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Abstract The vertical throughflow with viscous dissipation in a horizontal porous layer
is studied. The horizontal plane boundaries are assumed to be isothermal with unequal tem-
peratures and bottom heating. A basic stationary solution of the governing equations with a
uniform vertical velocity field (throughflow) is determined. The temperature field in the basic
solution depends only on the vertical coordinate. Departures from the linear heat conduction
profile are displayed by the temperature distribution due to the forced convection effect and
to the viscous dissipation effect. A linear stability analysis of the basic solution is carried
out in order to determine the conditions for the onset of convective rolls. The critical values
of the wave number and of the Darcy–Rayleigh number are determined numerically by the
fourth-order Runge–Kutta method. It is shown that, although generally weak, the effect of
viscous dissipation yields an increase of the critical value of the Darcy–Rayleigh number
for downward throughflow and a decrease in the case of upward throughflow. Finally, the
limiting case of a vanishing boundary temperature difference is discussed.
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462 A. Barletta et al.

1 Introduction

The viscous dissipation effect may be an important contribution in the energy balance of a
fluid saturated porous medium (Nield 2007). This effect is specially significant when buoyant
flow is coupled to a basic forced flow. Then, as pointed out in Chandrasekhar (1961), it is in
forced or mixed convection processes that the heat generation due to viscous friction may
be significant. On the other hand, in free convection, the viscous dissipation effect generally
represents a higher order term within the framework of the Oberbeck–Boussinesq approx-
imation. Chandrasekhar’s reasoning refers to a clear fluid, but the same argument can be
claimed, without substantial changes, also for fluid saturated porous media.

A few recent papers have investigated the effect of viscous dissipation with respect to
the onset of convective instabilities either in clear fluids or in porous media (Mureithi and
Mason 2002; Rees et al. 2005; Barletta et al. 2009). Mureithi and Mason (2002) study the
convective linear instabilities induced by viscous dissipation for a boundary layer flow with
an accelerating free-stream profile. Rees et al. (2005) carry out an analysis of the onset of
transverse roll instabilities in a parallel external flow solution for the boundary layer around
an inclined cold surface embedded in a porous medium. In a recent article by Barletta et
al. (2009), the onset of convective instabilities in a horizontal porous layer with adiabatic
bottom boundary and perfectly or imperfectly isothermal top boundary is investigated. In
the basic solution considered by Barletta et al. (2009), the temperature gradient is built up
solely as a consequence of the viscous dissipation in the porous medium. The study carried
out by Barletta et al. (2009) has been extended by Storesletten and Barletta (2009) in order
to describe the behaviour of cold water next to the maximum density temperature.

The analyses of the role of viscous dissipation in the onset of convective instabilities, car-
ried out by Barletta et al. (2009) and Storesletten and Barletta (2009), deal with a horizontal
basic flow through a porous layer. The objective of the present paper is to investigate the case
of a basic vertical throughflow. Linear instabilities of a vertical throughflow in a horizontal
porous layer have been investigated by several authors (Sutton 1970; Homsy and Sherwood
1976; Nield 1987; Khalili and Shivakumara 1998, 2003; Zhao et al. 1999). However, all these
studies have been carried out without taking into account the effect of viscous dissipation.
The interest for assessing the contribution of viscous dissipation in the study of throughflow
in a horizontal porous layer and in the analysis of the onset of convective instabilities for this
basic flow is the motivation of the present study. We mention that Sutton (1970) investigates
the critical conditions for the onset of instabilities in a horizontal porous layer with lateral
confinement by adiabatic boundaries. Homsy and Sherwood (1976) study the case of an infi-
nitely wide plane horizontal channel bounded by isothermal horizontal boundaries. These
authors carry out both a linear stability analysis and an energy stability analysis. Nield (1987)
investigates other possible boundary conditions at the horizontal boundaries, thus extending
the analysis of Homsy and Sherwood (1976). Khalili and Shivakumara (1998) further extend
the analysis by including a uniform heat source within the porous layer. Zhao et al. (1999)
consider a variant of the Homsy–Sherwood problem where the bottom boundary is subject to
a uniform heat flux instead of a uniform temperature. Khalili and Shivakumara (2003) inves-
tigate non-Darcian effects in the analysis of the linear instabilities of vertical throughflow
in a horizontal layer. They assume a general momentum balance where both the Brinkman
term and the Forchheimer inertial term are included.

The aim of the present article is to revisit the Homsy–Sherwood problem (Homsy and
Sherwood 1976) by taking into account the viscous dissipation term in the energy balance,
in order to asses the effects of this contribution both in the basic throughflow solution and in
the linear stability conditions for the onset of convective rolls.
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2 Mathematical Model

Let us consider a fluid saturated porous layer with thickness L . Let the vertical axis ȳ be
parallel to the gravitational acceleration g, but with opposite direction (see Fig. 1). The bound-
ary planes ȳ = 0 and ȳ = L are kept isothermal at T̄ = T̄h and T̄ = T̄c, respectively. Here
T̄h > T̄c, and T̄ denotes the temperature field. The velocity field ū has Cartesian components
(ū, v̄, w̄).

