
Packet Aggregation in TelosB WSNs: Design,
Implementation and Experiments

by

Ayyaz Mahmood
Salekin Imran

Supervisor
Frank Yong Li

This master’s thesis is carried out as a part of the education at the University of Agder and is therefore
approved as a part of this education. However, this does not imply that the University answers for the

methods that are used or the conclusions that are drawn.

Department of Information and Communication Technology
Faculty of Engineering and Science

University of Agder
Norway

Grimstad, May 16, 2016

Abstract

WSN is an extensive field of research and a core technology which is adopted for monitoring and data
assembling, used in various applications. Traditionally in a WSN, communication is performed in the
fashion of single packet per transmission which produces high energy consumption and longer delay.
Therefore, we introduce a novel approach by designing a system which applies packet aggregation in
TelosB sensor motes using Contiki platform. In this approach, we assemble multiple packets together
and send them in an aggregated frame towards the sink which can reduce the number of transmissions,
energy consumption and delay per transmission unit. Accordingly, in this thesis report, we perform ag-
gregation at relay node with diverse set of topologies and schemes and examined this technique through
numerous experiments and testing for temporal and spatial aggregation topologies. Additionally, we de-
sign and implement three packet aggregation schemes and perform a comprehensive set of experiments to
evaluate these schemes. These experiments are capable to demonstrate how packet aggregation proposes
compelling performance boost in terms of less transmission count and how these schemes strongly actuate
the energy level due to the reduction in transmission count. This report concludes with a brief summary
of these experiments and recommends some potential approaches to affirm and further expand these out-
comes. We have a belief that this research will be effective for better understanding of packet aggregation
approach in WSN for future pioneers.

Keywords: WSNs, Packet aggregation, Contiki, TelosB, Spatial and temporal, Delay, Energy con-
sumption, Design and implementation.

II

Preface

Entrance devotion and inspiration have always turned up as an essential part in the achievement of any
project. This thesis is submitted in partial fulfilment of the requirements for module IKT-590 Master
Thesis. This thesis has 30 ECTS and is done at the spring semester from January 4, 2016 to May 15,
2016. It is performed at the Department of Information and Communication Technology, University of
Agder, campus Grimstad.

We impart our immense gratefulness to Professor Frank Y. Li for encouraging and guiding us to finish
this project earlier. Additionally, we are grateful to Mr. César Asensio for his help in programming and
feedback during fulfilment of this task.

Ayyaz Mahmood
Salekin Imran

Grimstad
May 16, 2016

III

Contents

Contents IV

List of Figures VI

List of Tables IX

List of Abbreviations X

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Approach . 3
1.4 Report Organization . 3

2 Enabling Technologies and Related Work 5
2.1 Enabling Technologies . 5

2.1.1 WSN essentials . 5
2.1.2 Multi-hop networks . 6
2.1.3 Packet aggregation . 7

2.2 Related work . 8
2.2.1 MAC protocols in WSNs . 10
2.2.2 Addressing in WSNs . 11

2.3 Adopted Tools . 12
2.3.1 Sensor motes . 12
2.3.2 TelosB/Sky mote . 13
2.3.3 Contiki-OS and its features . 14

3 Network Design and Protocol Implementation 16
3.1 Network Design . 16

3.1.1 Network topologies . 16
3.2 Design of Packet Aggregation Schemes . 17

3.2.1 Homogeneous aggregation . 18
3.2.2 Heterogeneous aggregation . 19
3.2.3 Variable aggregation . 21

3.3 Implementation of Packet Aggregation Schemes . 22
3.3.1 Platform building . 23

IV

3.3.2 Node identification . 25
3.3.3 Scheme implementations . 26

4 Test Scenarios and Experimental Results 32
4.1 Test Scenarios and Performance Parameters . 32

4.1.1 Scenarios . 32
4.1.2 Performance parameters . 33
4.1.3 Performance measurements . 34

4.2 Experimental Results for S1: Homogeneous Aggregation 36
4.2.1 Results for number of frame transmissions . 38
4.2.2 Results for end-to-end delay . 38
4.2.3 Results for overall delay . 39
4.2.4 Results for relay node energy . 39
4.2.5 Scheme summary . 41

4.3 Experimental Results for S2: Heterogeneous Aggregation 41
4.3.1 Results for number of frame transmissions . 42
4.3.2 Results for end-to-end delay . 42
4.3.3 Results for overall delay . 43
4.3.4 Results for relay node energy . 43
4.3.5 Scheme summary . 44

4.4 Experimental Results for S3 & S4: Variable Aggregation 45
4.4.1 Results for number of frame transmissions . 45
4.4.2 Results for end-to-end delay . 46
4.4.3 Results for overall delay . 47
4.4.4 Results for relay node energy . 47
4.4.5 Scheme summary . 48

4.5 Comparison of all Schemes . 49
4.5.1 Packet Drop Rate . 50

4.6 Packet Analysis . 54
4.6.1 Sniffing devices and Sniffer 15.4 . 54
4.6.2 Aggregation analysis . 54

5 Discussions 58
5.1 Result Discussions . 58

5.1.1 Advantages of aggregation schemes . 59
5.2 Other endeavours . 60

5.2.1 Compression . 60
5.2.2 CRC . 60

5.3 Limitations . 61

6 Conclusions and Future Work 63
6.1 Conclusions . 63
6.2 Contributions . 64
6.3 Future Topics . 64

Bibliography 66

V

List of Figures

2.1 Communication between different sensor fields via sink nodes [9]. 6
2.2 Single-hop vs multi-hop communication [9]. 7
2.3 Network model for DC aggregated transmission [14]. 8
2.4 Packet compression vs compressed sensing [8]. 9
2.5 CSMA/CA mechanism for medium access [9]. 11
2.6 TelosB sensor mote [20]. 14
2.7 Initialization of a simple unicast programme in Contiki with predefined configuration. . . 14

3.1 Network toplogies for temporal and spatial aggregation. 17
3.2 Homogeneous scheme for temporal and spatial aggregation. 19
3.3 Heterogeneous scheme for temporal and spatial aggregation. 20
3.4 Variable scheme for temporal and spatial aggregation. 22
3.5 Implementation of packet aggregation: an overview. 23
3.6 Implementation of packet aggregation: an overview. 23
3.7 Process of burning node ID. 25
3.8 Sniffer 15.4 capturing a transmission between two nodes where ACK can be seen easily. 26
3.9 Homogeneous scheme for spatial aggregation. 27
3.10 ContikiMAC working principle. 28
3.11 Protocol implementation of variable scheme for temporal and spatial aggregation. 28

4.1 Real life experimental set up to measure power consumption in TelosB sensor motes using
oscilloscope. 34

4.2 Packet transmission from the source node in the homogeneous scheme for temporal ag-
gregation. 36

4.3 Packet transmission from the relay node in the homogeneous scheme for temporal aggre-
gation. 37

4.4 Packet reception and de-aggregation at the sink node in the homogeneous scheme for
temporal aggregation. 37

4.5 A comparison of frame transmission count from the relay node between homogeneous
scheme for spatial and temporal aggregation vs non-aggregated transmission for 100 packets. 37

4.6 A comparison of average end-to-end delay for a single packet with respect to homoge-
neous scheme for spatial and temporal aggregation vs non-aggregated transmission for a
single packet. 38

4.7 A comparison of overall delay for 100 packets with respect to homogeneous scheme for
spatial and temporal aggregation vs non-aggregated transmission. 39

VI

4.8 A comparison of average energy consumption of the relay node with respect to homo-
geneous scheme for spatial and temporal aggregation vs non-aggregated transmission for
100 packets. 40

4.9 Packet transmission from the relay node in the heterogeneous scheme for spatial aggregation. 41
4.10 Packet reception and de-aggregation at the sink node in the heterogeneous scheme for

spatial aggregation. 42
4.11 A comparison of frame transmission count from relay node between heterogeneous scheme

for spatial and temporal aggregation vs non-aggregated transmission for 100 packets. . . 42
4.12 A comparison of average end-to-end delay for a single packet with respect to heteroge-

neous scheme for spatial and temporal aggregation vs non-aggregated transmission for a
single packet. 43

4.13 A comparison of overall delay for 100 packets with respect to heterogeneous scheme for
spatial and temporal aggregation vs non-aggregated transmission. 44

4.14 A comparison of average energy consumption of the relay node with respect to hetero-
geneous scheme for spatial and temporal aggregation vs non-aggregated transmission for
100 packets. 45

4.15 Packet transmission from the relay node in the fixed frame-length scheme for spatial ag-
gregation. 46

4.16 Packet transmission from the relay node in the adaptive frame-length scheme for spatial
aggregation . 46

4.17 Packet reception and de-aggregation at the sink node in the adaptive frame-length scheme
for spatial aggregation. 47

4.18 A comparison of frame transmission count from the relay node between fixed frame-
length scheme for spatial and temporal aggregation vs non-aggregated transmission for
100 packets. 47

4.19 A comparison of frame transmission count from the relay node between adaptive frame-
length scheme for spatial and temporal aggregation vs non-aggregated transmission for
100 packets. 48

4.20 A comparison of average end-to-end delay for a single packet with respect to fixed frame-
length scheme for spatial and temporal aggregation vs non-aggregated transmission for a
single packet. 49

4.21 A comparison of average end-to-end delay for a single packet with respect to adaptive
frame-length scheme for spatial and temporal aggregation vs non-aggregated transmission
for a single packet. 49

4.22 A comparison of overall delay for 100 packets with respect to fixed frame-length aggre-
gation scheme for spatial and temporal aggregation vs non-aggregated transmission. . . . 50

4.23 A comparison of overall delay for 100 packets with respect to adaptive frame-length
scheme for spatial and temporal aggregation vs non-aggregated transmission. 51

4.24 A comparison of average energy consumption of the relay node with respect to fixed
frame-length scheme for spatial and temporal aggregation vs non-aggregated transmission
for 100 packets. 51

4.25 A comparison of average energy consumption of the relay node with respect to adaptive
frame-length scheme for spatial and temporal aggregation vs non-aggregated transmission
for 100 packets. 52

VII

4.26 An overall comparison of energy consumption between simple forwarding vs all proposed
schemes for spatial and temporal aggregation for 100 packets in the relay node. This
calculation is done with respect to transmission count required for transmitting 100 packets. 53

4.27 A comparison of packet drop rate between simple forwarding and the proposed aggrega-
tion schemes for 100 packets. 54

4.28 TelosB mote connected to android phone using a USB OTG cable. 55
4.29 A captured packet of humidity during a transmission between source and relay. 55
4.30 A captured packet of temperature during a transmission between source and relay. 56
4.31 A captured aggregated frame during transmission between relay and sink. This frame

contains packets of humidity and temperature. 56

5.1 CRC check for corrupted packets at relay node. 61

VIII

List of Tables

3.1 An overview of the proposed schemes with respect to temporal and spatial aggregation
with respect to source . 18

4.1 An overview of all scenarios for spatial and temporal aggregation 33
4.2 A comparison of average end-to-end delay between homogeneous aggregation scheme vs

simple forwarding for a single packet . 39
4.3 A comparison of relay node’s energy consumption between homogeneous aggregation

scheme vs simple forwarding for 100 packets . 40
4.4 Overall comparison between homogeneous aggregation scheme vs simple forwarding

with respect to energy consumption, average end-to-end delay, overall delay and frame
transmission counts . 41

4.5 A comparison of average end-to-end delay between heterogeneous aggregation scheme vs
simple forwarding for a single packet . 43

4.6 A comparison of relay node’s energy consumption between heterogeneous aggregation
scheme and simple forwarding for 100 packets . 44

4.7 Overall comparison between heterogeneous aggregation scheme vs simple forwarding
with respect to energy consumption, average end-to-end delay, frame transmission count
and overall delay . 45

4.8 A comparison of average end-to-end delay between variable scheme for spatial and tem-
poral aggregation vs simple forwarding for a single packet 50

4.9 A comparison of relay node’s energy consumption between variable aggregation for spa-
tial and temporal vs simple forwarding for 100 packets 52

4.10 Overall comparison between variable aggregation vs simple forwarding with respect to
energy consumption, average end-to-end delay, overall delay and frame transmission count 53

IX

List of Abbreviations

ACK ACKnowledgement
AVR Alf and Vegard’s RISC processor
AODV Ad-hoc On-demand Distance Vector
CDA Concealed Data Aggregation
CH Cluster Head
CCA Clear Channel Assessment
CSMA/CA Carrier Sense Multiple Access/ Collision Avoidance
CS Compressive Sensing
CPDA Cluster-based Private Data Aggregation
CDMA Code Division Multiple Access
DC Duty Cycling
DTMC Discrete Time Markov Chain
DCF Distributed Coordination Function
DIFS DCF Inter Frame Space
DSR Dynamic Source Routing
DSDV Destination Sequenced Distance Vector
DSSS Direct Sequence Spread Spectrum
FEC Forward Error Correction
FDMA Frequency Division Multiple Access
FIFO First-In-First-Out
HTTP Hyper Text Transfer Protocol
IoT Internet of Things
IEEE Institute of Electrical and Electronics Engineers
iPDA Integrity Protecting Private Data Aggregation
IP Internet Protocol
LEACH Low-Energy Adaptive Clustering Hierarchy
LQI Link Quality Index
LR-WPANs Low-Rate Wireless Local Personal Area Networks
MAC Medium Access Control
PHY Physical
RSSI Received Signal Strength Index
RN Reference Node
RREQ Route Request
RF Radio Frequency
RX Receiver
RAM Random Access Memory

X

SMART Slice Mix AggRegaTe
S-MAC Synchronized Medium Access Control
SHIMMER Sensing Health with Intelligence Modularity, Mobility and Experimental Re-usability
SPOT Small Programmable Object Technology
TX Transmitter
TCP Transmission Control Protocol
USB Universal Serial Bus
UDP User Datagram Protocol
WSN Wireless Sensor Network

XI

Chapter 1

Introduction

WSN is a promising technology which consists of an enormous number of tiny sensors deployed in an ad-
hoc fashion. Due to this fact, it has extensive dimensions in numerous applications such as tracking, remote
monitoring, surveillance, etc. Therefore, it is becoming more adopted and fascinating field of research
nowadays. More often, sensor nodes deployed in a WSN are narrow in terms of resources, for instance,
energy, bandwidth, packet size, etc. Accordingly, sensors nodes need to cooperate inside a network in
terms of data accumulation to decrease the number of transmission units to preserve these resources. This
in-network accumulation technique is referred as packet aggregation. These resource parameters such
as bandwidth, number of transmission units and energy consumption for each node along with defined
topology protocol between sensor nodes have forthcoming effects over the network’s performance.

This chapter contains background knowledge of this topic as with concise description of problem
statement and what was the driving force which boosted us to embrace this topic.

1.1 Background and Motivation

In WSN, all the sensor nodes are used to perform monitoring and processing of the gathered data by
transmitting this data towards the sink node. Afterwards, sink node collects the data from all nodes and
follow the predefined protocol for data inspection to achieve the desired outcomes. Unlike ad-hoc net-
works where nodes follow any-to-any topology, WSN is always in the favour of many-to-one transmission
pattern. Eventually, this many-to-one pattern causes energy and resource outflow. Therefore, all real world
sensor deployment scenarios are energy-limited and resource constrained. The key concern in this context
is how to enhance the energy conservation of these sensor nodes using in-network resources during the
process of data collection.

To solve the energy consumption problem, several clustring methods and routing protocols are pro-
posed which enhance the energy conservation for WSN. For instance, [1] proposes energy-efficient com-
munication protocol for wireless micro-sensor networks which focuses on a clustering-based protocol,
called LEACH. This protocol adopts the random circulation of CHs to uniformly assign the energy con-
signment among all the sensor nodes in a network. Data gathering algorithms in sensor networks using
energy metrics is presented in [36] which is based on construction of energy × delay matrix and tries
to create an equilibrium between energy and delay in WSN. However, adequate techniques for various
deployment of protocols are needed to meet this task. Accordingly, there are many factors which has
huge impact towards resource conservation of WSNs. In this manner, packet-aggregation is noticeable
which is based on a principle that during monitoring and data gathering, relay nodes can execute packet-
aggregation by combining and appending multiple packets from different nodes into one aggregated frame.
Afterwards, this frame is transmitted towards the intended sink node in one transmission unit.

Some efficient algorithms to increase the life span of sensors by data gathering and aggregation is
discussed in [2]. In [3], a design architecture for clustering and aggregation is presented where CH in each
cluster gathers the data from all over the cluster and performs aggregation. During the process of aggrega-

Introduction IKT-590 : Master Thesis

tion, keeping data privacy is also a key factor which is resolved in [3] by providing a privacy-preserving
data aggregation. It uses CPDA and SMART protocol by implementing algebraic characteristics of poly-
nomials to execute this task. An iPDA, given in [4], is also related with data integrity where data slicing
and assembling is performed in collaboration with disjoint aggregation paths building for data gathering to
ensure integrity. Another efficient technique for data collection and aggregation is presented in [5] which
explains a clustering-based approach to implement aggregation. Similarly, [6] considers an energy-aware
spanning-tree algorithm for aggregation which is called E-Span. This algorithm is based on source con-
figuration, when a root is elected from all the source nodes on the basis of highest residual energy while
rest of all the nodes select their parent node on the basis of residual energy and distance towards root. An
aggregation-tree is constructed in [7] which is helpful for data-centric routing by switching off the radio of
leaf nodes and allowing no-leaf nodes in the topology to control the aggregation. Most of the algorithms
adopt in-networking processing technique when new packets are appended with partially processed pack-
ets and forwarded towards the sink node. Furthermore, considerable amount of research is available which
specifically or generally related with packet aggregation. In [8], another technique is introduced , called
CS. This technique attains lowest sampling rate for each sparse sensed packet to decrease the transmission
count.

Although these investigations brought many noticeable outcomes but these efforts are not enough
as TelsoB based packet aggregation on Contiki platform is not done yet, to the best of our knowledge.
This essential reason prompts our motivation towards real life implementation of packet aggregation in
TelsoB sensor motes. Moreover, our intention is to address some of the lacking topics and also bring up
some potential work for future research. Just as, previous investigations are somehow bounded by lack of
knowledge about some constraints like transmission count, time per transmission, energy, delay, etc. while
performing aggregation in real life. Therefore, we think these inspections are insufficient to combat this
problem in real life as some specific algorithms are needed which can appropriately use all the resources
with better performance in terms of transmission count and energy utilization. In our experiments, we
built a network of multiple sensors which are implemented in a way that sources are sending data packets
towards relay node which is behaving as an aggregator. After aggregation, relay node sends the aggregated
packets towards the sink where sink can either store that information for further processing or it can simply
discard that information. The key concern in this process is how efficiently data is collected and how
flexibly it is aggregated. Moreover, how received data can be stored at relay node for a short duration of
time and how to perform a homogeneous selection of data according to its service type. Our testing and
experimental results explain the implication and significance of the given topologies and schemes over
the preceding ones in order to improve the resource conservation. We hope that this research can attain a
desirable attention and a broad concern from the research community in this definite field which can be
helpful for the eventual expedition.

1.2 Problem Statement

This project contemplates the concept of packet aggregation in WSNs using TelosB sensor motes. It
consider two topologies, accompanying with several schemes which are designed for packet aggregation
in order to decrease the resource utilization. This thesis acknowledges following goals:

• How to design an aggregation scheme which is more suitable to TelosB and single/multi-hop in order
to scale down the number of transmission?

• How to implement aggregation at relay node with different parameters? Additionally, how to employ
packet aggregation which do not comprises of high energy consumption and delay?

• How to evaluate packet aggregation by an adaptive testing and experimental approach to deliver
specified outcomes?

Page 2

Introduction IKT-590 : Master Thesis

1.3 Approach

In almost every research stream, there are always certain limitations which become apparent while dealing
with the implementation of new techniques. Likewise, WSN also suffers certain challenges when it comes
to design and implementation. Some of the major problems regarding this area are:

• Precise synchronization between source relay and the sink node due to the processing delay gener-
ated by the packet aggregation in WSNs.

• Strict energy confinement and narrow in-network holdings of the sensors motes.

• Buffer and queue management for intended incoming and outgoing packets.

• Evaluation and compilation of multiple nodes simultaneously and assessment of the performance of
each node analytically.

This thesis is mainly concerned about conservation of in-network resources for different nodes in
the network topology. This whole idea is established by using some existing aggregation methods and
proposes several schemes and scenarios in this environment. For instance, how to aggregate packets on
the relay nodes using unicast transmission protocol. How to generate real time data while using temporal
and spatial aggregation and what is the effect of this aggregation in terms of transmission count and energy
level of each node. How to initialize sequence number and source ID in each packet in order to make the
transmission more reliable and accurate.

In WSNs, several processes are happening simultaneously so every process needs to be selected ho-
mogeneously according to its service type. In our case, sensor nodes are generating real time data such as
temperature, light, humidity etc. Hence, it is elemental to set s selective aggregation method for each data
type to enhance the flexibility of the network. For attainment of these requirements, we use several meth-
ods and techniques to accomplish the prescribed tasks in specified time. Subsequently, going through all
the research material, we approach the conclusion that in-network resources can be conserved by perform-
ing concatenation at relay node and select the data according to the requirements. In order to carry out the
experiments, we start with simple HELLO messages and move towards the real time data. This real-time
behaviour of a sensor node is very important in a way that it looks more convincing for any researcher
as every physical development is followed by a research. Therefore, instead of sending raw data or any
beacon message, real-time values are always preferable. Afterwards, we execute all the real time testing
and experiments to produce some numerical results. The throughout system architecture revolves around
certain points such as decrease the number of transmission to an optimum number, introduce less possi-
ble delay between each transmission while maintaining the QoS as there should not be any possibility of
packet drop. Furthermore, every experiment is executed by assuming ideal conditions for the channel. In
contrast with previously proposed schemes, our proposed packet aggregation schemes are more adaptable,
reliable, future oriented and thus more appropriate for energy and resource-limited scenarios.

1.4 Report Organization

The rest of the report is enumerated in the following manner:

• The second chapter contains some background familiarity about the concept of packet aggregation,
how it is being used in WSN, various techniques used for aggregation and some elemental informa-
tion of TelosB motes and Contiki platform.

• The third chapter is composed of design for different topologies, platform building, hardware and
software architectures for the implementation of each scheme and topology.

• The fourth chapter is related to the attained experimental results, analysis and compilations from
different test scenarios and schemes.

Page 3

Introduction IKT-590 : Master Thesis

• The fifth chapter is about discussion of the results, provided in chapter 4 along with a brief descrip-
tion of unsuccessful attempts to provide some potential basis for future research.

• Eventually, the sixth chapter is conclusions and also endorses some new dimensions as future works.

Page 4

Chapter 2

Enabling Technologies and Related Work

In WSNs, sensors are deployed in large geographical areas and these networks are implemented in multi-
hop fashion with certain resource constraints and limited sensing range. Therefore, instead of direct trans-
mission, packets are sent through relay nodes. These relay nodes are also responsible for processing and
aggregation. In order to conserve these resources, optimal number of transmissions in less possible trans-
mission time is necessary. Given the fact that local calculation and processing bring less cost in terms of
energy and time, packet aggregation in WSN has become an interesting field of research. It is due to the
fact that packet aggregation is intended to extend the lifespan by excluding avoidable transmission units
[33]. However, WSNs are always energy-limited and memory constrained, this aggregation technique
sometime causes more complications and dilemma while doing inside the network.

