenging; see Figs. B.1c and B.1d and the discussion in

Sec. B.1. To illustrate how the LocF approach alleviates this issue, Fig. B.6 depicts the
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Figure B.11: Estimated map NMSE with reduced features for different r and without

reduced features; L = 5, B = 20 MHz, K = 10, λ = 1.6× 10−3, and σ = 25 m.

features used by the LocF estimator across X . Specifically, if φ(x) denotes the feature

vector, obtained as in (B.28) for location x, then the m-th panel titled ϕm in Fig. B.6

corresponds to the m-th entry of φ(x) for each x ∈ X . It is observed that the evolution of

these proposed features across space is significantly smoother than the one in Figs. B.1c

and B.1d. A quantitative comparison is provided in Fig. B.7, which shows the NMSE as a

function of the number of sensor locations N for L = 4 and 7 transmitters. The error bars

delimit intervals of 6 standard deviations of the NMSE across the 200 independent Monte

Carlo runs. It is observed that, with high significance, the proposed LocF cartography

scheme outperforms its LocB counterpart for both values of L provided that the number

of measurement locations is roughly larger than 150.

The rest of the section studies the impact of multipath on the LocF and LocB car-

tography approaches by varying the number of walls. Fig. B.8 shows the NMSE as a

function of the number of walls for different values of B. The parameters used for both

LocF and LocB schemes are listed in Table B.1. The NMSE is obtained by also averaging

over wall locations, which are confined to be in the positions of the walls in Fig. B.6 plus

an additional wall that divides the room in two.

As expected, for all the simulated values of B, the performance of both LocF and

LocB schemes is degraded (yet more severely in LocB) as the number of walls increases.

Moreover, the performance of the LocB improves significantly with the bandwidth, since

a higher bandwidth allows a more accurate estimation of the TDoA. This is because

multipath components arriving within a time interval of length T = 1/B cannot be

resolved; see Sec. B.4.1 and references therein. As intuition predicts, when multipath

is sufficiently low and the bandwidth is sufficiently high, LocB cartography outperforms

LocF. It is remarkable that LocF cartography exhibits robustness to multipath since the

NMSE remains approximately constant even for a significant increase of multipath.
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Figure B.12: (top) Average number of missing features and (bottom) estimated map

NMSE, both as a function of Γ with L = 5, B = 20 MHz, K = 10, λ = 1.9 × 10−4,

µ = 5.42, and σ = 37 m.

B.5.2 Feature Design

This section provides empirical support for the findings in Sec. B.4.2. From now on,

all experiments will involve only the LocF estimator. The first experiment investigates

the impact of the number of features, which in all previous simulations was equal to

M = L(L− 1)/2. To this end, Fig. B.9 shows the NMSE as a function of the number M

of features for two different numbers N of sensor locations. The expectation operators

in (B.27) also average with respect to all choices of M features out of the L(L− 1)/2.

As observed, the NMSE improves from M = 4 to roughly M = 7 features, and remains

approximately the same for M ≥ 7. Although this effect may look counter-intuitive

at first glance, this is a common phenomenon in machine learning related to the bias-

variance trade-off [32] and the curse of dimensionality [31,32]; see Sec. B.3.1. Clearly, this

effect motivates the feature dimensionality reduction techniques proposed in Sec. B.4.2.

The rest of this section corroborates the merits of such techniques. A more challenging

scenario with more walls will be considered. The first step is to determine the number

of reduced features to be used. It can be seen that r = 4 in (B.20) retains at least

η = 99% of the variance of the features in all tested scenarios. Thus, in principle, a
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map can be learned using the reduced features φ̄n := U>1 φn ∈ R4 without meaningfully

sacrificing estimation performance. Before corroborating that this is actually the case, it

is instructive to visualize the aforementioned reduced features across space. Fig. B.10a

portrays the maps of the M = 10 original features, which correspond to the entries of

φ(x); see Sec. B.5.1. On the other hand, the panels of Fig. B.10b depict the reduced

features over space, i.e., the 4 entries of the vector φ̄(x) := U>1 φ(x) for each x ∈ X .

These figures reveal that the reduced features inherit the spatial smoothness of the original

features.

To quantify the impact of reducing the dimensionality of the feature vectors, Fig. B.11

compares the NMSE of the LocF map estimate that relies on the original features (M =

10) with the one that relies on the reduced features (r = 2, 3, 4). As observed, using

just the 4 reduced features attains a similar performance to the estimator built on the 10

original features. This is expected given the bias-variance trade-off mentioned earlier. At

this point, it might seem that the effects observed in Fig. B.9 contradict those of Fig. B.11

since in the former the NMSE is lower when 10 features are used relative to the case where

only 4 are used. However, that should not be concluded since the features in Fig. B.9

correspond to the entries of φn (see (B.28)) whereas the features in Fig. B.11 correspond

to the entries of φ̄n := U>1 φn.

B.5.3 LocF cartography with Missing Features

This section assesses the performance of the techniques developed in Sec. B.4.3 to cope

with missing features.

A feature will be deemed missing at a given sensor location if the received power of

at least one of the two associated pilot signals is below a sensitivity threshold Γ. The

top panel of Fig. B.12 depicts the average number of missing features as a function of Γ.

The average is taken with respect to the sensor locations and noise. The bottom panel

of Fig. B.12 shows the LocF map NMSE also as a function of Γ. The matrix completion

problem in (B.23) is solved with both SVP and LRGeomCG; the implementation for

the latter is the one provided in the ManOpt toolbox [49]. For higher values of N , the

performance of both algorithms is clearly strongly determined by the average number of

missing features. SVP seems to outperform LRGeomCG in terms of NMSE. Besides, the

computation time of SVP is roughly half the one of LRGeomCG.

B.6 Conclusions

Location-free (LocF) cartography has been proposed as an alternative to classical location-

based (LocB) schemes, which suffer a strong performance degradation when multipath

impairs the propagation of localization pilot signals. The central idea is to learn a map as

a function of certain features of the localization pilot signals. Building upon this approach,

kernel-ridge regression was applied to estimate power maps from these features. Practical

issues addressed in the paper include feature design, dimensionality reduction, and dealing

with missing features. Simulations corroborate the merits of LocF cartography relative

to LocB alternatives. Future research will include mapping other channel metrics such
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as power spectral density (PSD) and channel gain, as well as developing distributed and

online extensions.
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Data-Driven Spectrum Cartography

via Deep Completion Autoencoders
Yves Teganya and Daniel Romero

Abstract —Spectrum maps, which provide RF spectrum metrics such as

power spectral density for every location in a geographic area, find numerous

applications in wireless communications such as interference control, spec-

trum management, resource allocation, and network planning to name a few.

Spectrum cartography techniques construct these maps from a collection of

measurements collected by spatially distributed sensors. Due to the nature

of the propagation of electromagnetic waves, spectrum maps are complicated

functions of the spatial coordinates. For this reason, model-free approaches

have been preferred. However, all existing schemes rely on some interpolation

algorithm unable to learn from data. This paper proposes a novel approach to

spectrum cartography where propagation phenomena are learned from data.

The resulting algorithms can therefore construct a spectrum map from a sig-

nificantly smaller number of measurements than existing schemes since the

spatial structure of shadowing and other phenomena is previously learned

from maps in other environments. Besides the aforementioned new paradigm,

this is also the first work to perform spectrum cartography with deep neu-

ral networks. To exploit the manifold structure of spectrum maps, a deep

network architecture is proposed based on completion autoencoders.

Keywords— Spectrum cartography, deep learning, cognitive radio, completion autoen-

coders.

C.1 Introduction

Spectrum cartography constructs maps of RF channel metrics such as received signal

power, interference power, power spectral density (PSD), electromagnetic absorption, or

channel gain; see e.g. [1–3]. Besides applications like source localization [2] or radio tomog-

raphy [4,5], spectral maps find a myriad of applications in wireless communications such

as network planning, interference coordination, power control, spectrum management,

resource allocation, handoff procedure design, dynamic spectrum access, and cognitive

ratio [6–8]. Spectrum maps are constructed from measurements acquired by spectrum

sensors or mobile devices.

Most approaches are based on some interpolation algorithm. For example, power

maps have been constructed through kriging [1,9], dictionary learning [10,11], compressive

sensing [3], Bayesian models [12], matrix completion [13], and kernel methods [14, 15].

PSD maps have also been constructed by exploiting the sparsity of power across space

and frequency [2] as well as by applying thin-plate spline regression [16] and kernel-

based learning [8, 17]. Metrics other than power and PSD have also been mapped in

the literature. For example, [5, 18, 19] are capable of constructing channel gain maps.



C.1. INTRODUCTION 92

Unfortunately, none of the existing approaches can learn from data. This means that they

fail to learn the characteristics of the propagation phenomena and, therefore, a substantial

performance improvement is expected if such knowledge can be incorporated.

To address this limitation, the first contribution of this paper is a data-driven paradigm

for spectrum cartography. Specifically, it proposes learning the spatial features of the rel-

evant propagation phenomena such as shadowing, reflection, and diffraction using a data

set of past measurements. Intuitively, leveraging these learned features can significantly

reduce the number of measurements required to attain a target performance. This aspect

is critical since all measurements need to be collected in a sufficiently short time since

the mapped metric is subject to temporal variations in real-world scenarios. The second

contribution comprises a spectrum cartography algorithm to construct PSD maps relying

on a deep neural network. Although several approaches for applying this class of networks

are discussed, the most natural one relies on a spatial discretization of the area of inter-

est. The resulting tensor completion task is addressed by means of a completion network

architecture with an encoder-decoder structure that capitalizes on the observation that

spectrum maps lie close to a low-dimensional manifold embedded in a high-dimensional

space. Our experiments reveal that the performance of such algorithm beats the state-of-

the-art alternatives. Finally, all code, trained networks, and the data set constructed for

this work will be posted at the authors’ web sites.

The novelty of this paper is twofold. First, this is the first work to propose a data-

driven spectrum cartography approach. Second, this is the first work to propose a deep

learning algorithm for spectrum cartography.

The rest of this paper is organized as follows. Sec. C.2 describes the problem of PSD

cartography. Sec. C.3 presents the aforementioned data-driven spectrum cartography

paradigm and proposes a deep neural network architecture based on completion autoen-

coders. Simulations and conclusions are respectively provided in Secs. C.4 and C.5. Un-

fortunately, due to space requirements, we had to omit many insightful explanations and

a large number of experiments that further support the proposed approach.

Notation: |A| denotes the cardinality of set A. [A]i,j is the (i, j)-th entry of matrix

A, whereas [B]i,j,k is the (i, j, k)-th entry of tensor B. Finally, A> is the transpose of

matrix A.
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C.2 Model and Problem Formulation

Consider L sources located in a geographical region of interest X ⊂ R2 and operating on

a certain frequency band. Let Υl(f) denote the transmit PSD of the l-th source and let

Hl(x, f) represent the frequency response of the channel between the l-th source and a

sensor with an isotropic antenna located at x ∈ X . For simplicity, assume that small-scale

fading has been averaged out; see also Remark 5. Both Υl(f) and Hl(x, f) are assumed

to remain constant over time, a realistic assumption provided that the measurements

described below are collected in an interval of shorter length than the channel coherence

time and time scale of changes in Υl(f).

