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Phase-sticking in one-dimensional Josephson Junction Chains
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We studied current-voltage characteristics of long one dimensional Josephson junction chains with
Josephson energy much larger than charging energy, EJ ≫ EC . In this regime, typical IV curves of
the samples consist of a supercurrent branch at low bias voltages followed by a voltage-independent
chain current branch, IChain at high bias. Our experiments showed that IChain is not only voltage-
independent but it is also practically temperature-independent up to TC . We have successfully
model the transport properties in these chains using a capacitively shunted junction model with
nonlinear damping.

PACS numbers: 74.50.+r, 74.81.Fa, 85.25.Dq

I. INTRODUCTION

Josephson Junction (JJ) chains exhibit many inter-
esting phenomena such as Coulomb blockade of Cooper
pairs1, coherent phase-slips2, synchronous Cooper pair
tunneling3 and superinsulation4. These properties are
utilized for various applications such as the development
of the Fluxonion for quantum information precessing5,
development of voltage standards in metrology6 and for
widely tunable parametric amplifiers7. Furthermore it
is suggested that very long one-dimensional Josephson
junction chains formed in a transmission line geometry
can be employed for creating an analog of the event hori-
zon and Hawking radiation8,9.

The Josephson junction is described by two ratios: the
ratio of the characteristic energies, the Josephson energy
(EJ ) and the charging energy (EC), and the ratio of the
effective damping resistance (Rdamp) and the quantum
resistance (RQ = h/4e2 = 6.45kΩ). Depending on these
ratios, either the charge or the phase behaves as a clas-
sical variable. There have been extensive studies of long
and compact chains of Josephson Junctions in the limit
EJ/EC ≪ 1 and RQ/Rdamp ≪ 11,10–12. In this ex-
treme, the JJ chain forms a high impedance transmission
line1 for the Josephson plasmon mode13 and when this
impedance exceeds the quantum resistance RQ, coher-
ent quantum phase slips14 give rise to a Coulomb block-
ade of Cooper pair tunneling15. This phenomena is the
quantum mechanical complement of the Josephson Ef-
fect. While numerous groups have observed the Coulomb
blockade of Cooper pair tunneling16–18 a robust demon-
stration of the complement to the AC Josephson effect, or
synchronization to Bloch oscillations, is yet to be demon-
strated.

In the other extreme, EJ/EC ≫ 1 and RQ/Rdamp ≫
1, the phase of the junction can be treated as a classical
variable while the charge fluctuates strongly. Recently it

Figure 1. a)Optical Microscope images of a Josephson Junc-
tion chain. The chain consists of 2888 SQUIDS with to-
tal length 500µm. Shunt capacitors with the sizes 1000µm
x 800µm are placed to the input and output of the chain.
b) Scanning Electron Microscope (SEM) images of SQUID
chains together with termination lead. c) A group of SQUIDs
which consists of two parallel Josephson junctions with the
dimensions 300nm x 100nm.

was demonstrated that chains in this regime can be used
as so called superinductors which have a high frequency
impedance much larger than the quantum resistance19,20.
There have been several successful experiments of the
observation of quantum phase-slips in chains with large
Josephson energy21,22.

The aim of this study is to understand the current-
voltage characteristics of long Josephson junction chains.
We have fabricated and studied one dimensional Joseph-
son junction chains of three different lengths (384, 2888,
and 4888 junctions) in the regime where the Joseph-
son energy is much larger than the charging energy,
EJ ≫ EC . We characterize the damping by the nor-
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Figure 2. Schematic diagram of the measurement circuit.

mal state resistance of the junctions, RN which falls in
the range, 0.01 ≤ RQ/RN ≤ 1. The DC IV curves of
these samples consists of a super-current, S.C., branch at
low bias voltages followed by a voltage-independent chain
current branch, IChain which happens to be only a small
fraction of the the Ambegaokar-Baratoff critical current
for a single junction, IC

26, IChain/IC ∼ 0.2. We focus
on the large voltage behavior, 2∆0/e ≪ V < N2∆0/e,
where the classical phase-slips23,24 are determining factor
for the phase dynamics in the chain. We did simulations
in order to understand the complicated phase-slip dy-
namics which occur inside the Josephson junction chain
causing this novel behavior.
The paper is organized as follows, in Sec. II we describe

the fabrication process and the measurement setup. In
Sec. III we have presented experimental results together
with a circuit model and details of the simulations. And
in the final section we present the conclusions.

