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Cité El Ghazala, 2083 Ariana, Tunis, Tunisia

Email: neji.youssef@supcom.rnu.tn

Abstract—This paper is concerned with the consistency of non-
stationary multipath fading channels. We introduce conditions
under which a channel model is consistent w.r.t. the average
Doppler shift and the Doppler spread. The conditions are applied
to two classes of non-stationary channel models. The first class,
which is termed Class A, is characterized by channel models
based on an integral relationship between the path phases and
the associated time-variant Doppler frequencies. The second class
of models, called the Class B models, emerges from standard
sum-of-cisoids (SOC) models by replacing the time-independent
Doppler frequencies by time-dependent Doppler frequencies. It is
shown that the Class A models fulfil the consistency conditions,
while the Class B models are inconsistent. The majority of exist-
ing non-stationary channel models with time-dependent Doppler
frequencies fall in the Class B category, meaning that these
models suffer from a lack of physical soundness. The importance
of the paper comes from the fact that it provides guidelines for
the design of consistent and physically reasonable non-stationary
channel models.

I. INTRODUCTION

In the past, the modelling of multipath fading channels

has concentrated on the characterization of the temporal,

frequency, and spatial behaviour of mobile radio channels

assuming that the channel is wide-sense stationary. The wide-

sense stationary assumption, however, is only fulfilled during

very short, so-called stationary intervals, which have been

investigated, e.g., in [1]–[3]. If a multipath fading channel is

observed over time periods larger than the stationary interval,

then the channel develops signs of non-stationarity. The under-

lying cause of non-stationarity can have a variety of reasons.

One reason can be that the mobile station (MS) changes its

speed and/or driving direction, or that the angles of arrival

(AOAs) are changing with time during the movement of the

MS. Another reason can be that some propagation paths are

suddenly blocked by obstacles or that new propagation paths

emerge along the course of the MS.

A non-stationary channel model that accounts for the impact

of the MS’s acceleration on the statistics of Rayleigh fading

channels has been presented in [4], [5]. A more general non-

stationary channel model that captures the effects of both

speed variations and changes of the angle of motion (AOM)

was proposed in [6]. Recently, the work in [6] has been ex-

tended in [7] towards the modelling of non-stationary mobile-

to-mobile double Rayleigh fading channels. The models in

[4]–[7] have in common that they originate from stationary

plane wave models or sum-of-cisoids (SOC) models in which

the time-independent Doppler frequencies have been replaced

by time-variant Doppler frequencies. The same procedure has

been applied in [8] and [9] to model non-stationary channels.

In this paper, we propose a class of channel models, referred

to as Class B models, that includes the channel models in

[4]–[9] as special cases. It is shown that all non-stationary

channel models of Class B are inconsistent in the sense that the

average Doppler shift of the multipath components is unequal

to the average Doppler shift obtained from the time-variant

autocorrelation function (ACF) of the complex channel gain.

It is also shown that the same property holds for the Doppler

spread. A solution of the inconsistency problem is shown by

computing the path phases by integrating over the associated

time-variant Doppler frequencies. This motivates us to intro-

duce a new class (Class A) of non-stationary channel models,

that is shown to be consistent w.r.t. the average Doppler shift

and the Doppler spread. The proposed Class A models allow

studying the effects of speed variations, AOM variations, and

AOA variations with different degrees of complexity. As a

side benefit of our results, we propose a simple but accurate

method for the computation of the stationary intervals.

The remainder of this paper is organized as follows. Sec-

tion II introduces the considered non-stationary multipath

propagation scenario. Section III derives models for the time-

variant channel parameters. Section IV defines the term consis-
tency in the context of this paper. Two classes of non-stationary

channel models are described in Section V. Section VI presents

a selection of numerical results to illustrate the main findings

of this study. Finally, the conclusion is drawn in Section VII.

II. THE MULTIPATH PROPAGATION SCENARIO

The considered multipath propagation scenario consists of a

fixed base station (BS) (transmitter) and an MS (receiver) that

moves with time-variant velocity �v(t). Both the BS and the MS
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are equipped with omnidirectional antennas. It is supposed that

the BS antenna is unobstructed by objects, whereas the MS

antenna is surrounded by a large number of N fixed scatterers

Sn (n = 1, 2, . . . , N). Furthermore, we assume that the line-

of-sight component is blocked. At time t = 0, the MS is

located at the origin (0, 0) of the xy-plane as shown in Fig. 1.