If the L signals are uncorrelated, the PSD at x ∈ X is

Ψ(x, f) =
∑L

l=1 Υl(f)|Hl(x, f)|2 + υ(x, f)

with υ(x, f) the noise PSD of a generic sensor at location x, which models thermal noise,

background radiation noise, and interference from remote sources. A certain number of

devices, such as mobile users in a cellular communication network or spectrum sensors,

collect PSD measurements {Ψ̃(xn, f)}Nn=1 at N locations {xn}Nn=1 ⊂ X and finite set of

frequencies f ∈ F ; see also Remark 6. These measurements can be obtained using e.g.

periodograms or spectral analysis methods such as the Bartlett or Welch method [20].

These measurements are sent to a fusion center, which may be e.g. a base station, a

mobile user, or a cloud server, depending on the application. Given {(xn, Ψ̃(xn, f)), n =

1, . . . , N, f ∈ F}, the fusion center must obtain an estimate Ψ̂(x, f) of Ψ(x, f) at every lo-

cation x ∈ X and frequency f ∈ F . In spectrum cartography, function Ψ(x, f) is typically

referred to as the true map, whereas Ψ̂(x, f) is the estimated map or map estimate. The

algorithm or rule that provides a map estimate, which in this paper is a neural network,

is termed map estimator. The challenge is to exploit the spatial structure of propagation

phenomena so that the estimation error, quantified e.g. as
∑

f

∫
X |Ψ(x, f)− Ψ̂(x, f)|2dx,

is minimized for a certain N or, alternatively, the minimum N required to guarantee a

target estimation error is minimized.

To the best of our knowledge, all existing approaches to spectrum cartography are

based on interpolation algorithms that do not learn from data. In contrast, the next

section develops a novel data-driven methodology that learns the aforementioned structure

from a data set.

Remark 3 Sensors must determine their locations {xn}n with an error sufficiently small

relative to the scale of spatial variability of Ψ(x, f) across X . Thus, estimating small-scale

fading is more challenging than estimating shadowing since the coherence distance of the

former is comparable to the wavelength and typical communication bands of interest have

wavelengths in the order of centimeters.

Remark 4 The number of measurement locations may be significantly larger than the

number of sensors if the sensors move. Measurements collected at different locations may

be useful to estimate a spectrum map so long as the difference between measurement in-

stants is small relative to the time scale of the variations of the PSD map. The latter
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Figure C.1: Model setup and area discretization.

is highly dependent on the specific application. For example, one expects significant vari-

ations in DVB-T bands to occur in the scale of several months, whereas PSD maps in

LTE bands may change in the scale of milliseconds due to power control, mobility, and

interference.

C.3 Proposed Data-Driven Cartography

This section introduces a data-driven paradigm for spectrum cartography and develops a

deep learning algorithm that abides by this principle. To this end, Sec. C.3.1 starts by

reformulating the problem at hand as a tensor-completion task amenable to application

of deep neural networks. Subsequently, Sec. C.3.2 addresses unique aspects of tensor/-

matrix completion via deep learning. Finally, Secs. C.3.3 and C.3.4 respectively describe

how a deep neural network can be trained to learn the spatial structure of propagation

phenomena and how this task can be addressed via the notion of completion autoencoders.

C.3.1 Spectrum Cartography as a Tensor Completion Task

Observe that the value of N depends on the number and movement of the sensors relative

to the time-scale of temporal changes in Ψ(x, f); cf. Sec. C.2. In principle, one could

think of using a separate map estimator for each possible value of N . Each estimator could

be relatively simple since it would always take the same number of inputs. However, such

an approach would be highly inefficient in terms of memory, computation, and prone

to erratic behavior since each estimator is trained with a different data set. Thus, it is

more practical to rely on a single estimator that can accommodate arbitrary values of

N . A customary approach in deep learning for coping with inputs of variable lengths is

through recurrent neural networks [21], [22, Ch. 10]. Unfortunately, besides the difficulties

of training these networks, it is unclear how such an approach could effectively exploit

spatial information. For this reason, the selected approach in this work is to reformulate

the cartography problem as a tensor completion task amenable to a solution based on a

feedforward architecture [22, Ch. 6].

To this end, one must discretize X , a trick already applied in radio tomographic

imaging [23, 24] and spectrum cartography [13]. To introduce the appropriate notation,
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it will be briefly outlined next. Define an Ny × Nx rectangular grid over X , as depicted

in Fig. C.1. This grid comprises points ξi,j evenly spaced by ∆x and ∆y along the x-

and y-axes respectively, that is, the (i, j)-th grid point is given by ξi,j := [i∆x, j∆y]
>,

with i = 1, . . . , Ny, j = 1, . . . , Nx. For future usage, define Ai,j ⊂ {1, . . . , N} as the set

containing the indices of the measurement locations assigned to the (i, j)-th grid point by

the criterion of minimum distance, i.e., n ∈ Ai,j iff ||ξi,j − xn|| ≤ ||ξi′,j′ − xn||∀i′, j′ with

i′ 6= i and j′ 6= j.

This grid induces a discretization of Ψ(x, f) along the x variable. One can therefore

collect the true PSD values at the grid points in matrix Ψ(f) ∈ RNy×Nx , f ∈ F , whose

(i, j)-th entry is given by [Ψ(f)]i,j = Ψ(ξi,j, f). By letting F = {f1, . . . , fNf}, it is

also possible to stack these matrices along the third dimension to form the tensor Ψ ∈
RNy×Nx×Nf , where [Ψ]i,j,nf = Ψ(ξi,j, fnf ), nf = 1, . . . , Nf . For short, the term true map

will either refer to Ψ(x, f) or Ψ.

Similarly, one can collect the measurements in a tensor of the same dimensions. In-

formally, if the grid is sufficiently fine (∆x and ∆y are sufficiently small), it holds that

xn ≈ ξi,j ∀n ∈ Ai,j and, correspondingly, Ψ(xn, f) ≈ Ψ(ξi,j, f) ∀n ∈ Ai,j. It follows that,

Ψ(ξi,j, f) ≈ 1

|Ai,j|
∑
n∈Ai,j

Ψ(xn, f)

whenever |Ai,j| ≥ 1. Therefore, it makes sense to aggregate all the measurements assigned

to ξi,j as1

Ψ̃(ξi,j, f):=
1

|Ai,j|
∑
n∈Ai,j

Ψ̃(xn, f).

Conversely, when |Ai,j| = 0, there are no measurements associated with ξi,j, in which

case one says that there is a miss at ξi,j. Upon letting Ω ⊂ {1, . . . , Ny} × {1, . . . , Nx} be

such that (i, j) ∈ Ω iff |Ai,j| > 0, all (possibly aggregated) measurements Ψ̃(ξi,j, f) can

be collected in Ψ̃(f) ∈ RNy×Nx , defined as

[Ψ̃(f)]i,j =

{
Ψ̃(ξi,j, f) if (i, j) ∈ Ω

0 otherwise.

Note that misses have been filled with zeroes, but other values can be used.

When (i, j) ∈ Ω, the values of [Ψ̃(f)]i,j and [Ψ(f)]i,j differ due to the error introduced

by the spatial discretization as well as due to the measurement error incurred when

measuring Ψ(xn, f), n ∈ Ai,j. The latter is caused mainly by the finite time devoted by

sensors to take measurements.

As before, the matrices Ψ̃(f), f = 1, . . . , Nf can be stacked along the 3rd dimension

to form Ψ̃ ∈ RNy×Nx×Nf , where [Ψ̃]i,j,nf = [Ψ̃(fnf )]i,j. For short, this tensor will be

referred to as the sampled map.

The cartography problem stated in Sec. C.2 can now be reformulated as, given Ω and

Ψ̃, estimate Ψ.

1For simplicity, the notation implicitly assumes that xn 6= ξi,j ∀n, i, j, but this is not a requirement.
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C.3.2 Feedforward Completion Networks

The previous section reformulated the spectrum cartography problem as a tensor comple-

tion task. Since conventional neural networks cannot directly accommodate input misses

and set-valued inputs like Ω, this section explores the possibilities and motivates the

adopted approach.

But before that, a quick refresh on deep learning is in order. A feedforward deep

neural network is a function pw that can be expressed as the composition pw(Φ) =

p
(L)
wL(p

(L−1)
wL−1 (. . . p

(1)
w1(Φ))) of layer functions p

(l)
wl , where Φ is the input. Although there is

no commonly agreed definition of layer function, it is typically formed by concatenating

simple scalar-valued functions termed neurons that implement a linear function followed

by a simple non-linear function known as activation [22]. The term neuron stems from

the resemblance between these functions and certain simple functional models for natural

neurons. Similarly, there is no consensus on which values of L qualify for pw to be

considered a deep neural network. With vector wl containing the parameters of the l-th

layer, the parameters of the entire network can be collected in w:=[w>1 , . . . ,w
>
L ]> ∈ RNw .

These parameters are learned using a training set in a process termed training.

The rest of this section as well as Sec. C.3.3 carefully delineate how a deep neural net-

work can be trained to perform data-driven spectrum cartography. Occasional references

to works in areas such as collaborative filtering and image inpainting will provide insight

and motivate the design decisions. On the other hand, Sec. C.3.4 will address the design

of pw.

Although the training set construction is detailed in Sec. C.3.3, suppose by now that

a set of T training examples {(Ψ̃t,Ωt)}Tt=1 is given. Here, {Ψ̃t}t is a collection of sampled

maps acquired in different environments and Ωt the corresponding sampling set.

The desired estimator should obtain Ψ as a function of Ψ̃ and Ω. But regular neural

networks cannot directly accommodate set-valued inputs and missing entries. For this

reason, [25] proposes filling the missing entries in Ψ̃ by solving

minimize
{χt}t,w

1

T

T∑
t=1

‖PΩt (χt − pw(χt))‖2
F , (C.1)

[χt]i,j,nf = [Ψ̃t]i,j,nf ∀nf ,∀(i, j) ∈ Ωt,

where ||A||2F :=
∑

i,j,nf
[A]2i,j,nf is the Frobenius norm of tensor A and PΩ(A) is defined as

[PΩ(A)]i,j,nf = [A]i,j,nf if (i, j) ∈ Ω and [PΩ(A)]i,j,nf = 0 otherwise. The map estimate

produced by this method is directly the minimizer χt of (C.1). Observe that if there

exists a value of w for which pw becomes the identity map, i.e. χ = pw(χ), ∀χ, then the

optimum of (C.1) is attained regardless of the value of the entries [χt]i,j,nf , (i, j) /∈ Ωt,

which would render this estimator useless. Thus, some form of capacity/complexity control

is necessary [26]. For instance, one can (i) impose constraints on w, (ii) add a regular-

ization term to the objective function, or (iii) limit capacity through the design of the

network architecture. Approach (iii) will be discussed further in Sec. C.3.4. To simplify

the exposition, expressions in this paper will not display constraints or regularizers, but

it is understood that the user may include them if necessary.
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After w = ŵ has been obtained by applying (C.1) with sufficiently large T , one can

complete further tensors Ψ̃t by setting w in (C.1) to this learned vector ŵ and optimize

only with respect to {χt}t, which is computationally simpler.

The number of optimization variables in (C.1) is Nw + NxNyNfT , where Nw is the

length of w. This number is prohibitive for high T , as required for training deep neural

networks. Besides, even with the aforementioned simplified approach that only optimizes

with respect to {χt}t, a large number of forward and backward backpropagation passes [22,

Ch. 6] are required to estimate each map. Thus, this approach is not suitable for real-time

implementation, as required in spectrum cartography applications.