This chapter contains of a brief knowledge about packet aggregation, multi-hop networks and related
work done previously. Additionally, It explains about Contiki platform and TMote Sky sensors and their
relation with our thesis.

2.1 Enabling Technologies

WSNs are appearing as one of the most promptly growing field of research involving dynamic platforms
and support for various effective operations. However, several technical barriers are there which have to
overcome to attain the required outcomes. This section compiles some trending features and configurations
by concentrating on some basics of WSN and multi-hop networks as an highly compelling permissive
technique for WSN.

2.1.1 WSN essentials

In sensor networks, all the sensor nodes are aligned to perform certain tasks such as monitoring, data
collection, etc. Afterwards, collected data is transmitted towards the sink via some relays. Sink node
is responsible for gathering all the monitored and processed data and ends up with final report [3]. An
important feature in WSN is that a sensor mote has the ability to perform some tasks like fusion, correlation
and processing/saving of data into its memory, in addition to its conventional communication feature.
Moreover, sensors motes can communicate with other sensor motes from a different geographical area, as
shown in Figure 2.1, using Internet via sink nodes [9].

In WSN’s operations, sometime it does not require any predefined position or topology. Due to this
fact, WSNs are sometime treated as certain form of wireless ad-hoc networks. WSN faces certain chal-
lenges in many cases, if a sensor node is already deployed, it should remain unattended. When a device
is capable to adopt all the environmental and topological variations and behave according to these vari-
ations, its called self-managing. This self-management contains many tiny features like when a sensor
node is equipped with an ability to configure its technical specifications like RSSI, transmission power,
connectivity, LQI etc. If any change is noticeable in the system state, its called self-organization. Next

Enabling Technologies and Related Work IKT-590 : Master Thesis

Figure 2.1: Communication between different sensor fields via sink nodes [9].

feature is called self-optimization, when a node is able to optimize its resources according to the require-
ment. In self-protection, a device can detect any possible threat and can recover from that attack. Lastly,
in self-healing, a sensor node affords to find, detect and react to network interruptions [9]. In terms of
communication, WSN nodes follow IEEE 802.15.4 protocol which is refereed for LR-WPANs, usually
named as Zigbee which is a logical network. Zigbee is build on physical radio IEEE 802.15.4 standard
and is used for networking in sensor devices, while deployed at remote locations [10]. In many cases, this
standard apply frequency band of 2.4 GHz. This band has a indoor working range of 30 m and outdoor
working range of 100 m while transmitting packets with the rate of 250 kbps.

Scalability and less power utilization are the key features for an optimal sensor mote. Additionally, it
is able to gather data rapidly with great efficiency and consistency. Therefore, adoption of any sensor node
before starting any task is very important to attain desirable outcomes [11]. The signal conditioning block
is re-programmable and even alterable to accommodate different sensors inside the mote. Accordingly,
radio link is also exchangeable, depends on the intended operation and requirement of the protocol. In
memory section, flash memory is there to hold all the given instructions or gathered information for the
short period of time. Moreover, an adaptive embedded firmware is used which follows the wireless network
for the updates. The micro-controller is responsible for data employment, energy management, sensing
to physical layer consolidation and organisation of radio network protocol. However, energy management
in WSN is not an easy task while dealing with uncertain events. Therefore, an event-sensitive approach
with appropriate hardware architecture is needed to manage the required energy consumption [11]. For the
network architecture, various topologies are implemented in WSNs including, star network, mesh network,
hybrid star-mesh network, etc. which will be discussed in the coming sections.

2.1.2 Multi-hop networks

As discussed earlier, sensor nodes are typically programmed to transmit data packets towards the sink
node which behaves as a gateway between other networks. In a simple topology, when sender and sink
node are close enough to each other that sender can directly send the data to sink without requiring any
relay node, this type of network is usually referred as single-hop network. Nonetheless, when nodes are
deployed in large geographical areas and nodes are far away from each other, single-hop communication
is not suitable. This type of scenario is suitable for multi-hop network which is designed with multiple
sensor nodes, behaving as relay, between sender and sink node. These relay nodes perform monitoring
and collection of their own data and also forwarding of other nodes data simultaneously.

In Figure 2.2, single-hop and multi-hop models are shown where in single-hop (left), all the sensors
nodes are attached with the sink node without requiring any relay node. Therefore, communication be-

Page 6

Enabling Technologies and Related Work IKT-590 : Master Thesis

Figure 2.2: Single-hop vs multi-hop communication [9].

tween all nodes to sink node is direct. In contrast, nodes are indirectly sending data to sink node via some
relay node, as shown in Figure 2.2 (right), by following a routing path to the sink node. The key chal-
lenge in this design is to determine this path despite the fact that WSN has energy constrain and memory
limitations. Accordingly, in case of any variations in topology, these routing paths should be volatile and
alterable. However, global addressing schemes like IP addressing etc. are not feasible to implement in
some scenarios so WSN has its own routing protocols which are categorized in terms of network organi-
sation, route discovery and protocol operation [9].

While we are talking about the identifying the routing path, the most commonly used approach is
minimum hop, that is, finding the shortest possible path from source to sink by using smallest possible
hops. Here, every link between the two nodes has a fixed cost and shortest path is selected by estimating
the total aggregated cost of all the links till the destination. This approach eventually decrease delay and
energy consumption by involving less possible relays but may not be ideal in terms of delay and energy
optimization. Moreover, in terms of energy efficiency, several estimations are there which consist of
minimum energy consumed per packet, maximum time to network partition, minimum variance in node
power levels, maximum (average) energy capacity and maximum minimum energy capacity [9].

2.1.3 Packet aggregation

In WSN, nodes are energy-constrained and resource-limited and in the process of monitoring and gather-
ing data, each node has a data packet which is suppose to be sent to the sink. Packet aggregation in this
context is used to reduce the protocol overhead by appending multiple packets together and send them in
a single transmission towards the sink which will reduce the number of transmissions and overhead, asso-
ciated with each transmission unit. Aggregation schemes depends on the topology of every network. For
instance, in cluster based networks, aggregation is usually performed at CHs while inside a cluster, relay
nodes behave as aggregators [13]. In [11] some fundamental features are presented which include latency
and energy consumption. At first, latency is actually a duration required to finish the aggregation between
aggregator and the source node. It includes distance between nodes, packet size and channel state. CH
follows the multi-hop pattern by identifying the shortest possible path towards the destination. Therefore,
to decrease latency, backup paths are followed for aggregation purpose. Accordingly, in working mode of
data aggregation, aggregator waits for all the data coming from various sources to execute the aggrega-
tion. Accordingly, the cut off for residual energy is examined regularly to elect the new aggregator with
maximum possible energy within one cluster.

Heretofore, a lot of research has been done in the context of packet aggregation in WSNs by focusing
on different aspects of aggregation, for instance, data gathering algorithms using energy metrics in [36],
energy aware data aggregation in [12], energy efficient recoverable concealed data aggregation in [13],
etc. In this section, we are going to briefly analyse some of the techniques and schemes about aggregation,
proposed by academia. Additionally, there are some techniques which not only discuss aggregation but

add more value by providing some favourable algorithms like packet-compression, encryption, com-

Page 7

Enabling Technologies and Related Work IKT-590 : Master Thesis

Figure 2.3: Network model for DC aggregated transmission [14].

pressed sensing, etc.

2.2 Related work

This section consists of a encyclopaedic summary of some of proposed techniques and schemes by various
researchers. We are going to explain some of those techniques to give a brief knowledge to readers about
the the efforts which are already presented.

Packet aggregation in Duty-Cycled WSNs

As DC is a well known technique which involves wake up and sleep intervals for sensor nodes to save
energy. In [14], instead of defining a duty cycle for an individual packet, it is preferable to deploy a duty
cycle for an array of aggregated data packets to save time and energy. Furthermore, [14] considers a three-
dimensional DTMC model which includes a retransmission mechanism to analyse the transmission of this
aggregated array of packets with respect to state of queue, retransmission and progression of alive nodes
in a network. This approach utilizes S-MAC as its MAC protocol. The network model for this approach
is described in Figure 2.3, where a cluster of N sensor nodes is examined and sink is one hop away from
each node in the cluster. In operation, algorithm chooses one RN node forthwith and assumes that sink
behaves as a receiver only. One node in the cluster operates on FIFO and acts as a buffer. Accordingly, the
node analyses the collected packets in buffer executes aggregation process and builds a frame. This frame
can only be transferred by the RN if it achieves success in competition to access the medium. Eventually,
transmission for all the packets in frame is only possible if the number of gathered packets in buffer is
less than maximal capacity F of frame. In contrast, frame with only F packets is sent. In case of fruitful
transmission , packets in the buffer are downsized according to the frame capacity.

Efficient aggregation scheme to maximize WSN life span

An adequate energy-aware scheme is presented in [2] where a network is formed by implementing mul-
tiple sensors which are systematically gathering information and forwarding this data towards the sink.
At the same time, these sensors are behaving as aggregators due to their capability of executing data ag-
gregation within the network. Consequently, this aggregation process decrease the time required to send
data from source till destination which is referred in [2] as sensor’s life span. In the described technique,
called MLDA algorithm, a nearly ideal polynomial time algorithm is presented with some clustered based
advance technique to enhance the lifespan. After all the experiments, results showed that MLDA per-
form 1.15 - 2.32 times better than the current aggregation schemes in limited area networks. Additionally,
clustered based approach gained 2.61 times better efficiency in life span than the typical ones.

Page 8

Enabling Technologies and Related Work IKT-590 : Master Thesis

(a) Typical compression (b) Compressed sensing

Figure 2.4: Packet compression vs compressed sensing [8].

Energy-efficient data aggregation

Many techniques and algorithms have been presented to conserve energy and resources in WSNs. In
this section, three techniques are described to decrease the energy consumption in WSNs. In [15], such
an approach is given which proposes a framework, acts as a middleware for data aggregation inside a
network in SPIN. It also shows a method to send minimal data with less possible error. In this scenario,
nodes are forwarding packets towards sink, at first, there is broadcast message about packets from A for
all the neighbouring nodes and on reception of request from B, packets are transmitted towards the node
B which is intended to receive the packets. On the basis of minimum hop count, node A identifies the
shortest path towards B. When packet arrives at B, algorithm matches the received packet with the packets
formulated by B itself. If the packets are unchanged, received packets are discarded. Otherwise, received
packets are aggregated with B’s packets and forwarded towards the next node. At next destination, which
in this case is C, data is matched with the earlier packets from all nodes. Therefore, in case of real time data
like temperature, humidity, light, etc. unchanged values are useless to consider which saves energy and
time required for further processing. Consequently, statistics revealed that 750 nJ energy can be conserved
at 4th round and 400 nJ is amount of minimal energy conserved at 2nd round. Another important aspect of
energy-aware aggregation is discussed in [12] where an aggregation architecture is presented. This scheme
proposes more flexibility in aggregation process by saving packets in RAM memory of a sensor node. This
algorithm performs aggregation in certain conditions which are given below:

• If sensor’s memory is packed and there is no space for incoming samples.

• If the saved packets amount exceed the limit of standard payload size of the intended outgoing
packet.

• If any node requests to send data towards it.

Additionally this model provides an error correction algorithm FEC to control packet error ratio. In
sensor’s memory management, various temperature samples are being stored for short term before further
processing. Additionally, a counter is introduced which counts each added sample into the database and
computes the capacity of payload to accommodate these samples for aggregation. Thereupon, results
reveal that proposed algorithm decreases the network packet loss ratio down to 90 % and enhances the life
span upto 50% which are considerable ratios to boost the network performance. CDA is another approach
discussed in [13] which introduces encryption and recover ability in data packets to save networks from
external attacks. This recover ability factor provides authentication and integrity but instead of typical
flexible implementation, this scheme sends diverse packets towards the CHs so these are responsible for
data aggregation by providing more secure transmission through CDA.

This scheme saves energy by bypassing the redundant data while sending concurrently. The network
model is distributed among various clusters while each cluster has w nodes. One node form all w nodes
is elected as CH which is responsible for processing and aggregation of received data of all nodes from
that cluster. Data transmission throughout this scheme is made confidential by applying mykletun et al.’s
encryption. Therefore, redundancy is removed which results a noticeable decline in consumed energy.
Furthermore, another clustered-based approach for aggregation is presented in [6] which considered E-
Span as a protocol to allows to elect a root node among all nodes with higher residual energy. Remaining

Page 9

Enabling Technologies and Related Work IKT-590 : Master Thesis

nodes decide their parent nodes from neighbourhood on the basis of residual energy and distance towards
root. Therefore, instead of directed diffusion, this model helps to enhance the average life time of a node.
In [11] presents an other idea of distributing aggregation protocols on the basis of structure, search-based
and time based manners instead of structure free which also enhance efficiency and energy-conservation.

Compression and aggregation

Compression is another technique which is used to reduce overhead, produced by large amount of data
travelling. Normally, compression is done after gathering of monitored data from sensor nodes to reduce
the size of data packet. However, [8] introduces a different technique which is called CS which operates on
less sampling rate for infrequent signals. In this context, signals are reconstructed in energy-conserved way
where data is sent in narrow compressed way rather than transmission of whole batch of measured data
towards the base station. In terms of aggregation, when CS is implemented, size of collected data at relay
node is compressed apart from detaching any information. In Figure 2.4, a comparison between traditional
compression and CS is shown as in typical compression, Figure 2.4a, N samples are needed to calculate
the pack of transform coefficients and in case of CS, one signal is pitched continuously at low dimensional
space to reconstruct the high probability signal with large dimension, illustrated in 2.4b. Eventually, due
to the absence of sensing signal, traffic overhead comes down with decrease in the size of packets which
is beneficial for energy conservation. By the same token, another highly effective and reliable minimum-
energy compressed data aggregation scheme with CS is conferred in [41], which implements diffusion
wavelets to discriminate the spatial correlations for reliable recovery of data. From the analysis of the
outcomes, it is revealed that highly reliable recovery of data is possible by the appropriate plotting of
inadequate basis which is an energy efficient way for data gathering.

2.2.1 MAC protocols in WSNs

In WSNs, numerous nodes are trying to transmit their packets. MAC protocol allows nodes to acquire the
common medium for transmission. Accordingly, it is duty of the data link layer to develop a system which
grant this access among all nodes evenly. MAC layer is a sub layer of data link layer an its responsibility is
to organise a fair competition between all competing nodes to avoid contention in network. MAC protocols
are further dispersed in contention free and contention based protocols. In contention free protocols,
different techniques are used to grant access to only one node in the meantime. In contradiction, other
category allows nodes to acquire the medium concurrently while assuring the fact that environment is
collision free [9]. In some protocols where features of both categories are common are referred as hybrid
protocols. In contention free, several protocols are used to decrease collision probability among different
nodes. These protocols are categorised on the basis of their division in frequency, time etc. From [9], it
yields a short description of these protocols, given below.

• FDMA splits the frequency band into multiple small bands which are allotted in a way that each
band is given to each transmission between a pair of nodes.

• TDMA breaks the time into small slots for different nodes while using same frequency band. One
time slot is assigned to utmost one node.

• CDMA grants concurrent access to multiple nodes by adopting several codes. In case of orthogonal
codes, multiple nodes can communicate using same frequency band at the same time slot where
FEC is used at receiver end to avoid interference.

On the other side, contention based protocols accord nodes to compete with each other to access
the medium concurrently. However, it provides some liberty to reduce collisions or even recover ability
from these collisions. These protocols include ALOHA, slotted- ALOHA, Carrier Sense Multiple Access
(CSMA) etc. which are used for WSNs.

Page 10

Enabling Technologies and Related Work IKT-590 : Master Thesis

Figure 2.5: CSMA/CA mechanism for medium access [9].

CSMA/CA

CSMA allows node to sense the medium before further access which is feasible to avoid collision. Medium
is continuously sensed by all nodes whether it is idle or busy. If medium is idle, a node intended to transmit
packet, send instantly. Additionally, CSMA/CA is used to enhance the ability of a network to evade from
collisions. Accordingly, when a node wants to transmit, first, it has to check whether channel is idle for
DIFS and an interval of random back-off plus multiple of slot size. In this back-off algorithm, shown in
Figure 2.5, a node with less back-off value wins the competition, as A has delay of DIFS + 4× slotsize
and B has DIFS + 7 × slotsize. Therefore, A wins the competition and is allowed to send its packet
while B has to wait till the next competition in addition to the interval of DIFS [9]. In every designed
protocol for medium access, contention window size is an important factor, as if the values selected by
various nodes are approaching to same size, collisions will occur. On the other side, if values are too large,
it will bring unnecessary delay in transmission. Back-off timer is used in this context to introduce fairness
in CSMA/CA. When a node selects a random time in contention window and it loses the first competition,
it freezes its back-off counter and waits for one DIFS interval to take part in next competition. When
back-off timer expires, it grabs the channel. Therefore, rejected nodes in first competition will not choose
any random back-off value in next turn rather they will count down there timers. In this context, they only
have to wait for their remaining slots to get access to the medium [16].

802.15.4 / ZigBee

The IEEE 802.15.4/ZigBee is a standard which is established to embrace to CSMA/CA as medium access
approach to deal with the requirements of Personal Area Networks (PAN) with supported data rates of 20,
40 and 250 kbps. ZigBee standard is more divided into two sub topologies which are called star and peer-
to-peer. In the first topology, PAN coordinator is responsible for every kind of transmission. However,
peer-to-peer scheme offers liberty to communicate without any limitation after getting permission from
the PAN coordinator [9]. The IEEE 802.15.4 consists of three characteristics which are number of back-
off, content counter length. At first stage, back-off is at zero and it is only incremented by one if channel
is found busy by CCA. However, there are always some constraints to keep back-off inside certain limit to
abstain from overhead. Moreover, in IEEE 802.15.4, CSMA/CA is distinct in a way that back-off counter
decrements the value without bothering the channel state [17].

2.2.2 Addressing in WSNs

In WSNs, instead of using typical global addressing approaches like IP addresses, etc. there are different
ways to address nodes via several routing protocols.Another research from [9], describes various routing
methods, based on design, working and path finding, etc. used in WSNs. However, we are organising
protocols on the basis of proactive and reactive behaviour. Reactive routing protocols are on-demand
protocols which are used when there is a need of transmission between a sender and a receiver without any

Page 11

Enabling Technologies and Related Work IKT-590 : Master Thesis

predefined path between them. Protocol overhead is less as there is no existence of predetermined routes.
Therefore, flooding is used to renew the route information if its required. Route discovery procedure is
carried out through RREQ packets. The DSR and AODV are the two basic types of reactive protocols.

Proactive routing protocols discover the path from source till destination before physical transmission,
which produces unnecessary delay in network. In proactive approach, every node has its own routing table
which contains the route information towards all other nodes in the network. This information contains
destination address, number of hops, etc. Each routing information in the table is remembered with a
sequence number, generated by the destination. The DSDV is an example of this approach. Furthermore,
if packets are transmitted from source towards destination, this categorical routing is known as node-
centric routing like unicast, multicast or broadcast. However, in data-centric routing, when there is no
catogorical transmission but destination is defined by certain parameters. For instance, if destination is
asked to send only humidity then, instead of all sensors, only respective nodes are concerned in this case
[9].

2.3 Adopted Tools

WSNs have extensive dimensions from simple monitoring and data gathering to packet aggregation and
further towards more advance fields like IoT. Therefore, variety of tools and architectures are used to meet
the requirements of these areas. This section demonstrates about different sensor motes, their classification
and also shows a brief overview about Contiki-OS and rime stack.

2.3.1 Sensor motes

Wireless sensor motes are organised on the basis of storage, energy consumption, computation ability,
communication protocols, etc. Given below, sensor mote classification is provided on the basis of process-
ing power, cost, support, compatibility and size from [18].

• Mica2/Micaz are the second and third generation mote technologies from CrossBow Technologies
which adopt similar power/battery composition like TelosB/TMote sky sensors.

• TelosB/TMote Sky mote are developed by University of California, Berkeley and are currently
available from MEMSIC Inc. Furthermore, these motes require a pair of independent AA batteries
with voltage range of 2.1 V to 3.6 V.

• SHIMMER requires 250 mAh power source at input.

• IRIS is the latest mote from Crossbow Technologies which also required a pair of AA batteries as a
power supply.

• Sun SPOT is from Sun Micro Systems which are power-driven by a unified on-board rechargeable
source.

• Waspmote is an open-source hardware and software based sensor platform from Libelium Commu-
nications which utilizes Li-Ion power, solar panels or USB as power sources.

For this thesis work, we decided to work with TelosB platform to execute our required experiments,
details about TelosB is given in Section 2.3.2. Admitting the fact that we have many other options to
choose but these nodes are selected as these were conveniently available. Therefore, to avoid long delays
from ordering to shipping, we chose TMote by considering the short time span of this semester.

Page 12

Enabling Technologies and Related Work IKT-590 : Master Thesis

2.3.2 TelosB/Sky mote

TelosB mote, shown in Figure 2.6, is an ultra low power wireless module which is being used as an
experimental device in WSNs. Essentially, it has the ability to monitor various real life events as it has
integrated humidity, temperature and light sensors. Additionally, detailed characteristics 1 are given in
following part .

• IEEE 802.15.4 enabled

• Data rate of 250 kbps

• TI MSP430 Micro controller with 10 KB RAM

• Unified on-board antenna

• Data gathering and programming by way of USB interface

• Open-source operating system

• Unified temperature, light and humidity sensors

This module affords small power consumption which allows batteries to be alive for longer duration like-
wise fast switching between wake up and sleep states.

CC2420 radio

TelosB mote has the Chipcon CC2420 radio which is an IEEE 802.15.4 enabled radio, affording the PHY
and some MAC functions for wireless communication. These distinct features afford reliable wireless
communication. Moreover, it is highly compatible with other application using universal radio configu-
ration. The CC2420 is MSP430 micro-controller driven module which operates using the SPI port along
with series of digital I/O lines and interrupts. Some of the key features of CC2420 are given below [19].

• The sole-chip 2.4 GHz IEEE 802.15.4 enabled RF transceiver with baseband modem and MAC
support.

• DSSS baseband modem with 2 MChips/s and 250 kbps data rate.

• Capability of working with both RFD and FFD.

• Less current consumption (RX: 18.8 mA, TX: 17.4 mA)

• Optimal supply voltage (2.1 – 3.6 V) with unified voltage regulator.

• Optimal supply voltage (1.6 – 2.0 V) with external voltage regulator.

1www.memsic.com/userfiles/files/Datasheets/WSN/telosb datasheet.pdf

Page 13

Enabling Technologies and Related Work IKT-590 : Master Thesis

Figure 2.6: TelosB sensor mote [20].

Figure 2.7: Initialization of a simple unicast programme in Contiki with predefined configuration.

2.3.3 Contiki-OS and its features

In WSNs, the gigantic task is to discover balanced and reliable architecture that will furnish bulky and
excessive compilations in a smooth and swift environment while remaining inside the circumference of
software and hardware boundaries. Contiki is such a platform which is developed to afford this liberty to
execute dynamic loading and unloading of codes smoothly. Contiki is established with an event-driven ker-
nel which accommodates selective preventive multi-threading for each exclusive process. It is established
on C language which supports multiple environments to configure several micro controller architectures
containing MSP430, Atmel AVR, now based on ESB platform. The ESB adopts MSP430 with 2kb RAM
and 60 kb ROM, operating at 1 MHz. The MSP430 is capable of performing optional reprogramming of
on-chip flash storage 2. Figure 2.7 shows the initialization of program on Contiki before any operation.