This figure depicts only the location of the nth local scatterer

Sn relative to the MS, while the other N − 1 local scatterers

have been removed for visual clarity. The local scatterers Sn

are fixed and their positions (xn, yn) are known for all n =
1, 2, . . . , N . The distance between the scatterer Sn and the

origin (0, 0) is determined by rn =
√
x2
n + y2n. As indicated

in Fig. 1, the MS moves with velocity �v(t) along a path (- - -)

described by the coordinates x(t) and y(t). Along the course

of the path, the AOA αn(t) seen from the position (x(t), y(t))
of the MS varies with time t. The initial AOA αn, shown in

Fig. 1, is the AOA αn(t) at t = 0, i.e., αn = αn(0).
If an MS moves with known velocity �v(t) in a deterministic

propagation area characterized by fixed scatterers Sn at known

locations (xn, yn), then the initial AOAs αn are constants and

the time-variant AOAs αn(t) are deterministic processes for

all n = 1, 2, . . . , N . This contrasts with random propagation

areas, in which the scatterers Sn are randomly distributed,

implying that the initial AOAs αn are random variables and

the time-variant AOAs αn(t) are stochastic processes. In this

paper, we consider a deterministic propagation area with fixed

scatterers Sn at known locations (xn, yn).
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Fig. 1: A multipath propagation scenario in which the MS

travels along a path (- - -) with time-variant velocity �v(t).

III. MODELLING THE TIME-VARIANT CHANNEL

PARAMETERS

A. Modelling the Time-Variant Velocity

In the considered multipath propagation scenario, the MS

can change its velocity �v(t). It is known from kinematics that

the velocity �v(t) is a vector, which can be represented in polar

coordinates by �v(t) = v(t) exp{jαv(t)}, where the magnitude

v(t) = |�v(t)| is called the speed, and αv(t) denotes the angle

of motion (AOM). A change of the MS’s velocity �v(t) can

either be attributed to a change in speed v(t), a change in the

AOM αv(t), or a change in both v(t) and αv(t). As proper

models for the time-variant speed v(t) and the time-variant

AOM αv(t), we adopt the following expressions from [6]

v(t) = v0 + a0t (1)

αv(t) = αv + b0t . (2)

In (1), v0 denotes the initial speed at t = 0, and a0 is called

the acceleration parameter if a0 > 0 or deceleration parameter

if a0 < 0. Analogously, in (2), αv denotes the initial AOM at

t = 0, and b0 is called the angular speed. Note that in all other

cases in which the speed v(t) and AOM αv(t) do not change

linearly with time t, the expressions in (1) and (2) can be

considered as first-order Taylor series approximations of any

arbitrary functions v(t) and αv(t) around t = 0, respectively.

B. Modelling the Time-Variant AOAs

The AOA αn(t) is defined as the angle between the propa-

gation direction of the nth incident wave and the x-axis. With

reference to Fig. 1, the AOA αn(t) can be expressed as

αn(t) = arctan

(
yn − y(t)

xn − x(t)

)
(3)

for n = 1, 2, . . . , N , where the positions x(t) and y(t) of the

MS at time t can be obtained from

x(t) =

t∫
0

v(z) cos(αv(z)) dz (4)

and

y(t) =

t∫
0

v(z) sin(αv(z)) dz (5)

respectively. By developing the AOA αn(t) in a first-order

Taylor series around t = 0, we can approximate the nonlinear

function αn(t) in (3) by a linear function of time t as follows

αn(t) ≈ αn + γnt (6)

where

αn = αn(0) = arctan

(
yn
xn

)
(7)

γn =
d

dt
αn(t)

∣∣
t=0

=
v0
rn

sin (αn − αv) . (8)

The approximation error caused by retaining only the first two

terms of the Taylor series in (6) influences the time-variant

Doppler shift and the time-variant Doppler spread. The effect

of this approximation error will be analyzed in Section VI.