To alleviate this limitation, a simple alternative would be to just feed Ψ̃ to the neural

network and train by solving

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̃t)

)∥∥∥2

F
. (C.2)

Although the missing entries were filled with zeros in Sec. C.3.1, one can alternatively

use other real numbers. After (C.2) is solved, Ψ̃ can be completed just by evaluating

pw(Ψ̃), which requires a single forward pass. Besides, solving (C.2) involves just Nw

optimization variables. However, because the completion step pw(Ψ̃) does not involve Ω,

poor performance is expected since the network cannot distinguish missing entries from

measurements close to the filling value.

In the application at hand, one could circumvent this limitation by expressing the

entries of Ψ̃ in natural power units (e.g. Watt) and filling the misses with a negative

number such as -1. Unfortunately, the usage of finite-precision arithmetic would introduce

large errors in the map estimates and is problematic in our experience. For this reason,

expressing Ψ̃ in logarithmic units such as dBm is preferable. However, the problem of

distinguishing missing entries persists since logarithmic units are not confined to be non-

negative.

A more practical approach is to complement the input of the network with a binary

mask that indicates which entries are observed, as proposed in the image inpainting

literature [27]. In this case, the binary mask MΩ ∈ {0, 1}Ny×Nx associated with the

sampling set Ω is given by [MΩ]i,j = 1 if (i, j) ∈ Ω and [MΩ]i,j = 0 otherwise.

To simplify notation, let Ψ̌ ∈ RNy×Nx×Nf+1 denote a tensor obtained by concatenating

Ψ̃ and MΩ along the third dimension. The neural network can therefore be trained as

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̌t)

)∥∥∥2

F
(C.3)

and, afterwards, a tensor Ψ̃ can be completed just by evaluating pw(Ψ̌). Then, this

scheme is simple to train, inexpensive to test, and exploits information about the location

of the misses.

C.3.3 Learning in Real-World Scenarios

A key novelty in this paper is to obtain map estimators by learning from data. This

section describes how to construct a suitable training set in the application at hand.
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The first consideration pertains to ill-conditioning issues arising when the number of

frequencies Nf in F is large, as will typically be the case. Suppose that the first layer

of pw is fully connected and has NN neurons. Its total number of parameters becomes

(NyNxNf + 1)NN plus possibly additional parameters of the activation functions. Other

layers will experience the same issue to different extents. Since T must be comparable to

the number of unknowns to train the network effectively, the impact of a large Nf is to

drastically limit the number of layers or neurons that can be used.

Previous approaches in spectrum cartography experienced similar issues, which were

often addressed by the introduction of parametric models along the frequency domain;

see e.g. [8,16]. Although such an approach can be similarly adopted in the present work,

thereby reducing the number of channels at the neural network input from Nf + 1 to a

much smaller number, it will be argued next that directly separating the problem across

frequencies may be preferable when training a deep neural network. The idea is that

propagation phenomena at similar frequencies are expected to be similar. Building upon

this principle, pw can operate separately at each frequency f . This means that training

can be accomplished through

minimize
w

1

TNf

T∑
t=1

∑
f∈F

∥∥∥PΩt

(
Ψ̃t(f)− pw(Ψ̌t(f))

)∥∥∥2

F
, (C.4)

where Ψ̌t(f) ∈ RNy×Nx×2 is a tensor with first frontal slab given by Ψ̃t(f) and second

frontal slab given by MΩt .

Observe that the number of variables is now reduced by a factor of Nf whereas the

“effective” number of training examples has been multiplied by Nf ; cf. number of sum-

mands in (C.4). This is a drastic improvement especially when Nf takes values such as

512 or 1024, as customary in spectral analysis. Thus, such a frequency separation allows

an increase in the number of neurons per layer or (typically more useful [22, Ch. 5])

the total number of layers for a given T . Although such a network would not exploit

structure across the frequency domain, the fact that it would be better trained is likely

to counteract this limitation in many setups.

The next step is to construct the data set, for which three approaches are discussed

next:

C.3.3.1 Synthetic Training Data

Since collecting a large number of training maps may be slow or expensive, one can in-

stead generate maps using a mathematical model or simulator that captures the structure

of the propagation phenomena; see e.g. [28]. Fitting pw to data generated by that model

could, in principle, yield an estimator that effectively exploits the path loss and shad-

owing structure. The idea is therefore to generate T maps {Ψt(x, f)}Tt=1 together with

T sampling sets {Ωt}Tt=1. Afterwards, {Ψ̃t}Tt=1 and {Ψ̌t}Tt=1 can be formed as described

earlier. It is possible to add artificially generated noise to the synthetic measurements in

Ψ̌t to model the effect of measurement error. This would train the network to counteract

the impact of such error, along the lines of denoising autoencoders [22, Ch. 14]. The

advantage of this approach is that one has access to the ground truth, i.e., one can use
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the true maps Ψt as targets. Specifically, the neural network can be trained on the data

{(Ψ̌t,Ψt)}Tt=1 by solving

minimize
w

1

TNf

T∑
t=1

∑
f∈F

∥∥Ψt(f)− pw(Ψ̌t(f))
∥∥2

F
. (C.5)

If the model or simulator is sufficiently close to the reality, completing a real-world map

Ψ̌(f) as pw(Ψ̌(f)) should produce an accurate estimate.

C.3.3.2 Real Training Data

In practice, real maps may be available for training. However, in most cases, it will not

be possible to collect measurements at all grid points before the map changes. Besides, it

is not possible to obtain the entries of Ψ but only measurements of it. This means that

a real training set is of the form {Ψ̌t, t = 1, . . . , T}.
For training, one can plug this data directly into (C.4). However, pw may then focus

on learning just the values {[Ψ̃t(f)]i,j, (i, j) ∈ Ωt}, as would happen e.g. when pw is the

identity mapping. To counteract this trend, one can use one part of the measurements

as the input and another part as the output (target). For each t, construct the Qt pairs

of (not necessarily disjoint) subsets Ω
(I)
t,q ,Ω

(O)
t,q ⊂ Ωt, q = 1, . . . , Qt, e.g by drawing a given

number of elements of Ωt uniformly at random without replacement. Using these subsets,

subsample Ψ̃t(f) to yield Ψ̃
(I)

t,q (f):=P
Ω

(I)
t,q

(Ψ̃t(f)) and Ψ̃
(O)

t,q (f):=P
Ω

(O)
t,q

(Ψ̃t(f)). With these

TNf

∑
tQt training examples, one can think of training as

minimize
w

1
TNf

∑
tQt

∑
f∈F

∑T
t=1

∑Qt
q=1

∥∥∥P
Ω

(O)
t,q

(
Ψ̃

(O)
t,q (f)− pw

(
Ψ̌

(I)

t,q (f)
))∥∥∥2

F
, (C.6)

where Ψ̌
(I)

t,q (f) has Ψ̃
(I)
t,q (f) and M

Ω
(I)
t,q

as frontal slabs.

C.3.3.3 Hybrid Training

In practice, one expects to have real data, but only in a limited amount. It makes sense

to apply the notion of transfer learning [22, Ch. 15] as follows: first, learn an initial

parameter vector ŵ by solving (C.5) with synthetic data. Second, solve (C.6) with real

data, but using ŵ as initialization for the optimization algorithm. The impact of choosing

this initialization is that the result of solving (C.6) in the second step will be closer to a

“better” local optimum than if a worse initialization were adopted.

C.3.4 Deep Completion Autoencoders

This section proposes a deep neural network architecture based on convolutional autoen-

coders [29].

A (conventional) autoencoder [22, Ch. 12] is a neural network pw composed of two

parts, an encoder εw and a decoder δw, which satisfy pw(Φ) = δw(εw(Φ)) ∀Φ. The output

of the encoder λ:=εw(Φ) ∈ RNλ is referred to as the code or vector of latent variables and

is of a typically much lower dimension than the input Φ. An autoencoder is trained so
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Figure C.2: Estimation with Nλ = 4 latent variables: (left) true map, (middle) sampled

map portraying grid points {ξi,j} with |Ai,j| > 0, and (right) estimated map.

that δw(εw(Φ)) ≈ Φ ∀Φ, which forces the encoder to compress the information in Φ into

the Nλ variables in λ. The selection of Nλ will be addressed later.

A completion autoencoder adheres to the same principles as conventional autoen-

coders except for the fact that the encoder must determine the latent variables from a

subset of the entries of the input. If a mask is used, the transfer function must satisfy

Φ ≈ δw(εw(PΩ(Φ),MΩ)) ∀Φ and for a sampling set Ω that preserves sufficient infor-

mation for reconstruction. If Ω does not satisfy this requirement, then reconstructing Φ

is impossible regardless of the technique used. In the application at hand and with the

notation introduced in previous sections, the above expression becomes Ψ̃ ≈ δw(εw(Ψ̌)).

As indicated earlier, autoencoders are useful only when most of the information in

the input can be condensed in Nλ variables, i.e., when the possible inputs lie close to

a manifold of dimension Nλ. To see that this is the case in spectrum cartography, an

illustrating toy example is presented next. Suppose that there are two sources, each one

with a fixed (yet possible different) power, that can be placed at arbitrary positions in X
and suppose that propagation occurs in free space. All possible spectrum maps in this

setup are defined by Nλ = 4 quantities, which correspond to the x and y coordinates of

the two sources. Fig. C.2 illustrates this effect, where the left panel of Fig. C.2 depicts

a true map Ψ and the right panel shows its estimate using a completion autoencoder

with Nλ = 4. The quality of the estimate clearly supports the aforementioned manifold

hypothesis. Details about the network and simulation setup are provided in Sec. C.4. In

a real-world scenario, there may be more than two sources, their transmit power may not

always be the same, and there are shadowing effects, which means that Nλ ≥ 4 will be

required.

Since space limitations prevent us from detailing every design decision, the rest of this

section will be confined to outline the main aspects of the architecture developed in this

work and summarized in Fig. C.3.

The encoder mainly comprises convolutional and pooling layers. The motivation for

convolutional layers is three-fold: (i) relative to fully connected layers, they severely re-

duce the number of parameters to train and, consequently, the amount of data required.

Despite this drastic reduction, (ii) convolutional layers are still capable of exploiting the

spatial structure of maps and (iii) they result in shift-invariant transfer functions, a de-

sirable property in the application at hand since moving the sources in a certain direction
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Figure C.3: Autoencoder architecture.

Table C.1: Parameters of the proposed network.

Layers Parameters

Conv2D/

Conv2DTranspose
Kernel size = 3 × 3, stride = 1, activation = PLReLU,

64 filters

AveragePooling2D Pool size = 2, stride = 2

Upsampling2D Up-sampling factor = 2, bilinear interpolation

Dense 64 neurons (encoder), 1024 neurons (decoder)

Figure C.4: Power map estimate with the proposed neural network. (left): true map,

(center left): sampled map portraying the locations of the grid points {ξi,j} where |Ai,j| >
0; (center right) and (right): estimated maps. White areas represent buildings.

must be corresponded by the same movement in the estimated map. These layers compute

[Φ(O)]i,j,cout =

Cin∑
cin=1

k∑
u=−k

k∑
v=−k

[Fcout ]u,v,cin [Φ(I)]i−u,j−v,cin ,
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where Φ(O) is the output tensor, Φ(I) is the input tensor, and Fcout is the cout-th filter

(or kernel), which is of size 2k + 1 × 2k + 1. Layer indices were omitted in order not to

overload notation. The activation functions used here are parametric leaky rectified linear

units (PLReLUs) [30] whose leaky parameter is also trained.