TinyOS vs Contiki

In terms of operation, both TinyOS and Contiki are used to program wireless sensor nodes. However,
there are apparent diversities which are essential to understand while dealing with various tasks in WSNs.
From another research [9] describes this differentiation in terms of functional and non-functional features.
Functional features include programming archetype, scheduling, building blocks, memory allocation and
system calls. Both, TinyOS and Contiki have event-based paradigm but Contiki has an optional multi-
threading ability. In block architecture, TinyOs has components, interfaces, and tasks while Contiki af-
fords services, service interface stubs, and service layer. FIFO is used as a scheduling approach in both
platforms. The major difference appears in memory allocation where TinyOS has static memory where
Contiki has dynamic memory. Finally, system calls are not available in TinyOS. On the other hand, Contiki
offers runtime libraries to call upon in runtime environment. Furthermore, non-functional features contain
minimum system overhead, dynamic reprogramming, portability, etc. System overhead in TinyOs case
is 332 bytes which is less than in Contiki which injects 810 bytes of data as system overhead. Dynamic
reprogramming is fully supported in Contiki unlike TinyOS which requires external software to perform
reprogramming [9].

2www.ti.com/lit/ds/symlink/cc2420.pdf/

Page 14

Enabling Technologies and Related Work IKT-590 : Master Thesis

Contiki features

Some of the key features of Contiki are illustrated below [32].

• Memory allocation is an efficient way to provide a mechanism for memory allocation.

• Full IP networking affords a full IP network stack, with standard IP protocols such as UDP, TCP
and HTTP.

• Dynamic module loading dynamic loading and linking of modules at run-time is supported.

• Power awareness operates in extremely low power systems which are designed to run for years on
a pair of AA batteries.

• The Cooja network simulator makes simulation tremendously easier by providing a simulation
environment.

• The Rime Stack supports simple operations such as sending a message to all neighbours or to a
specified neighbour, as well as more complex mechanisms such as network flooding and address-
free multi-hop semi-reliable scalable data collection.

• The Contiki shell provides an optional command line shell with a set of commands that are useful
during development and debugging of Contiki systems.

• Protothreads is a mixture of the event driven and the multi-threaded programming mechanisms.
With protothreads, event handlers can be made to block, waiting for events to occur.

A running Contiki system consists of the kernel, libraries, the program loader, and a set of processes.
In this context, a process can be an application program or a service, while a service implements function-
ality used by more than one application process. All processes, can be dynamically replaced at run-time.
Communication between processes always goes through the kernel. The kernel is not able to afford a hard-
ware abstraction layer but allows device drivers and applications communicate directly with the hardware.
A process is defined by an event handler function and an optional poll handler function. The process state
is held in the process’s private memory and the kernel only keeps a pointer to the process state. On the
ESB platform, the process state consists of 23 Bytes. All processes share the same address space and do
not run in different protection domains [21].

In this chapter, we elucidated the basis of packet aggregation in WSN in order to improve energy
efficiency and resource conservation. Additionally, we studied multi-hop networks and took an overview
of some previously proposed methods and techniques to implement packet aggregation in context of WSN.
Later, we explained our adopted tools including TelosB and Contiki and how these are related with our
thesis work in order to achieve the desired outcomes according to the requirement specifications. We hope
that after reading this chapter, one can easily understand the theoretical and factual background behind this
thesis work.

Page 15

Chapter 3

Network Design and Protocol
Implementation

Wireless sensor nodes have several sub-functions such as sensing, processing, communication and energy
distribution. Therefore, in order to assess the efficiency of packet aggregation, it is an important task
to answer how to build system architecture, how to put together sensor nodes into a unified topology to
execute all the sub-functions appropriately. Furthermore, how to design the protocol to perform these
tasks according to the requirement specification. However, there are certain challenges for instance low
data rates, narrow payload size, and crappy packet exchange performance, etc. Thus, to deal with all
these challenges, a systematic approach is required which will provide a set of guidelines about design and
protocol considerations and afford a framework for their implementation.

In this chapter, we propose several network topologies with programming layout which explains how
protocols are designed and how well these are implemented, in order to assign packet aggregation in
typical sensor networks. Additionally, these topologies are composed to assess the efficiency of packet
aggregation in TelosB motes with respect to different schemes and algorithms.

3.1 Network Design

In terms of network design, we propose two basic topologies which are systematized as spatial and tem-
poral aggregations. Spatial aggregation topology is employed when we are sending data packets from two
different sources towards the aggregator where in temporal characterization, we analyse series of consec-
utive packets from a single source to the aggregator. The idea behind these topologies is to implement
packet aggregation with different schemes and evaluate the impact of aggregation on sensor nodes against
delay, number of transmissions and energy consumption. In order to perform this evaluation, we develop
three aggregation enabled schemes which contain homogeneous aggregation, heterogeneous aggregation
and variable frame-length aggregation. Moreover, the entire set of schemes include sequence number and
ACKs for reliability and time-stamp to measure end-to-end delay. Accordingly, these parameters like end-
to-end delay, number of transmissions and energy consumption are examined for the proposed schemes
with aggregation in comparison to the schemes without aggregation. In this section, we provide a brief
description of the proposed network model along several schemes to implement aggregation. Throughout
the design and implementation, we used intermediate or relay as interchangeable name for a same node.

3.1.1 Network topologies

Consider a WSN cluster which contains multiple sensor nodes. These nodes are connected with each
other and source communicate with other nodes via single or multiple hops. Nonetheless, nodes have
some limitations in energy, memory, computation and processing. According to the topologies shown in
Figure 3.1, node A and B are behaving as source nodes where C is operating as a relay node or aggregator.
Node C executes packet aggregation based on the packets acquired in its buffer. Accordingly, the batch of

Network Design and Protocol Implementation IKT-590 : Master Thesis

(a) Network topology for temporal aggregation.

(b) Network topology for spatial aggregation.

Figure 3.1: Network toplogies for temporal and spatial aggregation.

these concatenated packets is mentioned as a frame. Typically, transmission of this frame is only possible
if there are at least two packets, aggregated in its payload. However, we also introduce another scheme
which is referred to as variable aggregation where C periodically sends a frame without any packet-length
limitations, explained in coming Sections. Node D is intended destination or sink which receives this
frame. The wireless channels among these nodes are considered to be ideal and all the communication
links between adjacent nodes are comparable. We start with simple temporal aggregation scheme, shown
in Figure 3.1a, with three nodes A, C and D. The idea behind this scheme that A generates consecutive
packets and transmits towards node C for aggregation and waits for specified time interval to send next
packet. The relay node C receive and store the incoming packet in its memory and for duration and waits
for next packet from A. After the predefined interval, A sends next packet towards C while C receives this
packet, concatenates two packets into one frame and forwards this frame towards node D. However, in
spatial aggregation, we have two sources A and B and both are generating real-time data. In this scheme,
shown in Figure 3.1b A and B send packets towards C with difference in time slot to avoid collisions. It
is important to mention that as buffer is very limited in size so some packets may be dropped because of
buffer overflow. In our proposed network topologies, there are certain assumptions which are important to
mention here. i) The channel is assumed to be ideal and error free such as channel state is certain and there
is no interference or noise. ii) While calculating end-to-end delay, distance between all nodes is kept small
enough to ignore propagation delay iii)Queuing delay is ignored because C can only receive one packet at
a time. For certainty, the variable aggregation scheme is described in Algorithm 3 which demonstrates the
behaviour of node C. In this algorithm, a variable aggregation scheme is illustrated as value of i is zero.
After receiving first packet, algorithm inspects the previous state if there is any packet which is already
received in c[i] . If there is any received packet, it simply concatenates the recently received packet with
the previous packet and transmits towards the sink. However, if the memory of c[i] is blank then the
incoming packet is stored in the memory and counter is incremented by one. The Algorithm 3 holds for
both topologies, shown in Figure 3.1a and Figure 3.1b, as node C behaves identical in both cases.

3.2 Design of Packet Aggregation Schemes

In order to explain aggregation in TelosB sensor nodes, we proposed several schemes. Therefore, in this
section, we discuss the design of different schemes for packet aggregation which are implemented and
tested on TelosB motes. These schemes are organised with respect to spatial and temporal aggregation

Page 17

Network Design and Protocol Implementation IKT-590 : Master Thesis

Algorithm 1 Homogeneous aggregation
1: i = 0
2: while A packet is received do
3: if The packet type == Seclected type then
4: d[i]← Received packet
5: if i == 1 then
6: e← d[i] + d[i-1]
7: Forward the aggregated frame from e
8: else
9: f[j]← Received packet

10: Forward the non-aggregated packet from f
11: end if
12: i = i+1
13: end if
14: end while

modes. A summary of all the proposed schemes is given in Table 3.1.

Table 3.1: An overview of the proposed schemes with respect to temporal and spatial aggregation with
respect to source

Proposed schemes Temporal aggregation Spatial Aggregation Frame
size

Homogeneous
One source with two different
data types

Two sources with two different
data types

Fixed

Heterogeneous
One source with two different
data types

Two sources with two different
data types

Fixed

Fixed frame-length
One source with two different
data types

Two sources with two different
data types

Fixed

Aaptive frame-length
One source with three different
data types

Three sources with three differ-
ent data types

Adaptive

3.2.1 Homogeneous aggregation

Apparently, the homogeneous aggregation involves a scenario where only packets from the same class
are operated and their operation can not be compromised to the one with other classes. As sensor nodes
are mostly used for monitoring and surveillance purpose, security and safety can not be compensated
with any other task. Therefore, in addition to the typical aggregation, this scheme is proposed to afford
more flexibility in aggregation as this approach offers selective packet aggregation at relay node. This
selective packet aggregation is used to provide priority to the most critical information. While the rest of
information is simply forwarded without performing aggregation. In Algorithm 1, design principle is more
obvious as when packet is received at relay node, its priority level is checked by the protocol and if it is
highly prioritized the it is stored in d. Afterwards, if there are already two packets in the memory, both
of these packets are aggregated into a frame, stored in e and transmitted. However, in case of rest of the
classes, packets are simply stored in f[j] and forwarded without further processing. This proposal is useful
to distinguish between high and low priority class identification in order to reduce energy, consumed by

Page 18

Network Design and Protocol Implementation IKT-590 : Master Thesis

(a) Homogeneous scheme for temporal aggregation.

(b) Homogeneous scheme for spatial aggregation.

Figure 3.2: Homogeneous scheme for temporal and spatial aggregation.

unworkable and idle data sensing. Moreover, frequency of low-priority forwarding can be reduced from
relay node which sufficiently decrease the data traffic in the network. Just as, a sensor node which is
deployed in network and only dedicated to sense temperature data once every 10s and sends towards
relay node while another node is only sending light value once every 15s. In this scenario, if temperature
is assigned as the high priority class and sensed value of light as low priority then we can reduce the
frequency of light sensing and only temperature data can be concatenated and forwarded periodically. For
better analysis, consider the Figure 3.2, where scenarios of temporal and spatial aggregations are given
with priority enabled aggregation. In Figure 3.2a, node A is generating temperature packets P1 and P2
and humidity packets C1 and C2 rapidly. However, we set priority of temperature while humidity packets
are with less priority. Therefore, after receiving at node C, P1 and P2 are concatenated into a frame for
combined transmission. On the other hand, C1 and C2 are simply forwarded gradually. Likewise, in case
of spatial aggregation, shown in Figure 3.2b, where priority of any class is defined according to its data
type. However, it is easy to distinguish this time because we have two different sources for two different
types of data. As a consequence, P2 and C1, packets from node A and B are aggregated in a frame while
P1 and C2 are delivered without aggregation.

3.2.2 Heterogeneous aggregation

This scheme offers a novel aggregation model that uses sensor resources to store information. In this
scheme, shown in Algorithm 2, sensor saves packets in the database for short duration rather transmitting
urgently to the sink node. Packets stored in the database are then concatenated and sent according the
receiver initiated protocol. The size of database buffer is kept sufficiently large to accommodate an optimal
number of packets. Accordingly, after each storage cycle, previous packets are discarded and buffer clear
its memory to start a new storage cycle as incoming packets can easily fill this buffer in short amount of
time. In Algorithm 2, when packet is received, it is directly transferred to the buffer d[j]. After receiving
the preferred packet numbers for concatenation, for instance k and z, these two packets are taken from the
memory and aggregated to build a frame. Afterwards, this frame is transmitted towards the destination.

Page 19

Network Design and Protocol Implementation IKT-590 : Master Thesis

Algorithm 2 Heterogeneous or receiver initiated aggregation
1: i = 0
2: j = 0
3: k = 0,1,2,3,.....
4: z = 0,1,2,3,.....
5: while A packet is received do
6: if The received packet is from node A then
7: e[i]← Received packet
8: i = i+1
9: else

10: d[j]← Received packet
11: j = j+1
12: end if
13: if The preferred packets for aggregation are e[k] & d[z] then
14: f[i]← e[k] + d[z]
15: Forward the aggregated frame from f
16: end if
17: end while

This scheme is proposed by the fact that although conventional aggregation itself is an amazing technique
to reduce the energy consumption and protocol overhead. However, the use of history and database in
sensor nodes provide an appealing way to save number of transmissions and by that energy consumption.
The database at relay node is managed and it is capable of storing incoming packets upto a considerable
amount as there is a counter which counts every instant a new packet is injected into the database. For
better understanding, consider the the Figure 3.3. Again, two types of aggregation scenarios, temporal
and spatial, are illustrated. Starting with temporal aggregation mode, shown in 3.3a, node A is sensing
temperature and humidity successively. All the packets from node A are transmitted successfully

(a) Heterogeneous scheme for temporal aggre-
gation.

(b) Heterogeneous scheme for spatial aggregation.

Figure 3.3: Heterogeneous scheme for temporal and spatial aggregation.

and stored in the database, created in the memory of node C. During this storage cycle, if a request

Page 20

Network Design and Protocol Implementation IKT-590 : Master Thesis

is initiated to aggregate two specific packets, P3 and C4, node C collects the requested packets from the
database and aggregates for further transmission. Similarly, for spatial aggregation, as Figure 3.3b depicts,
two types are packets are coming from node A and node B. Afterwards. packets are stored into node C’s
history, while waiting for the request to aggregate the desired packets, P3 and C4 in this case.

Algorithm 3 Fixed frame-length aggregation
1: i = 0
2: while A packet is received do
3: c[i]← Received packet
4: if i == 1 then
5: d← c[i] + c[i-1]
6: Forward the aggregated frame from d
7: end if
8: i = i+1
9: end while

3.2.3 Variable aggregation

In this section, we propose a set of two schemes which contains fixed frame-length aggregation and adap-
tive frame-length aggregation. These two schemes are differentiated on the basis of aggregated frame
length at relay node.

Fixed frame-length aggregation

In this scheme, aggregation approach is implemented in both spatial and temporal aggregation modes.
Starting with the temporal mode, Figure 3.4a depicts the scenario where we have only source node A, gen-
erating data packets successively. After receiving P1 and P2 from node A, node C directly concatenates
both received packets and formulates an aggregated frame which is transmitted towards the destination.
However, we have a limitation here as only two packets can be concatenated to build a frame. Therefore,
after receiving first packet, relay node has to wait for the second packet to perform aggregation. Accord-
ingly in case of spatial aggregation, illustrated in Figure 3.4b, we have two source nodes A and B which
are transmitting packets individually. When packets P1 is received, node C waits for C1. After receiving
C1, it performs aggregation regularly and delivers to sink. This network is formed to sense real world data
such as temperature, humidity and light. Therefore, in temporal aggregation approach, node A is sending
temperature and humidity information consecutively. Correspondingly, in typical aggregation, there is no
differentiation of data packet at node C as aggregated frame can be made of two different or same data
types. However, in spatial approach, we specified each source according to the data type. for instance, A is
only sensing and transmitting temperature while B is sending measured humidity values. From Algorithm
3, which is also designed for the fixed frame-length aggregation scheme, it is also noticeable that in this
scheme, node C always has to wait for atleast two packets to build a frame. Further, in this scheme, C
can concatenate two packets only, irrespective of the data type. The sufficient time interval between each
packet transmission to avoid collision is defined by the protocol. As this scheme is only used for typical
aggregation, there are certain assumptions which are made as i) This scheme is only flexible for aggre-
gation in case two packets are received ii) There is no flexibility with respect to data types is available to
provide simplicity. In order to remove these assumptions, more variable schemes are needed which we
provide in next section.

Page 21

Network Design and Protocol Implementation IKT-590 : Master Thesis

(a) Variable scheme for temporal aggregation.

(b) Variable scheme for spatial aggregation.

Figure 3.4: Variable scheme for temporal and spatial aggregation.

Adaptive frame-length aggregation

The adaptive frame-length scheme affords certain flexibility in aggregation mechanism as it can concate-
nates all received packets within certain amount of time. In this scheme, relay node performs periodic
aggregation after a specified interval, defined by the protocol. Therefore, instead of receiving one packet
and waiting for atleast one more to build a frame, an relay node can concatenate as many packets as
received until the frame length exceeds the maximum packet size which is 128 bytes according to the
standard. We try to use Algorithm 3 to explain this scenario, although it is typically designed for fixed
frame aggregation. when packet is received, it is stored in d and node counts down the time interval to
perform aggregation. When the timer is expired, it performs aggregation and forwards the frame towards
the sink. However, it is important to mention that there should be atleast one packet in d to build a frame.
Therefore, the predefined timer is synchronized enough so that node can receive minimum one packet
during this time. Furthermore, Figure is still valid for this scheme such as minor variations in frame length
does not affect the overall design of this scheme. Thus, reader can still adopt Figure 3.4a and Figure 3.4b
as an interpretation to examine the spatial and temporal aggregation modes in this context, in Table 3.1, a
summary of the proposed schemes is presented which shows an overview for quick understanding.

3.3 Implementation of Packet Aggregation Schemes

Previous sections briefly explained the proposed topologies with associated schemes for aggregation with
respect to various criterion such as flexibility, prioritization, receiver initiation, etc. In this section, our
focus is to explain each and every aspect which is directly or indirectly related to the implementation
of these proposed schemes. For instance, how platform is built, what are the measurement techniques
used to compute delay and energy consumption in aggregation enabled network. Additionally, this sec-
tion contains the software and hardware based protocol implementation of these proposed schemes with
their requirement specifications, functionalities and limitations. Figure 3.5 illustrates an overview of the
implementation process.

Page 22

Network Design and Protocol Implementation IKT-590 : Master Thesis

Figure 3.5: Implementation of packet aggregation: an overview.

3.3.1 Platform building

The implementation of these schemes requires an efficient assembling of framework with respect to soft-
ware and hardware. We have accomplished this whole mechanism in Contiki operating system using
TelosB sensor motes, shown in Figure 3.6. However, this sensor module can be easily implemented with
any other operating system like TinyOS or LiteOS.

Hardware and software implementation

The hardware based implementation in Contiki does not involve any complex platform building as TelosB
sensor mote is a fully developed module, without any external hardware requirements. All nodes are
powered by two AA batteries so that the supply voltage is almost constant and close to 3 V. On the other
hand, software implementation is carried out through various steps and procedures. In this context, all
nodes are programmed using the 2.7 version of the Instant Contiki (VMWare). This version of Contiki is
a easily downloadable environment which includes required libraries, compilers and some basic examples
for initial configuration of sensor motes. However this environment runs on Ubuntu linux which can be
virtually used through VMplayer machine execution environment [27]. In Contiki-MAC, mechanisms are
asynchronous without any signalling messages and extra packet headers. An efficient wake-up process
in Contiki is obtained by accurate timer where Contiki itself uses quick sleep escalation. This duty cycle
utilizes regular wake-ups to listen from all other nodes in the network. For instance, during a transmission
cycle, if a packet is sent while this wake-up cycle is going on, receiver is initiated to collect this packet.
After a successful reception, a hardware based ACK is sent towards the transmitter to acknowledge the
successful packet transmission [22]. We implement ContikiMAC on TelosB mote supported by MSP430

Figure 3.6: Implementation of packet aggregation: an overview.

Page 23

Network Design and Protocol Implementation IKT-590 : Master Thesis

microcontroller. The MSP430 contains an 8MHz, 16-bit RISC CPU, 48K bytes flash memory (ROM)
and 10K bytes RAM. This architecture provides 27 instructions and 7 addressing modes. The CPU also
provides sixteen 16-bit registers. The first four are dedicated for special-purpose, such as program counter,
stack pointer and status register. The rest of twelve are available for general use. The ContikiMAC
execution is done using Contiki 2.7, which adopts the Contiki real time timers (rtimer) to schedule regular
wake-ups to make sure that its behaviour is reliable [22]. The real-time timers preempt any Contiki process
at the exact time at which they are scheduled.

Rime stack

The Rime communication stack affords a set of communication primitives ranging from best-effort anony-
mous local area broadcast to reliable network flooding. All the protocols in the Rime stack are organised
in different layers and these are arranged in an order such as more complicated protocols are appointed
using the less complex protocols. In this experiment, we decided to choose communication primitives in
the Rime stack based on the basic requirements of sensor network protocols. All the protocols executing
on top of the Rime stack connect at any layer of the stack and utilize any of the communication primi-
tives. One of the key factor which is imporatant to mention here that the Rime stack is compatible with
all kind of communication primitives whether its a single hop or multi hop. In multi hop primitives, it is
not necessary to mention the route of packets through network. Therefore, when any packet is transmitted
across the network, the application or upper layer protocol is enforced at every node to select the next hop
neighbour [23]. Following lines show the basic libraries which are required to implement simple unicast.

#include "net/rime.h"
#include "net/rime/unicast.h"
#include "<string.h>"

Clock synchronization

This clock library 1 is a connection between Contiki and platform based clock. It characterizes a macro,
CLOCK SECOND, to alter seconds into the tick resolution of the platform [24].

// clock initialization.
void clock_init (void)

// Obtain the ongoing clock time
CCIF clock_time_t clock_time (void)
// Obtain the on going amount of platform seconds
CCIF unsigned long clock_seconds (void)
// Adjust the value of platform seconds
void clock_set_seconds (unsigned long sec)
// Delay of given ticks
void clock_wait (clock_time_t t)
// Delay a provided value of microseconds
void clock_delay_usec (uint16_t dt)

However, inter-arrival time or inter-transmission time in our protocol is defined by the following way.

// Declare a timer
static struct etimer et;

1www.contiki.sourceforge.net/docs/2.6/files.html

Page 24

Network Design and Protocol Implementation IKT-590 : Master Thesis

rimeaddr_t addr;
// Timer initialization
etimer_set(&et, CLOCK_SECOND*7);
// Timer is expired
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

Figure 3.7: Process of burning node ID.

3.3.2 Node identification

This step involves the process of identifying incoming packet at the intermediate node on the basis of node
ID, MAC address and sequence number. For instance, in homogeneous aggregation, the preferred node id
is 4 which is assessed by identification block. This block is further described in the following sections.