C. Modelling the Time-Variant Doppler Frequencies

According to the Doppler effect, the nth received multipath

component experiences a time-variant Doppler shift fn(t) if

the MS changes its velocity �v(t) over time t. This time-variant

Doppler shift can accurately be modelled as

fn(t) = fmax(t) cos(αn(t)− αv − b0t) (9)



for all n = 1, 2, . . . , N , where αn(t) is given by (3) and

fmax(t) =
f0
c0

v(t) =
f0
c0

(v0 + a0t) (10)

denotes the time-variant maximum Doppler frequency. In (10),

f0 and c0 designate the carrier frequency and the speed of

light, respectively. Note that (9) presents the exact solution for

fn(t) if αn(t) according to (3) is used, and if the speed v(t)
and AOM αn(t) are linearly varying with time t. A simpler

nonlinear model can be obtained for the time-variant Doppler

shift fn(t) by using (6) instead of (3), which allows us to

represent fn(t) as

fn(t) = fmax(t) cos[αn − αv + (γn − b0)t] . (11)

A third and even less complex Doppler frequency model can

be obtained by developing the expression in (9) in a Taylor

series around t = 0 and retaining only the first two terms.

This results in the linear Doppler frequency model

fn(t) = fn + knt (12)

where

fn = fn(0) = fmax cos(αn − αv) (13)

kn =
d

dt
fn(t)

∣∣
t=0

= fmax

[
a0
v0

cos(αn − αv) + (b0 − γn) sin(αn − αv)

]
(14)

with fmax being the initial maximum Doppler shift defined as

fmax = fmax(0) = f0v0/c0. Note that kn can be written as a

sum of three terms. The first term accounts for the acceleration

(deceleration) of the MS. The second term is due to the change

of the direction of motion, and the third term is a result of the

changing AOA. Note also that for the stationary case, where

a0 = 0, b0 = 0, and γn = 0 hold, all three Doppler frequency

models described by (9), (11), and (12) reduce to the well-

known expression fn(t) = fn = fmax cos(αn − αv) that is

exclusively used for the characterization of the Doppler shift

in stationary mobile radio channels. The same statement holds

if we observe the channel at t = 0.

IV. DEFINITION OF CONSISTENCY

This section presents a working definition of the property

that a non-stationary multipath channel model is consistent

w.r.t. the average Doppler shift and the Doppler spread.

In frequency-nonselective mobile radio channels, the com-

plex channel gain μn(t) of the received nth multipath com-

ponent can be described by μn(t) = cn exp{jθn(t)}, where

cn represents the path gain which is real valued, and θn(t)
is the associated path phase that is in some way a function

of the Doppler frequency fn(t), i.e., θn(t) = g(fn(t)). We

consider sufficiently short observation intervals Tobs, such that

the path gain cn does not vary with time t ∈ [0, Tobs] or the

position (x(t), y(t)) of the MS on its route. In this case, the

instantaneous power of nth multipath component is constant

and equals the squared path gain, i.e., |μn(t)|2 = c2n. Without

any a priori information on the path phases θn(t), the time-

variant average Doppler shift B
(1)
f (t) can then be obtained

by computing the sum of all power-weighted Doppler shifts

normalized onto the total received power of all multipath

components according to

B
(1)
f (t) =

N∑
n=1

c2nfn(t)

N∑
n=1

c2n

. (15)

The equation above holds for all given gains cn and time-

variant Doppler frequencies fn(t), no matter if we use the

exact solution in (9) or the approximations presented in (11)

or (12).

Analogously, we can compute the time-variant Doppler

spread B
(2)
f (t) of a non-stationary multipath channel with

given path gains cn and time-variant Doppler frequencies fn(t)
by means of

B
(2)
f (t) =

√√√√√√√√
N∑

n=1
c2nf

2
n(t)

N∑
n=1

c2n

−
(
B

(1)
f (t)

)2

. (16)

Alternatively, we can compute the time-variant Doppler shift

B
(1)
μ (t) and the time-variant Doppler spread B

(2)
μ (t) of the

complex channel gain μ(t) =
∑N

n=1 μn(t) of all N multipath

components by means of the time-dependent ACF

Rμ(τ, t) = E
{
μ
(
t+

τ

2

)
μ∗

(
t− τ

2

)}
(17)

where E{·} and (·)∗ denote the expectation operator and the

complex conjugation operator, respectively. This alternative

approach leads to

B(1)
μ (t) =

1

2πj

Ṙμ(0, t)

Rμ(0, t)
(18)

and

B(2)
μ (t) =

1

2π

√√√√(
Ṙμ(0, t)

Rμ(0, t)

)2

− R̈μ(0, t)

Rμ(0, t)
(19)

where Ṙμ(0, t) (R̈μ(0, t)) denotes the first (second) derivative

of Rμ(τ, t) w.r.t. the time separation variable τ at τ = 0.