2.1 Governing Equations

Let us assume the validity of Darcy’s law, as well as of the Oberbeck–Boussinesq approx-
imation. The effect of viscous dissipation is taken into account in the energy balance. We
will adopt the cv-formulation of the energy balance, also called internal-energy formula-
tion, where cv is the specific heat at constant volume. This formulation is suggested in
Chandrasekhar (1961) as the most appropriate within the framework of the Oberbeck–
Boussinesq approximation. A discussion of the internal-energy formulation and the enthalpy-
formulation of the energy balance for buoyant flows is also carried out in Barletta (2008).

On account of the above assumptions, the local mass, momentum and energy balance
yield the governing equations

∂ ū

∂ x̄
+ ∂v̄

∂ ȳ
+ ∂w̄

∂ z̄
= 0, (1)

∂w̄

∂ ȳ
− ∂v̄

∂ z̄
= − g β K

ν

∂ T̄

∂ z̄
, (2)

∂ ū

∂ z̄
− ∂w̄

∂ x̄
= 0, (3)

∂v̄

∂ x̄
− ∂ ū

∂ ȳ
= g β K

ν

∂ T̄

∂ x̄
, (4)

σ
∂ T̄

∂ t̄
+ ū

∂ T̄

∂ x̄
+ v̄

∂ T̄

∂ ȳ
+ w̄

∂ T̄

∂ z̄
= α

(
∂2T̄

∂ x̄2 + ∂2T̄

∂ ȳ2 + ∂2T̄

∂ z̄2

)
+ ν

K cv

(
ū2 + v̄2 + w̄2

)
.

(5)
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Equations 2–4 are the expressions of the three components of the vorticity evaluated starting
from Darcy’s law. In Eqs. 1–5, g is the modulus of g, β is the coefficient of thermal expan-
sion, K is the permeability, ν is the kinematic viscosity, t̄ is time, σ is the ratio of the heat
capacities of the fluid saturated porous medium and of the fluid and α is the effective thermal
diffusivity of the fluid saturated porous medium.

A vertical throughflow is assumed, so that the boundary conditions are given by

ȳ = 0 : v̄ = v̄0, T̄ = T̄h,

ȳ = L : v̄ = v̄0, T̄ = T̄c. (6)

2.2 Non-Dimensional Analysis

Let us introduce the following dimensionless quantities:

(x, y, z) = 1

L
(x̄, ȳ, z̄) , t = α

σ L2 t̄, (u, v, w) = L

α
(ū, v̄, w̄) ,

T = T̄ − T̄c

T̄h − T̄c
, Pe = v̄0 L

α
, Ra = g β L K (T̄h − T̄c)

α ν
,

Ge = g β L

cv
, Ec = Ge

Ra
= ν α

K cv (T̄h − T̄c)
, (7)

where Ra and Ec are the Darcy–Rayleigh and the Darcy–Eckert numbers, Pe is the Péclet
number and Ge is the Gebhart (or dissipation) number. We note that, while Ra, Ec and Ge can
only be positive, the Péclet number can be either positive (upward throughflow) or negative
(downward throughflow).

By employing the dimensionless quantities, Eqs. 1–6 can be rewritten as follows:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (8)

∂w

∂y
− ∂v

∂z
= − Ra

∂T

∂z
, (9)

∂u

∂z
− ∂w

∂x
= 0, (10)

∂v

∂x
− ∂u

∂y
= Ra

∂T

∂x
, (11)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= ∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2 + Ec
(
u2 + v2 + w2

)
, (12)

y = 0 : v = Pe, T = 1,

y = 1 : v = Pe, T = 0. (13)

2.3 Basic Solution

A basic stationary solution of Eqs. 8–13 is given by a uniform throughflow,

u B = 0, vB = Pe, wB = 0, (14)

with a purely vertical temperature gradient dTB(y)/dy. Here, the subscript B stands for
“basic”. On account of Eqs. 12–14, the basic temperature distribution TB(y)must satisfy the
differential equation

123



Convective Roll Instabilities of Throughflow with Viscous Dissipation 465

d2TB

dy2 − Pe
dTB

dy
+ Ec Pe2 = 0, (15)

together with the boundary conditions

TB(0) = 1, TB(1) = 0. (16)

The solution is given by

TB(y) = ePe − ePe y

ePe − 1
+ Ec Pe

(
y − ePe y − 1

ePe − 1

)
. (17)

2.4 Linear Disturbances

Let us assume the following perturbation of the basic solution:

u = u B + εU, v = vB + ε V, w = wB + εW, T = TB + ε θ, (18)

where ε � 1 is a small parameter. We substitute Eq. 18 into Eqs. 8–13 and neglect the terms
proportional to ε2. Then, we obtain

∂U

∂x
+ ∂V

∂y
+ ∂W

∂z
= 0, (19)

∂W

∂y
− ∂V

∂z
= − Ra

∂θ

∂z
, (20)

∂U

∂z
− ∂W

∂x
= 0, (21)

∂V

∂x
− ∂U

∂y
= Ra

∂θ

∂x
, (22)

∂θ

∂t
+ V

dTB

dy
+ Pe

∂θ

∂y
= ∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2 + 2 Ec Pe V, (23)

y = 0 : V = 0, θ = 0,

y = 1 : V = 0, θ = 0. (24)

3 Stability Analysis

We now consider disturbances in the form of plane waves. Due to the linearity of our analysis,
an arbitrary disturbance can be properly constructed by a superposition of these plane waves.