Node ID and Mac address

In TelosB modification on Contiki, node ID can be burned manually to the node flash memory which can
be seen at the time of node initialization. However, MAC address is hard coded in rime. To modify the
node id, in directories, Contiki/examples/rime and run the following command, as shown below. Digit 0
can not be used at the start of the address because a compiler flag will show an error.

// Set 100 as node id
make TARGET=sky burn-nodeid.upload nodeid=100 nodemac=100

ACK implementation

In terms of ACK implementation, a hardware based implicit ACK is implemented by setting CC2420 CONF AUTOACK
value to 1. This implementation can be done in Contiki-2.7/platform/sky/contiki-conf.h.

#ifndef CC2420_CONF_AUTOACK
#define CC2420_CONF_AUTOACK 1
#endif /* CC2420_CONF_AUTOACK */

Using Figure 3.8, where Sniffer 15.4 is operated with TelosB sensor node, we can actually capture
the ongoing transmission between two nodes to make it certain whether CC2420 CONF AUTOACK is
enabled or not.

Sequence number and source ID

In WSN, sequence number is used to remove the redundancy and duplicity of received packets. Addition-
ally, in case of spatial aggregation where number of packets are received at sink from multiple sources, it
is not an easy task to separate these packets accordingly. Therefore, in our experiments, every outgoing
packet from source node is equipped with a sequence number and corresponding ID of that source node.
Hence, sequence number and source ID is implemented in the following way.

Page 25

Network Design and Protocol Implementation IKT-590 : Master Thesis

Figure 3.8: Sniffer 15.4 capturing a transmission between two nodes where ACK can be seen easily.

// Sequence number increase every
send_packets=send_packets+1; time a packet is sent.
// Source node ID
rimeaddr_node_addr
// Packet structure
sprintf(s,"a:%d:s:%d:Temp:%d \n",rimeaddr_node_addr,send_packets,get_temp());

3.3.3 Scheme implementations

As shown in the Figure 3.5, third and fourth step involve decision making and forwarding blocks. There-
fore, in this section, protocol implementation and working principle is described in order to evaluate the
proposed schemes. However, results and numerical outcomes are described in Chapter 4.

Homogeneous aggregation

We already described in the design section about this scheme which only aggregates packets from same
class while packets from other data classes are simply forwarded without aggregation. Figure 3.9 shows
a spatial aggregation scenario using homogeneous approach where we consider two source nodes A and
B, which are sending data packets towards node C. Node C first receives packet D1 and sends ACK A1
towards node A. After this transmission, node B transmits D2 towards node C and receives A2. Meanwhile,
D2 is simply forwarded towards sink without any further processing as data from node B is not prioritized
in this scheme. After this forwarding, node C receives A3 from node D. Moreover, node A sends another
packet D3 to C and node B sends D4 to C. Therefore, D4 is simply forwarded while D1 is concatenated
with D3 and forwarded towards D. Similar approach is used in temporal aggregation when one source
is sending two different types of packets, therefore, only one class of packets are aggregated while other
packets are delivered without performing aggregation. It is important to mention that Figure 3.9 might
show some collisions, however, we adjust the etimer set(&et, CLOCK SECOND) precise enough to avoid
any possible collisions during this whole mechanism. Therefore, this scheme involves two forwarding
mechanisms and packets identified on the basis of source id information which exists into payload. The
content of received packet is checked at the first index of buffer f by f[0] = A. Afterwards, p[0]= 0 is
applied to check whether p is empty or not.

In addition, strcpy(p, f)is used to copy the contents of f to p as f should be empty to receive the next
incoming packet. In case the received packet is from node B, it is copied to c.

if (f[0] == ’\0’)

Page 26

Network Design and Protocol Implementation IKT-590 : Master Thesis

Figure 3.9: Homogeneous scheme for spatial aggregation.

(char *)packetbuf_copyto(f);
if (f[0]== ’A’)
if (p[0] == ’\0’){
strcpy(p, f);
else
strcpy(q, f);}
if (f[0]== ’B’){
(char *)packetbuf_copyto(s);
strcpy(r, s);}
// Check if both packets from the same class are received
if (p[0] != ’\0’ && q[0] != ’\0’) {
// Perform aggregation
c=strcat(p,q);

Heterogeneous aggregation

To explain this scheme, we refer to Figure 3.3 which illustrates this scheme in an appropriate way. In
both spatial and temporal heterogeneous aggregations, the implementation is nearly similar. Therefore,
we consider spatial aggregation only for better understanding of the reader. In this context, when packets
are coming from node A and B towards C, node C assigns two external buffers f[i] and g[j] with sufficient
size to accommodate maximum packets in its memory. In our case, e[i] is allocated to node A while g[j]
is used to accommodate date from B.

// Store packets from A to f[i]
if (from->u8[0]== A) {
i=i+1; i<=20;
packetbuf_copyto(f[i]);}
// Store packets from B to g[j]
else if (from->u8[0]== B){
j=j+1; l<=20;
packetbuf_copyto(g[j]); }

Page 27

Network Design and Protocol Implementation IKT-590 : Master Thesis

if (f[3]!=’\0’ && g[4]!=’\0’) {
strcpy (m,f[3]);
strcpy (n,g[4]);
// Checks the content of f[3] and g[4]
printf ("contents of f3 :’%s’\n" ,f[1]);
printf ("contents of g4 :’%s’\n" ,g[2]);
// Aggregation
c=strcat(m,n);

Figure 3.10: ContikiMAC working principle.

(a) Variable scheme for temporal aggregation.

(b) Variable scheme for spatial aggregation.

Figure 3.11: Protocol implementation of variable scheme for temporal and spatial aggregation.

Page 28

Network Design and Protocol Implementation IKT-590 : Master Thesis

We set a limit to store 20 packets for both f[i] and g[j]. When the limit exceeds, buffers are cleared
using strcpy(f, ””),strcpy(g, ””). During packet reception, receiver initiates a request to transmit some
specific packets which are already stored in the memory. In this scenario, node A is generating temper-
ature data while B is generating humidity. Accordingly, if receiver initiated request is for 3rd packet of
temperature and 4th packet of humidity, as in Figure 3.3b, it follows the mechanism and checks whether
e[3] and g[4] are empty or not. In case that f[3] and g[4] are not empty, packets are copied to the variable
m and n to perform aggregation. Before aggregation, printf is used to check the contents of f[3] and g[4]
to verify that these packets fulfill the required request. After performing aggregation, frame is stored in c
which is further used for forwarding.

Fixed frame-length scheme for both spatial and temporal

In the temporal aggregation scheme, Shown in Figure 3.11a, sensor node A sends data packet D to relay
node C. After receiving data packet, C sends an ACK back towards A and waits for an other packet. In
the next transmission, A sends another packet towards C and receives an ACK as a response from C. After
receiving two packets, C concatenates both packets into a frame F and forwards towards D. Hence, C is
receiving packets and forwarding these packets to D so it is behaving as sender and receiver at the same
time. After receiving data packet from relay node, D sends an ACK back towards C. Similarly, in Figure
3.11b, where spatial aggregation is going on and A sends packet D1 to C and receives and A1. Afterwards,
B sends another data packet D2 and attains A2 in response. After receiving both D1 and D2, C perform
aggregation and forwards the frame F towards node D. After receiving this frame, D sends A3 towards C
and through this whole process, this topology performs aggregation. All of these experiments are working
on CSMA ContikiMAC protocol in Contiki 2.7. ContikiMAC is built for static networked nodes and
depends on unicast and broadcast transmissions. According to the basic working principle, shown in
Figure 3.10, when unicast is executed, the transmitter transmits the packet that consists of the payload,
header part and the destination address. In contrast, the intended receiver wakes-up to sample the medium
for packet transmissions from its neighbours regularly. Once a packet arrives while wake up period is going
on, the receiver keeps the radio ON to receive the packet. When the reception is completed the receiver
sends ACK. On the other side, when broadcast is executed, receiver do not sends any ACK. Rather, source
node periodically sends the data packet all along the wake-up interval to make sure that every node received
it properly. The detailed timer adjustments among different nodes are achieved through our programme.
Node D is directly connected to a laptop via USB. The orientation of all nodes is certain enough such that
every node can directly communicate with each other without any interference or human interruption. For
better understanding, basic coding parts of this scheme for each node are explained here.

// Returns temperature value
static int get_temp(void)
// Returns humidity value
static int get_humidity(void)
// Sensing and conversion
((sht11_sensor.value(SHT11_SENSOR_TEMP)
// Packet structure includes sequence number, source id and data
sprintf(s,"a:%d:s:%d:Temp:%d \n",rimeaddr_node_addr,send_packets,get_temp());
// Timer adjustments
static struct etimer et;
etimer_set(&et, CLOCK_SECOND);
// Split string into tokens
char *strtok(char *restrict s1, const char *restrict s2);
//Concatenate two strings
strcat(f,g);
// Activate sensor modules
SENSORS_ACTIVATE(sht11_sensor);

Page 29

Network Design and Protocol Implementation IKT-590 : Master Thesis

SENSORS_ACTIVATE(light_sensor);
// Call may take up to 210ms

These functions, mentioned above, are basics which are used in typical aggregation schemes. As node
A is assigned to sense temperature only so function get temp(void) is defined to return temperature value.
Similarly, B is using get humidity(void) to return humidity. At node C, strcat(f,g) is used to concatenate
two strings if both strings are saved in f and g. Further, aggregation with adaptive frame-length is also
implemented in the same manner. However, node perform periodic aggregation with requirement of at
least one packet in it frame.

if (f[0] == ’\0’){

// Packet received from A
printf("unicast message received from %d: ’%s’\n",
from->u8[0],(char *)packetbuf_dataptr());
(char *)packetbuf_copyto(f);
// To clear in internal buffer
packetbuf_clear(); }
if (f[0] != ’\0’){

// Packet received from B
printf("unicast message received from %d: ’%s’\n",
from->u8[0],(char *)packetbuf_dataptr());
(char *)packetbuf_copyto(g); }
if (g[0] != ’\0’){
h=strcat(f,g);

At node C, three external buffers f, g and h are used. after receiving packet address from − > u8[0],
node ID is identified and packetbuf copyto() copies the content to external buffers f or g accordingly.

// Matches intended destination node with itself
if(!rimeaddr_cmp(&addr, &rimeaddr_node_addr)){
unicast_send(&uc, &addr);
// Forwards the concatenated frame towards the sink
printf("Forwarding Concatenated Packet to %d: ’%s’\n" ,addr.u8[0],(char *)c); }

Moreover, h is used to save and forward the frame towards the intended sink node. !rimeaddr cmp
compares the current node ID with the destination ID to remove the effect of duplicity.

Adaptive frame-length aggregation

Furthermore, in variable aggregation with adaptive frame-length, we use three source nodes which are
sending temperature, humidity and light packets towards the relay node. So protocol for the source nodes
remain same. However, we make certain changes at relay and sink nodes. After first packet, as shown in
Figure 3.11, node C periodically performs aggregation after a certain time. Three source nodes are set to
transmit packets with a very small time difference to remove unnecessary delay at relay node. Therefore,
at relay node, whatever is received from these source nodes, it will be aggregated into frame F. However
in case of temporal aggregation, only one source node is generating three different kinds of packets.

if (f[0] == ’\0’){
(char *)packetbuf_copyto(f);}
{ if (from->u8[0]== A)

Page 30

Network Design and Protocol Implementation IKT-590 : Master Thesis

(char *)packetbuf_copyto(g);
if (from->u8[0]== B)
(char *)packetbuf_copyto(h);}
if (h[0] != ’\0’)
// Concatenation of all received packets
snprintf(m, 80, "%s%s%s", f, g, h);

// Clear the external buffers
strcpy(f, "") ;
strcpy(g, "") ;
strcpy(h, "");

Again, we use three external buffers f, g and h to differentiate among different source nodes. Initially,
when any packet is received, it is packetbuf copyto() copies this packet into f. Afterwards, if the sender is
A, it is saved to g and in case of B, it is saved into h. As all the source exceptions are there so if packet
is coming from another source, it remains in f. When temporal aggregation is performed, packets are
identified on the basis of their content. At sink node, when frame is received, it is de-aggregated using
strtok r() function which separates three strings. Accordingly, packets are identified on the basis of source
ID, which is initially inserted into the payload.

// Frame reception
printf("concatenated message received from %d.%d
with data length %d & total length %d :’%s’\n",
from->u8[0],from->u8[1],packetbuf_datalen(),
packetbuf_totlen(),(char *)packetbuf_dataptr());
packetbuf_copyto(d);

Conclusively, this chapter explained our several network topologies and schemes proposed by us with
respect to network design and implementation. Furthermore, each scheme is illustrated with the help of
pseudo code and diagrams which provides all necessary details in order to understand the architecture and
employment.

Page 31

Chapter 4

Test Scenarios and Experimental Results

Packet aggregation has been appeared as a fundamental approach for resource conservation and energy
efficient data gathering in WSNs. Whilst performing aggregation enabled communication in TelosB sensor
motes using Contiki platform, experimental results and measured outcomes can be acquired using several
methods and approaches. For this thesis, we perform test-bed experiments and execution of proposed
schemes to assess the performance of aggregated forwarding over non-aggregated forwarding. Finally, we
initialize system clock library to determine average end-to-end delay and transmission count.

In this chapter, we proceed to discuss various testing scenarios for each scheme accompanying per-
formance parameters such as energy consumption and average end-to-end delay. Additionally, how these
parameters are overwhelmed by node employment and designated inter-departure time. We describe the
techniques which are used to measure energy consumption, average end-to-end delay and packet captur-
ing. Later, we present details of implemented schemes and analogous numerical results of each attended
scenario with the help of tables & graphs for better analysis. In addition, we show the captured packets
through Sniffer 15.4 and analyse these capturing through Wireshark.

4.1 Test Scenarios and Performance Parameters

For performance assessment, proposed technologies are examined on the basis of several performance pa-
rameters for instance energy consumption, delay and count. In this chapter, initially the different compiled
scenarios considered are explained. However, as mentioned in Chapter 3, performance parameters are
sometime dependent on relay node as this node is behaving as an aggregator in all schemes. Therefore,
while conducting the energy measurements, we mostly focus on relay node as number of transmissions
vary from here. In this section, we are going to discuss some design objectives which were under obser-
vation till the end of this task. Furthermore, we explain the measurement techniques which are adopted to
estimate the energy consumption and delay. Afterwards, we describe each scheme with graph illustration
and measured parameters and compare the overall energy and delays in one big picture. Afterwards, the
obtained numerical results for each scenario and transmission scheme is presented via graphs. A descrip-
tion of the behaviour of observed results is also presented.

4.1.1 Scenarios

Following are the scenarios for our proposed aggregation schemes. Table 4.1 presents an overview of all
the proposed schemes with a brief description. At first, we have S1 which contains homogeneous scheme
for temporal and spatial aggregation. This scheme allows aggregation for one service type either its tem-
perature or light while other types of packets are simply forwarded. S2 belongs to heterogeneous scheme
where a database is made at the relay node and packets from different classes are stored. After initia-
tion of a request from the receiver, relay performs aggregation according to the request based on different
service types. Moving further, S3 comprises fixed frame-length scheme which has the maximum ability
to aggregating two packets inside one frame. There is no limitations about any specific service type for

Test Scenarios and Experimental Results IKT-590 : Master Thesis

aggregation. Finally, S4 contains an adaptive frame-length scheme which can aggregates as many packets
as a frame can accommodate within its payload. Additionally, this aggregation is performed periodically
with the limitation of having at least one packet inside an aggregated frame. In all scenarios, we assume
that source nodes are working independently and packets are arriving periodically. It is important to men-
tion that although we are considering fixed frame-length and adaptive frame-length separately , however,
we explain the experimental results for both scenarios in Section 4.4 as these both schemes fall under one
umbrella of variable aggregation.

Table 4.1: An overview of all scenarios for spatial and temporal aggregation

Scenario Name) Explanation

S1 Homogeneous scheme Aggregation based on same service type

S2 Heterogeneous scheme
Aggregation based on different service type
from a data base

S3 Fixed frame-length scheme Maximum occupancy of two packets

S4 Adaptive frame-length scheme
Flexible occupancy with minimum one
packet

4.1.2 Performance parameters

Performance parameters are the criterion which evaluate any protocol or scheme whether it is efficient
or not. Following are the performance parameters to evaluate the design and efficiency of our proposed
schemes.

• Energy consumption

Sensor nodes are always energy limited. Therefore, the proposed model attains energy conservation
by reducing number of transmissions from relay node towards sink node.

• Number of frame transmissions

As number of transmissions is directly related with energy consumption and system overhead. Ac-
cordingly, by applying aggregation schemes, number of frame transmissions can easily be reduced
to an optimal number which eventually reduces the energy and resource consumption associated
with each transmission.

• Delay

The end-to-end delay is the amount of time taken by a packet, to be transmitted from a source node
till sink. Thus, by reducing number of transmission, overall time related with these transmissions
also changes. We calculated end-to-end delay for one packet and accumulated delay for 100 packets.

• Packet drop

A packet drop is a phenomena which happens when packets are lost during the routing process be-
tween sender and the receiver due to several reasons. We examined the packet drop in all aggregated
schemes with respect to varying distances.

Page 33

Test Scenarios and Experimental Results IKT-590 : Master Thesis

4.1.3 Performance measurements

This section comprises of some methods which by which we measure the energy and delay in sensor
nodes and how these techniques are used in our scenarios in order to measure node energy and average
end-to-end delay per packet.

Figure 4.1: Real life experimental set up to measure power consumption in TelosB sensor motes using
oscilloscope.

Energy consumption measurements based on oscilloscope

WSN energy usage experiments require accurate measurement of power consumed by a sensor over time.
However, measurement is actually comprised of both hardware and software deployment. In hardware
part, an efficient technique that we adopted is interfacing of TelosB mote with an oscilloscope while
measuring process is carried out. Accordingly, in software implementation, coding based delay profiling
is used. Furthermore, TelosB operates at constant supply voltage. To measure the power levels, all the
nodes are connected to oscilloscope. The input voltage level is set to 3 V. It is also noticeable that 2.1
V is the minimum required voltage for the CC2420 1 radio to operate accurately. Except one node at
each time who is taking power from the USB of a PC, all others are powered using standard AA batteries.
Hence, power consumption measurements can be taken, by measuring the drawn current and input voltage,
shown in Figure 4.1. Afterwards, energy can be calculated by multiplying the measured value of power
with the associated delay. These measurements are usually performed during normal operation of the
platform while observing the power consumption when different components of the board are active, and
its always time dependent. In these kind of experiments, the voltage measurement has its own significance
on accuracy along with the tolerance on the shunt resistor value, the stability of the supply voltage, and
the measurement rate, which should match the analysed experience. It is also noticeable that in these kind
of circuits, the voltage drop across the resistor reduces the supply voltage which is powering the TelosB
mote. In contrast, low values of resistor lead to reduced values of voltage difference, consequently, affects
lower measurement sensitivity. Accordingly, power can be calculated by this formula:

P = V I (4.1)

Where, V =Input voltage, I = Current consumption. Moreover, energy can be easily calculated from
these power values by multiplying with calculated delay.

E = P × T (4.2)
1www.ti.com/lit/ds/symlink/cc2420.pdf

Page 34

Test Scenarios and Experimental Results IKT-590 : Master Thesis

In Eq. (4.2), T can be transmission, reception or processing delay and Tx and Rx is used to represent
transmission and reception respectively.

TxPower = TxCurrent× InputV oltage (4.3)

RxPower = RxCurrent× InputV oltage (4.4)

Furthermore, using values from Eq. (4.3) & Eq. (4.4) overall energy of a node for N packets can be
calculated by the following way.

E =

N∑
i=1

(Pti× Tt+ Pri× Tr + Psi× Ts) (4.5)

Where Tt and Tr represents the transmission and reception delay respectively in Eq. (4.5). In addi-
tion, Ts is used as sleep delay. However, as we are not considering any sleep interval so sleep energy is
negligible. Inside a network, the total energy for 100 packet from source node till relay can be calculated
as,

E =

100∑
i=1

Pti× T1 +

100∑
i=1

Pti× T2 +

200∑
i=1

Pri× Tr (4.6)

After taking measurements, Eq. (4.6) is used to compute transmission and reception energy of a TelosB
motes. Transmission and reception current are 20.36 mA and 23.63 mA respectively with input voltage
3V. These values are measured by us through an early project before this thesis [25]. It is noticeable that
energy, calculated from Eq. (4.6) is not the total energy of the whole topology rather it is the energy
till packets reach the relay node. To be more specific, in most of the scenarios in WSNs, relay nodes
create energy hole as these nodes has to deal with a lot of traffic going towards the sink. Therefore, relay
deplete energy very fast and dies immaturely. Considering this fact, we only focus on the relay node while
calculating energy consumption in our schemes.

Delay measurements based on clock library

Average end-to-end delay is the time duration which a packet spends from source node till destination.
It consists of propagation delay, processing delay, queuing delay and transmission delay. However. in
our experiments, propagation delay is negligible as there is not much distance between nodes during
transmission cycle. As the clock cycle among all nodes is not synchronized so all source nodes can transmit
packets successively. On the other hand, receiver can only receive one packet at the time. The queuing
delay is considered negligible here. Transmission delay can be calculated where T is the time consumed
by one packet of length L bits through a channel with bandwidth of B. Accordingly, in our scenarios,
channel bandwidth 250 kbps and typical size of a packet without aggregation varies between 30 bytes to
40 bytes. Thus transmission delay can be easily calculated in Eq. 4.7. Nevertheless, the mechanism to
calculate the processing delay of all nodes for each scheme is slightly complicated. Although, there are
various ways to calculate the time duration employed by a software to execute the required operations.
Apart from this fact, Contiki provides a set of real-time timers which can measure the processing time
precisely. Utmost resolution of 0.4069 microseconds is afforded by the primary clock MCLK if current
cycle is performed at 2.4576 MHz . However, MCLK is not able to work in less power environment
and Contiki has the probability of 0.25 to work in available low power environments. Accordingly, and
additional clock is available, called ACLK which can perform with the frequency of 32768 Hz utilizing
crystal [24]. Therefore, we use ACLK as a primary clock for our delay measurements.

start=clock_time();
ecc_make_key ();
diff=clock_time() - start;
num_seconds=(double)diff (ticks)/CLOCK_SECOND;

Page 35

Test Scenarios and Experimental Results IKT-590 : Master Thesis

CLOCK_SECOND = 128 ticks
t1=RTIMER_NOW();
ecc_make_key ();
t2=RTIMER_NOW();
printf("Ticks= %u\n", t2-t1);
printf("Completion time %lu / %u \n",
(unsigned long)clock_time() - start_time, CLOCK_SECOND);

At first, initialization of clock init() takes place and value of incremented ticks is stored by the func-
tion clock time(). Therefore, the value of the initial tick counter and the final counter after code loading
and compilation is compared to measure the processing time it took to perform this task.The consumed
time is in number of ticks. To get the time in seconds we divided the consumed number of ticks by total
number of ticks in one second (128 ticks). This library is defined in Contiki-2.7/cpu/cc2430/8051def.h.
Accordingly, average end-to-end delay can be calculated by adding transmission delay (Tt), processing
delay (Tpr), queuing delay (Tq) and propagation delay (Tpg), as shown in this formula,

Te2e = Tt+ Tpg + Tpr + Tq (4.7)

As in our network topologies, nodes are closely situated with each other and each packet is sent with
a specified time interval, therefore in our case we neglect the propagation delay and queuing delay. In
addition, receiving delay is considered as equal to the transmission delay. Moving further, transmission
delay can be calculated as,

Ttrans =
L

B
(4.8)

Where L is size of transmitted packet in bits and B is representing the data rate of the transmission
channel.