Definition: A non-stationary multipath channel model is

said to be consistent w.r.t. the Doppler shift if the condition

B
(1)
f (t) = B

(1)
μ (t) is fulfilled for all t. Analogously, we say

that a channel model is consistent w.r.t. the Doppler spread if

the identity B
(2)
f (t) = B

(2)
μ (t) holds for all t.

V. TWO CLASSES OF CHANNEL MODELS

A. Channel Models of Class A
The basic idea of deriving Class A channel models is to

invoke the phase-frequency relationship [10, Eq. (1.3.40)]

fn(t) =
1

2π

dθn(t)

dt
(20)



for all n = 1, 2, . . . , N . From (20), the path phase θn(t) can

then be derived as follows

θn(t) = 2π

t∫
−∞

fn(z) dz

= 2π

0∫
−∞

fn(z) dz + 2π

t∫
0

fn(z) dz

= θn + 2π

t∫
0

fn(z) dz (21)

where θn = 2π
∫ 0

−∞ fn(z) dz represents the initial phase at

t = 0, i.e., θn = θn(0). For the reason that the initial phases

θn are generally unknown, they will be modelled by indepen-

dent and identically distributed (i.i.d.) random variables with

uniform distribution over (0, π], i.e., θn ∼ U(0, 2π]. By using

the exact Doppler frequency model in (9), where αn(t) is

given by (3), the integral in (21) has to be solved numerically.

However, in case of the nonlinear Doppler frequency model

described by (11), the path phases θn(t) can be expressed in

closed form as

θn(t) = θn +
2πfmax(t)

γn − b0
{sin[αn − αv + (γn − b0)t]

− sin(αn − αv)}+ 2πa0
λ(γn − b0)2

· {cos[αn − αv + (γn − b0)t]− cos(αn − αv)}
(22)

where λ = c0/f0 is the wavelength. Moreover, for the linear

Doppler frequency model introduced in (12), a simple closed-

form solution can be obtained for θn(t) in the form of

θn(t) = θn + 2π

(
fnt+

kn
2
t2
)

. (23)

Using (21), the complex channel gain μ(t) of narrowband

multipath fading channel models of Class A is then defined

by

μ(t) =

N∑
n=1

cn e
j

(
2π

t∫
0

fn(z) dz+θn

)
. (24)

Depending on the modelling philosophy and motivation, the

path gains cn and phases θn can be random variables or

constants, whereas the Doppler frequencies can either be

stochastic processes, deterministic processes, random variables

or constants. This implies that Class A models comprise

2 · 4 · 2 = 16 different types of channel models, whereof

one model is deterministic, seven are wide-sense stationary

(if certain boundary conditions are satisfied [11]), and eight

are non-wide-sense stationary. It is obvious that the statistical

properties of the 16 types of channel models are different.

In the following, we focus on the important case that the

path gains cn are constants, the Doppler frequencies fn(t) are

deterministic processes, and the phases θn are i.i.d. random

variables. For this case, the time-dependent ACF Rμ(τ, t) can

be brought into the following general form after substituting

(24) in (17) and averaging over the i.i.d. phases θn ∼ U(0, 2π]:

Rμ(τ, t) =

N∑
n=1

c2n e
j2π

t+τ/2∫
t−τ/2

fn(z) dz

(25a)

=
N∑

n=1

c2n e
j[θn(t+τ/2)−θn(t−τ/2)] . (25b)

For the nonlinear Doppler frequency model described by (11),

the integral in (25a) can be solved analytically, yielding

Rμ(τ, t) =
N∑

n=1

c2n exp
{
j2πτ

{
fn(t)sinc

[
(γn − b0)

τ

2

]

+
a0

λ(γn − b0)
sin[αn − αv + (γn − b0)t]{

cos
[
(γn − b0)

τ

2

]
− sinc

[
(γn − b0)

τ

2

]}}}
(26)

where fn(t) is given by (11), and sinc(·) denotes the sinc
function, which is defined as sinc(x) = sin(x)/x.

Furthermore, for the linear Doppler frequency model [see

(12)], we obtain

Rμ(τ, t) =

N∑
n=1

c2ne
j2πfn(t)τ (27)

where fn(t) is given by (12).