On the other hand, average pooling layers down-sample the outputs of convolutional

layers, thereby condensing the information gradually in fewer features. Additionally,

pooling features are approximately shift invariant as well [22, Ch. 9].

The last layer of the encoder is fully-connected. Since the previous layers were con-

strained to be convolutional or pooling layers, a final fully-connected layer is included in

the encoder so that the latent variables can capture arbitrary relations among the shift

invariant features obtained by the output of the second-to-last layer.

As usual in autoencoders, the decoder follows a “reverse” architecture relative to the

encoder. Wherever the encoder has a convolutional layer, the decoder has a correspond-

ing convolution transpose layer [31], sometimes called “deconvolutional” layer. Likewise,

the pooling layers of the encoder are matched with up-sampling layers, which use bilinear

interpolation in the architectures that we investigated. Finally, the fully connected layer

of the encoder is paired with a fully connected layer in the decoder. The overall network

architecture is summarized in Fig. C.3 and Table C.1.

C.4 Numerical Experiments

This section validates the proposed framework and network architecture through nu-

merical experiments. Due to space limitations, the focus is on the most fundamental

cartographic aspects, where the main novelty resides. Thus, F is set to the single-

ton F = {900 MHz}. X is a square area of side 100 m, discretized into a grid with

Ny = Nx = 32. The two considered transmitters have height 1.5 m and transmit power

11 and 7 dBm over a bandwidth of 5 MHz.

Two classes of maps are generated. First, T = 4 · 105 maps are obtained where

the two transmitters are placed uniformly at random and where propagation adheres to

the Gudmundson model [32] with pathloss exponent 3, gain at unit distance −30 dB,

and shadowing correlation E {Hl(x1, f)Hl(x2, f)} = σ2
sh0.95||x1−x2|| with σ2

sh = 10 dB2.

Sensors are distributed uniformly at random without replacement across the grid points.

A separate set of maps is generated using Remcom’s Wireless InSite software in an urban

scenario. Sensors are distributed uniformly at random without replacement across the grid

points that lie on the streets. To better observe the impact of propagation phenomena,

υ(x, f) is set to 0. Each measurement Ψ̃(ξi,j, f) is obtained by adding zero-mean Gaussian

noise with standard deviation 1 dB to Ψ(ξi,j, f), (i, j) ∈ Ω.

The network proposed in Sec. C.3.4 is implemented in TensorFlow and trained using

the ADAM solver with learning rate 10−4. Due to lack of space, only one training ap-

proach can be analyzed, in this case (C.5) with {(Ψ̌t,Ψt)}Tt=1 the Gudmundson data set.

The algorithm is compared against the state-of-the-art competitors described next, whose

parameters were tuned to approximately optimize their performance in the second exper-

iment. (i) The kriging algorithm in [1] with regularization parameter 10−5 and Gaussian
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Figure C.5: Comparison with state-of-the-art alternatives. Even though the parameters

of the competing algorithms were tuned for this specific experiment, the proposed network

offers a markedly better performance.

radial basis functions with parameter σK :=3
√

∆yNy∆xNx/|Ω|, which is approximately 3

times the mean distance between two points at which measurements have been collected.

(ii) The multikernel algorithm in [17] with 20 Laplacian kernels with parameter uniformly

spaced between [0.1σK , σK ] and regularization parameter 10−4. As a benchmark, (iii)

the K-nearest neighbors (KNN) algorithm with K = 5 is also shown.

The first experiment shows an estimated map using the proposed algorithm. The first

panel of Fig. C.4 depicts the true map, which was generated using the Remcom data

set. The second panel shows Ψ̃ whereas the third and fourth show map estimates using

different numbers of measurements. Observe that with just |Ω| = 52 measurements, the

estimate is already of a high quality. Note that details due to diffraction or the directivity

of the antennas are not reconstructed because the Gudmundson model used to train the

network does not capture them and therefore the network did not learn these features.

This illustrates the need for training over data sets that model the reality as close as

possible.

The second experiment compares the root mean square error

RMSE =

√
E{||Ψ− Ψ̂||2F}

NyNx

,

of the aforementioned algorithms, where Ψ is the true map, drawn at random from the

Gudmundson data set, Ψ̂ is the estimated map, and E{·} denotes expectation over maps,

noise, and sensor locations. From Fig. C.5, the proposed scheme performs approximately

a 20 % better than the next competing alternative. The parameters of the competing

algorithms were tuned for this specific experiment, so their performance as in Fig. C.5 is

optimistic. In practice one must expect a greater performance gap.
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C.5 Conclusions

Learning propagation features from data yields spectrum cartography algorithms that

require fewer measurements to attain a target performance. Deep neural networks can

bring this idea into practice and offer a performance that beats the state-of-the-art. Future

work will design more sophisticated network architectures relying on larger data sets.
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Deep Completion Autoencoders for

Radio Map Estimation
Yves Teganya and Daniel Romero

Abstract —Radio maps provide metrics such as power spectral density for

every location in a geographic area and find numerous applications such as

UAV communications, interference control, spectrum management, resource

allocation, and network planning to name a few. Radio maps are constructed

from measurements collected by spectrum sensors distributed across space.

Since radio maps are complicated functions of the spatial coordinates due to

the nature of electromagnetic wave propagation, model-free approaches are

strongly motivated. Nevertheless, all existing schemes rely on interpolation

algorithms unable to learn from data. In contrast, this paper proposes a novel

approach in which the spatial structure of propagation phenomena such as

shadowing is learned beforehand from a data set with measurements in other

environments. Relative to existing schemes, a significantly smaller number

of measurements is therefore required to estimate a map with a prescribed

accuracy. As an additional novelty, this is also the first work to estimate radio

maps using deep neural networks. Specifically, a deep completion autoencoder

architecture is developed to effectively exploit the manifold structure of this

class of maps.

Keywords— Radio maps, spectrum cartography, deep learning, completion autoen-

coders, electromagnetic wave propagation.

D.1 Introduction

Spectrum cartography comprises a collection of techniques to construct radio maps, which

provide channel metrics such as received signal power, interference power, power spectral

density (PSD), electromagnetic absorption, or channel gain across a geographic area; see

e.g. [1–4]. Besides applications related to localization [2, 5] and radio tomography [6, 7],

radio maps find a myriad of applications in wireless communications such as network

planning, interference coordination, power control, spectrum management, resource al-

location, handoff procedure design, dynamic spectrum access, and cognitive radio; see

e.g. [8–10]. More recently, radio maps have been widely recognized as an enabling tech-

nology for UAV communications because they allow autonomous UAVs to account for

communication constraints when planning a mission; see e.g. [11–14].

Radio maps are estimated from measurements acquired by spectrum sensors or mo-

bile devices. Most approaches build upon some interpolation algorithm. For example,

power maps have been constructed through kriging [1, 15–17], compressive sensing [3],

dictionary learning [18, 19], matrix completion [20], Bayesian models [21], radial basis

functions [22, 23], and kernel methods [24]. PSD map estimators have been developed

using sparse learning [2], thin-plate spline regression [25], kernel-based learning [10, 26],



D.2. PSD MAP ESTIMATION PROBLEM 110

and tensor completion [27, 28]. Related approaches have been adopted in [7, 29–31] to

propose channel-gain map estimators.

Unfortunately, none of the existing approaches can learn from data, which suggests

that their estimation performance can be significantly improved along this direction.1

To this end, the first contribution of this work is a data-driven paradigm for radio map

estimation. The idea is to learn the spatial structure of relevant propagation phenomena

such as shadowing, reflection, and diffraction using a data set of past measurements in

different environments. Intuitively, learning how these phenomena evolve across space can

significantly reduce the number of measurements required to achieve a given estimation

accuracy. This is a critical aspect since the time interval in which measurements are col-

lected needs to be sufficiently short relative to the temporal variations of the target map

in real-world scenarios (coherence time). The second contribution comprises a PSD map

estimation algorithm based on a deep neural network. To cope with the variable number

of measurements, a tensor completion task is formulated based on a spatial discretization

of the area of interest and addressed by means of a completion network with an encoder-

decoder architecture. This structure is motivated by the observation that radio maps lie

close to a low-dimensional manifold embedded in a high-dimensional space. Extensive

experiments using a realistic data set obtained with Remcom’s Wireless InSite simulator

reveal that the proposed algorithm markedly outperforms state-of-the-art radio map es-

timators. This data set will be posted along with the code and trained neural networks

at the authors’ web sites.

The novelty of this work is twofold: (i) it is the first to propose data-driven spec-

trum cartography; (ii) it is the first to propose a deep learning algorithm for radio map

estimation.

The rest of this paper is organized as follows. Sec. D.2 formulates the problem of

PSD map estimation. Sec. D.3 introduces the aforementioned data-driven radio map

estimation paradigm and proposes a deep neural network architecture based on completion

autoencoders. Simulations and conclusions are respectively provided in Secs. D.4 and D.5.

Notation: |A| denotes the cardinality of set A. Bold uppercase (lowercase) letters

denote matrices or tensors (column vectors), [a]i is the i-th entry of vector a, [A]i,j is

the (i, j)-th entry of matrix A, and [B]i,j,k is the (i, j, k)-th entry of tensor B. Finally,

A> is the transpose of matrix A.

D.2 PSD map Estimation Problem

This section formulates the problem of PSD map estimation. The problem where power

maps must be estimated can be recovered as a special case of PSD map estimation in a

single frequency.

1The conference version of this work [32] presents the core ideas here. Relative to [32], the present paper

contains improved neural network architectures (including fully convolutional networks), a methodology

for PSD estimation with basis expansion models, and extensive empirical validation and comparison with

existing algorithms through a realistic data set. Some of the ideas in [33] are similar to those in [32].

However, since the former was submitted after our paper [32], it is regarded as parallel work.
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Consider L transmitters, or sources, located in a geographic region of interest X ⊂ R2

and operating in a certain frequency band. Let Υl(f) denote the transmit PSD of the

l-th source and let Hl(x, f) represent the frequency response of the channel between the

l-th source and a receiver with an isotropic antenna at location x ∈ X . Both Υl(f) and

Hl(x, f) are assumed to remain constant over time; see Remark 6.

If the L signals are uncorrelated, the PSD at x ∈ X is

Ψ(x, f) =
∑L

l=1 Υl(f)|Hl(x, f)|2 + υ(x, f), (D.1)

where υ(x, f) models thermal noise, background radiation noise, and interference from re-

mote sources. A certain number of devices with sensing capabilities, e.g. user terminals in

a cellular network, collect PSD measurements {Ψ̃(xn, f)}Nn=1 at N locations {xn}Nn=1 ⊂ X
and at a finite set of frequencies f ∈ F ; see also Remark 6. These frequency measure-

ments can be obtained using e.g. periodograms or spectral analysis methods such as the

Bartlett or Welch method [34].

These measurements are sent to a fusion center, which may be e.g. a base station, a

mobile user, or a cloud server, depending on the application. Given {(xn, Ψ̃(xn, f)), n =

1, . . . , N, f ∈ F}, the problem that the fusion center needs to solve is to find an estimate

Ψ̂(x, f) of Ψ(x, f) at every location x ∈ X and frequency f ∈ F . Function Ψ(x, f) is

typically referred to as the true map, whereas Ψ̂(x, f) is the map estimate. An algorithm

that produces Ψ̂(x, f) is termed map estimator.