Accordingly, end-to-end delay in our schemes is calculated in Eq. (4.8).

Te2e = Tt(source) + Tpr(source) + Tpr(relay) + Tt(relay) + Tpr(sink) (4.9)

4.2 Experimental Results for S1: Homogeneous Aggregation

To evaluate the performance of proposed schemes, we examined aggregated and non-aggregated transmis-
sions on the basis of energy consumption of the relay node, average end-to-end delay of a single packet,
number of transmissions and overall delay according to the number transmissions. Moreover, the homo-
geneous aggregation is examined for both temporal and spatial aggregation modes. Here, we are only

Figure 4.2: Packet transmission from the source node in the homogeneous scheme for temporal aggrega-
tion.

showing the figures for some temporal aggregation and spatial aggregation modes however numerical
results are included for all temporal and spatial aggregation modes. Source identification can be seen in

Page 36

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.3: Packet transmission from the relay node in the homogeneous scheme for temporal aggregation.

Figure 4.4: Packet reception and de-aggregation at the sink node in the homogeneous scheme for temporal
aggregation.

both figures where a:32 represents the associated source ID in both figures. Furthermore, Figure 4.2 illus-
trates a temporal transmission scenario for a source node where node 34 is sending sensing temperature
and humidity data from the environment and sending towards node 4 which is a relay node and behaving as
an aggregator. These packets contain sequence number, sensed data and source ID as s indicates sequence
number and a indicates source ID. According to the Figure 4.3, node 4 receives these packets and checks
the predefined class priority for aggregation and simple forwarding. Afterwards, it simply concatenates
two temperature packets into one frame and forwards towards sink which is node 5. However, as humidity
packets belong to low priority class, these packets are simply forwarded without performing aggregation.
Moving further, Figure 4.4 depicts another scenario where node 5 is receiving the concatenated packets.
Humidity packets are simply received and saved into a buffer for further processing while temperature
packets are de aggregated after reception and then saved into node’s memory for further analysis. By
using this mechanism, homogeneous aggregation is achieved in our topologies. It is important to mention
that above mentioned figures are here for just illustration of the whole process as these are not taken from
a same transmission so sequence numbers are different in each figure.

Figure 4.5: A comparison of frame transmission count from the relay node between homogeneous scheme
for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

Page 37

Test Scenarios and Experimental Results IKT-590 : Master Thesis

4.2.1 Results for number of frame transmissions

Figure 4.5 illustrates a comparison of average transmission count from relay node for both scenarios.
These values are taken while transmitting 100 packets from the relay node. As we already described
about the working principle of homogeneous aggregation where different types of data is prioritized. For
that reason, only temperature packets are concatenated while humidity packets are simply forwarded, as
shown in Figure 4.3. Consequently, 50 packets of temperature are concatenated in a fashion of 2 packets
per frame. On the other side, 50 packets of humidity are simply delivered to the sink without any further
processing. It is important to mention that all the received packets at relay node are of same size regardless
of the fact that from which data class they belong. Moving further, 50 frames are transmitted into 25
transmission units while 50 non-aggregated packets are transferred into 50 transmissions. In the course
of time, number of transmissions, required to transfer 100 packets from relay to sink node, is reduced
to 75. Although, number of transmissions from source to relay can also be reduced as if source node is
performing aggregation. Nevertheless, we perform aggregation at the relay so transmission count from
source till relay remains same for any scenario. Due to this fact, we specifically observe relay node as our
reference point for the measurements of energy and transmission count.

Figure 4.6: A comparison of average end-to-end delay for a single packet with respect to homogeneous
scheme for spatial and temporal aggregation vs non-aggregated transmission for a single packet.

4.2.2 Results for end-to-end delay

In Figure 4.6, we explain the average end-to-end delay of a packet from source node till destination. This
average end-to-end delay is slightly higher in aggregated schemes as compared to non-aggregated one. Our
end-to-end delay calculations include transmission delays and processing delays for each node. Starting
with the simple forwarding where we get average of 236.74 ms for one packet, this delay includes trans-
mission delay of 1.18 ms and processing delay of 234.37 ms at the source node, total value in mentioned in
Table 4.2. Similarly for relay node, we have transmission delay of 1.184 ms but processing delay is almost
approaches to zero and for sink node we only have processing delay which approaches to zero. In contrast,
homogeneous aggregation schemes involves a lot of processing delay at relay node and sink nodes. This
is because after aggregating one frame, relay node has to process another packet without aggregation and
forward. Accordingly, relay node spends 7.81 ms and 15.62 ms in terms of processing delay for spatial and
temporal aggregation respectively. Additionally, sink has to manage two types of packet reception which
is aggregated and non-aggregated. However, in simple forwarding, sink node does not associate any de-
aggregation so no processing is involved. Nonetheless, processing delay in homogeneous aggregation is
23.43 ms for both spatial and temporal which is higher as compared to the simple forwarding.

Page 38

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Table 4.2: A comparison of average end-to-end delay between homogeneous aggregation scheme vs simple
forwarding for a single packet

Schemes Delay at source node Delay at relay node Delay at sink node

Temporal aggregation 235.55 ms 17.44 ms 23.43 ms

Spatial aggregation 235.55 ms 9.63 ms 23.43 ms

Simple forwarding (without

aggregation
235.55 ms 1.18 ms 0 ms

4.2.3 Results for overall delay

This parameter, illustrated in Figure 4.7, explains the overall delay of 100 packets with respect to trans-
mission counts for 100 packets. For instance, we calculated end-to-end delay for a single packet in the

Figure 4.7: A comparison of overall delay for 100 packets with respect to homogeneous scheme for spatial
and temporal aggregation vs non-aggregated transmission.

previous section which was 236.74 ms for simple forwarding, 276.43 ms and 268.62 ms for temporal
and spatial homogeneous aggregations. In this case, we multiply the transmission delay of relay node
with respect to transmission count. As to transmit 100 packets, we have 50 packets transmissions and
25 aggregated frame transmissions in homogeneous aggregation. So relay node’s transmission delay for
a frame is multiplied by 25 and transmission delay for a simple packet is multiplied with 50. For that
reason, we accumulate the overall delay for 100 packets which is 26.98 s and 26.19 s for temporal and
spatial mode respectively. While simple forwarding for 100 packets takes 23.67 s which is overall less
than homogeneous aggregation.

4.2.4 Results for relay node energy

In case of homogeneous aggregation scheme, as described before, energy consumption is shown in Figure
4.8, where we perform a comparison of relay node’s energy with respect to aggregated and non-aggregated
scenario. Additionally, energy consumption measurements in all proposed schemes only involve transmis-

Page 39

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Table 4.3: A comparison of relay node’s energy consumption between homogeneous aggregation scheme
vs simple forwarding for 100 packets

Schemes Etx (1 packet) Erx(1 packet) Total Energy (100 packets)

Temporal aggregation 0.11 mJ 0.083 mJ 14.65 mJ

Spatial aggregation 0.11 mJ 0.083 mJ 14.65 mJ

Simple forwarding (without ag-

gregation)
0.072 mJ 0.083 mJ 15.5 mJ

sion and reception energy for each node. It is clearly mentioned that energy consumption for homogeneous
aggregation for both modes is 14.65 mJ while without aggregation is 15.5 mJ. This difference can be ob-
served by a detailed analysis which is given in Table 4.3. As we see that reception energy for relay node
remains same for both aggregated and non-aggregated scenarios because all the packets coming from

Figure 4.8: A comparison of average energy consumption of the relay node with respect to homogeneous
scheme for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

source nodes are of same sizes. However, at relay node, when packets from same service type are ag-
gregated while other packets are simply forwarded, transmission energy varies. In terms of total energy of
an relay node, it depends how many transmission we have for each case. To be more specific, we received
100 packets at relay node and according to the scheme, 50 packets of temperature packets which should
be aggregated in the form of 2 packets per frame while 50 packets of humidity are simply transmitted
into 50 transmissions. Therefore, we transmit 75 packets including 50 non-aggregated packets and 25
aggregated frames. These values eventually leads us towards less energy consumption which is 14.65 mJ
for 100 packets. These results show that even partial aggregation of 50 packets can decreases the energy
consumption. Although, this difference is not nominal, however, energy consumption can be reduced by
avoiding partial simple forwarding which consumes 50 % of energy.

Page 40

Test Scenarios and Experimental Results IKT-590 : Master Thesis

4.2.5 Scheme summary

Table 4.4: Overall comparison between homogeneous aggregation scheme vs simple forwarding with
respect to energy consumption, average end-to-end delay, overall delay and frame transmission counts

Schemes Energy consumption
(100 packets)

Transmission count
(100 packets))

End-to-end
delay (1 packets)

Overall delay
(100 packets)

Temporal aggregation 14.65 mJ 75 276.43 ms 26.98 s

Spatial aggregation 14.65 mJ 75 268.62 ms 26.19 s

Simple forwarding

(without aggregation)
15.5 mJ 100 236.74 ms 23.67 s

To summarize this scheme, we can evaluate homogeneous aggregated forwarding with non- aggregated
forwarding with respect to energy consumption, average end-to-end delay, overall delay for 100 packets
and transmission count, illustrated in Table 4.4. This table reveals that homogeneous aggregation perform
better than simple forwarding as there are slight deviations in energy and transmission count. However,
in terms of delay, node consumes slightly higher amount of time in homogeneous aggregation with the
difference of approximately 40 ms in temporal and 30 ms in spatial mode. Accordingly, this difference
becomes 3.31 s in temporal and 2.52 s in spatial aggregations.

4.3 Experimental Results for S2: Heterogeneous Aggregation

For heterogeneous aggregation, the mechanism for source nodes in both temporal and spatial modes is
same. Therefore in these illustrations, we only explain the spatial heterogeneous aggregation scheme from
the relay node towards the sink. As shown in Figure 4.9, the relay node 4 has received packets from node
32 and 34 and store in its database. This source identification can be seen in both figures where a:32 and
a:34 represents the associated source addresses. Two buffer f and g are assigned to store data from two
different sources as temperature data packets are stored in f and humidity data packets are stored in g.
Further, a request is initiated to send packet f[1] from temperature storage and g[2] from humidity storage
to the sink node. As a result, node 4 concatenates these two packets and send towards node 5 which is the
sink node. Figure 4.10 reveals the information when an aggregated frame containing one humidity and
one temperature packet is received from node 4. After this reception, this frame is de-aggregated into two
separate packets and saved until further processing is requested.

Figure 4.9: Packet transmission from the relay node in the heterogeneous scheme for spatial aggregation.

Page 41

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.10: Packet reception and de-aggregation at the sink node in the heterogeneous scheme for spatial
aggregation.

Figure 4.11: A comparison of frame transmission count from relay node between heterogeneous scheme
for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

4.3.1 Results for number of frame transmissions

From Figure 4.11, a comparison is made for transmissions counts from relay node between heterogeneous
aggregation and simple forwarding. According to the working principle, described in Figure 4.9, relay
node has received packets and stored in its memory. As we are assessing all the schemes on the basis
of 100 packets transmission so we consider 100 packets in node’s memory. For that reason, receiver can
initiate request to send any available packet from the database, as shown in Figure 4.9 where we send f[1]
and g[2]. Therefore, all 100 packets can be sent towards the sink within the specified selection. According
to this principle, 50 frame transmissions, in any order, are required to deliver 100 packets to the sink.
Accordingly, number of transmissions are reduced upto 50 %.

4.3.2 Results for end-to-end delay

From Figure 4.12, it can be revealed that average end-to-end delay for both spatial and temporal aggre-
gation mode is same. It is due to the fact that delay associate with each stored packet in the memory
does not vary with respect to source configuration. It is noticeable from Table 4.5 that overall end-to-end
delay for a packet in heterogeneous aggregation is 260.49 which is lower than the delay in homogeneous.
However, it is still higher than simple forwarding scenario as we have a difference of approximately 24
ms which was around 30 ms to 40 ms in case of homogeneous. This slightly larger delay in this scheme
exists because there is a lot of processing involved in terms of database management. Again, this 260.49
ms involves 15.62 ms processing time at relay node. In contrast, sink only spends 7.81 ms which is 23.43
ms in the case of homogeneous. This is because sink is only dealing with one type of packet reception in
heterogeneous.

Page 42

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.12: A comparison of average end-to-end delay for a single packet with respect to heterogeneous
scheme for spatial and temporal aggregation vs non-aggregated transmission for a single packet.

Table 4.5: A comparison of average end-to-end delay between heterogeneous aggregation scheme vs
simple forwarding for a single packet

Schemes Delay at source node Delay at relay node Delay at sink node

Temporal aggregation 235.55 ms 17.129 ms 7.81 ms

Spatial aggregation 235.55 ms 17.129 ms 7.81 ms

Simple forwarding (without

aggregation
235.55 ms 1.184 ms 0 ms

4.3.3 Results for overall delay

In Figure 4.12, end-to-end delay for both temporal and spatial aggregation is given which is 260.49 ms
for both. From this observation, overall delay for 100 packets can be calculated by multiplying frame
transmission delay with number of frame transmission for 100 packets. This accumulation is shown in
Figure 4.13 where overall delay for spatial and temporal is 25.58 s which is 1.91 s higher than the overall
delay of simple forwarding. As we described before that delay in homogeneous aggregation is always
higher than simple forwarding because aggregation involves some processing delay at relay node which is
added in the total delay.

4.3.4 Results for relay node energy

For heterogeneous aggregation scheme, a comparison is shown in Figure 4.14, where we can see that
energy consumption in heterogeneous is lower than simple forwarding. However, these energy values are
slightly lower than those in homogeneous mode. It is due to the fact that in homogeneous scheme, we have
two types of transmissions for aggregated and non-aggregated. Transmission energy for one aggregated

Page 43

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.13: A comparison of overall delay for 100 packets with respect to heterogeneous scheme for
spatial and temporal aggregation vs non-aggregated transmission.

frame is little higher than a normal packet. However, in this case as we are sending all 100 packets through
aggregated frames so overall energy is smaller than homogeneous but much less than simple forwarding.
Additionally, database management also consumes slightly higher than simple aggregation. All the specific
details can be observed from Table 4.6 where values for transmission and reception energy are given which
shows that normal forwarding consumes 15.5 mJ while heterogeneous aggregation consumes 12.85 mJ per
100 packets which saves 2.65 mJ in total.

Table 4.6: A comparison of relay node’s energy consumption between heterogeneous aggregation scheme
and simple forwarding for 100 packets

Schemes Etx (1 frame) Erx(1 frame) Total Energy (100 packets)

Temporal aggregation 0.091 mJ 0.083 mJ 12.85 mJ

Spatial aggregation 0.091 mJ 0.083 mJ 12.85 mJ

Simple forwarding (without ag-

gregation
0.072 mJ 0.083 mJ 15.5 mJ

4.3.5 Scheme summary

This scheme examine the principle of heterogeneous aggregation with non- aggregated forwarding with
respect to energy consumption, average end-to-end delay, overall delay and transmission count. Table 4.7
provides a summary about the overall performance where it shows decreasing transmission counts signif-
icantly but also less energy consumption than in simple forwarding. Additionally, this scheme performs
better than homogeneous in terms of end-to-end delay and overall delay management.

Page 44

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.14: A comparison of average energy consumption of the relay node with respect to heterogeneous
scheme for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

Table 4.7: Overall comparison between heterogeneous aggregation scheme vs simple forwarding with
respect to energy consumption, average end-to-end delay, frame transmission count and overall delay

Schemes Energy consumption
(100 packets)

Transmission count
(100 packets))

End-to-end
delay (1 packet)

Overall delay
(100 packets)

Temporal aggregation 12.85 mJ 50 260.49 ms 25.58 s

Spatial aggregation 12.85 mJ 50 260.49 ms 25.58 s

Simple forwarding

(without aggregation
15.5 mJ 100 236.74 ms 23.67 s

4.4 Experimental Results for S3 & S4: Variable Aggregation

This scheme is divided into two sub-schemes. Firstly, we have fixed frame-length aggregation scheme for
spatial and temporal aggregation modes. In Figure 4.15, working of a relay node is shown where fixed
frame-length spatial aggregation is implemented where relay node 4 is concatenating two packets, came
from node 34 and node 32 and forwards towards node 5. In this figure, it can be clearly seen that only two
packets are aggregated in a frame which has sequence number 20 for temperature and 70 for humidity.

Secondly, we have adaptive frame-length aggregation which concatenates upto the maximum size of
the frame length. As we have frame size of 127 bytes so we only concatenated upto 3 packets to be on
safe side. In Figure 4.16, working of the relay node is shown which is forwarding a frame containing 3
packets, received from node 26 and 32 . Similarly, Figure 4.17 illustrates a scenario where sink node 5 is
receiving a frame and de-aggregating 3 packets in the form of 3 tokens. Where one token is still empty.

4.4.1 Results for number of frame transmissions

In terms of transmission counts, two schemes are observed. First, we start with fixed frame-length ag-
gregation, shown in Figure 4.18. In this scheme, we fix the frame length size so that it can carry upto
two packets which is most commonly used in all discussed schemes. Correspondingly, for 100 packets,

Page 45

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.15: Packet transmission from the relay node in the fixed frame-length scheme for spatial aggre-
gation.

Figure 4.16: Packet transmission from the relay node in the adaptive frame-length scheme for spatial
aggregation

number of transmissions are reduced from 100 to 50. This scheme is following simple aggregation where
relay is receiving 2 packets and formulates a frame of two packets. This scheme shows equal outcomes
for both spatial and temporal aggregation modes.

In adaptive frame-length scheme, shown in Figure 4.19, we observe this scheme for maximum 3
packets. As in this scheme, relay node performs a periodic aggregation, regardless of the fact that which
three packets are received and concatenated in the frame. Thus, average number of transmissions for 100
packets is reduced to 34 as last packet will be delivered in a separate transmission unit. This reduction of
transmission count affords significance in the context of aggregation as transmission count are declined
upto 66 %.

4.4.2 Results for end-to-end delay

As we have two different graphs of delay for two different schemes, so lets start with fixed frame-length
aggregation, shown in Figure 4.20 which explains the end-to-end delay measurements for both spatial and
temporal aggregation modes. In both modes, delay for source node remains same which is 235.55 ms.
As Table 4.8 depicts the details about node delay where we can see that source nodes in both spatial and
temporal have equal amount of delay which is 235.55 ms. Therefore, overall end-to-end delay for this
scheme is 252.68 ms. Identically, relay and sink also consumes the same amount of time as spatial and
temporal do not have prominent impacts on relay and sink node.

Now, moving towards adaptive frame-length aggregation, shown in Figure 4.21, end-to-end delay
for both spatial and temporal aggregation is same. This scheme aggregates upto 3 packets into a frame
periodically. However, if we compare this scheme with the fixed frame-length, it takes delay of 269.59 ms
which is larger than fix frame-length scenario. This scheme produces higher delay as in case of 3 packets
aggregation, relay node takes more time in terms of processing and transmission as packet length increases
from 47 bytes to 87 bytes. Although, 3 packets can be accommodated within 70 bytes but we design frame
size little bigger as if sequence number increases upto 1000 packets for 3 packets in one frame then 3
packets need an extra 6 bytes in terms of sequence number.

Page 46

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.17: Packet reception and de-aggregation at the sink node in the adaptive frame-length scheme for
spatial aggregation.

Figure 4.18: A comparison of frame transmission count from the relay node between fixed frame-length
scheme for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

4.4.3 Results for overall delay

Overall delay measurements are taken by using values of frame transmission from end-to-end delay cal-
culations. In this scenario, we begin with fixed frame-length aggregation, shown in Figure 4.22 where
we have overall delay of 24.8 s for both spatial and temporal. This delay is much less then homogeneous
aggregation as total number of transmissions in homogeneous aggregation is 75, including 50 packet trans-
missions and 25 frame transmissions. However, in this case, we have only 50 frame transmissions. This
fact significantly changes the overall delay computation. If we compare this scheme with the simple for-
warding, we have a difference of 1.12 s for 100 packets.

Now, we observe the behaviour of delay in adaptive packet-length scheme where we have 25.74 s
delay for 100 packets. Although, this delay value is also calculated using number of frame transmissions
which is only 34 in this scheme for 100 packets. However, this delay value is still 0.94 ms higher than fixed
frame-length aggregation due to the fact that frame is carrying 3 packets which affords a lot of transmission
and processing as compared to fixed frame where we have 2 packets in a frame. This larger frame size
leads to higher delay of 2.07 s when correlated with the simple forwarding.

4.4.4 Results for relay node energy

In order to evaluate relay node’s energy consumption for this, we first start with the fixed frame aggrega-
tion, shown in Figure 4.24. As mentioned before that source node is consecutively generating packets to
meet the period of aggregation at relay. Therefore, faster sensing and processing is required. Therefore,
energy at source node is 0.091 mJ for both spatial and temporal. Consequently, overall energy consumption
decreases from 15.5 mJ to 12.85 mJ. Accordingly, it consumes 2.65 mJ less energy then simple forwarding
for 100 packets.

Figure 4.25 explains the scenarios for adaptive frame-length where relay node is receiving 3 packets
from either different sources or the same source. The values for energy consumption depict this fact

Page 47

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.19: A comparison of frame transmission count from the relay node between adaptive frame-length
scheme for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

that source nodes in adaptive frame-length aggregation are consuming more than those in fixed frame-
length situation due to much more sensing and processing in order to deliver 3 packets within a specified
cycle. Although, energy for relay node almost remains same as aggregation is happening periodically.
Nevertheless, overall energy values for this scheme is higher than fixed frame length scheme as frame
transmission with 3 packets consumes more energy than a frame with 2 packets. Therefore, this scheme
saves 1.54 mJ per 100 packets. Table 4.9 interprets the energy values for each scheme with specified
aggregation mode for better understanding of the reader.

4.4.5 Scheme summary

This set of schemes provides significant results when we talk about number of frame transmissions. As
Table 4.10 shows this fact that number of transmissions required to forward 100 packets is decreased to 50
in fixed frame-length aggregation and 34 in adaptive frame-length aggregation. However, delay remains
higher due to larger frame size and processing. In addition, adaptive frame-length consumes more energy
than fixed frame length.

Page 48

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.20: A comparison of average end-to-end delay for a single packet with respect to fixed frame-
length scheme for spatial and temporal aggregation vs non-aggregated transmission for a single packet.

Figure 4.21: A comparison of average end-to-end delay for a single packet with respect to adaptive frame-
length scheme for spatial and temporal aggregation vs non-aggregated transmission for a single packet.

4.5 Comparison of all Schemes

After presenting the results for all the scenarios, we analyse all the schemes in the form of a short summary
to show an overall performance evaluation to our reader. We start with energy analysis, as shown in
Figure 4.26. This figure reveals the fact that fixed frame-length and heterogeneous schemes perform
better in terms of energy consumption as compared to the other aggregation schemes. Homogeneous
scheme consumes much energy because it has to deal with two types of forwarding which requires a lot of
processing power. Additionally, adaptive frame-length also consumes more energy than fixed frame-length
as this scheme has to deal with the 3 packets aggregation into one frame. However, this scheme has the
best efficiency for transmission count as adaptive frame technique accommodate more packets than any
other scheme. Moving further, end-to-end delay in heterogeneous scheme is less than rest of the proposed
schemes. Furthermore, this scheme provide more optimal number of transmissions than homogeneous
aggregation. In the next section, we observe the packet loss ratio for each scheme with respect to varying
distance.