Next, we will analyse the time-variant average Doppler

shift B
(1)
μ (t) and the time-variant Doppler spread B

(2)
μ (t) of

the complex channel gain μ(t) introduced in (24). Therefore,

we substitute (25a) in (18) and (19), which results after

some mathematical manipulations in the following expressions

(without proof):

B(1)
μ (t) =

N∑
n=1

c2nfn(t)

N∑
n=1

c2n

(28)

B(2)
μ (t) =

√√√√√√√√
N∑

n=1
c2nf

2
n(t)

N∑
n=1

c2n

−
(
B

(1)
μ (t)

)2

. (29)

A comparison of (28) with (15) and (29) with (16) shows

that the consistency condition B
(i)
f (t) = B

(i)
μ (t) is fulfilled

for all t and i = 1, 2. This result shows that Class A channel

models with constant path gains cn and random phases θn
are consistent w.r.t. the average Doppler shift and the Doppler

spread for any given Doppler frequency function fn(t).

B. Channel Models of Class B
The basic idea of deriving Class B channel models is to

start from SOC models [12, Section 4.5] and to replace the

time-invariant Doppler frequencies fn by time-variant Doppler



frequencies fn(t). According to this idea, the complex channel

gain μ(t) of Class B narrowband multipath fading channel

models can be expressed as

μ(t) =
N∑

n=1

cne
j(2πfn(t)·t+θn) . (30)

Taking all combinations of the model parameters cn, fn(t), θn
into account, which can be constants or random variables,

where fn(t) can be in addition deterministic or stochastic

processes, it is obvious that Class B comprises as many types

of channel models as Class A, namely 16. It is interesting

to note that the Class A and B models reduce to the SOC

model if the Doppler frequencies fn(t) are time-invariant, i.e.,

fn(t) = fn. Replacing fn by fn(t) in an SOC model is simple

and straightforward, but the main drawback of this procedure

is that the resulting Class B models are inconsistent, as will

be shown below.

In analogy to Class A models, we consider only the

important case that the gains cn are constants, the Doppler

frequencies fn(t) are deterministic processes, and the phases

θn are i.i.d. random variables. Then, after substituting (30) in

(17) and averaging over the i.i.d. phases θn ∼ U(0, 2π], the

time-dependent ACF Rμ(τ, t) can be expressed in closed form

as

Rμ(τ, t) =

N∑
n=1

c2n e
j2π[fn(t+ τ

2 )−fn(t− τ
2 )]t

· e j2π[fn(t+ τ
2 )+fn(t− τ

2 )]
τ
2 . (31)

Substituting (31) in (18) and (19) results in the follow-

ing closed-form solutions for the time-variant Doppler shift

B
(1)
μ (t) and the time-variant Doppler spread B

(2)
μ (t) (without

proof):

B(1)
μ (t) =

N∑
n=1

c2n[fn(t) + ḟn(t) · t]
N∑

n=1
c2n

(32)

B(2)
μ (t) =

√√√√√√√√
N∑

n=1
c2n[fn(t) + ḟn(t) · t]2

N∑
n=1

c2n

−
(
B

(1)
μ (t)

)2

. (33)

Comparing (32) and (33) with (15) and (16), respectively,

shows that B
(i)
f (t) �= B

(i)
μ (t) for i = 1, 2, which means that

the non-stationary channel model defined in (30) is inconsis-

tent w.r.t. the average Doppler shift and the Doppler spread.

This result is not surprising, because it can be shown (without

proof) that the Class A channel models are the only consistent

channel models. In other words, the condition imposed by the

phase-frequency relationship (20) is necessary and sufficient

for the development of consistent channel models.

VI. NUMERICAL RESULTS

This section presents a selection of numerical results to

illustrate our main findings of the time-variant average Doppler

shift B
(1)
f (t) (B

(1)
μ (t)) and the time-variant Doppler spread

B
(2)
f (t) (B

(2)
μ (t)) of the Class A and B models.