3.1 Disturbance Equations

The geometry, the boundary conditions and the basic solution of the governing equations are
invariant under rotations around any axis parallel to the y-direction. Due to this symmetry,
the propagation direction of the plane wave disturbance can be any horizontal direction. It is
not restrictive to assume this direction as that of the x-axis. Then, the analysis of the linear
disturbances becomes two-dimensional with

U = U (x, y, t), V = V (x, y, t), W = 0, θ = θ(x, y, t). (25)
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On account of Eq. 25, we infer that Eqs. 20 and 21 are identically satisfied, Eq. 19 is fulfilled
provided that we express U and V by means of a streamfunction ψ , namely,

U = ∂ψ

∂y
, V = −∂ψ

∂x
. (26)

Now, Eqs. 22–24 can be rewritten as

∂2ψ

∂x2 + ∂2ψ

∂y2 = −Ra
∂θ

∂x
, (27)

∂θ

∂t
+ Pe

∂θ

∂y
= ∂2θ

∂x2 + ∂2θ

∂y2 − Pe F(y)
∂ψ

∂x
, (28)

y = 0, 1 : ψ = 0, θ = 0, (29)

where F(y) is defined as

F(y) = − 1

Pe

dTB

dy
+ 2 Ec = ePe y

ePe − 1
+ Ec

(
1 + Pe

ePe y

ePe − 1

)
(30)

We are seeking solutions of Eqs. 27–30 in the form of plane waves,

ψ(x, y, t) = 	(y) eλ t cos (a x), θ(x, y, t) = �(y) eλ t sin (a x), (31)

where a is the wave number and λ is the coefficient of exponential time growth. In order to
investigate the condition of marginal stability, we will fix λ = 0. Then, by substituting Eq. 31
into Eqs. 27–29 one obtains

	 ′′ − a2	 + a Ra� = 0, (32)

�′′ − Pe�′ − a2�+ a Pe F(y)	 = 0, (33)

y = 0, 1 : 	 = 0, � = 0, (34)

where the primes denote differentiation with respect to y.
It is easily proved from Eq. 30 that, in the absence of viscous dissipation, i.e. for Ec = 0

or Ge = 0, the transformation {y → 1− y,Pe → −Pe} implies F → −F . Then, for Ec = 0
or Ge = 0, Eqs. 32–34 are left invariant by the transformation {y → 1 − y,Pe → −Pe}
provided that both a and Ra are left unchanged. A special consequence of this invariance is
that the critical values of a and Ra do not depend on the sign of Pe, i.e. on the direction of the
throughflow, when viscous dissipation is negligible, Ec = 0 or Ge = 0. On the other hand,
this symmetry is broken if viscous dissipation is taken into account (Ec �= 0 and Ge �= 0).

3.2 Numerical Solution

We seek a numerical solution of Eqs. 32–34 by considering this differential problem as an
eigenvalue problem. More precisely, we assume Pe and Ge to be prescribed and then, we
determine the eigenvalue Ra corresponding to each a such that a non-trivial solution of
Eqs. 32–34 exists. This procedure yields a function Ra(a) describing the marginal stability
curve in the parametric plane (a,Ra). As is well-known, the critical values acr and Racr are
determined by seeking the minimum of the function Ra(a).

A proper numerical procedure is based on the fourth-order Runge–Kutta method. In order
to use this method, we need to formulate the differential problem as an initial-value problem.
In fact, we can replace Eq. 34 with
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Table 1 Comparison between the Runge–Kutta method with fixed step size h and the Runge-Kutta method
with variable step size determined through an adaptive algorithm. Critical values of Ra (in roman) and a (in
italic) for Ge = 1 and different Pe

Pe h = 10−1 h = 10−2 h = 10−4 h = 10−5 Adaptive

5 62.148074 62.148058 62.148051 62.148054 62.148055

4.0591247 4.0591262 4.0591266 4.0591265 4.0591265

6 73.237111 73.237035 73.237024 73.237028 73.237028

4.4954728 4.4954807 4.4954814 4.4954813 4.4954813

7 85.505253 85.504950 85.504930 85.504937 85.504937

5.0336308 5.0336659 5.0336675 5.0336672 5.0336672

8 98.442492 98.441414 98.441380 98.441390 98.441391

5.6649106 5.6650480 5.6650512 5.6650507 5.6650507

9 111.68907 111.68565 111.68560 111.68561 111.68561

6.3637437 6.3642115 6.3642174 6.3642167 6.3642167

10 125.05336 125.04360 125.04351 125.04353 125.04353

7.1000405 7.1014355 7.1014455 7.1014445 7.1014445

	(0) = 0, 	 ′(0) = 1, �(0) = 0, �′(0) = ξ. (35)

The condition on 	 ′(0) is due to the following reason. Since the differential problem
Eqs. 32–34 is homogeneous, then any non-trivial solution can be arbitrarily rescaled yielding
another solution. Thus, we can encompass this scaling freedom by the constraint	 ′(0) = 1.
In Eq. 35, ξ is a yet unknown constant. For any given a, Pe and Ge, the value of ξ together with
the eigenvalue Ra is determined by prescribing the boundary conditions at y = 1, namely,

	(1) = 0, �(1) = 0. (36)

We point out that the choice to fix Ge instead of fixing directly the value of Ec is due to the
dependence of Ec on the boundary temperature difference, i.e. T̄h − T̄c. Indeed, when search-
ing the eigenvalues Ra, we aim to determine the marginal stability values of the temperature
difference between the boundary planes. Thus, in this procedure, it appears as incoherent to
assume as prescribed the value of a parameter, Ec, which depends on the marginal stability
values of T̄h − T̄c.