Page 49

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Table 4.8: A comparison of average end-to-end delay between variable scheme for spatial and temporal
aggregation vs simple forwarding for a single packet

Schemes (Delay at source node) (Delay at relay node) (Delay at sink node)

Temporal aggregation

(fixed frame-length)
235.55 ms 9.314 ms 7.81 ms

Spatial aggregation (fixed

frame-length)
235.55 ms 9.314 ms 7.81 ms

Temporal aggregation

(adaptive frame-length)
235.55 ms 18.40 ms 15.62 ms

Spatial aggregation (adap-

tive frame-length)
235.55 ms 18.40 ms 15.62 ms

Simple forwarding (without

aggregation)
235.55 ms 1.18 ms 0 ms

Figure 4.22: A comparison of overall delay for 100 packets with respect to fixed frame-length aggregation
scheme for spatial and temporal aggregation vs non-aggregated transmission.

4.5.1 Packet Drop Rate

As we know this fact that packet drop increases with the increase in the distance between the nodes.
We observe the packet drop rate by conducting a separate experiment in the outdoor environment. Our
objective is to observe the impact of different aggregation schemes for wireless sensors motes by evaluating
each scheme on the basis of packet drop rate. In this experiment, each scheme is performed with spatial
aggregation approach. Therefore, we used 4 TelosB sensor motes, separated with measured distance.
Among these four motes, 2 motes are used as source, one as relay and the other as sink. The distance
between source to sink is incremented by 10 m in each iteration. Initially, the distance between each node
is kept 10 m from each other in the outdoor environment. During this experiment, each node sends a

Page 50

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.23: A comparison of overall delay for 100 packets with respect to adaptive frame-length scheme
for spatial and temporal aggregation vs non-aggregated transmission.

Figure 4.24: A comparison of average energy consumption of the relay node with respect to fixed frame-
length scheme for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

packet every 5 s and we conducted each iteration for 100 packets to observe the behaviour of the nodes
for each scenario. The behaviour of each scheme is described in Figure 4.27 with respect to packet drop
vs varying distances. In this figure, we compare the packet drop rate among different schemes with simple
forwarding. Starting with the simple forwarding, we can see that at minimum possible distance, packet
drop is negligible. However, in homogeneous and heterogeneous aggregation, it changes from 1% to
3%. Similarly, in fixed frame-length and adaptive frame length schemes, it lies between 2% and 3%.
Moving further, at 20 m distance, simple forwarding changes a little. Nonetheless, trend changes in all
aggregation schemes upto 7% except heterogeneous where it still remain constant at 3 %. At 30 m, there
is a slight increment in packet drop for simple forwarding and heterogeneous when it goes to 6 % and 7 %
respectively. On the other side, packet drop for homogeneous and adaptive frame length aggregation goes
upto 13 %. Surprisingly, fixed frame-length rate is much higher then all aggregation schemes which goes
upto 18 %. It is due to the fact, that this scheme is specifically bounded to aggregate two packets only,
despite the fact that multiple packets have arrived in the meanwhile. This packet drop rate follows the same
trend until we go upto 70 or 80 m. At 80 m, we have maximum packet drop recorded for each scheme.
For instance, simple forwarding goes upto 55 % packet loss. Similarly, homogeneous, heterogeneous
and adaptive frame-length aggregation have 59 %, 54 % and 53 % respectively. Again, fixed frame-length
produces an unexpected rate of 67 % for 100 packets. We observe from these experiments, that aggregation

Page 51

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.25: A comparison of average energy consumption of the relay node with respect to adaptive
frame-length scheme for spatial and temporal aggregation vs non-aggregated transmission for 100 packets.

Table 4.9: A comparison of relay node’s energy consumption between variable aggregation for spatial and
temporal vs simple forwarding for 100 packets

Schemes Etx (1 packet) Erx(1 packet) Total Energy (100 packets)

Temporal aggregation (fixed

frame-length
0.091 mJ 0.083 mJ 12.85 mJ

Spatial aggregation (fixed

frame-length
0.091 mJ 0.083 mJ 12.85 mJ

Temporal aggregation (adap-

tive frame-length)
0.17 mJ 0.083 mJ 13.96 mJ

Spatial aggregation (adaptive

frame-length)
0.17 mJ 0.083 mJ 13.96 mJ

Simple forwarding (without

aggregation)
0.072 mJ 0.083 mJ 15.5 mJ

Page 52

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Table 4.10: Overall comparison between variable aggregation vs simple forwarding with respect to energy
consumption, average end-to-end delay, overall delay and frame transmission count

Schemes Energy consumption
(100 packets)

Transmission count
(100 packets))

End-to-end
delay (1 packets)

Overall delay
(100 packets)

Temporal aggregation

(fixed frame-length)
12.85 mJ 50 252.68 ms 24.8 s

Spatial aggregation (fixed

frame-length)
12.85 mJ 50 252.68 ms 24.8 s

Temporal aggregation

(adaptive frame-length)
13.96 mJ 34 269.59 ms 25.74 s

Spatial aggregation (adap-

tive frame-length)
13.96 mJ 34 269.59 ms 25.74 s

Simple forwarding (without

aggregation)
15.5 mJ 100 236.74 ms 23.67 s

Figure 4.26: An overall comparison of energy consumption between simple forwarding vs all proposed
schemes for spatial and temporal aggregation for 100 packets in the relay node. This calculation is done
with respect to transmission count required for transmitting 100 packets.

schemes cause more packet drop than traditional forwarding. This is because packet aggregation at the
relay nodes is taking more processing time than the simple forwarding. Hence, there are possibility of
backlog packets at the relay nodes which increase packet drop probability at the relay nodes. In addition,
TelosB sensing range is upto 100 m, but in our scenarios, nodes became unstable after 80 m. Therefore,
we conduct these experiments within the range of 80 m to get precision and accuracy in the measurements.

Page 53

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.27: A comparison of packet drop rate between simple forwarding and the proposed aggregation
schemes for 100 packets.

4.6 Packet Analysis

Packets analysis is performed by capturing a transmission using packet sniffing mechanism. This mecha-
nism involves an interception and traffic logging through a network. Packet sniffers work by intercepting
and logging network traffic via wired or wireless network interface. Additionally, the traffic can be anal-
ysed in the packet sniffing software which has access to its host computer. In wireless networks, packet
sniffer usually captures traffic from one channel at a time and can intercept traffic from that channel ac-
cordingly. Once the traffic is logged, the raw data is then analysed by the software to interpret in the human
readable form 2.

4.6.1 Sniffing devices and Sniffer 15.4

Sniffer 15.4 3 is an android application which is used to capture 802.15.4 enabled frames over the air using
a cell phone. It allows an integration of the device with other android phones or tablets 4. Furthermore,
packets are captured by an interception over the air and can be seen and exported to Wireshark for further
exploration. To set up the sniffing hardware, we programme a TelosB mote with a special sniffing firmware.
Once the sensor node is programmed with the firmware it is activated as a sniffing device. Afterwards,
the sensor mote has to be connected with a USB OTG cable to view the raw data through the android
application, illustrated in Figure 4.28.

4.6.2 Aggregation analysis

In our scenarios, we analyse fixed frame-length spatial aggregation scheme using sniffing tool and Wire-
shark. During this process, we deploy 4 sensor nodes including two sources, one relay and one sink. Af-
terwards, we capture some packets from different transmissions and store as raw data for further analysis.

2www.en.wikipedia.org/wiki/Packet analyzer
3www.netsecurity.about.com/od/informationresources/a/What-Is-A-Packet-Sniffer.htm
4www.rtn.sssup.it/index.php/software/seed-eye-apps/sniffer-154

Page 54

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.28: TelosB mote connected to android phone using a USB OTG cable.

Later, these packets are analysed using Wireshark to provide a clarification about aggregation. Accord-
ing to Wireshark analysis, packets are validated by checking their amended sequence number and source
ID. From Figure 4.29, it can be seen that the captured frame contains humidity packet information with
sequence number and node address(shown in red marked on the bottom right). If we look closer on the
highlighted red bar, (IEEE 802.15.4 Data Dst:0x0400,Src:0x2000), we can see the destination & source
address of the frame.

Figure 4.29: A captured packet of humidity during a transmission between source and relay.

These values are in the form of hexadecimal format which can be converted into decimal. Conversion
of hexadecimal value to decimal can be performed using Eq 4.10. Accordingly, addresses for source and
destination are converted using Eq. 4.10 and Eq. (4.11).

Destinationaddress = (04)16 = (4)10 (4.10)

Sourceaddress = (20)16 = (32)10 (4.11)

Therefore, we can also verify the source address of the packet from the content of the the captured
packet as a:32 shows that this packet is coming from node 32 towards the intended destination which is
node 4.

Page 55

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Figure 4.30: A captured packet of temperature during a transmission between source and relay.

Moving further, from Figure 4.30, it can be revealed that the second captured packet contains temper-
ature packet with some information about sequence number and node address (shown in red marked on the
bottom right). Accordingly, if we look closer on the highlighted red bar, (IEEE 802.15.4 Data Dst:0x0400,Src:0x2200),
the source and the destination addresses can be easily observed. Similarly, conversion from hexadecimal
value to decimal can be performed using Eq. (4.12) and Eq. (4.13).

Destinationaddress = (04)16 = (4)10 (4.12)

Sourceaddress = (22)16 = (34)10 (4.13)

This conversion clarifies this fact that packet is generated from source node which is 34 and being
transferred towards node 4.

From Figure 4.30, it can be seen that the captured packet is actually an aggregated frame which
contains information two packets, temperature and humidity, with their sequence number and node ad-
dresses, shown in red marked on the bottom right. Therefore, if we look closer on the highlighted red bar
(IEEE 802.15.4 Data Dst:0x0500,Src:0x0400), we can see the destination & source address of the frame.
These source and destination addresses are converted in Eq. (4.14) and Eq. (4.15).

Figure 4.31: A captured aggregated frame during transmission between relay and sink. This frame contains
packets of humidity and temperature.

Page 56

Test Scenarios and Experimental Results IKT-590 : Master Thesis

Destinationaddress = (04)16 = (4)10 (4.14)

Sourceaddress = (05)16 = (5)10 (4.15)

Therefore, the frame is generated from node 4 and forwarded towards node 5. Accordingly, if we
look closer on the content inside of the frame, shown in red marked on the bottom right, we can see the
aggregated frame in which two previously captured packets are aggregated inside a frame which confirms
that aggregation has been performed at relay node.

Page 57

Chapter 5

Discussions

Although aggregation is an engaging technique for multi-hop WSNs, it is also quite challenging to deploy
in TelosB sensor motes due to the firm nature of TelosB such as lack of synchronization, resource limitation
and longer delays. Specifically, inflexible Contiki platform and its hard-line library functions are quite
demanding when it comes to manipulation of codes according the the requirements of the task. However,
TelosB mote and Contiki platform are most commonly used in research community for last few years.
Regardless of their nature, we adopt this combination to deploy aggregation and to analyse the outcomes.

In this chapter, we try to discuss results obtained from each scheme and compare these results with
the questions mentioned in the problem statement in order to explain the contact of each finding with the
thesis requirements. Furthermore, we provide some attempts which are partialy implemented during the
implementation phase. Lastly, we discuss the adverse and unexpected outcomes and pinpoint the possible
limitations and lacks.

5.1 Result Discussions

Our research revolves around the problem questions mentioned in Chapter 1 such as how to design and
implement an aggregation scheme which is more suitable for TelosB motes in order to reduce number
of transmissions. Further, in terms of evaluation which scheme performs better when compared on the
basis of performance parameters like end-to-end delay, energy consumption, packet drop, etc. Here, we
evaluate each scheme on the basis of results and conclude that how much we are able to meet our specified
requirements of this thesis. Starting with the number of transmissions, described in the first research
question, it can be revealed that we are able to find a working solution for this problem in the form of our
proposed aggregation schemes. Each scheme reduces number of transmission nominally from 25 % to 65
% and each schemes is deployed using TelosB sensor motes in multi-hop fashion. In this context, design
and implementation of these schemes exactly match with the first requirement of this thesis. Moving
further, second task is associated with implementation of these schemes at relay node. As we described
earlier, relay node is the main focus throughout this process as it has to deal with all the traffic going
towards the sink which eventually creates an energy hole. Due to this reason, all aggregation schemes
are deployed at the relay node in order to afford a working solution to resolve the energy hole problem.
Furthermore, second research question demands an aggregation approach which consumes less energy and
time as compared to the non-aggregated forwarding. We observe this fact from the experimental results
from Chapter 4 that all proposed schemes are better then simplel forwarding when evaluated on the basis of
energy consumption. Nonetheless, delay is slightly higher in aggregation schemes due to presence of large
processing and frame transmission time. However, this difference in delay values is minor enough that it
can be resolved by better synchronization among all nodes. Third question requires an adaptive mechanism
to evaluate aggregation with respect to the performance parameters. In performance parameters, energy
consumption is an important factor which decides whether the respective scheme is considerable or not.
Therefore, this factor requires a precise measurement technique which can satisfy all the standards. To
fulfil this requirement, we adopted a measurement approach which is based on oscilloscope and other

Discussions IKT-590 : Master Thesis

physical equipments like resistors, multimeter, etc. Our measured values for transmission and reception
currents are verified by [20]. To measure the processing delay at each node, we adopted a very useful
technique, described in [24], which is based on system clock. Using this library, a clock is initialized at
the start of every process. Therefore, the total processing time is calculated by computing the difference
between initial and final value. Considering this fact, our selected measurement techniques are adaptive
and provide precise analysis for any kind of scenario in the sensor networks. In terms of packet drop, as we
discussed in Section 4.5.1, simple forwarding performs better as compared to each aggregation scheme.
This is due to the fact that inter-departure time between each outgoing packet from the source node is kept
very less to meet the aggregation requirements. Accordingly, some packets are dropped while reaching at
the relay node as it is busy with other receptions. Thus, packet drop ratio can be minimized in aggregation
schemes by increasing the inter-departure time between outgoing packets. Moving further, following
sections describe the advantages of these aggregation schemes in terms of performance parameters.

5.1.1 Advantages of aggregation schemes

As the results show that aggregation schemes overall perform better then simple forwarding in terms of
number of transmissions and energy consumption for relay node which enhances the overall performance
of the system. It is due to the fact that MAC principle requires an ACK after each successful transmissions.
So, by implementing packet aggregation, number of transmissions are reduced because less number of
ACKs are received at relay node from the sink. For that reason, proposed schemes are excellent in terms
of reducing traffic overhead.

Advantages of homogeneous packet-selection

Packet aggregation at the relay node does not necessarily mean that every packet should be concatenated.
Instead, packets can be selected according to the service type to participate in this execution. Due to this
fact, homogeneous selection of packets proved itself as an excellent technique which can be implemented
in any scenario which involve any preference of data. In addition, non-aggregated packets are not just
discarded but can be simply forwarded without taking part in aggregation. This whole mechanism saves a
lot of transmission count as we can see that number of frame transmissions are reduced upto 25 %. Fur-
thermore, delay is not reduced as compared to simple forwarding however this factor is not only associated
with homogeneous aggregation but also to the lack of synchronization. Every node requires some start up
time to initialize its processing and in case of aggregation, relay has to wait for atleast two packets to build
a frame. Energy consumption is also smaller as compared to simple forwarding though the difference is not
that prominent. This energy consumption is slightly higher because it involves two types of forwarding,
aggregated and non-aggregated which exert a lot of processing when performed in parallel.

Advantages of relay-database

TelosB sensor motes have enough memory of 10 kB to store a certain amount of packets which is used
in heterogeneous approach. As numerical results show in Figure 4.11 that this scheme reduces number of
transmissions upto 50 %. This prominent decline leads towards less energy consumption then homoge-
neous scheme. Additionally, in case of packet loss, this mechanism can be used to recover lost packets by
performing an identification process based on the sequence numbers. Further, a retransmission algorithm
can be used to retrieve the lost packets from the database and redelivered to the sink node. Nevertheless,
delay is 25.58 s which is still higher than simple forwarding as storing and retrieving process requires a
lot of processing. However if we compare this approach with homogeneous scheme, it performs better in
terms of delay management, energy consumption and number of transmissions.

Page 59

Discussions IKT-590 : Master Thesis

Advantages of adaptive packet length

Typically, all schemes are designed to accommodate two packets in a frame while performing aggrega-
tion. Considering this fact, this scheme offers a lot of flexibility in terms of frame size. This interesting
technique has a significant impact on transmission count which is decreased upto 65 % of total required
transmissions. These transmission count can be reduced further in case of 4 packets per frame. However,
packet size is a critical factor here as it should not exceed the size of a frame’ payload which is 128 Bytes.

5.2 Other endeavours

In order to provide more flexibility and efficiency in aggregation schemes, there are several factors which
can be included inside the aggregation techniques. In this section, we present some of the key efforts
which are performed during the employment of packet aggregation to make these schemes more effective
and resourceful. However, on account of some convincing aspects, these efforts are not fully successful in
terms of implementation.

5.2.1 Compression

Compression is a mechanism which is widely used & applied in various communication applications. The
main focus of this mechanism is suppressing of data size to minimize memory usage. Although, a lot of
compression algorithms exist such as LZ77 , Burrows Wheeler transform , Huffman coding etc. However,
most of these algorithms are not suitable in resource constraint devices such as TelosB mote. We tried
to implement s-lzw compression algorithm in our aggregation model which is deployed at the source and
compresses an outgoing packet. After receiving frame, sink node has to decompress the received frame
after de-aggregation in oder to retrieve the original packet. After the deployment of s-lzw, compression
is performed successfully, as shown below. This algorithm is performed at the source node as relay is
already dealing with a lot of processing due to aggregation. Nevertheless, decompression at the sink node
is still uncertain. This is because while source node is sending compressed packets towards relay node,
it is really difficult for a relay to distinguish the content of packet in case of homogeneous aggregation
as compression algorithms use their own dictionary words instead of sending plain text. Moreover, after
aggregation, sink has to de-aggregate first and then decompress the packets separately. Therefore, this
mechanism requires more time and research to develop according to our requirements.

sprintf(s,"s:%d:a:%d:Temp:%d \n",
send_packets,rimeaddr_node_addr,get_temp());
write_buffer[30]= s;
slzw_compress(30, 15);
packetbuf_copyfrom(lzw_output_file_buffer,15);

5.2.2 CRC

CRC is an approach which is used in communication devices in order to identify error in the received
packets. In this approach, some check values are assembled with outgoing data packet from the source
node. On the receiver side, CRC error counter inspects the content of received packet, compares the
assembled check value and approves the data accordingly. If the counter finds any dissimilarity, it means
the received packet is corrupted and further operation is needed [26]. Accordingly, in Zigbee enabled
TelosB sensor motes, last two bytes in every packet is FCS which is actually used for CRC calculation. In
our aggregation schemes, CRC is enabled in a way that as it can identify the corrupted packet and notify
the receiver. CRC in Contiki is implemented by immobilizing the MAC functionality and copying the
payload of corrupt packets without moving through the stack. By applying CC2420 CONF AUTOACK
= 0, auto ACK is disabled so there is no more hardware ACK for the sensor. These lines are inserted into
Contiki/platform/sky/contiki-conf.h.

Page 60

Discussions IKT-590 : Master Thesis

Figure 5.1: CRC check for corrupted packets at relay node.

#define NETSTACK_CONF_MAC nullmac_driver
#define NETSTACK_CONF_RDC nullrdc_noframer_driver
#define NETSTACK_CONF_FRAMER framer_nullmac
#define CC2420_CONF_AUTOACK 0

Additionally, following lines are also added into Contiki/core/dev/cc2420.c. By adding these lines, the
CRC error counter notifies receiver that the received packet is corrupted, as shown in Figure 5.1. As last
two bytes in Zigbee packets are hard coded for CRC. Accordingly printf(”%02x ”) can print the payload
part which contains the check values to pinpoint the actual error.

int i;
printf("CRC check, corrupted packet payload=");
for (i=0;i<len;i++) {
printf("%02x ", ((uint8_t *) buf)[i]);
}
printf("\n");

From Figure 5.1, it can be seen that the received packet is corrupted and CRC error counter is printing
the last two bytes of CRC from the payload of the corrupted packet.

However, there are certain limitations which affect the whole concept of CRC in this platform. While
we disable the MAC functionalities, by allowing nullmac driver to work instead of ContikiMAC, ACK has
to be disabled. Just as, the network stack implemented in Contiki is not the same as typical OSI five layers
model. It is because instead of having only MAC layer between the PHY and the Network layers, there
are 3 different layers: Framer, Radio Duty-Cycle (RDC) and Medium Access Control (MAC). While the
network layers are operated through ETSTACK FRAMER, NETSTACK RDC and NETSTACK MAC.
By disabling ACK, receiver can not be notified about this corrupted reception of packet so retransmission
is not possible by this way. Additionally, if we try to add explicit ACK, the retransmission from the
source node is quite challenging in our scenario. It is because assume that source is constantly sensing
data packets and sending towards relay while packets are discarded after each transmission. Therefore,
if there is any request of retransmission from the relay, source can not send the same sample again as it
is not stored in its memory. However, this issue can be resolved by creating another database at source
node such as we created in homogeneous aggregation scheme which can store a certain amount samples.
Nevertheless, this solution obviously will affect the synchronization and delay of whole network.

5.3 Limitations

Now, we present certain limitations which are very influential while dealing with TelosB motes using
Contiki platform. Despite the fact that we managed to complete our task requirements while having these
limitations, these factors some how limit the performance and slow down the implementation process.

• Synchronization is a key factor which affects the performance of any aggregation scheme in sensor
node. While implementing aggregation schemes using TelosB motes, it is a confronting task to
adjust timer for each sensor node according to the requirements of each scheme. While sensing and

Page 61

Discussions IKT-590 : Master Thesis

data processing are performed simultaneously inside the node which insists to provide a concurring
organisation to avoid potentially longer delays and packet drops.

• TelosB motes are resource-limited in order to achieve optimization in size, cost and energy con-
sumption. Accordingly, this resource limitation affects the implementation process as most of the
compression algorithms requires huge RAM, for instance, when we apply algorithm LZ77 which
can not be implemented inside the mote as it requires atleast 50 kB of memory to process. There-
fore, in-node LZ77 compression in TelosB motes is not an easy task as it requires some specific
algorithm with the processing power of less then 10 kB.

• Although, reliability is achieved by sending ACK after every successful transmission, however, in
case of packet drop, retransmission is needed to recover the dropped packets . The retransmission
mechanism requires another database at source node to keep record of every outgoing packet for
certain amount of time which affects the inter-departure time for each packet.

• Contiki is based on nesC which is a subset of C programming language. However, nesC is very
inflexible in terms of library support as it does does not support some libraries. For instance, tra-
ditional C language provides a variety of libraries for the implementation of retransmission, CRC
calculation, timestamps. However, nesC needs some enhancements and improvements for the li-
brary support in order to remove the compatibility issues.