In our numerical study, we have considered a multipath

channel consisting of N = 10 components. The path gains cn
and initial AOAs αn = αn(0) have been computed by means

of the extended method of exact Doppler spread (EMEDS)

[13], according to which these parameters are given by

cn = σ0

√
2

N
and αn =

2π

N

(
n− 1

4

)
(34)

where the parameter σ0 has been set to unity. The initial

phases θn = θn(0) have been considered as the outcomes of a

random generator with uniform distribution over the interval

(0, 2π]. The distances rn between the scatterers Sn and the

origin (0, 0) [see Fig. 1] have been set to 50 m for all n =
1, 2, . . . , N . Thus, the positions (xn, yn) of the scatterers Sn

are then determined by xn = rn cos(αn) and yn = rn sin(αn).
The parameters of the velocity model described by (1) and (2)

have been chosen as follows: v0 = 3 km/h, a0 = 1.5 m/s2,

αv = 0, and b0 = π/10 rad/s. Finally, the carrier frequency

f0 has been set to 5.9 GHz, and the observation duration Tobs

was 5 s. This results in an initial maximum Doppler frequency

of fmax(0) = f0v0/c0 = 16.4 Hz and a finishing maximum

Doppler frequency of fmax(Tobs) = f0(v0 + a0Tobs)/c0 =
164 Hz.

Fig. 2 shows the graph ( ) of the resulting time-variant

average Doppler shift B
(1)
f (t) according to (15) by using the

exact expression for fn(t) as given by (9). This figure also

shows the graph (- - -) of B
(1)
f (t) = B

(1)
f for the stationary

case that follows when all Doppler frequencies fn(t) are

supposed to be independent of time and fixed to their initial

values, i.e., fn = fn(0) = const. ∀ n = 1, 2, . . . , N .

Next, we evaluate B
(1)
f (t) by using the nonlinear and

linear Doppler frequency models described by (11) and (12),

respectively. The obtained results for B
(1)
f (t) have been added

to Fig. 2. It can be seen that the nonlinear Doppler frequency

model [see (11)] follows the trend of the exact Doppler

frequency model closer than the simple linear model [see (12)].

In addition, Fig. 2 includes the graphs of the average Doppler

shift B
(1)
μ (t) of the Class A and Class B models. The presented

results have been obtained for the two classes by evaluating

(28) and (32). Fig. 2 shows that the channel models of Class A
fulfil the consistency condition B

(1)
f (t) = B

(1)
μ (t), whereas

this is not the case for the Class B models.

Finally, Fig. 3 shows the corresponding results for the time-

variant Doppler spreads B
(2)
f (t) and B

(2)
μ (t) for the Class A

and B models. Note that Fig. 3 shows clearly the advantage

of all Class A models, namely that the second consistency

condition B
(2)
f (t) = B

(2)
μ (t) is also fulfilled, while this is not

the case for the Class B models.

A comparison between the stationary case (fn constant) and

the non-stationary case (fn time-variant) allows us to introduce
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Fig. 2: Time-variant Doppler shifts B
(1)
f (t) and B

(1)
μ (t) for

the non-stationary multipath channel models of Class A and

Class B.
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f (t) and B
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μ (t) for

the non-stationary multipath channel models of Class A and

Class B.

a simple but effective method for computing stationary inter-

vals by using the time-variant Doppler spread B
(2)
f (t). The

shortest time interval T
(2)
q for which the absolute value of the

relative error

ε(T (2)
q ) =

|B(2)
f (T

(2)
q )−B

(2)
f (0)|

B
(2)
f (0)

=
q

100
(35)

equals q percent is called the stationary interval, where

B
(2)
f (0) �= 0. For the Class A model, we obtain T

(2)
5 =

0.0278 s, T
(2)
10 = 0.0556 s, and T

(2)
20 = 0.1111 s.

VII. CONCLUSION

In this paper, we have introduced two classes of non-

stationary flat fading multipath channel models, which are

termed Class A and Class B models. The Class A models

are obtained by computing the path phases of each multipath

component via the integral over the corresponding time-variant

Doppler frequencies. The channel models of Class B are

based on standard wide-sense stationary SOC models, in

which the time-invariant Doppler frequencies are replaced by

time-variant Doppler frequencies. Three time-variant Doppler

frequency models have been presented with different degrees

of complexity; comprising an exact nonlinear model, an ap-

proximate nonlinear model, and a simple linear model. For

any deterministic time-variant Doppler frequency process, it

has been shown that the Class A models are consistent w.r.t.

both the time-variant average Doppler shift and the Doppler

spread, whereas the non-stationary channel models of Class B
are inconsistent.

As the introduced consistency concept is physically sound

and easy to apply, we believe that the study of this paper will

have a great impact on future research directions regarding

the development of non-stationary channel models. With the

consistency concept under the belt, informed researchers will

shift their focus from today’s primarily studied Class B models

to the presented physically reasonable Class A models.
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