A natural error metric is the energy
∑

f

∫
X |Ψ(x, f)− Ψ̂(x, f)|2dx. One can quantify

the performance of a map estimator in terms of the expectation of this error for a given

N or, equivalently, in terms of the minimum N required to guarantee that the expected

error is below a prescribed bound.

Remark 5 The channel Hl(x, f) is usually decomposed into path loss, shadowing, and

fast fading components. Whereas path loss and shadowing typically vary in a scale of

meters, fast fading changes in a scale comparable to the wavelength. Since contempo-

rary wireless communication systems utilize wavelengths in the order of millimeters or

centimeters, estimating this fast fading component would require knowing the sensor loca-

tions {xn}n with an accuracy in the order of millimeters, which is not possible e.g. with

current global navigation satellite systems (GNSSs). Thus, it is customary to assume that

the effects of fast fading have been averaged out and, hence, Hl(x, f) captures only path

loss and shadowing. This is especially well-motivated in scenarios where sensors acquire

measurements while moving.

Remark 6 Υl(f) and Hl(x, f) can be assumed constant over time so long as the mea-

surements are collected within an interval of shorter length than the channel coherence

time and time scale of changes in Υl(f). The latter is highly dependent on the specific

application. For example, one expects that significant variations in DVB-T bands occur

in a scale of several months, whereas Υl(f) in LTE bands may change in a scale of mil-

liseconds. In any case, a sensor that moves may collect multiple measurements over this

interval where Υl(f) and Hl(x, f) remain approximately constant, which could render the

number of measurements significantly larger than the number of sensors.
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D.3 Data-Driven Radio Map Estimation

All existing map estimators rely on interpolation algorithms that do not learn from data.

However, it seems natural that an algorithm can be trained to learn how to solve the

problem in Sec. D.2 using a record of past measurements, possibly in other geographic

regions. Specifically, besides D:={(xn, Ψ̃(xn, f)),xn ∈ X , f ∈ F , n = 1, . . . , N},
a number of measurement records of the form Dt:={(xnt, Ψ̃t(xnt, f)), xnt ∈ Xt, f ∈
F , n = 1, . . . , Nt}, t = 1, . . . , T , may be available, where Dt contains Nt measurements

collected in the geographic area Xt; see Sec. D.3.5. With this additional data, a better

performance is expected when estimating Ψ(x, f).

The rest of this section develops deep learning estimators that address this data-

aided formulation. To this end, Sec. D.3.1 starts by reformulating the problem at hand

as a tensor completion task amenable to application of deep neural networks. Subse-

quently, Sec. D.3.2 addresses unique aspects of tensor/matrix completion via deep learn-

ing. Sec. D.3.3 discusses how to exploit structure in the frequency domain. Finally,

Secs. D.3.4 and D.3.5 respectively describe how to learn the spatial structure of propaga-

tion phenomena via the notion of completion autoencoders and how these networks can

be trained in real-world scenarios.

D.3.1 Map Estimation as a Tensor Completion Task

Observe that N and Nt depend on the number and movement of the sensors relative to

the time-scale of temporal variations in Ψ(x, f) and Ψt(x, f), respectively; cf. Remark 6.

In principle, one could think of using a separate map estimator for each possible value of

N . Each estimator could be relatively simple since it would always take the same number

of inputs. However, such an approach would be highly inefficient in terms of memory,

computation, and prone to erratic behavior since each estimator would have different

parameters or be trained with a different data set. Thus, it is more practical to rely on a

single estimator that can accommodate an arbitrary number of measurements.

Given their well-documented merits in a number of tasks, deep neural networks consti-

tute a sensible framework to develop radio map estimators. However, regular feedforward

neural networks cannot directly accommodate inputs of variable size. To bypass this

difficulty, the approach pursued here relies on a spatial discretization amenable to appli-

cation of feedforward architectures [35, Ch. 6]. Similar discretizations have been applied

in [20,27,36,37].

To introduce the appropriate notation, this discretization is briefly outlined for D; the

extension to Dt follows the same lines. Define an Ny × Nx rectangular grid over X , as

depicted in Fig. D.1. This grid comprises points ξi,j evenly spaced by ∆x and ∆y along the

x- and y-axes respectively, that is, the (i, j)-th grid point is given by ξi,j := [j∆x, i∆y]
>,

with i = 1, . . . , Ny, j = 1, . . . , Nx. For future usage, define Ai,j ⊂ {1, . . . , N} as the set

containing the indices of the measurement locations assigned to the (i, j)-th grid point by

the criterion of minimum distance, i.e., n ∈ Ai,j iff ||ξi,j − xn|| ≤ ||ξi′,j′ − xn|| ∀i′, j′.
This grid induces a discretization of Ψ(x, f) along the x variable. One can therefore

collect the true PSD values at the grid points in matrix Ψ(f) ∈ RNy×Nx , f ∈ F , whose
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Figure D.1: Model setup and area discretization.

(i, j)-th entry is given by [Ψ(f)]i,j = Ψ(ξi,j, f). By letting F = {f1, . . . , fNf}, it is

also possible to concatenate these matrices to form the tensor Ψ ∈ RNy×Nx×Nf , where

[Ψ]i,j,nf = Ψ(ξi,j, fnf ), nf = 1, . . . , Nf . For short, the term true map will either refer to

Ψ(x, f) or Ψ.

Similarly, one can collect the measurements in a tensor of the same dimensions. In-

formally, if the grid is sufficiently fine (∆x and ∆y are sufficiently small), it holds that

xn ≈ ξi,j ∀n ∈ Ai,j and, correspondingly, Ψ(xn, f) ≈ Ψ(ξi,j, f) ∀n ∈ Ai,j. It follows that,

Ψ(ξi,j, f) ≈ 1

|Ai,j|
∑
n∈Ai,j

Ψ(xn, f)

whenever |Ai,j| > 0. Therefore, it makes sense to aggregate the measurements assigned

to ξi,j as2

Ψ̃(ξi,j, f):=
1

|Ai,j|
∑
n∈Ai,j

Ψ̃(xn, f).

Conversely, when |Ai,j| = 0, there are no measurements associated with ξi,j, in which case

one says that there is a miss at ξi,j. Upon letting Ω ⊂ {1, . . . , Ny}× {1, . . . , Nx} be such

that (i, j) ∈ Ω iff |Ai,j| > 0, all aggregated measurements Ψ̃(ξi,j, f) can be collected into

Ψ̃(f) ∈ RNy×Nx , defined as

[Ψ̃(f)]i,j =

{
Ψ̃(ξi,j, f) if (i, j) ∈ Ω

0 otherwise.

Note that misses have been filled with zeroes, but other values could have been used.

When (i, j) ∈ Ω, the values of [Ψ̃(f)]i,j and [Ψ(f)]i,j differ due to the error introduced

by the spatial discretization as well as due to the measurement error incurred when

measuring Ψ(xn, f), n ∈ Ai,j. The latter is caused mainly by the finite time devoted by

sensors to take measurements, their movement, localization errors, and possible variations

of Ψ(xn, f) over time.

As before, the matrices Ψ̃(f), f = 1, . . . , Nf can be concatenated to form Ψ̃ ∈
RNy×Nx×Nf , where [Ψ̃]i,j,nf = [Ψ̃(fnf )]i,j. For short, this tensor will be referred to as

the sampled map. With this notation, the cartography problem stated in Sec. D.2 will

be approximated as estimating Ψ given Ω and Ψ̃.

2For simplicity, the notation implicitly assumes that xn 6= ξi,j ∀n, i, j, but this is not a requirement.
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D.3.2 Completion Networks for Radio Map Estimation

The data in the problem formulation at the end of Sec. D.3.1 cannot be handled by plain

feedforward neural networks since they cannot directly accommodate input misses and

set-valued inputs like Ω. This section explores how to bypass this difficulty.

But before that, a swift refresh on deep learning is in order. A feedforward deep

neural network is a function pw that can be expressed as the composition pw(Φ) =

p
(L)
wL(p

(L−1)
wL−1 (. . . p

(1)
w1(Φ))) of layer functions p

(l)
wl , where Φ is the input. Although there is

no commonly agreed definition of layer function, it is typically formed by concatenating

simple scalar-valued functions termed neurons that implement a linear function followed

by a non-linear function known as activation [35]. The term neuron stems from the

resemblance between these functions and certain simple functional models for natural

neurons. Similarly, there is no general agreement on which values of L qualify for pw to

be regarded a deep neural network, but in practice L may range from tens to thousands.

With vector wl containing the parameters, or weights, of the l-th layer, the parameters

of the entire network can be stacked as w:=[w>1 , . . . ,w
>
L ]> ∈ RNw . These parameters are

learned using a training set in a process termed training.

The rest of this section designs p
(1)
w1 to cope with missing data, whereas Secs. D.3.3

and D.3.4 will address the design of the other layers. Throughout, the training examples

will be represented by {(Ψ̃t,Ωt)}Tt=1, where Ψ̃t and Ωt are obtained from Dt by applying

the procedure described in Sec. D.3.1.

The desired estimator should obtain Ψ as a function of Ψ̃ and Ω. Following one of the

early approaches to accommodate misses in deep neural networks [38], one could think of

solving

minimize
{χt}t,w

1

T + 1

T+1∑
t=1

‖PΩt (χt − pw(χt))‖2
F , (D.2)

[χt]i,j,nf = [Ψ̃t]i,j,nf ∀nf ,∀(i, j) ∈ Ωt,

where Ψ̃T+1:=Ψ̃ and ΩT+1:=Ω correspond to the test measurements, ||A||2F :=
∑

i,j,nf
[A]2i,j,nf

is the squared Frobenius norm of tensor A, and PΩ(A) is defined by [PΩ(A)]i,j,nf =

[A]i,j,nf if (i, j) ∈ Ω and [PΩ(A)]i,j,nf = 0 otherwise. The map estimate produced by

(D.2) method would be Ψ̂:=χT+1.

In (D.2) and other expressions throughout, regularizers and capacity-control con-

straints are not explicitly shown to simplify the notation, but they can be readily ac-

commodated.

The number of optimization variables in (D.2) is Nw + NxNyNf (T + 1), where Nw

is the length of w. Unfortunately, this number is prohibitive for a large T , as required

for training deep neural networks. Besides, a large number of forward and backward

backpropagation passes [35, Ch. 6] are required to estimate each map. Thus, this approach

is not suitable for real-time implementation, as usually required in radio map estimation.

To alleviate this limitation, a simple alternative would be to directly feed Ψ̃ to the

neural network and train by solving

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̃t)

)∥∥∥2

F
. (D.3)
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Although the missing entries were filled with zeros in Sec. D.3.1, one can alternatively use

other real numbers. After (D.3) is solved, Ψ̃ can be completed just by evaluating pw(Ψ̃),

which requires a single forward pass. Besides, solving (D.3) involves just Nw optimization

variables.