Page 62

Chapter 6

Conclusions and Future Work

This project broadened our knowledge and augmented a lot of experience and competence about packet-
aggregation in WSNs. The implementation of this technique in our thesis is a compliment in terms of skills
and expertise while working in the environment of WSNs. It allowed us to improve our knowledge and
experience about programming in Contiki environment. At this moment, we are very much aware of all
the hurdles and complications about in-network resources and how much packet-aggregation is effective
while implemented in various topologies. Moreover, why Contiki is favourable over TinyOS while dealing
with TelosB sensor motes. Therefore, our attempts and efforts in this context will be quite helpful for us
in the eventual. However, more research and exploration is needed in order to improve the quality of this
work in near future.

This chapter composed of a brief abbreviation of our work and leads towards a beginning of a new dis-
cussion about some novel aspects provided by this report. Eventually, it concludes with some convincing
remarks about this report.

6.1 Conclusions

In the course of this research, we executed several experiments and examined several topologies by im-
plementing various aggregation schemes. We evaluated these schemes by sending packets from the source
node, performing aggregation at the relay and forwarding in the form the of an aggregated frame towards
the sink. This assessment is based on multiple performance parameters such as energy consumption, end-
to-end delay, overall delay, number of frame transmissions and packet drop. In Chapter 1, we provided
a brief introduction about this topic with specified research questions and the chosen approach to answer
these questions. Further, Chapter 2 revolves around the background of this topic and affords an analysis
of previously proposed techniques. In addition, this chapter provides information about the tools which
we adopted to built the platform to execute different schemes. In Chapter 3, we discussed network design,
scheme specifications and protocol employment to present an obvious illustration of our proposed aggre-
gation model. In chapter 4, we contributed a comprehensive scrutiny of the results, acquired by different
experiments for each scheme with respect to the performance parameters. This analysis helped us to clas-
sify all these aggregation schemes according to these parameters. Chapter 5 contains a self assessment
of the acquired results in comparison with the specified research questions in Chapter 1. Furthermore,
this chapter explained the execution of some unsuccessful attempts such as implementation of CRC and
compression. These efforts were made during the implementation process to facilitate these aggregation
schemes. Throughout these investigations, we focused on the relay node as this node has to deal with
all the traffic going towards the sink which eventually produces an energy hole due to immature death of
relay node. According to our practice throughout this thesis, we noticed that aggregation performs better
in terms of energy consumption and transmission count. However, end-to-end delay is not decreased at
all even the aggregation is implemented. Traditionally, researchers believe that packet aggregation should
decrease the delay due to the less number of transmissions. However in TelosB, sensing and processing
at the source node produces an extra delay due the fact that it involved some extra processing while the

Conclusions and Future Work IKT-590 : Master Thesis

processing ability of TelosB’s CPU is very weak. Additionally, the processing delay in TelosB includes an
extra 210 ms sensing delay which is mentioned as a wake up call to activate the sensing process. In homo-
geneous scheme, energy consumption is higher as it includes 50 % of simple forwarding mechanism which
excessively increases the number of transmissions. Heterogeneous scheme performs comparatively better
in terms of transmission count as this number is reduced to 50 %. Furthermore, adaptive packet-length
scheme limits transmission count to 34 % which clarifies the efficiency of this scheme. In each section, we
gave a brief overview of every bit od information which is somehow associated with each experiment. We
hope that provided results and analysis give sufficient knowledge and understanding to our reader about
aggregation in WSNs.

6.2 Contributions

In terms of our contributions, all the proposed schemes are implemented and tested on the basis of perfor-
mance parameters However, a detailed summary is given below.

• We started with the aggregation of packets containing raw data coming from a single source to ex-
amine the behaviour of packet aggregation in TelosB motes. Later, we aggregated the real data like
temperature, humidity and light in a same topology to make these schemes more practical. Addi-
tionally, we formulated a mechanism to insert sequence number and source ID inside the payload
part to identify each packet and compute the packet loss at the sink node.

• Aggregation is furnished with a design and implementation for spatial and temporal topologies.

• We designed and implemented aggregation according to the service type such homogeneous and
heterogeneous schemes. In homogeneous scheme, we managed to perform aggregation according to
different service types. Further, in heterogeneous, we systematized a database which stores a certain
amount of received packets at relay node’s history to provide an option to aggregate any stored
packet from the history in case of request initiation Additionally, we designed and implemented
variable scheme which contains fixed frame-length and adaptive frame-length aggregation to make
this technique more flexible for any kind of scenario. Accordingly, these methods provide working
solution for both spatial and temporal aggregation.

• All designed and implemented schemes are tested and evaluated through a set of experiments on the
basis of performance parameters. In addition to all these contributions, there are some ineffective
attempts which are partially implemented and can be used as a starting point for future investigations.

6.3 Future Topics

After going through all the experiments and research, we found some points which can be an interesting
way to explore this topic in more advance manner. First, we examined this protocol with a simple and
experimental way, considering only 4 or 5 nodes. However, this topology can be increased to more nodes
to observe the efficiency of packet aggregation on higher scale which may lead towards more precise and
improved implementation of these schemes.

Second, as these schemes are used for non-confidential packets where no privacy is required. As, in
case of confidential and secure transmission, encryption can be implemented in these schemes in the form
of concealed packet aggregation to provide privacy and security. Additionally, the standard packet size
in case of TelosB is 128 bytes + 48 bytes for payload and header part respectively. Nonetheless, on the
assumption of larger packets, standard frame length can be an obstacle while accommodating multiple
packets inside an aggregated frame. Thus, compression can be used at the relay node to squeeze the
outgoing packets before adding into a frame. This approach seems an acceptable practice in consideration
of achieving more beneficial results of aggregation.

Page 64

Conclusions and Future Work IKT-590 : Master Thesis

IoT indicates the interdependence of every single device which is capable of affording pervasive
knowledge and resources in the modern world. This relationship consists of a shared system which in-
cludes every single object from computers, smart sensors, actuators, RFID, WSNs, digital media and even
the people themselves. Therefore, IoT has appeared as a promising technique which provides a novel
solution to enhance the quality of every involved parameter in our life [43]. The fundamental components
of IoT includes sensing which is an important chunk of IoT [34]. In this context, sensing is actually a
collection and transmission of data from different sources inside the wireless network towards the the sink
node. Therefore, sink can process the gathered data according the requirement of the task. The concept
of IoT can be used in sensor networks to make the mechanism of sensing and transmission more intelli-
gent and quick. Additionally, communication is also an important feature in IoT, which connects sensing
and computation together to acquire desired outcomes. Traditionally, IoT contains typical communication
mechanisms which follow conventional packet transmission form source towards the sink. Therefore, the
concept of packet aggregation in WSNs can be associated with IoT as it provides certain improvement
in terms of energy efficiency and resource conservation. The proposed aggregation methods such as ho-
mogeneous, heterogeneous and variable scheme focus on dynamic frame length and variable number of
transmission according to the structure and requirement of the protocol. These proposed schemes can be
effectively utilized to reduce the expenditures per packet like end-to-end delay, energy and transmission
count. Conclusively, we hope that our proposed schemes and contributions will help the future pioneers to
obtain an excelling intuition inside the IoT environment for advance exploration of this topic.

Page 65

Bibliography

[1] Chang JH, Tassiulas L. Energy conserving routing in wireless ad-hoc networks. In INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE 2000 (pp. 22-31). IEEE.

[2] Kalpakis K, Dasgupta K, Namjoshi P. Efficient algorithms for maximum lifetime data gathering and
aggregation in wireless sensor networks. Computer Networks. 2003 Aug 21;42(6):697-716.

[3] Mhatre V, Rosenberg C. Design guidelines for wireless sensor networks: communication, clustering
and aggregation. Ad hoc networks. 2004 Jan 31;2(1):45-63.

[4] He W, Nguyen H, Liu X, Nahrstedt K, Abdelzaher T. iPDA: an integrity-protecting private data
aggregation scheme for wireless sensor networks. In Military Communications Conference, 2008.
MILCOM 2008. IEEE 2008 Nov 16 (pp. 1-7). IEEE.

[5] Dasgupta K, Kalpakis K, Namjoshi P. An efficient clustering-based heuristic for data gathering and
aggregation in sensor networks. In Wireless Communications and Networking, 2003. WCNC 2003.
2003 IEEE 2003 Mar 20 (pp. 1948-1953). IEEE.

[6] Lee M, Wong VW. An energy-aware spanning tree algorithm for data aggregation in wireless sensor
networks. In Communications, Computers and signal Processing, 2005. PACRIM. 2005 IEEE Pacific
Rim Conference on 2005 Aug 24 (pp. 300-303). IEEE.

[7] Ding M, Cheng X, Xue G. Aggregation tree construction in sensor networks. In Vehicular Technology
Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th 2003 Oct 6 (pp. 2168-2172). IEEE.

[8] Yang G, Xiao M, Zhang S. Data aggregation scheme based on compressed sensing in wireless sensor
network. In Information Computing and Applications 2012 Sep 14 (pp. 556-561). Springer Berlin
Heidelberg.

[9] WaltenegusDargie CP. Fundamentals of wireless sensor networks. A John Wiley and Sons Ltd., Pub-
lication. 2010.

[10] Narmada A, Rao PS. Zigbee based WSN with IP connectivity. In Computational Intelligence, Mod-
elling and Simulation (CIMSiM), 2012 Fourth International Conference on 2012 Sep 25 (pp. 178-
181). IEEE.

[11] Bala Krishna M, Vashishta N. Energy efficient data aggregation techniques in wireless sensor net-
works. In Computational Intelligence and Communication Networks (CICN), 2013 5th International
Conference on 2013 Sep 27 (pp. 160-165). IEEE.

[12] Zechinelli M JL, Bucciol P, Vargas-Solar G. Energy aware data aggregation in wireless sensor net-
works. In Wireless Communication, Vehicular Technology, Information Theory and Aerospace &
Electronic Systems Technology (Wireless VITAE), 2011 2nd International Conference on 2011 Feb
28 (pp. 1-5). IEEE.

Bibliography IKT-590 : Master Thesis

[13] Jose J, Manoj Kumar S. Energy efficient recoverable concealed data aggregation in wireless sen-
sor networks. In Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN),
2013 International Conference on 2013 Mar 25 (pp. 322-329). IEEE.

[14] Guntupalli L, Martinez-Bauset J, Li F Y, Weitnauer MA. Aggregated packet transmission in duty-
cycled WSNs: modeling and performance evaluation. IEEE Transactions on Vehicular Technology
doi: 10.1109/TVT.2016.2536686 (pp.1-1)

[15] Ambekar C, Lakhani G, Shah K, Bhanushali K. Energy efficient Data Aggregation in M-SPIN. In
Intelligent Systems and Control (ISCO), 2015 IEEE 9th International Conference on 2015 Jan 9 (pp.
1-5). IEEE.

[16] Schiller JH. Mobile communications. Pearson Education, Publication 2003.

[17] Chen Z, Lin C, Wen H, Yin H. An analytical model for evaluating IEEE 802.15. 4 CSMA/CA proto-
col in low-rate wireless application. In Advanced Information Networking and Applications Work-
shops, 2007, AINAW’07. 21st International Conference on 2007 May 21 (pp. 899-904). IEEE.

[18] Gajjar S, Choksi N, Sarkar M, Dasgupta K. Comparative analysis of wireless sensor network motes.
In Signal Processing and Integrated Networks (SPIN), 2014 International Conference on 2014 Feb
20 (pp. 426-431). IEEE.

[19] Chipcon AS. CC2420 datasheet-2.4 GHz IEEE 802.15. 4/ZigBee-Ready RF Transceiver (Rev. B).
Chipcon AS. 2007.

[20] Datasheet, TelosB. ”Crossbow Inc.” 2013.

[21] Reusing T. Comparison of operating systems tinyos and contiki. Sens. Nodes-Operation, Netw. Ap-
pli.(SN). 2012 Aug;7.

[22] Dunkels A. The contikimac radio duty cycling protocol.

[23] Dunkels A, Österlind F, He Z. An adaptive communication architecture for wireless sensor networks.
In Proceedings of the 5th international conference on Embedded networked sensor systems 2007 Nov
6 (pp. 335-349). ACM.

[24] Hassan R, Qamar T. Asymmetric-key cryptography for contiki.

[25] Mahmood A, Imran S. Energy consumption in wireless sensor networks: real life and simulation
based measurements, IKT-508 on 2015. UIA

[26] Support.motioneng.com, CRC Error Counters, 2016. [Online]. Available: http://support.
motioneng.com/technology/synqnet/crc_err_ctr.htm. [Accessed: 05- May-
2016].

[27] Osterlind AD, Dunkels A. Contiki programming course: Hands-on session notes. Swedish Institute
of Computer Science, Siena. 2009 Jul.

[28] He W, Liu X, Nguyen H, Nahrstedt K, Abdelzaher T. Pda: Privacy-preserving data aggregation in
wireless sensor networks. In INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE 2007 May 6 (pp. 2045-2053). IEEE.

[29] Tsitsipis D, Dima SM, Kritikakou A, Panagiotou C, Gialelis J, Michail H, Koubias S. Priority han-
dling aggregation technique (PHAT) for wireless sensor networks. InEmerging Technologies & Fac-
tory Automation (ETFA), 2012 IEEE 17th Conference on 2012 Sep 17 (pp. 1-8). IEEE.

[30] Jain A, Gruteser M, Neufeld M, Grunwald D. Benefits of packet aggregation in ad-hoc wireless
network (Doctoral dissertation, University of Colorado).

Page 67

Bibliography IKT-590 : Master Thesis

[31] Krishnamachari B, Estrin D, Wicker S. The impact of data aggregation in wireless sensor networks.
In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference
on 2002 (pp. 575-578). IEEE.

[32] Contiki.sourceforge.net, Contiki 2.6: File List, 2016. [Online]. Available: http://contiki.
sourceforge.net/docs/2.6/files.html, [Accessed: 05- May- 2016].

[33] Patil NS, Patil PR. Data aggregation in wireless sensor network. In IEEE International Conference
on Computational Intelligence and Computing Research 2010 Dec 28 (pp. 1-6).

[34] Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M. Internet of things: A survey
on enabling technologies, protocols, and applications. Communications Surveys & Tutorials, IEEE.
2015 Nov 18;17(4):2347-76.

[35] Cui J, Valois F. Data aggregation in wireless sensor networks: compressing or forecasting?. In Wire-
less Communications and Networking Conference (WCNC), 2014 IEEE 2014 Apr 6 (pp. 2892-
2897). IEEE.

[36] Lindsey S, Raghavendra C, Sivalingam KM. Data gathering algorithms in sensor networks using
energy metrics. Parallel and Distributed Systems, IEEE Transactions on. 2002 Sep;13(9):924-35.

[37] Xiang L, Luo J, Vasilakos A. Compressed data aggregation for energy efficient wireless sensor net-
works. In Sensor, mesh and ad hoc communications and networks (SECON), 2011 8th annual IEEE
communications society conference on 2011 Jun 27 (pp. 46-54). IEEE.

[38] Dunkels A, Grönvall B, Voigt T. Contiki-a lightweight and flexible operating system for tiny net-
worked sensors. In Local Computer Networks, 2004. 29th Annual IEEE International Conference on
2004 Nov 16 (pp. 455-462). IEEE.

[39] Benini L, Farella E, Guiducci C. Wireless sensor networks: Enabling technology for ambient intelli-
gence. Microelectronics journal. 2006 Dec 31;37(12):1639-49.

[40] Polastre J, Szewczyk R, Culler D. Telos: enabling ultra-low power wireless research. In Information
Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on 2005 Apr 15
(pp. 364-369). IEEE.

[41] Xiang L, Luo J, Rosenberg C. Compressed data aggregation: Energy-efficient and high-fidelity data
collection. IEEE/ACM Transactions on Networking (TON). 2013 Dec 1;21(6):1722-35.

[42] Koubaa A, Alves M, Tovar E. A comprehensive simulation study of slotted CSMA/CA for IEEE
802.15. 4 wireless sensor networks. In 5th IEEE International Workshop on Factory Communication
Systems 2006 Jun 28 (pp. 183-192). IEEE.

[43] Xia F, Yang LT, Wang L, Vinel A. Internet of things. International Journal of Communication Sys-
tems. 2012 Sep 1;25(9):1101.

Page 68

Appendixes

In this chapter, we explain the technical configuration by providing a brief user manual for better under-
standing of the reader. In second section, we provide our programming codes for each scheme which are
described in Chapter 4.

Appendix A

User manual

Before starting this manual, we expect that reader is already familiar with the Linux environment and has
basic knowledge about Contiki and TelosB sensor motes. This knowledge will be helpful to get familiar
with the commands and the environment. This manual is divided into two sections.

1. Instant Contiki installation and set-up.

2. Configuration and compiling a Contiki application.

Instant Contiki installation and set-up

This process contains downloading and installation of Instant Contiki and VMware. Many sources are
available to download Instant Contiki, however, below mentioned source 1 is the one we used. So download
the latest version of Instant Contiki from:

http://sourceforge.net/projects/contiki/files/Instant%20Contiki/

This downloaded file is an Ubuntu supported virtual image which can be booted into VMware. To
download VMware, follow the link below:

https://www.vmware.com/products/player/playerpro-evaluation.html

When installation is finished, follow these steps:

1. Go to Home and select ” Create New Virtual Machine”.

2. Select ”Install disc image file (iso).

3. Browse to the directory where you saved the Instant Contiki image file.

4. Run the installation and wait until the process is finished.

5. Run the virtual machine and password for the root user is ”user”.

Before running Contiki on hardware, two basic steps are required.
1www.contiki-os.org/start.html

Appendixes IKT-590 : Master Thesis

• The required version for MSP430 toolchain is 4.7 so make sure that the version is upgraded. How-
ever, in case you are not sure, run the command “InstallMSP430-4.7toolchain” in the terminal from
Home folder. This installation required internet connection.

• After this, you need to install “gcc-msp430” which is available at “Ubuntu Software Center”. Just
type “MSP430” and select “gcc-msp430” from the given list.

After the successful execution of all these steps, now you can connect the TelosB motes with the
Contiki. Examples required to understand the simple unicast and broadcast communication are given in
the following directory:

“HOME/contiki− 2.7/examples/rime”.

Configuration and compiling a Contiki application

After performing all the steps mentioned in first section of this manual, you are able to install the Instant
Contiki and your platform is ready to compile any Contiki application. Connect the TelosB mote to the
USB port of the PC. Make sure that device is properly connected by checking the green icon on the top
right corner showing ”memsic future devices”. After making the connection, follow the steps below 2:

1. Open the terminal and go to the above mentioned directory which contains all the examples. This
can be done by typing following command.

cd contiki/examples/rime

2. Before selecting any example, make sure that you are compiling this as a root user. Type the follow-
ing command and password.

sudo -s
Password: user

3. Choose any example which you want to compile at this stage. For instance, if you want to implement
simple unicast, simply type the example using following command.

make TARGET=sky example-unicast.upload

4. To see the compiled output, type the ” make login” command when the loading process is finished.

5. To see the compiled output with timestamps, type the ” make serialveiw” command when the load-
ing process is finished.

make TARGET=sky savetarget is another command which is used to build a Makefile with respect to the
new platform. This Makefile.target is situated in the directory where your example.c is located.

Example codes can be run on Ubuntu without even installing Instant Contiki. Nevertheless, in most
cases, it gives an error which can be associate with the installation of UISP tool kit 3. The UISP tool kit
can be installed by typing apt-get install usip in the terminal. This solution works for most of the sensor
motes. However, in case of MIB510 programmer boards which are used for MicaZ, it may not work. so
try to adopt the following procedure in case of MicaZ.

2www.anrg.usc.edu/contiki/index.php/Contiki build system
3www.wsnmagazine.com/step-by-step-method-of-writing-contiki-programs/

Page II

Appendixes IKT-590 : Master Thesis

1. First, download the UISP file from

http://azadeha.at.ifi.uio.no/uisp.tar.gz

2. Access the downloaded files from the Contiki shell and apply the successive commands.

tar -xvzf uisp.tar.gz # cd uisp # ./bootstrap # ./configure # make # make # sudo make install

3. Follow the directory where you saved the example file by typing

contiki-2.4/examples/rime

4. Afterwards, example.c can be compiled in Cooja simulator by typing

make TARGET=cooja example-multihop.cooja

Consequently, we hope that this user manual will help the reader to understand the procedure of initial
installation and configuration.

Appendix B

In this section, we are providing codes for source node, relay node and sink node with respect to homoge-
neous scheme.