II. EXPERIMENTAL

The Josephson Junction chains consist of serially con-
nected SQUIDs (Superconducting QUantum Interference
Devices). A SQUID is formed by connecting two Joseph-
son Junctions in parallel and when the SQUIDs loop in-
ductance is small compared to the Josephson inductance,
Lloop ≪ LJ , where LJ = ~/(2eIC) (which is the case in
our samples), the effective Josephson coupling energy, EJ

of Josephson Junctions can be modulated by an external
magnetic field, EJ = EJ0| cos(2πΦext/Φ0)|.
Fig. 1(a) shows the optical microscope image of a sam-

ple together with shunt capacitors and connection pads.
Two thin film capacitors are fabricated on-chip and con-
nected in series to shunt the Josephson junction chain
(CShunt ∼ 1nF ) in order to reduce the high frequency
impedance seen by the chain and provide filtering for the
fluctuations coming from the external leads and circuitry.
The first layer of the shunt capacitors are Al rectan-
gles defined by optical lithography on Si/SiO2 substrate.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Figure 3. Experimental(a) and simulated(b) DC IV curves
of a long Josephson Junction chain with N = 2888 SQUIDS,
EJ/EC = 36 at zero magnetic field and RQ/RN = 0.08. IC =
634 nA is the Ambegaokar-Baratoff critical current for a single
junction in this chain,26, and superconducting energy gap of
Al is ∆0 = 200µeV .

The insulating layer is formed by sputtering a 15nm thick
SiO2. The final layer is formed by depositing Au con-
nection pads, there by creating Al/SiO2/Au capacitors.
Fig. 1(b)-(c) shows scanning electron microscope images
of a chain together with a termination lead. The Joseph-
son junction chain is defined by Electron Beam Lithogra-
phy and the overlapping Al/Al2O3/Al tunnel junctions
are made by the standard double angle shadow evapora-
tion technique25.
All the experiments are conducted in a dilution refrig-

erator with a base temperature of ∼ 15mK. Fig. 2 shows
the schematic diagram of the measurement circuit. The
sample is mounted on a printed circuit board which is
in turn mounted in a RF tight copper can. The mea-
surement leads in the fridge are made of lossy 50Ω coax
cables.

III. RESULTS

A. Voltage Independent Chain Current

Typical DC IV curves of long Josephson Junction
chains with EJ/EC ≫ 1 and RQ/RN ≫ 1 show prac-
tically voltage-independent constant current branches,
IChain between the supercurrent branch and the normal
tunneling branch. As an example, experimental and sim-
ulated DC IV curves of a long Josephson Junction chain
with EJ/EC = 36 in zero magnetic field and RQ/RN =
0.08 are shown in Fig. 3. The experimental DC IV curve
consists of a supercurrent, S.C., branch at low bias volt-
ages and a voltage-independent constant current branch
at higher bias voltages. This sample had 2888 junctions
in series. The total junction area of a single SQUID is
AJun = 0.05µm2 and the normal state resistance of a
single SQUID is RN = 0.5kΩ. The charging energy is
defined by EC = e2/(2CSAJun) with CS = 45fF/µm2

being the specific capacitance. Throughout the paper
the quoted critical current value is the low temperature
limit of the calculated Ambegaokar-Baratoff critical cur-
rent for the single SQUID, IC = π∆0/(2eRN)26.
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Figure 4. Phase-space diagram of a single junction from the
RCSJ model with Q = 5 and I = 0.5IC .

The simulated DC IV curve of the sample is shown
in Fig. 3(b) and the details of the simulations will be
given below. It is important to emphasize that the sim-
ulation parameters were either experimentally measured
or estimated from sample geometry. We find qualitative
agreement between the simulation and experiment and
by adjusting only the critical current IC , it is possible
to get quantitative agreement between experimental and
simulated DC IV curves. We therefore conclude that the
circuit model accurately simulates the phase-dynamics of
the Josephson junction chains.
In order to gain insight into the complex dynamics of

the Josephson junction chains, we appeal to the analogy
with a simpler and more well-studied Resistively Capaci-
tively Shunted Junction (RCSJ) model27. In normalized
units this model gives the current as

I/IC = φ̈+ φ̇/Q+ sin(φ), (1)

where φ is the phase difference over the junction.
The damping in this model is due to a frequency-
independent ohmic shunt resistance, R, and it is ex-
pressed in terms of a dimensionless quality factor Q =
π2(R/RQ)