However, because the completion pw(Ψ̃) does not account for Ω, poor performance is

expected since the network cannot distinguish missing entries from measurements close

to the filling value. In the application at hand, one could circumvent this limitation by

expressing the entries of Ψ̃ in natural power units (e.g. Watt) and filling the misses with a

negative number such as -1. Unfortunately, the usage of finite-precision arithmetic would

introduce large errors in the map estimates and is problematic in our experience. For this

reason, expressing Ψ̃ in logarithmic units such as dBm is preferable. However, in that

case, filling misses with negative numbers would not solve the aforementioned difficulty

since logarithmic units are not confined to take non-negative values. Hence, a preferable

alternative is to complement the input map with a binary mask that indicates which

entries are observed, as proposed in the image inpainting literature [39]. Specifically, a

mask MΩ ∈ {0, 1}Ny×Nx can be used to represent Ω by setting [MΩ]i,j = 1 if (i, j) ∈ Ω

and [MΩ]i,j = 0 otherwise. To simplify notation, let Ψ̌ ∈ RNy×Nx×Nf+1 denote a tensor

obtained by concatenating Ψ̃ and MΩ along the third dimension. The neural network

can therefore be trained as

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̌t)

)∥∥∥2

F
, (D.4)

and, afterwards, a tensor Ψ̃ can be completed just by evaluating pw(Ψ̌). Then, this

scheme is simple to train, inexpensive to test, and exploits information about the location

of the misses.

Remark 7 The introduction of a binary mask to indicate the sensor locations suggests an

approach to accommodate additional side information that may assist in map estimation.

For example, one can append an additional mask M ′ ∈ RNy×Nx where [M ′]i,j indicates,

for instance, the height of obstacles such as buildings at ξi,j or the kind of propagation

terrain (e.g. urban, suburban, etc) where ξi,j lies. In this case, tensor Ψ̌ ∈ RNy×Nx×Nf+1

can be replaced with its augmented version of size Ny × Nx × (Nf + Nm) obtained by

concatenating Nm − 1 such masks to Ψ̃ and MΩ. Another (possibly complementary)

approach is to combine multiple masks into a single matrix. For example, suppose that

all measurements are taken outdoors and let B ⊂ {1, . . . , Ny} × {1, . . . , Nx} be such that

(i, j) ∈ B iff ξi,j is inside a building. Then, the information in B and Ω can be combined

into MΩ,B ∈ {0, 1,−1}Ny×Nx, where [MΩ,B]i,j = 1 if (i, j) ∈ Ω, [MΩ,B]i,j = −1 if

(i, j) ∈ B, and [MΩ,B]i,j = 0 otherwise. Masks of this kind can be similarly concatenated

to Ψ̃ to form an augmented tensor Ψ̌. The rest of the paper will use symbol Ψ̌ to refer to

the result of concatenating Ψ̃ with the available masks.

Remark 8 The proposed deep learning framework offers an additional advantage: the

tensors in the objective functions throughout (e.g. (D.3), (D.4)) can be expressed in dB

units. This is not possible in most existing approaches, which rely on convex solvers.

Consequently, existing algorithms would focus on fitting large power values and will neglect
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errors at those locations with low power values. Given its greater practical significance,

it will be assumed throughout that all tensors are expressed in dB units before evaluating

the Frobenius norms.

D.3.3 Exploiting Structure in the Frequency Domain

In practice, different degrees of prior information may be available when estimating a

PSD map. Sec. D.3.3.1 will address the scenario in which no such information is available,

whereas Sec. D.3.3.2 will develop an output layer that exploits a common form of prior

information available in real-world applications.

D.3.3.1 No Prior Information

It will be first argued that the plain training approach in (D.4) is likely to be ill-posed

in practical scenarios when the network does not enforce or exploit any structure in

the frequency domain. To see this, suppose that the number of frequencies Nf in F is

significant, e.g. 512 or 1024 as would typically occur in practice, and consider a fully

connected first layer p
(1)
w1 with NN neurons. Its total number of parameters becomes

(NyNx(Nf +Nm) + 1)NN plus possibly additional parameters of the activation functions.

Other layers will experience the same issue to different extents. Since T must be com-

parable to the number of parameters to train a network effectively, a large Nf would

drastically limit the number of layers or neurons that can be used for a given T .

In this case, it may be preferable to separate the problem across frequencies by noting

that propagation effects at similar frequencies are expected to be similar. Building upon

this principle, pw can operate separately at each frequency f . This means that training

can be accomplished through

minimize
w

1

TNf

T∑
t=1

∑
f∈F

∥∥∥PΩt

(
Ψ̃t(f)− pw(Ψ̌t(f))

)∥∥∥2

F
, (D.5)

where the input Ψ̌t(f) ∈ RNy×Nx×(1+Nm) is formed by concatenating Ψ̃t(f) and Nm masks;

see Remark 7.

Observe that the number of variables is roughly reduced by a factor of Nf , whereas

the “effective” number of training examples has been multiplied by Nf ; cf. number of

summands in (D.5). This is a drastic improvement especially for moderate values of Nf .

Thus, such a frequency separation allows an increase in the number of neurons per layer

or (typically more useful [35, Ch. 5]) the total number of layers for a given T . Although

such a network would not exploit structure across the frequency domain, the fact that it

would be better trained is likely to counteract this limitation in many setups.

D.3.3.2 Output Layers for Parametric PSD Expansions

Real-world communication systems typically adhere to standards that specify transmis-

sion masks by means of carrier frequencies, channel bandwidth, roll-off factors, number

of OFDM subcarriers, guard bands, location and power of pilot subcarriers, and so on.
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Figure D.2: PSD Ψ(x, f) at location x using a basis expansion model with Gaussian

functions.

It seems, therefore, reasonable to capitalize on such prior information for radio map es-

timation by means of a basis expansion model in the frequency domain like the one

in [10, 40, 41]. Even when the frequency form of the transmit PSD is unknown, a basis

expansion model is also motivated due to its capacity to approximate any PSD to some

extent; e.g. [2, 25].

Under a basis expansion model, the transmit PSD of each source is expressed as

Υl(f) =
∑B−1

b=1 πlbβb(f), (D.6)

where πlb denotes the expansion coefficients and {βb(f)}B−1
b=1 is a collection of B− 1 given

basis functions such as raised-cosine or Gaussian functions. Without loss of generality,

the basis functions are normalized so that
∫∞
−∞ βb(f)df = 1. In this way, if βb(f) is the

PSD of the b-th channel, as possibly specified by a standard, then πlb denotes the power

transmitted by the l-th source in the b-th channel. Substituting (D.6) into (D.1), the PSD

at x ∈ X reads as

Ψ(x, f) =
L∑
l=1

B−1∑
b=1

πlbβb(f)|Hl(x, f)|2 + υ(x, f).

Now assume that |Hl(x, f)|2 remains approximately constant over the support of each

basis function, i.e., |Hl(x, f)|2 ≈ |Hlb(x)|2 for all f in the support of βb(f). This is a

reasonable assumption for narrowband βb(f); if it does not hold, one can always split

βb(f) into multiple basis functions with a smaller frequency support until the assumption

holds. Then, the PSD at x can be written as

Ψ(x, f) =
B−1∑
b=1

πb(x)βb(f) + υ(x, f), (D.7)

where πb(x):=
∑L

l=1 πlb|Hlb(x)|2. If βb(f) models the transmit PSD of the b-th channel,

then πb(x) corresponds to the power of the b-th channel at x.

Observe that the noise PSD υ(x, f) can be similarly expressed in terms of a basis

expansion. To simplify the exposition, suppose that υ(x, f) is expanded with a single
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term as υ(x, f) ≈ πB(x)βB(f), which in turn implies that (D.7) becomes

Ψ(x, f) =
B∑
b=1

πb(x)βb(f). (D.8)

Fig. D.2 illustrates this expansion for B = 5 when {βb(f)}4
b=1 are Gaussian radial basis

functions and β5(f) is set to be constant to model the PSD of white noise. Note that

the adopted basis expansion furthermore allows estimation of the noise power πB(x) at

every location, thereby solving a fundamental problem in applications such as cognitive

radio [42].

With the above expansion, the tensor Ψ ∈ RNy×Nx×Nf introduced in Sec. D.3.1 can

be expressed as [Ψ]i,j,nf =
∑B

b=1 Πi,j,bβb(fnf ), where tensor Π ∈ RNy×Nx×B contains the

coefficients [Π]i,j,b = πb(ξi,j). In a deep neural network, this structure can be naturally

enforced by setting all but the last layer to obtain an estimate Π̂ of Π and the last layer

to produce Ψ̂. Specifically, the neural network can be expressed schematically as:

L
p̄w
−−−→ RNy×Nx×B

p(L)

−−−→ RNy×Nx×Nf

Ψ̌ −−−→ Π̂ −−−→ Ψ̂,

where L ⊂ RNy×Nx×(Nf+Nm) is the input space, function p̄w(Ψ̌):=p
(L−1)
wL−1 (. . . p

(1)
w1(Ψ̌))

groups the first L − 1 layers, and p(L) denotes the last layer. With this notation, Π̂ =

p̄w(Ψ̌) and Ψ̂ = p(L)(Π̂) ∈ RNy×Nx×Nf , where [Ψ̂]i,j,nf =
∑B

b=1 Π̂i,j,bβb(fnf ). Observe

that, as reflected by the notation, the last layer p(L) does not involve trainable parameters.

Furthermore, notice that the number of neurons in the last trainable layer has been

reduced from NyNxNf to NyNxB. This entails a significant reduction in the number

of parameters of the network and, as discussed in Sec. D.3.3.1, contributes to improve

estimation performance for a given T .

D.3.4 Deep Completion Autoencoders

The previous section addressed design aspects pertaining to the map structure in the

frequency domain. In contrast, this section deals with structure across space. In partic-

ular, a deep neural network architecture based on convolutional autoencoders [43] will be

developed.

A (conventional) autoencoder [35, Ch. 12] is a neural network pw that can be expressed

as the composition of a function εw termed encoder and a function δw called decoder, i.e.,

pw(Φ) = δw(εw(Φ)) ∀Φ. The output of the encoder λ:=εw(Φ) ∈ RNλ is referred to as

the code or vector of latent variables and is of a typically much lower dimension than the

input Φ. An autoencoder is trained so that δw(εw(Φ)) ≈ Φ ∀Φ, which forces the encoder

to compress the information in Φ into the Nλ variables in λ.

A completion autoencoder adheres to the same principles as conventional autoencoders

except for the fact that the encoder must determine the latent variables from a subset

of the entries of the input. If a mask is used, then Φ ≈ δw(εw(PΩ(Φ),MΩ)) ∀Φ if the

sampling set Ω preserves sufficient information for reconstruction – if Ω does not satisfy
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Figure D.3: Estimation with Nλ = 4 latent variables: (left) true map, (middle) sampled

map portraying grid points {ξi,j} with |Ai,j| > 0, and (right) map estimate.

this requirement, then reconstructing Φ is impossible regardless of the technique used. In

the application at hand and with the notation introduced in previous sections, the above

expression becomes PΩ(Ψ̃) ≈ PΩ(δw(εw(Ψ̌))).

As indicated earlier, autoencoders are useful only when most of the information in

the input can be condensed in Nλ variables, i.e., when the possible inputs lie close to a

manifold of dimension Nλ. To see that this is indeed the case in radio map estimation,

an illustrating toy example is presented next. Consider two sources transmitting with

a different but fixed power at arbitrary positions in X and suppose that propagation

occurs in free space. All possible spectrum maps in this setup can therefore be uniquely

identified by Nλ = 4 quantities, namely the x and y coordinates of the two sources.

Fig. D.3 illustrates this effect, where the left panel of Fig. D.3 depicts a true map Ψ

and the right panel shows its estimate using the proposed completion autoencoder when

Nλ = 4. Although the details about the network and simulation setup are deferred to

Sec. D.4, one can already notice at this point the quality of the estimate, which clearly

supports the aforementioned manifold hypothesis. In a real-world scenario, there may be

more than two sources, their transmit power may not always be the same, and there are

shadowing effects, which means that Nλ ≥ 4 will be generally required.