Homogeneous spatial and temporal aggregation

Source node

1
2 # i n c l u d e ” c o n t i k i . h ”
3 # i n c l u d e ” n e t / r ime . h ”
4 # i n c l u d e ” n e t / r ime / t i m e s y n c h . h ”
5 # i n c l u d e ” dev / b u t t o n−s e n s o r . h ”
6 # i n c l u d e ” dev / l e d s . h ”
7 # i n c l u d e ” n e t / queuebuf . h ”
8 # i n c l u d e <s t d i o . h>
9 # i n c l u d e ” n e t / p a c k e t b u f . h ”

10 # i n c l u d e < s t r i n g . h>
11 # i n c l u d e ” dev / sh t11−s e n s o r . h ”
12 # i n c l u d e ” dev / l i g h t−s e n s o r . h ”
13 # i n c l u d e ” n e t / r ime / t i m e s y n c h . h ”
14 # i n c l u d e ” s y s / c l o c k . h ”
15
16 / ∗−−−∗ /
17
18 PROCESS(e x a m p l e u n i c a s t p r o c e s s , ” Example u n i c a s t ”) ;
19 AUTOSTART PROCESSES(& e x a m p l e u n i c a s t p r o c e s s) ;
20 s t a t i c s t r u c t u n i c a s t c o n n uc ;
21 s t a t i c r i m e a d d r t add r ;
22 s t a t i c i n t s e n d p a c k e t s ;
23 s t a t i c c l o c k t i m e t s t a r t t i m e ;
24 s t a t i c f l o a t f r a c ;
25
26 s t a t i c vo id
27 r e c v u c (s t r u c t u n i c a s t c o n n ∗c , c o n s t r i m e a d d r t ∗ from)
28
29 {
30 p r i n t f (”ACK r e c e i v e d from %d : \n ” ,
31 from−>u8 [0]) ;
32 l e d s t o g g l e (LEDS BLUE) ;

Page III

Appendixes IKT-590 : Master Thesis

33 }
34
35 / ∗−−−∗ /
36 s t a t i c c o n s t s t r u c t u n i c a s t c a l l b a c k s u n i c a s t c a l l b a c k s = { r e c v u c } ;
37 s t a t i c s t r u c t u n i c a s t c o n n uc ;
38 s t a t i c i n t s e n d p a c k e t s ;
39 ∗−−−∗ /
40 SENSING
41 ∗−−−∗ /
42 s t a t i c i n t
43 g e t t e m p (vo id)
44 {
45 r e t u r n ((s h t 1 1 s e n s o r . v a l u e (SHT11 SENSOR TEMP) / 10) − 396) / 10 ;
46 }
47
48 s t a t i c i n t
49 g e t l i g h t (vo id)
50
51 {
52 r e t u r n 10 ∗ l i g h t s e n s o r . v a l u e (LIGHT SENSOR PHOTOSYNTHETIC) / 7 ;
53 }
54
55 s t a t i c i n t g e t h u m i d i t y (vo id)
56 {
57 r e t u r n (((0 . 0 4 0 5 ∗ s h t 1 1 s e n s o r . v a l u e (SHT11 SENSOR HUMIDITY)) − 4) + ((−2.8 ∗

0 . 0 0 0 0 0 1) ∗ (pow (s h t 1 1 s e n s o r . v a l u e (SHT11 SENSOR HUMIDITY) , 2)))) ;
58 }
59 PROCESS THREAD(e x a m p l e u n i c a s t p r o c e s s , ev , d a t a)
60 {
61 PROCESS EXITHANDLER(u n i c a s t c l o s e (&uc) ;)
62 PROCESS BEGIN () ;
63 u n i c a s t o p e n (&uc , 146 , &u n i c a s t c a l l b a c k s) ;
64 SENSORS ACTIVATE(s h t 1 1 s e n s o r) ;
65 SENSORS ACTIVATE(l i g h t s e n s o r) ;
66 w h i l e (1) {
67 s t a t i c s t r u c t e t i m e r e t ;
68 r i m e a d d r t add r ;
69 e t i m e r s e t (& e t , CLOCK SECOND∗ 8) ;
70 PROCESS WAIT EVENT UNTIL (e t i m e r e x p i r e d (& e t)) ;
71 / ∗ Delay C a l c u l a t i o n ∗ /
72 c l o c k i n i t () ;
73 s t a r t t i m e = c l o c k t i m e () ;
74 l e d s o n (LEDS BLUE) ;
75 l e d s o f f (LEDS RED) ;
76
77 ∗−−−∗ /
78 PACKET FORMATION
79 ∗−−−∗ /
80
81 s e n d p a c k e t s = s e n d p a c k e t s +1 ;
82 c h a r t [3 0] ;
83 s p r i n t f (t , ” Humidi ty :%d%: s :%d : a :%d : \n ” , g e t h u m i d i t y () , s e n d p a c k e t s ,

r i m e a d d r n o d e a d d r) ;
84 p a c k e t b u f c o p y f r o m (t , 30) ;
85 add r . u8 [0] = 4 ;
86 add r . u8 [1] = 0 ;
87 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r)) {
88 u n i c a s t s e n d (&uc , &addr) ;
89 l e d s o f f (LEDS BLUE) ;
90 l e d s o n (LEDS RED) ;
91 p r i n t f (” u n i c a s t message s e n t t o %d.%d : ’%s ’\ n ” ,
92 add r . u8 [0] , add r . u8 [1] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
93 p a c k e t b u f c l e a r () ;

Page IV

Appendixes IKT-590 : Master Thesis

94 p r i n t f (” wi th d a t a l e n g t h %d & t o t a l l e n g t h %d wi th h e a d e r l e n g t h %d \n ” ,
p a c k e t b u f d a t a l e n () , p a c k e t b u f t o t l e n () , p a c k e t b u f h d r l e n ()) ;

95 c h a r s [3 0] ;
96 s p r i n t f (s , ” Temp :%d : s :%d : a :%d \n ” , g e t t e m p () , s e n d p a c k e t s , r i m e a d d r n o d e a d d r) ;
97 p a c k e t b u f c o p y f r o m (s , 30) ;
98 add r . u8 [0] = 4 ;
99 add r . u8 [1] = 0 ;

100 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r)) {
101 u n i c a s t s e n d (&uc , &addr) ;
102 p a c k e t b u f c l e a r () ;
103 p r i n t f (” u n i c a s t message s e n t t o %d : ’%s ’ \n ” ,
104 add r . u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
105 p r i n t f (” wi th d a t a l e n g t h %d & t o t a l l e n g t h %d wi th h e a d e r l e n g t h %d \n ” ,

p a c k e t b u f d a t a l e n () , p a c k e t b u f t o t l e n () , p a c k e t b u f h d r l e n ()) ;
106 p a c k e t b u f c l e a r () ;
107 }
108 e t i m e r s e t (& e t , CLOCK SECOND∗ 10) ;
109
110 PROCESS WAIT EVENT UNTIL (e t i m e r e x p i r e d (& e t)) ;
111
112 s e n d p a c k e t s = s e n d p a c k e t s +1 ;
113 c h a r q [3 0] ;
114 s p r i n t f (q , ” L i g h t :%d : s :%d : a :%d \n ” , g e t l i g h t () , s e n d p a c k e t s , r i m e a d d r n o d e a d d r) ;
115 p a c k e t b u f c o p y f r o m (q , 30) ;
116 add r . u8 [0] = 4 ;
117 add r . u8 [1] = 0 ;
118 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r)) {
119 u n i c a s t s e n d (&uc , &addr) ;
120 l e d s o f f (LEDS BLUE) ;
121 l e d s o n (LEDS RED) ;
122 p r i n t f (” u n i c a s t message s e n t t o %d : ’%s ’ \n ” ,
123 add r . u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
124 p r i n t f (” wi th d a t a l e n g t h %d & t o t a l l e n g t h %d wi th h e a d e r l e n g t h %d \n ” ,

p a c k e t b u f d a t a l e n () , p a c k e t b u f t o t l e n () , p a c k e t b u f h d r l e n ()) ;
125 p a c k e t b u f c l e a r () ;
126 p r i n t f (” Comple t ion t ime %l u / %u \n ” , (u n s i g n e d long) c l o c k t i m e () −

s t a r t t i m e , CLOCK SECOND) ;
127
128 p a c k e t b u f c l e a r () ;
129 }
130 }
131 }
132 PROCESS END () ;
133 }
134
135 / ∗−−∗ /
136 FOR SPATIAL (2ND SOURCE)
137 / ∗−−−∗ /
138
139 PROCESS(e x a m p l e u n i c a s t p r o c e s s , ” Example u n i c a s t ”) ;
140 AUTOSTART PROCESSES(& e x a m p l e u n i c a s t p r o c e s s) ;
141
142 / / s t a t i c c h a r a [1 0 0 0] , b [1 0 0 0] , c [1 0 0 0] ;
143 s t a t i c s t r u c t u n i c a s t c o n n uc ;
144 s t a t i c r i m e a d d r t add r ;
145 s t a t i c i n t s e n d p a c k e t s ;
146 / / s t a t i c i n t z [1 0 0 0] ;
147
148 / ∗−−−∗ /
149 s t a t i c vo id
150 r e c v u c (s t r u c t u n i c a s t c o n n ∗c , c o n s t r i m e a d d r t ∗ from)
151 {
152

Page V

Appendixes IKT-590 : Master Thesis

153 p r i n t f (”ACK r e c e i v e d from %d : \n ” ,
154 from−>u8 [0]) ;
155 l e d s t o g g l e (LEDS BLUE) ;
156 }
157
158 / ∗−−−∗ /
159 s t a t i c c o n s t s t r u c t u n i c a s t c a l l b a c k s u n i c a s t c a l l b a c k s = { r e c v u c } ;
160 s t a t i c s t r u c t u n i c a s t c o n n uc ;
161 s t a t i c i n t s e n d p a c k e t s ;
162 s t a t i c i n t
163 g e t t e m p (vo id)
164 {
165 r e t u r n ((s h t 1 1 s e n s o r . v a l u e (SHT11 SENSOR TEMP) / 10) − 396) / 10 ;
166
167 }
168
169 s t a t i c i n t
170 g e t l i g h t (vo id)
171 {
172 r e t u r n 10 ∗ l i g h t s e n s o r . v a l u e (LIGHT SENSOR PHOTOSYNTHETIC) / 7 ;
173 }
174
175 PROCESS THREAD(e x a m p l e u n i c a s t p r o c e s s , ev , d a t a)
176 {
177
178 PROCESS EXITHANDLER(u n i c a s t c l o s e (&uc) ;)
179 PROCESS BEGIN () ;
180 u n i c a s t o p e n (&uc , 146 , &u n i c a s t c a l l b a c k s) ;
181 SENSORS ACTIVATE(s h t 1 1 s e n s o r) ;
182 SENSORS ACTIVATE(l i g h t s e n s o r) ;
183 w h i l e (1) {
184 s t a t i c s t r u c t e t i m e r e t ;
185 r i m e a d d r t add r ;
186 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r)) {
187 u n i c a s t s e n d (&uc , &addr) ;
188 p a c k e t b u f c l e a r () ;
189 p r i n t f (” u n i c a s t message s e n t t o %d : wi th t o t a l %d l e n g t h ’%s ’ \n ” ,
190 add r . u8 [0] , p a c k e t b u f t o t l e n () , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
191 }
192
193 e t i m e r s e t (& e t , CLOCK SECOND∗ 6) ;
194
195 PROCESS WAIT EVENT UNTIL (e t i m e r e x p i r e d (& e t)) ;
196 s e n d p a c k e t s = s e n d p a c k e t s +1 ;
197 c h a r t [3 0] ;
198 s p r i n t f (t , ” s :%d : a :%d : L i g h t :%d \n ” , s e n d p a c k e t s , r i m e a d d r n o d e a d d r , g e t l i g h t ()) ;
199 p a c k e t b u f c o p y f r o m (t , 30) ;
200 add r . u8 [0] = 4 ;
201 add r . u8 [1] = 0 ;
202 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r)) {
203 u n i c a s t s e n d (&uc , &addr) ;
204 p a c k e t b u f c l e a r () ;
205 p r i n t f (” u n i c a s t message s e n t t o %d: ’% s ’\ n ” ,
206 add r . u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
207 }
208 }
209 PROCESS END () ;
210 }

Listing 6.1: Source node (spatial and temporal)

Relay node

1 / ∗−−

Page VI

Appendixes IKT-590 : Master Thesis

2 RECEIVING AND AGGREGATION
3 ∗−−−∗ /
4 s t a t i c vo id
5 r e c v u c (s t r u c t u n i c a s t c o n n ∗c , c o n s t r i m e a d d r t ∗ from)
6
7 {
8 i f (f [0] == ’\0 ’)
9 {

10 x = 0 ;
11 c l o c k i n i t () ;
12 s t a r t t i m e = c l o c k t i m e () ;
13 l e d s o n (LEDS BLUE) ;
14 l e d s o f f (LEDS RED) ;
15 p r i n t f (” u n i c a s t message r e c e i v e d from %d : ’%s ’ wi th t o t a l l e n g t h %d \n ” ,
16 from−>u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r () , p a c k e t b u f t o t l e n ()) ;
17 (c h a r ∗) p a c k e t b u f c o p y t o (f) ;
18 i f (from−>u8 [0]== 32) {
19 i f (p [0] == ’\0 ’) {
20 s t r c p y (p , f) ;
21 e l s e {
22
23 s t r c p y (q , f) ;
24
25 p a c k e t b u f c l e a r () ;
26 }
27 }
28 i f (from−>u8 [0]== 34) {
29
30 (c h a r ∗) p a c k e t b u f c o p y t o (s) ;
31
32 s t r c p y (r , s) ;
33 }
34 }
35 s t r c p y (f , ” ”) ;
36 i f (p [0] != ’\0 ’ && q [0] != ’\0 ’) {
37 c= s t r c a t (p , q) ;
38 s t r c p y (z , c) ;
39 p r i n t f (” C o n c a t e n a t e d P a c k e t i s : ’%s ’\n ” ,
40 (c h a r ∗) z) ;
41 p a c k e t b u f c l e a r () ;
42 x = 1 ;
43 s t r c p y (p , ” ”) ;
44 s t r c p y (q , ” ”) ;
45 s t r c p y (c , ” ”) ;
46 }
47
48 / ∗−−−∗ /
49 FORWARDING PART
50 ∗−−−∗ /
51 i f (z [0] != ’\0 ’) {
52 s t a t i c s t r u c t e t i m e r e t 5 ;
53 e t i m e r s e t (& et5 , CLOCK SECOND∗ 9) ;
54 add r . u8 [0] = 5 ;
55 p a c k e t b u f c o p y f r o m ((c h a r ∗) z , 5 0) ;
56
57 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r))
58 {
59 u n i c a s t s e n d (&uc , &addr) ;
60 p r i n t f (” Forward ing C o n c a t e n a t e d h u m i d i t y P a c k e t t o %d : ’%s ’ wi th t o t a l l e n g t h

%d\n ” , add r . u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r () , p a c k e t b u f t o t l e n ()) ;
61 s t r c p y (z , ” ”) ;
62 p a c k e t b u f c l e a r () ;
63 }

Page VII

Appendixes IKT-590 : Master Thesis

64 }
65
66 i f (r [0] != ’\0 ’) {
67
68 s t a t i c s t r u c t e t i m e r e t 7 ;
69 e t i m e r s e t (& et7 , CLOCK SECOND∗ 7) ;
70 add r . u8 [0] = 5 ;
71 p a c k e t b u f c o p y f r o m ((c h a r ∗) r , 3 0) ;
72 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r))
73 {
74 u n i c a s t s e n d (&uc , &addr) ;
75 p r i n t f (” Forward ing Tempera tu r e Wi thou t A g g r e g a t i o n t o %d : ’%s ’ wi th t o t a l

l e n g t h %d\n ” , add r . u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r () , p a c k e t b u f t o t l e n ()) ;
76 p r i n t f (” Comple t ion t ime %l u / %u \n ” , (u n s i g n e d long) c l o c k t i m e () −

s t a r t t i m e , CLOCK SECOND) ;
77 p a c k e t b u f c l e a r () ;
78 s t r c p y (r , ” ”) ;
79 }
80 }
81 p a c k e t b u f c l e a r () ;
82 }
83 add r . u8 [0] = 4 ;
84 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r)) {
85 u n i c a s t s e n d (&uc , &addr) ;
86 l e d s t o g g l e (LEDS RED) ;
87 p r i n t f (” Sending ACk t o : %d : \n ” , add r . u8 [0]) ;
88 p a c k e t b u f c l e a r () ;
89 x = 0 ;
90 }
91 }

Listing 6.2: Relay node

Sink node

1
2
3 / ∗−−∗ /
4 RECEIVING AND DEAGGREGATION
5 / ∗−−−∗ /
6 {
7 i f (d [0] == ’\0 ’)
8 {
9 c l o c k i n i t () ;

10 s t a r t t i m e = c l o c k t i m e () ;
11 p r i n t f (” U n i c a s t Message Rece ived from %d.%d wi th i d : ’%s ’ ” ,
12 from−>u8 [0] , from−>u8 [1] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
13 y = 0 ;
14 p a c k e t b u f c o p y t o (d) ;
15 i f (d [0]== ’H’) {
16 p r i n t f (” Humidi ty P a c k e t r e c e i v e d from %d.%d wi th i d : ’%s ’ \n ” ,
17 from−>u8 [0] , from−>u8 [1] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
18 s t r t o k r (d , ” ” , &p t r) ;
19 p r i n t f (” S p l i t t e d P a c k e t 1 : ’%s ’\n ” , d) ;
20 p r i n t f (” S p l i t t e d P a c k e t 2 : ’%s ’\n ” , p t r) ;
21 p r i n t f (” Comple t ion t ime %l u / %u \n ” , (u n s i g n e d long) c l o c k t i m e () −

s t a r t t i m e , CLOCK SECOND) ;
22 p a c k e t b u f c l e a r () ;
23 }
24 e l s e i f (d [0] == ’T ’) {
25 (c h a r ∗) p a c k e t b u f c o p y t o (s) ;
26 s t r c p y (r , s) ;
27 p r i n t f (” Saved Tempra tu re P a c k e t i s : ’%s ’\n ” ,
28 (c h a r ∗) r) ;

Page VIII

Appendixes IKT-590 : Master Thesis

29 }
30 s t r c p y (d , ” ”) ;
31 s t r c p y (r , ” ”) ;
32 s t r c p y (s , ” ”) ;
33 p a c k e t b u f c l e a r () ;
34 }
35 }

Listing 6.3: Sink node

Heterogeneous spatial and temporal aggregation

As the procedure is same for source node and sink node. Therefore, we only providing codes for the relay
node.

Relay node

1
2 {
3 i f (from−>u8 [0]== 34) {
4 c l o c k i n i t () ;
5 s t a r t t i m e = c l o c k t i m e () ;
6 l e d s o n (LEDS BLUE) ;
7 l e d s o f f (LEDS RED) ;
8 i = i +1; i <=20;
9 p a c k e t b u f c o p y t o (f [i]) ;

10 p r i n t f (” u n i c a s t message r e c e i v e d from %d: ’% s ’ wi th l e n g t h %d\n ” ,
11 (c h a r ∗) p a c k e t b u f d a t a p t r () , p a c k e t b u f d a t a l e n ()) ;
12 }
13 e l s e i f (from−>u8 [0]== 32) {
14 k=k +1; l <=20;
15 p a c k e t b u f c o p y t o (g [k]) ; }
16 x = 0 ;
17 i f (f [1] ! = ’\0 ’ && g [2] ! = ’\0 ’) {
18 s t r c p y (m, f [1]) ;
19 s t r c p y (n , g [2]) ;
20 c= s t r c a t (m, n) ;
21 p r i n t f (” c o n t e n t s o f f1 : ’%s ’\n ” , f [1]) ;
22 p r i n t f (” c o n t e n t s o f g2 : ’%s ’\n ” , g [2]) ;
23 p r i n t f (” c o n t e n t s o f c : ’%s ’\n ” , c) ;
24 s t r c p y (e , c) ;
25 / ∗−−−∗ /
26 FORWARDING PART
27 / ∗−−−∗ /
28 p a c k e t b u f c o p y f r o m ((c h a r ∗) e , 4 0) ;
29 add r . u8 [0] = 5 ;
30 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r))
31 {
32 u n i c a s t s e n d (&uc , &addr) ;
33 l e d s o f f (LEDS BLUE) ;
34 l e d s o n (LEDS RED) ;
35 do ub l e d i f f = c l o c k t i m e () − s t a r t t i m e ;
36 do ub l e num seconds =(d ou b l e) d i f f /CLOCK SECOND;
37 p r i n t f (” Comple t ion t ime %l u / %u \n ” , (u n s i g n e d long) c l o c k t i m e () − s t a r t t i m e

, CLOCK SECOND) ;
38 p r i n t f (” Forward ing P a c k e t t o %d: ’% s ’\ n ” , add r . u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()

) ;
39 }
40 }
41 p a c k e t b u f c l e a r () ;
42 s t r c p y (m, ” ”) ;
43 s t r c p y (n , ” ”) ;
44 }

Page IX

Appendixes IKT-590 : Master Thesis

Listing 6.4: Relay node

Variable fixed frame-length spatial and temporal aggregation

Relay node

1
2 {
3 i f (f [0] == ’\0 ’)
4 {
5 x = 0 ;
6 add r . u8 [0] = 2 6 ;
7 p r i n t f (” u n i c a s t message r e c e i v e d from %d : ’%s ’\ n ” ,
8 from−>u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
9 c l o c k i n i t () ;

10 s t a r t t i m e = c l o c k t i m e () ;
11 l e d s o n (LEDS BLUE) ;
12 l e d s o f f (LEDS RED) ;
13
14 (c h a r ∗) p a c k e t b u f c o p y t o (f) ;
15 p a c k e t b u f c l e a r () ;
16 }
17 i f (f [0] != ’\0 ’)
18 {
19 add r . u8 [0] = 4 ;
20 p r i n t f (” u n i c a s t message r e c e i v e d from %d : ’%s ’\ n ” ,
21 from−>u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
22 (c h a r ∗) p a c k e t b u f c o p y t o (g) ;
23 p a c k e t b u f c l e a r () ;
24 x = 1 ;
25 }
26 i f (g [0] != ’\0 ’) {
27 c= s t r c a t (f , g) ;
28 p r i n t f (” C o n c a t e n a t e d P a c k e t i s : ’%s ’\n ” ,
29 (c h a r ∗) c) ;
30 p a c k e t b u f c l e a r () ;
31
32 / ∗−−−∗ /
33 FORWARDING PART
34 / ∗−−−∗ /
35 p a c k e t b u f c o p y f r o m ((c h a r ∗) c , 4 0) ;
36 add r . u8 [0] = 5 ;
37 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r))
38 {
39 u n i c a s t s e n d (&uc , &addr) ;
40 l e d s o f f (LEDS BLUE) ;
41 l e d s o n (LEDS RED) ;
42 p r i n t f (” Comple t ion t ime %l u / %u \n ” , (u n s i g n e d long) c l o c k t i m e () − s t a r t t i m e

, CLOCK SECOND) ;
43 p a c k e t b u f c l e a r () ;
44 p r i n t f (” Forward ing C o n c a t e n a t e d P a c k e t t o %d : ’%s ’\ n ” , add r . u8 [0] , (c h a r ∗) c) ;
45 }
46 p a c k e t b u f c l e a r () ;
47 s t r c p y (f , ” ”) ;
48 s t r c p y (g , ” ”) ;
49 s t r c p y (c , ” ”) ;
50 }
51 }

Listing 6.5: Relay node

Page X

Appendixes IKT-590 : Master Thesis

Variable adaptive frame-length spatial and temporal aggregation

Relay node

1
2 {
3
4 i f (f [0] == ’\0 ’)
5 {
6 x = 0 ;
7 add r . u8 [0] = 2 6 ;
8 p r i n t f (” u n i c a s t message r e c e i v e d from %d : ’%s ’\ n ” ,
9 from−>u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;

10 c l o c k i n i t () ;
11 s t a r t t i m e = c l o c k t i m e () ;
12 l e d s o n (LEDS BLUE) ;
13 l e d s o f f (LEDS RED) ;
14 (c h a r ∗) p a c k e t b u f c o p y t o (f) ;
15 p a c k e t b u f c l e a r () ;
16 }
17
18 i f (from−>u8 [0]== 32)
19
20 {
21 add r . u8 [0] = 4 ;
22 p r i n t f (” u n i c a s t message r e c e i v e d from %d : ’%s ’\ n ” ,
23 from−>u8 [0] , (c h a r ∗) p a c k e t b u f d a t a p t r ()) ;
24 (c h a r ∗) p a c k e t b u f c o p y t o (g) ;
25 p a c k e t b u f c l e a r () ;
26 }
27
28 i f (from−>u8 [0]== 26) {
29 (c h a r ∗) p a c k e t b u f c o p y t o (h) ;
30 p r i n t f (” c o n t e n t o f c : ’%s ’\n ” , h) ;
31 p a c k e t b u f c l e a r () ; }
32 i f (h [0] != ’\0 ’)
33 {
34 e t i m e r s e t (& e t , CLOCK SECOND∗ 5) ;
35 s n p r i n t f (m, 80 , ”%s%s%s ” , f , g , h) ;
36 p a c k e t b u f c o p y f r o m ((c h a r ∗)m, 8 0) ;
37 add r . u8 [0] = 5 ;
38 i f (! r imeaddr cmp (& addr , &r i m e a d d r n o d e a d d r))
39 {
40 u n i c a s t s e n d (&uc , &addr) ;
41 p r i n t f (” Forward ing C o n c a t e n a t e d P a c k e t t o %d : ’%s ’\ n ” , add r . u8 [0] , (c h a r ∗)

p a c k e t b u f d a t a p t r ()) ;
42 }
43 s t r c p y (f , ” ”) ;
44 s t r c p y (g , ” ”) ;
45 s t r c p y (c , ” ”) ;
46 s t r c p y (h , ” ”) ;
47 s t r c p y (m, ” ”) ;
48 }
49 }

Listing 6.6: Relay node

Page XI