2(EJ/2EC). This quality factor is sometimes
called the Stewart-McCumber damping parameter β =
Q2.
A very well known mechanical analog for the RSCJ

model is a particle in a tilted washboard potential. In the
mechanical model 1/Q corresponds to friction and hence
small Q represents large damping. This model has two
distinct states, one is the particle resting at the poten-
tial minimum (0-state) corresponding to the S.C. branch
and the other state is the particle running down the wash-
board potential (1-state) corresponding to the dissipative
branch. A graphical way to visualize the dynamics of
a Josephson junction is a phase-space diagram. Fig. 4
shows the phase-space diagram of a Josephson junction
with underdamped dynamics biased below the critical
current (Q = 5 and I = 0.5IC). Two basins of attraction
are separated by the red lines. A particle escaping from
the 0-state through the saddle point (green dot, indicat-
ing the local maximum of the tilted washboard potential)
can not move directly to the basin of the next 0-state at-
tractor without entering the basin of 1-state attractor.
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Figure 5. a) A circuit model of the SQUID Chain. b) Non-
linear resistive current through a junction in the chain.

For fluctuation-free dynamics, once the particle is at the
1-state it will continue to run down the washboard po-
tential.

Fluctuations, which necessarily accompany the damp-
ing, give rise to transitions between the two stable at-
tractors, known as escape and retrapping. The energy
required to switch the system from 1-state to 0-state is
called activation energy and it is approximately equal to
the kinetic energy of the particle in the 1-state. The ki-
netic energy decreases with increasing damping. There-
fore unstable switching between the 0-state and 1-state
require large thermal energy and/or large damping. In
Refs.28,29 it was shown that in a certain range of param-
eters, the RCSJ model with noise current predicts that
both of these states can be unstable and junction can
switch rapidly back and forth between running and rest-
ing states, creating a constant current branch on DC IV
curve. While these simulations were performed on a sin-
gle junction with linear damping, we propose that this
type of instability leads to a voltage-bias independent
current due to a continuous phase-slipping and phase-
sticking in Josephson junction chains.

B. Simulations

The dynamics of a Josephson junction chain is far
more complex than that of the simple RCSJ model. In
the chain, collective modes can exist and the damping
is far more complicated than a simple ohmic resistor.
To address this we performed simulations of long chains,
modeled using the circuit diagram shown in Fig. 5(a).
Each junction of the SQUIDs in the chain is modeled
as an ideal Josephson junction shunted by a capacitance
C and a nonlinear resistor R, which only lets current
through when the voltage across it exceeds the gap volt-
age Vg = 2∆0/e. The total current through junction i is
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thus

Itoti = Isi + ICi + IRi

= Ic sin(θi − θi+1) + C(V̇i − V̇i+1) + IRi , (2)

where θi is the phase of the superconducting order pa-
rameter at the island to the left of junction i, and
Vi = ~θ̇i/2e is the voltage. The nonlinear resistive cur-
rent is taken to be

IRi =

{

(Vi − Vi+1)/R+ Ini if |Vi − Vi+1| > Vg

0 otherwise
(3)

as shown in Fig. 5(b), where R is the normal resistance
of a single junction. (The sub-gap resistance is thus as-
sumed to be infinite.) In addition a thermal noise current
In is included in Eq. (3). The latter is modeled as a Gaus-
sian random Johnson-Nyquist noise with zero mean and
covariance

〈

Ini (t)I
n
j (t

′)
〉

= (2kBT/R)δijδ(t− t′). Experi-
mentally, the Josephson junction chain is voltage biased.
Therefore, the currents entering the chain from the left
through the left lead resistance and leaving the chain on
the right are given by

IL = (Vbias − V1)/Rterm + InL, IR = VN/Rterm + InR
(4)

The Johnson-Nyquist noise InR,L in the terminal re-

sistors have zero mean and obey 〈In(t)In(t′)〉 =
(2kBT/Rterm)δ(t − t′). These terminal resistances con-
sists of lead resistances together with the characteristic
impedance of the coaxial cables, approximately equal to
Z0/2π ≈ 60Ω, where Z0 is the free space impedance. In
our simulations we therefore set Rterm = 50Ω. This low
impedance is a main source of dissipation and noise in
the system. Now, Kirchhoff’s law holds at each super-
conducting island,

C0V̇i + Itoti − Itoti−1 = 0, (5)

where C0 is the capacitance to ground. This gives a
coupled system of 2nd order differential equations for
the superconducting phases θi. These are integrated
with a symmetric time discretization using a leap-frog
scheme, with a small time step ∆t = 0.02(~/2eIcR) =
0.02(RC/Q2). Each iteration requires the solution of
a tridiagonal system of equations. By varying the bias
voltage and calculating the resulting current we obtain
the IV-characteristics of the structure. The voltage is
stepped up slowly from zero, or down from a high value,
to avoid sharp transient effects near the left lead where
the voltage is applied. We also keep track of the loca-
tions and times of phase slip events, i.e. when the phase
difference across a junction θi − θi+1 passes between the
disjoint intervals Im = [−π+2πm,+π+2πm] for integer
m.