The fourth-order explicit Runge–Kutta method is easily implemented by means of the
function NDSolve available within the software environment Mathematica 7.0 (©Wolfram
Research). The numerical values obtained through this procedure can be validated by deter-
mining the effect on the results of the chosen step-size h employed in the computation. This
analysis is reported in Table 1, where the critical values acr and Racr corresponding to Ge = 1
and 5 ≤ Pe ≤ 10, respectively, are given for different decreasing step-sizes h. The last col-
umn reported in Table 1 yields the values of acr and Racr obtained by the explicit Runge–Kutta
method with adaptive step-size control. The default settings of function NDSolve imply an
adaptive step-size control by the embedded pairs algorithm, which produces at each step a
changing h. The comparison between the results obtained with the lowest step-size h = 10−5

and those determined with the adaptive step-size control reveals an excellent agreement. This
test justifies the choice of the adaptive step-size control for the explicit Runge–Kutta method
in all subsequent computations.
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4 Discussion of the Results

4.1 Forced Convection Throughflow and Viscous Dissipation

As is well-known, if the velocity of the vertical throughflow was zero in the basic state, then
the basic temperature profile would be the conduction profile TB(y) = 1 − y. This elemen-
tary result can be formally inferred from Eq. 17 by evaluating the limit Pe → 0. A peculiar
consequence of the upward throughflow (Pe > 0) is that the forced convection heat transfer
produces a global temperature increase with respect to the conduction profile. The reverse
occurs in the case of downward throughflow (Pe < 0). The physical reason of this behaviour
is simple: the porous layer experiences a hot fluid input when Pe > 0, while cold fluid seeps
through the layer when Pe < 0. This straightforward effect is made more complicated by
viscous dissipation. In fact, viscous dissipation produces an additional heating within the
layer independently of the throughflow direction, i.e., whatever is the sign of Pe. In the case
of upward throughflow (Pe > 0), both viscous dissipation and forced convection contribute
to the system heating. In the case of downward throughflow (Pe < 0), viscous dissipation
and forced convection are competing effects: viscous dissipation can prevail over the cool-
ing action of forced convection only if it is sufficiently intense, namely, if Ec is sufficiently
large. There is a condition such that the competing actions of viscous dissipation and forced
convection are perfectly balanced. This condition is Ec Pe = −1. In fact, one may easily
verify from Eq. 17 that, whatever are the values of Ec and Pe such that Ec Pe = −1, the basic
temperature profile becomes the conduction profile, TB(y) = 1 − y.

The above described behaviour of the temperature distribution in the basic flow is illus-
trated in Fig. 2. This figure shows clearly that an increasing value of Ec yields a global
increase in the temperature at every position y, both for Pe = −15 and for Pe = 15. The
linear conduction profile is clearly displayed in the upper frame, in the case Ec = 1/15. The
upper frame shows also that temperatures higher than the bottom boundary temperature may
exist for a sufficiently high Ec: this behaviour is evident for Ec = 0.08, 0.1. The threshold
value of Ec for this effect to occur is easily determined by means of Eq. 17 by prescribing
that the derivative dTB/dy vanishes at y = 0. In this way, one concludes that the porous
layer may display temperatures higher than the bottom boundary temperature if

Ec >
1

ePe − Pe − 1
. (37)

For Pe = −15, this means Ec > 0.0714286. For Pe = 15, Eq. 37 yields Ec > 3.05904×10−7.
The latter result justifies the behaviour displayed by the plots with Ec = 0.08, 0.1 in the
upper frame of Fig. 2, and by all the plots in the lower frame of Fig. 2, which correspond to
Ec ≥ 0.03.

4.2 Onset of Convective Rolls

In Tables 2 and 3, the critical values of a and Ra for the onset of convective rolls are reported
for different Péclet and Gebhart numbers. Table 2 refers to downward throughflow (Pe < 0),
while Table 3 refers to upward throughflow (Pe > 0). These tables reveal that, while acr and
Racr depend significantly on Pe, they depend weakly on Ge. The effect of Ge depends on
the direction of throughflow. If Pe < 0 (Table 2), one may note that the values of acr and
Racr increase with Ge. If Pe > 0 (Table 3), the values of acr and Racr decrease with Ge. In
other words, viscous dissipation has a weak stabilizing effect for downward throughflow and
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Fig. 2 Plots of TB (y) for different values of Ec; the upper frame refers to Pe = −15 and the lower frame to
Pe = 15

a weak destabilizing effect for upward throughflow. This conclusion implies the breaking of
the symmetry between downward and upward throughflow described in Sect. 3.1.