The rest of this section will describe the main aspects of the architecture developed in

this work and summarized in Fig. D.4. The main design decisions are supported here by

arguments and intuition. Empirical support is provided in Sec. D.4.2.

The encoder mainly comprises convolutional and pooling layers. The motivation for

convolutional layers is three-fold: (i) relative to fully connected layers, they severely re-

duce the number of parameters to train and, consequently, the amount of data required.

Despite this drastic reduction, (ii) convolutional layers are still capable of exploiting the

spatial structure of maps and (iii) they result in shift-invariant transfer functions, a de-

sirable property in the application at hand since moving the sources in a certain direction

must be corresponded by the same movement in the map estimate. Recall that a convo-

lutional layer with input Φ(I) and output Φ(O) linearly combines 2D convolutions as

[Φ(O)]i,j,cout =

Cin∑
cin=1

k∑
u=−k

k∑
v=−k

[Fcout ]u,v,cin [Φ(I)]i−u,j−v,cin ,

where the cout-th kernel Fcout is of size 2k + 1 × 2k + 1 × Cin. Layer indices were omit-
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Figure D.4: Autoencoder architecture.

Table D.1: Parameters of the proposed network.

Layers Parameters

Conv2D/

Conv2DTranspose
Kernel size = 3 × 3, stride = 1, activation = PLReLU,

32 filters

AveragePooling2D Pool size = 2, stride = 2

Upsampling2D Up-sampling factor = 2, bilinear interpolation

ted in order not to overload notation. The adopted activation functions are parametric

leaky rectified linear units (PReLUs) [44], whose leaky parameter is also trained; see also

Sec. D.4.2. Average pooling layers are used to down-sample the outputs of convolutional

layers, thereby condensing the information gradually in fewer features while approximately

preserving shift invariance [35, Ch. 9].

As usual in autoencoders, the decoder follows a “reverse” architecture relative to

the encoder. Specifically, for each convolutional layer of the encoder, the decoder has

a corresponding convolution transpose layer [45], sometimes called “deconvolutional”

layer. Likewise, the pooling layers of the encoder are matched with up-sampling layers.

A simple possibility is to implement such an upsampling operation by means of bilinear

interpolation.

Observe that the proposed network, summarized in Fig. D.4 and Table D.1, is fully

convolutional, which means that there are no fully connected layers. This not only leads

to a better estimation performance due to the reduced number of parameters to train (cf.
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Sec. D.4), but also enables the possibility of utilizing the same network with any value of

Nx and Ny. With fully connected layers, one would generally require a different network

for each pair (Nx, Ny), which would clearly have negative implications for training.

D.3.5 Learning in Real-World Scenarios

A key novelty in this paper is to obtain map estimators by learning from data. This section

describes how to construct a suitable training set in the application at hand. Specifically,

three approaches are discussed:

D.3.5.1 Synthetic Training Data

Since collecting a large number of training maps may be slow or expensive, one can instead

generate maps using a mathematical model or simulator that captures the structure of the

propagation phenomena, such as path loss and shadowing; see e.g. [46]. Fitting pw to data

generated by that model would, in principle, yield an estimator that effectively exploits

this structure. The idea is, therefore, to generate T maps {Ψt(x, f)}Tt=1 together with

T sampling sets {Ωt}Tt=1. Afterwards, {Ψ̃t}Tt=1 and {Ψ̌t}Tt=1 can be formed as described

earlier. It is possible to add artificially generated noise to the synthetic measurements in

Ψ̃t to model the effect of measurement error. This would train the network to counteract

the impact of such error, along the lines of denoising autoencoders [35, Ch. 14].

The advantage of this approach is that one has access to the ground truth, i.e., one

can use the true maps Ψt as targets. Specifically, the neural network can be trained on

the data {(Ψ̌t,Ψt)}Tt=1 by solving

minimize
w

1

T

T∑
t=1

∥∥Ψt − pw(Ψ̌t)
∥∥2

F
. (D.9)

If the model or simulator is sufficiently close to the reality, completing a real-world map

Ψ̌ as pw(Ψ̌) should produce an accurate estimate.

D.3.5.2 Real Training Data

In practice, real maps may be available for training. However, in most cases, it will not be

possible to collect measurements at all grid points within a sufficiently short time interval;

see Remark 6. Besides, it is not possible to obtain the entries of Ψ but only measurements

of it. This means that a real training set comprises tensors {Ψ̌t, t = 1, . . . , T} but not

Ψt.

For training, one can plug this data directly into (D.4) or (D.5). However, pw may

then learn to fit just the observed entries {[Ψ̃t(f)]i,j, (i, j) ∈ Ωt}, as would happen e.g.

when pw is the identity mapping. To counteract this trend, one can adopt a sufficiently

small Nλ. The downside is that estimation performance may be damaged. To bypass this

difficulty, the approach proposed here is to use part of the measurements as the input

and another part as the output (target). Specifically, for each t, construct Qt pairs of

(not necessarily disjoint) subsets Ω
(I)
t,q ,Ω

(O)
t,q ⊂ Ωt, q = 1, . . . , Qt, e.g by drawing a given

number of elements of Ωt uniformly at random without replacement. Using these subsets,
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subsample Ψ̃t to yield Ψ̃
(I)

t,q :=P
Ω

(I)
t,q

(Ψ̃t) and Ψ̃
(O)

t,q :=P
Ω

(O)
t,q

(Ψ̃t). With the resulting
∑

tQt

training instances, one can think of solving

minimize
w

1∑
tQt

∑T
t=1

∑Qt
q=1

∥∥∥P
Ω

(O)
t,q

(
Ψ̃

(O)
t,q − pw

(
Ψ̌

(I)

t,q

))∥∥∥2

F
, (D.10)

where Ψ̌
(I)

t,q is formed by concatenating Ψ̃
(I)
t,q and M

Ω
(I)
t,q

.

D.3.5.3 Hybrid Training

In practice, one expects to have real data, but only in a limited amount. It then makes

sense to apply the notion of transfer learning [35, Ch. 15] as follows: first, learn an initial

parameter vector w∗ by solving (D.9) with synthetic data. Second, solve (D.10) with

real data, but using w∗ as initialization for the optimization algorithm. The impact of

choosing this initialization is that the result of solving (D.10) in the second step will be

generally closer to a “better” local optimum than if a random initialization were adopted.

Hence, this approach combines the information of both synthetic and real data sets.

D.4 Numerical Experiments

This section validates the proposed framework and network architecture through numer-

ical experiments. All code and data sets will be posted at the authors’ websites.

The region of interest X is a square area of side 100 m, discretized into a grid with

Ny = Nx = 32. Two data sets are constructed as described next. First, T = 4 · 105 maps

are generated where the two considered transmitters are placed uniformly at random

in X , have height 1.5 m, and transmit with power in each channel drawn uniformly

at random between 5 and 11 dBm. The pathloss exponent is set to 3, whereas the

gain at unit distance is −30 dB. The lognormal shadowing component adheres to the

Gudmundson model [47] with correlation E {Hl(x1, f)Hl(x2, f)} = σ2
sh0.95||x1−x2||, where

σ2
sh = 10 dB2 and ||x1 − x2|| is the distance between x1 and x2 in meters. Measurement

locations are drawn uniformly at random without replacement across the grid points. Each

measurement Ψ̃(xn, f) is obtained by adding zero-mean Gaussian noise with standard

deviation 1 dB to Ψ(xn, f).

A second data set of T = 1.25 · 105 maps is generated using Remcom’s Wireless

InSite software in the “urban canyon” scenario. Measurement locations are distributed

uniformly at random without replacement across the grid points that lie on the streets.

To average out multipath fading present in the generated maps (see Remark 5), Ψ(ξi,j, f)

is replaced with (1/|Ni,j|)
∑
ξ∈Ni,j Ψ(ξ, f), where Ni,j contains the |Ni,j| = 9 grid points

that lie closest to ξi,j, including ξi,j. A binary mask indicating the position of buildings

is combined with the sample mask as indicated at the end of Remark 7. This simulator

accurately captures propagation phenomena through ray tracing algorithms. Thus, this

data set can be regarded as a realistic surrogate of a data set with real measurements.

The network proposed in Sec. D.3.4 with code length Nλ = 64 is implemented in

TensorFlow and trained using the ADAM solver with learning rate 10−4. Quantitative
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Figure D.5: Power map estimate with the proposed neural network. (left): true map,

(center left): sampled map portraying the locations of the grid points {ξi,j} where |Ai,j| >
0; (center right) and (right): map estimates. White areas represent buildings.

evaluation will compare the root mean square error (RMSE), defined as:

RMSE =

√
E{||Ψ− Ψ̂||2F}

NxNyNf

, (D.11)

where Ψ is the true map, Ψ̂ is the map estimate, and E{·} denotes expectation over maps,

noise, and sensor locations.

D.4.1 Power Map Cartography

To analyze the most fundamental radio map estimation aspects, F is set here to the

singleton F = {1400 MHz} and the bandwidth to 5 MHz in both data sets. To better

observe the impact of propagation phenomena, υ(x, f) is set to 0.

The proposed algorithm is compared against a representative set of competitors, whose

parameters were adjusted to approximately yield the best performance. This includes: (i)

The kriging algorithm in [1] with regularization parameter 10−5 and Gaussian radial basis

functions with parameter σK :=5
√

∆yNy∆xNx/|Ω|, which is approximately 5 times the

mean distance between two points at which measurements have been collected. (ii) The

multikernel algorithm in [26] with regularization parameter 10−4 and 20 Laplacian kernels

that use a parameter uniformly spaced between [0.1σK , σK ]. (iii) Matrix completion via

nuclear norm minimization [48] with regularization parameter 10−5. As a benchmark, (iv)

the K-nearest neighbors (KNN) algorithm with K = 5 is also shown.

D.4.1.1 Gudmundson Data Set

Performance is assessed next using the training approach in Sec. D.3.5.1 with {(Ψ̌t,Ψt)}Tt=1

given by the Gudmundson data set.

To analyze estimation of real maps when the proposed network is trained over synthetic

data, the first experiment shows two map estimates when the true (test) map is drawn

from the Wireless Insite data set. Specifically, the first panel of Fig. D.5 depicts the true

map, the second shows Ψ̃, and the remaining two panels show estimates using different

numbers of measurements. Observe that with just |Ω| = 52 measurements, the estimate

is already of a high quality. Note that details due to diffraction, multipath, and antenna
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Figure D.6: Comparison with state-of-the-art alternatives. Training and testing maps

drawn from the Gudmundson data set.
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Figure D.7: Performance comparison of the proposed scheme with that of the matrix

completion algorithm in [48]. Training and testing maps drawn from the Gudmundson

data set. The number of grid points in X is NyNx = 1024.

directivity are not reconstructed because the Gudmundson data set used to train the

network does not capture these effects and, therefore, the network did not learn them.

The second experiment compares the RMSE of the proposed method with that of the

competing algorithms. From Fig. D.6, the proposed scheme performs approximately a

25 % better than the next competing alternative. Due to the high RMSE of the matrix

completion algorithm in [48] for the adopted range of |Ω| in Fig. D.6, its RMSE is shown in

Fig. D.7 along with that of the proposed algorithm for larger values of |Ω|. The proposed

method still outperforms this competitor except when the number of measurements is

very large, close to the total number of grid points.