C. IChain/IC as a function of EJ/EC

Fig. 6-a shows the IChain/IC as a function of βN for
various samples. Each data point represents the mea-
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Figure 6. a)IChain/IC versus βN = Q2 for various samples.
Each data point represents the measurement of a different
sample at zero magnetic field. The IV curves in (b)and (c)
are of the samples marked with the arrows.

surement of a different sample at zero magnetic field.
The data in the figure is collected from the measure-
ments of 12 different samples with three lengths and dif-
ferent critical currents. The chain current, IChain, is
taken as the voltage-independent current at large bias
voltages (V ∼ 100∆0/e). The figure consists of two dis-
tinct parts which are separated by a rapid decrease of
the IChain/IC level around βN ∼ 1 where dynamics of
the long Josephson junction chains undergo a qualitative
change. This behavior is consistent with the what we ex-
pect from the RCSJ model. At βN ≪ 1 the damping is
strong and activation energies for escape and retrapping
are similar, every phase-slip event (escape) is followed by
a phase-sticking (retrapping). As will be discussed be-
low, this behavior is consistent with the phase-slips hap-
pening randomly throughout the chain and a continuous
slip-stick process is manifest as a constant current branch
in the DC IV curves (fig. 6-b). The rate of phase-slip and
phase-stick is determined by the bias voltage. In the op-
posite limit when βN ≫ 1 the damping is small which
inhibits phase-sticking. Once the junction starts slipping
it continues to slip, resulting in lower IChain/IC and fea-
tures in the DC IV curve at multiples of the gap volt-
ages, V = n2∆0/e where the nonlinear damping rapidly
increases (fig. 6-c).

D. Simulated Results on the Effect of Damping

In this section we present simulation results. The
experimental parameters used in the simulations are
kBT/EJ = 0.0033, C0/C = 0.01, and the damping pa-
rameter is tuned between βN = 0.1 and βN = 4.5. Fig. 7
(a) shows the IChain/IC as a function of βN and there
are three distinct branches. These branches correspond
to different phase-slips distributions in the chains. We
have selected one point from each branch, A, B and
C (βN = 1, βN = 1.5 and βN = 4.5), and plotted the
DC IV curves together with a contour plot of the phase-
slip distribution across the chain. We emphasize that all



5

0 50 100
0

0.5

V [2∆
0
/e]

I
 
[
I
C
]

a1)

a2)

Junc. Num.

V
 
[
2
∆
0
/
e
]

500 1500 2500

75

50

25

0

0 50 100
0

0.5

V [2∆
0
/e]

I
 
[
I
C
]

b1)

B2)

Junc. Num.
500 1500 2500

0 50 100
0

0.5

V [2∆
0
/e]

I
 
[
I
C
]

c1)

Junc. Num.

# PS/10
4

500 1500 2500

0 1 2 3 4 5

0.6

0.7

0.8

A

B C

β
N

I
C
h
a
i
n
[
I
C
]

0

1

2

3

4

5

6

22 23 24
1 2 3 4 5

b2)

c2)

a)

Figure 7. a)IChain as a function of βN . DC IV curves
(a1,b1,c1) and contour plots of the phase-slips distributions
(a2,b2,c2) across the Josephson junction chains for three dif-
ferent βN values.

points on the different branches A-C have qualitatively
similar phase-slip distributions and current-voltage char-
acteristics. The DC IV curve of point A with βN = 1.0
is shown at Fig. 7(a1) and it consists of a supercurrent
branch followed by a uniform current level very similar
to the IV curve shown in Fig. 6(b). Fig. 7(a2) shows
the contour plot of the phase-slip distribution across the
chain as a function of bias voltage and this distribution
is consistent with the picture where every phase-slip is
followed by a phase-stick. This behavior is expected in
the high damping regime and phase-slips happens ran-
domly throughout the chain, without preference for any
particular point in space.

Fig. 7(c1) shows the DC IV curve of point C with
βN = 4.5. There are strong gap features in the IV
curve and the dissipative branch flattens out at large
bias voltages. The phase-slip distribution shows that
once a junction starts slipping it continues this motion
without re-trapping and these slipping junctions are ran-
domly distributed across the chain (Fig. 7-c2). This sim-
ulation point corresponds to the IV curve in Fig. 6(c)
where βN ≫ 1. And finally, Fig. 7(b1) shows the DC IV
curve of point B with βN = 1.5. Here we also see a S.C.
branch followed by a constant current branch similar to
the point A. But there are strong fluctuations on the con-
stant current branch which are not present at point A.
These fluctuations are very similar to the gap features
seen in the IV curves for point C. There is one specific
junction at one end of the chain where the phase-slip nu-
cleates and as the bias voltage is increased neighboring
junctions starts slipping one by one.