In general, a more intense throughflow (a higher |Pe|) implies increasing values of acr

and Racr. A weak violation of this rule is observed in Table 3 for high values of Ge and
very small values of Pe. In this range, we observe that Racr initially decreases with Pe,
reaches a minimum and then starts increasing. It must be pointed out that this effect is defi-
nitely a minor one. A visual representation of the data reported in Tables 2 and 3 is given in
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Table 2 Downward throughflow (Pe < 0). Critical values of Ra (in roman) and a (in italic)

Pe Ge = 0 Ge = 10−5 Ge = 10−2 Ge = 10−1 Ge = 1/2 Ge = 1

−10−3 39.4784 39.4784 39.4784 39.4786 39.4794 39.4804

3.14159 3.14159 3.14159 3.14159 3.14159 3.14159

−10−2 39.4786 39.4786 39.4788 39.4806 39.4886 39.4986

3.14160 3.14160 3.14160 3.14160 3.14160 3.14160

−10−1 39.4924 39.4924 39.4944 39.5124 39.5924 39.6924

3.14196 3.14196 3.14196 3.14196 3.14196 3.14196

−1 40.8751 40.8751 40.8953 41.0770 41.8848 42.8945

3.17868 3.17868 3.17868 3.17876 3.17912 3.17956

−2 45.0776 45.0777 45.1191 45.4922 47.1499 49.2208

3.29218 3.29218 3.29225 3.29292 3.29591 3.29973

−3 52.0684 52.0685 52.1327 52.7114 55.2797 58.4824

3.48965 3.48965 3.48992 3.49235 3.50333 3.51747

−4 61.6664 61.6665 61.7546 62.5472 66.0580 70.4183

3.78501 3.78501 3.78571 3.79197 3.82042 3.85729

−5 73.4146 73.4147 73.5256 74.5231 78.9249 84.3558

4.19616 4.19616 4.19759 4.21053 4.26904 4.34423

−6 86.6192 86.6193 86.7497 87.9218 93.0718 99.3812

4.73292 4.73293 4.73534 4.75709 4.85385 4.97402

−7 100.581 100.581 100.727 102.036 107.773 114.775

5.37860 5.37861 5.38193 5.41179 5.54128 5.69529

−8 114.833 114.833 114.991 116.410 122.628 130.220

6.09212 6.09213 6.09604 6.13095 6.27960 6.45151

−9 129.167 129.167 129.336 130.853 137.506 145.645

6.83594 6.83594 6.84013 6.87743 7.03495 7.21531

−10 143.518 143.519 143.698 145.307 152.377 161.048

7.59035 7.59036 7.59465 7.63292 7.79436 7.97919

−15 215.283 215.283 215.512 217.574 226.680 237.942

11.3830 11.3830 11.3874 11.4263 11.5928 11.7877

Figs. 3 and 4. These figures display a comparison between the values of acr and Racr for the
case Ge = 0 and those for the case Ge = 1. In Figs. 3 and 4, the data for Ge = 0 are also
compared with the correlations obtained by Homsy and Sherwood (1976) for |Pe| � 1,

acr ∼= 0.759 |Pe|, Racr ∼= 14.3 |Pe|, (38)

in the absence of viscous dissipation. From Figs. 3 and 4, one may see that these correlations
are in very good agreement with the evaluated data for Ge = 0, provided that |Pe| � 7.
These figures reveal also the above described breaking of the symmetry Pe → −Pe in the
case Ge = 1. As expected, the curves of acr and Racr for either Ge = 0 or Ge = 1 tend to

acr = π, Racr = 4π2, (39)

when |Pe| → 0, i.e. in the absence of throughflow. As is well-known, the critical values
reported in Eq. 39 are those of the Darcy–Bénard problem (Nield and Bejan 2006; Rees
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Table 3 Upward throughflow (Pe > 0). Critical values of Ra (in roman) and a (in italic)