D.4.1.2 Wireless Insite Data Set

To investigate how the proposed network would perform in a real-world setup, training

uses the Wireless Insite data set in combination with the technique in Sec. D.3.5.2, where

the sets Ω
(I)
t,q and Ω

(O)
t,q are drawn from Ωt uniformly at random without replacement with

|Ω(I)
t,q | = |Ω

(O)
t,q | = 1/2|Ωt|, q = 1, . . . , Qt, and Qt = 10 ∀t. Fig. D.8 shows the RMSE as a

function of |Ω| for the proposed scheme and competing alternatives. By the performance

degradation of all four approaches relative to Fig. D.6, it follows that estimating real maps

is more challenging than estimating maps in the Gudmundson data set. The performance

gap is increased, where the proposed approach now performs roughly 50 % better than
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Figure D.8: Comparison with state-of-the-art alternatives. The training and testing maps

were obtained from the Wireless InSite data set, Qt = 10.
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Figure D.9: Performance comparison of the proposed scheme with that of the matrix

completion algorithm in [48] where the training and testing maps were obtained from the

Wireless InSite data set. The number of grid points in X is NyNx = 1024.

the next competing alternative. Again, the algorithm in [48] is not displayed for the same

reason as in Fig. D.6. Its RMSE is shown in Fig. D.9 along with that of the proposed

algorithm. The later still outperforms this competitor except when |Ω| is very large, close

to NyNx, as in Fig. D.7.

D.4.2 Deep Neural Network Design

This section justifies the main design decisions regarding the proposed network. To unveil

the influence of each architectural aspect, the number of convolution and convolution-

transpose filters is adjusted so that the total number of parameters of the neural network

Nw remains approximately the same.

The first step is to justify the choice of an autoencoder structure. To this end, Fig. D.10

complements the toy example in Fig. D.3 by plotting the RMSE as a function of the code

length Nλ under two setups with pathloss propagation and fixed transmit power: i) Noisy

inputs, noiseless targets in the training phase, and noisy inputs, noiseless targets in the

testing phase. This corresponds to training as a denoising autoencoder; see Sec. D.3.5.1.

ii) Noisy inputs and targets in the training, and noisy inputs, noiseless targets in the

testing. This models how a neural network trained over real data estimates a true map.

Note that the irregular behavior of the curves for Nλ > 5 owes to the fact that each

Nλ corresponds to a different network, and therefore a different training process, in-

cluding the initialization. As observed, the RMSE remains roughly constant for Nλ > 5,

which demonstrates that the spectrum maps in this scenario lie close to a low-dimensional
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Figure D.10: RMSE as a function of the code length Nλ, |Ω| = 104.
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Figure D.11: RMSE of the proposed network as a function of |Ω| for two types of output

layers for the encoder.

manifold. This justifies the autoencoder structure. Besides, training as a denoising au-

toencoder offers a slight performance advantage, yet it is only possible with synthetic

data; see Sec. D.3.5.1. When other propagation phenomena such as shadowing need to

be accounted for, Nλ > 5 is however required.

A second design consideration is whether the last layer of the encoder should be con-

volutional or fully connected. In the former case, the code would capture shift-invariant

features, whereas greater flexibility is allowed in the latter case. This dilemma is ubiqui-

tous in deep learning since convolutional layers constitute a special case of fully connected

layers. The decision involves the trade-off between flexibility and information that can be

learned with a finite number of training examples. This is investigated in Fig. D.11, which

shows the RMSE as a function of the number of measurements |Ω| for these two types of

layers. As observed, in the present case, fully convolutional autoencoders perform slightly

better. Besides, they accommodate inputs of arbitrary Nx and Ny. For these reasons, the

proposed architecture is fully convolutional.

Two more design decisions involve the number of layers L and the choice of the ac-

tivation functions. Fig. D.12 shows the RMSE as a function of L with LeakyReLU and

PReLU activations [44], where the latter generalize the former to allow training the leaky

parameter. Recall that the number of neurons per layer is adjusted to yield approximately

the same number of training parameters for all L. Thus, this figure embodies the trade-

off between the number and complexity of the features extracted by the network as well

as the impact of overfitting. As observed, the best performance in this case is achieved

around L = 26 layers. Both activations yield roughly the same RMSE, yet the PReLU
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Figure D.12: Map estimate RMSE of the proposed approach as a function of the number

of layers L of the autoencoder for two different activation functions, |Ω| = 300.

(a) (b)

Figure D.13: Decoder outputs of autoencoder architectures with different code length and

trained with different data sets: (a) Nλ = 4 with maps from the free-space propagation

model, (b) Nλ = 64 with maps from the Gudmundson data set, α = 10.

outperforms the LeakyReLU for shallow architectures.
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Figure D.14: Maps of the true and estimated coefficients {πb(x)}Bb=1 over X , B = 4.

D.4.3 Feature Visualization

Although neural networks are mainly treated as black boxes, some visualization techniques

offer interpretability of the features that they extract and, therefore, shed light on the

nature of the information that is learned. To this end, the next experiment depicts the

decoder output when different latent vectors λ ∈ RNλ are fed at its input.

First, an instance of the proposed autoencoder with Nλ = 4 is trained with a dataset

of TNλ = 3 · 103 maps generated using the free-space propagation model with two sources

transmitting with a fixed power. Since these maps only differ in the x and y coordinates

of the sources, they form a 4-dimensional manifold. Applying the encoder to those maps

yields {λt}
TNλ
t=1 . The top panel of Fig. D.13a depicts the output of the trained decoder

when λ = λavg, where λavg:=(1/TNλ)
∑

t λt. As expected, the decoder reconstructs a map

with two sources.

The code λ acts as the coordinates of a map in the learned manifold. To study

this manifold, the output of the decoder is depicted for different values of these coor-

dinates. Specifically, each of the remaining panels in Fig. D.13a corresponds to a value

of λ = λ̌ with [λ̌]k = [λavg]k − [λstd]k if k ∈ S and [λ̌]k = [λavg]k otherwise, where

[λstd]k:=
√∑

t ([λt]k − [λavg]k)
2 /TNλ and the set S is indicated in the panel titles. It can

be observed that moving along the manifold coordinates produces maps of the kind in the

training set.

These panels focus on path loss. To understand how shadowing is learned, an instance

of the proposed autoencoder with code λ ∈ RNλ , Nλ = 64, is trained with the Gud-

mundson data set. The top panel of Fig. D.13b depicts the output of the trained decoder

for λ = λ̇, where λ̇ was chosen uniformly at random among {λt}
TNλ
t=1 . As expected, the

decoder reconstructs a map with two sources and the effects of shadowing are noticeable.
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Figure D.15: PSD reconstruction at a random location x ∈ X where the basis expansion

model uses Gaussian functions. The non-continuous red (green) curves represent the

products π̂b(x)βb(f) estimated by the competing (proposed) algorithm.
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Figure D.16: PSD reconstruction at a random location x ∈ X with a signal basis formed

by using raised-cosine functions.

To introduce perturbations in this code along directions that are informative to different

extents, let Cλ:=(1/TNλ)(Λ−λavg1
>)(Λ−λavg1

>)> ∈ RNλ×Nλ denote the sample covari-

ance matrix of the TNλ training codes, where Λ:=[λ1, . . . ,λTNλ ]. The latent vectors are

set to λ = λ̇+ αvi, where α is a fixed constant and vi is the i-th principal eigenvector of

Cλ. The remaining panels of Fig. D.13b show the map estimates for i = 1, 2, 3, 44, 45, 46

and α = 10. As anticipated, changes along the directions of high variability yield maps

with markedly different shadowing patterns. The opposite is observed by moving along

directions of lower variability, where the reconstructed maps are roughly similar to the

one in the top panel.

D.4.4 PSD Cartography

This section provides empirical support for the approach proposed in Sec. D.3.3.2 for

PSD cartography. To this end, each sensor samples the received PSD at Nf = 32 uni-

formly spaced frequency values in the band of interest. The performance of the proposed

method is compared with that of the non-negative Lasso algorithm in [2] with regulariza-

tion parameter 10−11, which yields approximately the best performance. To improve its

performance, this algorithm was extended to assume that the noise power is the same at

all sensors.
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Figure D.17: Performance comparison of the proposed scheme with that of the algorithm

in [2].
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Figure D.18: Map estimate RMSE of the proposed scheme for PSD cartography. The

training and testing maps were obtained from the Wireless InSite data set, Qt = 5.

D.4.4.1 Gudmundson Data Set

The first part of this section assesses the performance of the proposed scheme using the

training approach in Sec. D.3.5.1 when the training and testing maps were obtained from

the Gudmundson data set. The B − 1 = 3 signal basis functions are uniformly spaced

across the band, whereas a fourth constant basis function is introduced to model noise;

see Sec. D.3.3.2. Two types of signal basis functions are investigated: Gaussian radial

basis functions with standard deviation 5 MHz and raised-cosine functions with roll-off

factor 0.4 and bandwidth 10 MHz. The noise basis function is scaled to yield υ(x, f) = υ,

where υ is a uniform random variable between −100 and −90 dBm/MHz.

The top row of Fig. D.14 portrays the maps of the true coefficients {πb(x)}4
b=1 over

X ; the second and last rows show their estimates with both schemes when |Ω| = 512.

Visually, the proposed scheme produces better estimates despite the fact that it does

not exploit the fact that the noise power is the same at all sensors. To demonstrate the

reconstruction quality of the proposed scheme, Figs. D.15 and D.16 show the true and

estimated PSDs at a random location x ∈ X . As observed, the PSD estimate produced

by the proposed scheme follows the true PSD more closely compared to the one produced

by the competing algorithm. A quantitative comparison is provided in Fig. D.17, which

shows the RMSE as a function of the number of measurements |Ω|. As observed, the

proposed method outperforms the competing approach with significant margin for small
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|Ω|.

D.4.4.2 Wireless Insite Data Set

The second part of this section evaluates the performance of the proposed scheme using

the training approach in Sec. D.3.5.2, where the sets Ω
(I)
t,q and Ω

(O)
t,q are drawn from Ωt

uniformly at random without replacement with |Ω(I)
t,q | = |Ω(O)

t,q | = 1/2|Ωt|, q = 1, . . . , Qt,

and Qt = 5 ∀t. The training and testing maps were obtained from the Wireless InSite

data set. The transmit PSD is generated with the raised-cosine functions described in

Sec. D.4.4.1. The noise PSD is set to υ(x, f) = υ, where υ is a uniform random variable

between −180 and −170 dBm/MHz. Fig. D.18 shows the RMSE of the proposed method

as a function of the number of measurements |Ω|. Because of the high RMSE of the

competing approach [2] (possibly in part due to the reasons in Remark 8), its performance

is not shown on the figure. As observed, the proposed scheme yields a low RMSE in this

realistic scenario which emulates training with real measurements.

D.5 Conclusions

Data-driven radio map estimation has been proposed to learn the spatial structure of

propagation phenomena such as shadowing, reflection, and diffraction. Learning such

structure from past measurements yields estimators that require fewer measurements to

attain a target performance. Motivated by the observation that radio maps lie close to

a low-dimensional manifold embedded in a high-dimensional space, a deep completion

network with an encoder-decoder architecture was proposed to estimate PSD maps. The

resulting schemes significantly outperform state-of-the-art alternatives. Future work will

include mapping other channel metrics such as channel-gain with alternative network

architectures.
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