Fig. 8(a) shows the DC IV experimental curves of
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Figure 8. a) IV curves of a sample (N = 2888 and βN ∼ 1) at
zero magnetic field with various temperatures. b) Simulated
IV curves with the same sample parameters.

a sample for the temperatures between 20mK up to
800mK, at zero magnetic field. Fig. 8-b shows the simu-
lated IV curves with the experimental parameters of the
sample and similar range of temperatures, kBT/EJ =
0.001 to 0.05. Experimental results and the simulations
are in good agreement and both show that IChain is in-
dependent of temperature.
This temperature independence is an indication that

the overall current voltage characteristic is determined
primarily by the damping and not driven by fluctuations.
The finite slope of the S.C. branch observed in the ex-
periment (Fig. 8-a) is probably due to quantum phase
slips which are not accounted for in the classical simu-
lation. The simulation (Fig. 8-b) does take into account
phase-diffusion or thermally activated phase slips on S.C.
branch but these are not able to account for the observed
slope. The simulation also nicely reproduces the observed
peak in current at low bias voltages.

E. High Voltage Characteristics

Fig. 9 shows the high-voltage characteristics of the
same sample as in Fig. 3. The large-scale differential con-
ductance (Fig. 9-c) curve shows five distinct peaks: the
S.C. peak around zero bias, two peaks at V = ±450mV
corresponding to the sum-gap voltage, and two additional
peaks at V = ±300mV . These extra peaks are due to
a transition between two different chain currents in the
IV curves, fig. 9-a). These peaks are also visible in the
simulated current voltage characteristics and the overall
shape of the large scale IV curve is well reproduced by
the simulation.
Fig. 10(a) shows the simulated IV curve of the sam-

ple between zero bias up to the normal tunneling branch.
Fig. 10(b) shows the distribution of the phase-slips across
the array, the gray scale represents the number of phase-
slips at each junction and voltage. At low voltages phase-
slips tend to accumulate at one end of the chain. At
higher voltages they become uniformly distributed across
the chain. This random phase-slip distribution is similar
to the simulated behavior seen in Fig. 7(A1) with high
damping. Surprisingly, as the bias voltage is further in-
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Figure 10. Simulated DC IV curve (a) and distribution of
phase-slips (b-c) for the sample shown in Figs. 3 and 9.

creased a group of junctions loose this randomness and
form a cluster with a fixed number of phase-slips, inde-
pendent of bias voltage (Fig. 10-c).

This cluster rapidly grows with increasing bias voltage,

causing an increase of the chain current. At the maxi-
mum extent there are approximately, N ∼ 1100 junctions
in one of the clusters, which is a considerable part of the
chain. After that point as the voltage bias further in-
creased the size of the cluster gradually decreases with
the junctions leaving the cluster in the opposite order as
they were added. This gradual decrease creates a second
flat branch in the simulated IV curve. Thus we see that
the simulation allows us to gain insight into the complex
dynamics and study in detail the phase-slip distribution
throughout the chain.

IV. CONCLUSION

In this paper we have presented experimental obser-
vation of voltage independent constant current branch,
IChain in the IV curves of long Josephson junction chains
with βN < 1. We have successfully simulated the cur-
rent voltage characteristics in this regime with a coupled
RCSJ model. The observation of voltage-independent
chain current, IChain is a manifestation of a random
process of phase-slipping and phase-sticking that is uni-
formly distributed throughout the chain. The phase slip
rate is defined by the bias voltage and our simulations
showed that voltage independent constant current branch
is created by uncorrelated phase slips. Moreover experi-
mental results showed that there is a significant decrease
of IChain/IC when βN > 1.
Simulations showed that the damping parameter, βN ,

is important for defining the distribution of phase-slips
and phase-sticking processes in the Josephson junction
chains. Different phase-slip distributions and phase-
sticking processes creates various shapes of the DC IV
curves and it is possible gain insight to these processes
by just analyzing the shape of the IV curves. Further-
more, our simulations showed that IChain is independent
of temperature up to TC and we confirmed this experi-
mentally. Despite the fact that our model does not take
into account quantum tunneling, we found good agree-
ment between our classical model and the experimen-
tal data. In particular, the shape of the DC IV curve
was determined by the distribution of phase slipping and
phase sticking events. We conclude that phase-slipping
together with phase-sticking, is the dominant mechanism
which defines the dynamics of the long Josephson Junc-
tion chains at finite voltages.
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