Pe Ge = 0 Ge = 10−5 Ge = 10−2 Ge = 10−1 Ge = 1/2 Ge = 1

10−3 39.4784 39.4784 39.4784 39.4782 39.4774 39.4764

3.14159 3.14159 3.14159 3.14159 3.14159 3.14159

10−2 39.4786 39.4786 39.4784 39.4766 39.4686 39.4586

3.14160 3.14160 3.14160 3.14160 3.14160 3.14160

10−1 39.4924 39.4924 39.4904 39.4724 39.3924 39.2923

3.14196 3.14196 3.14196 3.14196 3.14196 3.14196

1 40.8751 40.8751 40.8549 40.6731 39.8652 38.8553

3.17868 3.17868 3.17867 3.17859 3.17824 3.17781

2 45.0776 45.0776 45.0361 44.6630 43.0038 40.9286

3.29218 3.29218 3.29211 3.29144 3.28853 3.28496

3 52.0684 52.0684 52.0041 51.4251 48.8485 45.6201

3.48965 3.48965 3.48938 3.48697 3.47643 3.46366

4 61.6664 61.6663 61.5783 60.7844 57.2436 52.7896

3.78501 3.78501 3.78432 3.77811 3.75112 3.71875

5 73.4146 73.4144 73.3035 72.3028 67.8228 62.1480

4.19616 4.19616 4.19473 4.18191 4.12606 4.05913

6 86.6192 86.6191 86.4886 85.3104 80.0113 73.2370

4.73292 4.73292 4.73051 4.70879 4.61287 4.49548

7 100.581 100.581 100.435 99.1172 93.1696 85.5049

5.37860 5.37860 5.37527 5.34512 5.20854 5.03367

8 114.833 114.832 114.674 113.245 106.789 98.4414

6.09212 6.09212 6.08820 6.05260 5.88744 5.66505

9 129.167 129.167 128.998 127.471 120.582 111.686

6.83594 6.83593 6.83174 6.79354 6.61402 6.36422

10 143.518 143.518 143.339 141.721 134.428 125.044

7.59035 7.59035 7.58604 7.54682 7.36187 7.10144

15 215.283 215.283 215.053 212.985 203.727 191.985

11.3830 11.3830 11.3786 11.3390 11.1549 10.9036

2000; Tyvand 2002). The latter is the special case of the present problem for a vanishing
throughflow velocity (Pe = 0). When Pe = 0, the viscous dissipation has no influence on the
linear stability analysis as it would manifest itself in an intrinsically nonlinear term, quadratic
in the disturbance velocity components. One may easily check this reasoning by evaluating
the limit Pe → 0 in Eq. 23 and noticing that the resulting equation is independent of Ec.

4.3 Vanishing Difference Between the Boundary Temperatures

As it has been pointed out in the preceding sections, the convective instabilities within the
porous layer are, in general, a result of two causes. The first cause is the positive temperature
difference T̄h − T̄c between the bottom and the top boundary planes. The second cause is
the heat generation within the layer due to the viscous dissipation effect. We know from the
Homsy and Sherwood analysis (Homsy and Sherwood 1976), as well as from our results
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obtained for Ge → 0, that the first cause alone is capable of generating convective insta-
bilities. This happens when the second cause, i.e. viscous dissipation, is negligible. We now
pose a different question. If the first cause becomes negligible, i.e. if T̄h − T̄c → 0, is viscous
dissipation alone capable of generating convective instabilities in the porous layer?

The answer to this question requires that we reconsider the eigenvalue problem Eqs. 32–34
in the limit Ec → ∞ (or Ra → 0). In this limit, we want the following quantities to remain
finite:

�̃ = Ec−1�, 	̃ = Pe	, F̃(y) = Ec−1 F(y), � = Ge Pe. (40)

From Eqs. 7, 18 and 40, we note that � and all tilded quantities are independent of T̄h − T̄c.
Let us now take the limit Ec → ∞. Equation 30 yields

F̃(y) = 1 + Pe
ePe y

ePe − 1
, (41)

while Eqs. 32–34 can be rewritten as

	̃ ′′ − a2 	̃ + a��̃ = 0, (42)

�̃′′ − Pe �̃′ − a2�̃+ a F̃(y) 	̃ = 0, (43)

y = 0, 1 : 	̃ = 0, �̃ = 0. (44)

Equations 42 and 44 can be solved by fixing (a,Pe) and determining� as an eigenvalue. The
numerical procedure followed to solve the eigenvalue problem is that described in Sect. 3.2.
After defining the function �(a), one can determine the critical values (acr,�cr), for each
fixed Pe, by seeking the minimum of�(a). From Eq. 41, one may easily verify that Eqs. 42–44
are left invariant by the transformation

y → 1 − y, Pe → −Pe. (45)
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This means that the pair (acr,�cr) is independent of the sign of Pe. However, the data
reported in Table 4 reveal that, for every prescribed Pe, the values of�cr are always positive.
This implies that convective instabilities can occur only in the case of upward throughflow
(Pe > 0). In fact, if Pe < 0, Eq. 40 implies that a positive �cr means a negative Ge, i.e.
an impossible condition. Hence, in the limit Ec → ∞, downward throughflow is linearly
stable for every Pe. On the other hand, viscous dissipation alone may generate convective
instabilities in the case of upward throughflow.

Table 4 shows that both acr and �cr are increasing functions of Pe. This table suggests
that, for Pe → 0, both acr and �cr attain a finite limit. In the Appendix, it is shown that for
Pe → 0 one has

acr = π ∼= 3.14159, �cr = 2π2 ∼= 19.7392. (46)

These values are consistent with the data for small Pe reported in Table 4. We note that the
value�cr ∼= 19.7392 attained for values of Pe smaller than 10−2 corresponds in fact to huge
values of the Gebhart number, Ge = �/Pe. As a consequence, its interest is purely theoreti-
cal. In the large-Pe regime, the asymptotic procedure described in the Appendix shows that,
in the limit Pe → ∞, one has the critical values

acr = 6.06793, Gecr = 4.67910. (47)

This means that, in the large-Pe regime,�cr becomes a linear function of Pe. One may easily
check that a fairly linear behaviour of �cr versus Pe is displayed by the values reported
in Table 4 for Pe ≥ 20. Equation 47 has an important meaning. The upward throughflow
may develop convective instabilities inasmuch as Ge > 4.67910. No instabilities can occur
for smaller values of Ge, no matter how large is Pe. The threshold value Ge = 4.67910 is
extremely large. We mention that Turcotte et al. (1974) develop an analysis for very large
values of the Gebhart number, called by these authors dissipation number. However, they do
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Table 4 Upward throughflow (Pe > 0) with Ec → ∞. Critical values of a and �

Pe acr �cr Pe acr �cr

10−5 3.14159 19.7392 10 4.17840 52.8218

10−4 3.14159 19.7392 11 4.26194 57.7604

10−3 3.14159 19.7392 12 4.33599 62.7284

10−2 3.14159 19.7393 13 4.40228 67.7025

10−1 3.14183 19.7439 14 4.46232 72.6674

1 3.16469 20.2065 15 4.51733 77.6139

3/2 3.19281 20.7845 16 4.56825 82.5375

2 3.23086 21.5824 17 4.61578 87.4362

5/2 3.27762 22.5895 18 4.66040 92.3104

3 3.33169 23.7927 19 4.70249 97.1611

4 3.45567 26.7265 20 4.74233 101.990

5 3.59092 30.2544 21 4.78012 106.800

6 3.72723 34.2473 22 4.81603 111.592

7 3.85728 38.5891 23 4.85021 116.368

8 3.97670 43.1819 24 4.88276 121.131

9 4.08372 47.9467 25 4.91380 125.882

not consider values above Ge = 3. Thus, we can conclude that convective instabilities of
upward throughflow purely driven by viscous dissipation do not occur in practical cases.

5 Conclusions

The effect of viscous dissipation has been taken into account in the analysis of vertical
throughflow in a horizontal porous layer saturated by a fluid. The plane boundaries of the
layer are kept isothermal with unequal temperatures and bottom heating. The basic solution
of the problem is a vertical uniform throughflow directed either upward or downward. The
temperature in the basic state depends only on the vertical coordinate. The temperature distri-
bution differs, in general, from the linear heat conduction profile due to the forced convection
induced by the throughflow and to the viscous dissipation effect. The governing parameters
of the basic solution are the Péclet number Pe associated to the throughflow and the ratio
between the Gebhart number Ge and the Darcy-Rayleigh number Ra, i.e. the Darcy–Eckert
number Ec. The main features of the basic solution have been studied. Moreover, a linear sta-
bility analysis of the basic solution has been carried out for the onset of convective rolls. The
critical values of the wave number and of the Darcy–Rayleigh number have been obtained
by a numerical procedure based on the fourth-order Runge–Kutta method with an adaptive
step-size control by the embedded pairs algorithm. The main inferences drawn from the
present investigation are resumed as follows.

• In the basic solution with downward throughflow, the forced convection due to the through-
flow and viscous dissipation are competing effects. The former yields a cooling effect in
the system, while the latter yields an internal heating of the layer. The competition may
result in a perfect balance between these effects when Ec Pe = −1. In this case, the basic
temperature profile is the linear heat conduction profile.
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• The effect of viscous dissipation breaks the symmetry between downward and upward
throughflow with respect to the critical conditions for the onset of convective instabilities.

• Although generally weak, the effect of viscous dissipation is stabilizing in the case of
downward throughflow and destabilizing in the case of upward throughflow.

• While the critical values Racr and acr at onset of convection depend significantly on Pe,
they depend weakly on Ge.

• In general, a more intense throughflow (a higher |Pe|) implies increasing values of Racr

and acr.
• Convective instabilities of upward throughflow are theoretically predicted also in the

special case T̄h − T̄c = 0. These instabilities are caused solely by the effect of viscous
dissipation. It has been shown that they exist only if Ge > 4.67910. Since the threshold
value of Ge is very high and the value of Ge is very low in practical problems, this kind
of instabilities has a purely mathematical interest. In the case of downward throughflow,
instabilities caused solely by the effect of viscous dissipation do not exist.

Appendix

Vanishing Difference Between the Boundary Temperatures: Limit Pe → 0

The conditions Ec → ∞ and Pe → 0 are assumed. When Pe → 0, Eq. 41 yields F̃(y) = 2.
Then, in this limit, Eqs. 42–44 can be simplified to

	̃ ′′ − a2 	̃ + a��̃ = 0, (48)

�̃′′ − a2�̃+ 2 a 	̃ = 0, (49)

y = 0, 1 : 	̃ = 0, �̃ = 0. (50)

A solution of Eqs. 48–50 can be sought in the form

	̃(y) = A sin(n π y), �̃(y) = B sin(n π y). (51)

Equation 51 identically satisfies Eq. 50 for every positive integer n. By substituting Eq. 51
in Eqs. 48 and 49, one obtains

[(n π)2 + a2] A − a� B = 0, (52)

[(n π)2 + a2] B − 2 a A = 0. (53)

One may easily show that Eqs. 52 and 53 are fulfilled for arbitrary values of A and B provided
that

� = [(n π)2 + a2]2

2 a2 . (54)

Among the marginal stability curves�(a) defined by Eq. 54, the lowest one is that for n = 1.
This curve admits a minimum for a = π , corresponding to � = 2π2.

Vanishing Difference Between the Boundary Temperatures: Limit Pe → ∞

The conditions Ec → ∞ and Pe → ∞ are assumed. Let us reconsider Eqs. 42–44 by adopt-
ing 	 = 	̃/Pe instead of 	̃. For every y such that 0 ≤ y < 1, one may easily evaluate the
limit F̃(y) for Pe → +∞.
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lim
Pe→+∞ F̃(y) = lim

Pe→+∞

(
1 + Pe

ePe y

ePe − 1

)
= 1 + lim

Pe→+∞

[
Pe

e− Pe (1−y)

1 − e−Pe

]
= 1.

(55)

As a consequence, Eq. 43 yields

�̃′′ − Pe �̃′ − a2�̃+ a Pe	 = 0, (56)

and, in the limit Pe → +∞, it can be approximated by the lower order equation

�̃′ − a	 = 0. (57)

Obviously, the reduction in the order of Eq. 56 implies that one of the two boundary con-
ditions on �, expressed by Eq. 44, cannot be fulfilled. Since the limit of F̃(y), evaluated in
Eq. 55, is finite only for y �= 1, then the boundary condition �̃(1) = 0 becomes incompatible
with Eq. 57. Equations 42–44 now read

	 ′′ − a2	 + a Ge �̃ = 0, (58)

�̃′ − a	 = 0, (59)

	(0) = 0, �̃(0) = 0, 	(1) = 0, (60)

where use has been made of the definition � = Ge Pe. Equations 58 and 60 imply the addi-
tional boundary condition 	 ′′(0) = 0. Therefore, by differentiating Eq. 58 with respect to y
and by using Eq. 59, one obtains

	 ′′′ − a2 	 ′ + a2 Ge	 = 0, (61)

	(0) = 0, 	 ′′(0) = 0, 	(1) = 0. (62)

Adapting the numerical procedure described in Sect. 3.2, one may determine the eigenvalue
Ge(a) corresponding to any prescribed wave number a. Finally, by seeking the minimum of
function Ge(a), one obtains the critical values

acr ∼= 6.06793, Gecr ∼= 4.67910. (63)

References

Barletta, A.: Comments on a paradox of viscous dissipation and its relation to the Oberbeck–Boussinesq
approach. Int. J. Heat Mass Transf. 51, 6312–6316 (2008)

Barletta, A., Celli, M., Rees, D.A.S.: The onset of convection in a porous layer induced by viscous dissipation:
a linear stability analysis. Int. J. Heat Mass Transf. 52, 337–344 (2009)

Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)
Homsy, G.M., Sherwood, A.E.: Convective instabilities in porous media with through flow. AIChE J. 22,

168–174 (1976)
Khalili, A., Shivakumara, I.S.: Onset of convection in a porous layer with net through-flow and internal heat

generation. Phys. Fluids 10, 315–317 (1998)
Khalili, A., Shivakumara, I.S.: Non-Darcian effects on the onset of convection in a porous layer with

throughflow. Transp. Porous Media 53, 245–263 (2003)
Mureithi, E.W., Mason, D.P.: On the stability of a forced-free boundary layer flow with viscous heating. Fluid

Dyn. Res. 31, 65–78 (2002)
Nield, D.A.: Convective instabilities in porous media with throughflow. AIChE J. 33, 1222–1224 (1987)
Nield, D.A.: The modeling of viscous dissipation in a saturated porous medium. ASME J. Heat

Transf. 129, 1459–1463 (2007)
Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, Berlin (2006)

123



Convective Roll Instabilities of Throughflow with Viscous Dissipation 477

Rees, D.A.S.: The Stability of Darcy–Bénard convection. In: Vafai, K. (ed.) Handbook of Porous Media,
pp. 521–558. Marcel Dekker, New York (2000)

Rees, D.A.S., Magyari, E., Keller, B.: Vortex instability of the asymptotic dissipation profile in a porous
medium. Transp. Porous Media 61, 1–14 (2005)

Storesletten, L., Barletta, A.: Linear instability of mixed convection of cold water in a porous layer induced
by viscous dissipation. Int. J. Thermal Sci. 48, 655–664 (2009)

Sutton, F.M.: Onset of convection in a porous channel with net through flow. Phys. Fluids 13, 1931–1934 (1970)
Turcotte, D.L., Hsui, A.T., Torrance, K.E., Schubert, G.: Influence of viscous dissipation on Bénard convec-

tion. J. Fluid Mech. 64, 369–374 (1974)
Tyvand, P.A.: Onset of Rayleigh–Bénard convection in porous bodies. In: Ingham, D.B., Pop, I. (eds.) Transport

Phenomena in Porous Media II, pp. 82–112. Elsevier, Pergamon, Oxford (2002)
Zhao, C., Hobbs, B.E., Mühlhaus, H.B.: Theoretical and numerical analyses of convective instability in porous

media with upward throughflow. Int. J. Numer. Anal. Meth. Geomech. 23, 629–646 (1999)

123


	Convective Roll Instabilities of Vertical Throughflow with Viscous Dissipation in a Horizontal Porous Layer
	Abstract
	1 Introduction
	2 Mathematical Model
	2.1 Governing Equations
	2.2 Non-Dimensional Analysis
	2.3 Basic Solution
	2.4 Linear Disturbances

	3 Stability Analysis
	3.1 Disturbance Equations
	3.2 Numerical Solution

	4 Discussion of the Results
	4.1 Forced Convection Throughflow and Viscous Dissipation
	4.2 Onset of Convective Rolls
	4.3 Vanishing Difference Between the Boundary Temperatures

	5 Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


