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Summary. The beauty of the Kohonen map is that it has the property of organizing
the codebook vectors, which represent the data points, both with respect to the
underlying distribution and topologically. This topology is traditionally linear, even
though the underlying lattice could be a grid, and this has been used in a variety
of applications [19, 25, 28]. The most prominent efforts to render the topology to
be structured involves the Evolving Tree (ET) due to Pakkanen et al. [26], and
the Self-Organizing Tree Maps (SOTM) due to Guan et al. [15], among others. In
this paper we propose a strategy, the Tree-based Topology-Oriented SOM (TTO-
SOM) by which we can impose an arbitrary, user-defined, tree-like topology onto
the codebooks. Such an imposition enforces a neighborhood phenomenon which is
based on the user-defined tree, and consequently renders the so-called bubble of
activity to be drastically different from the ones defined in the prior literature. The
map learnt as a consequence of training with the TTO-SOM is able to infer both the
distribution of the data and its structured topology interpreted via the perspective
of the user-defined tree. The TTO-SOM also reveals multi-resolution capabilities,
which are helpful for representing the original data set with different numbers of
points, and this can be obtained without the necessity of recomputing the whole
tree. The ability to extract an skeleton, which is a “stick-like” representation of the
image in a lower dimensional space, is discussed as well. These properties has been
confirmed by our experimental results on a variety of data sets.
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1 Introduction

In an increasing number of applications, researchers today encounter situa-
tions which require the classification of patterns in large data sets. Central
to these methods are approaches which identify the most important clusters
of the given data in an unsupervised manner. A problem that arises in such
situations is to capture the essence of the similarity in the samples, which
implies that any given cluster should include data of a “similar” sort, while
elements that are dissimilar are assigned to different subsets.

A fundamental approach to solve the clustering problem involves the use of
Artificial Neural Networks (ANNs) capable of unsupervised learning. Within
this model of computation, a key component is the phenomenon referred as
the “competition” between the neurons. From this perspective, it is possible
to classify ANNs into two main sub-categories: In the first family only a
single output neuron is activated, and this is referred to as Hard Competitive
Learning. As opposed to this, in the second approach, both the winner and
other associated neurons are involved in the process, and this is referred to as
Soft Competitive Learning.

Another important classification criterion that can be found in such ANNs
is the type of topological relationship between the neurons. Some approaches
present topologies that are imposed from the start of the training process,
and which remain constant until the convergence is attained. Other strategies
include topologies that are able to change with time, thus yielding, at the
end of the learning process, a topology that represents the underlying data
distribution.

One of the most important families of ANNs used to tackle the above-
mentioned problems is the well known Self-Organizing Map (SOM) [?]. Typ-
ically, the SOM is trained using (un)supervised learning to produce a neural
representation in a space whose dimension is usually smaller than that in
which the training samples lie. Further, they seek to preserve the topological
properties of the input space.

Although the SOM has demonstrated an ability to solve problems over
a wide spectrum, it possesses some fundamental drawbacks. One of these
drawbacks is that the user must specify the lattice a priori, which has the
effect that the user must run the ANN a number of times to obtain a suitable
configuration. Other handicaps involve the size of the maps, where a lesser
number of neurons often represent the data inaccurately.

The state-of-the-art approaches attempt to render the topology more flex-
ible, so as to represent complicated data distributions in a better way and/or
to make the process faster by, for instance, speeding up the task of determining
the best matching neuron.
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Some approaches try to start with a small lattice [15, 26], while others at-
tempt to grow a SOM grid by adding new rows or columns if the input samples
are too concentrated in some areas of the feature space [9]. Others follow a
symmetric growing of the original lattice [12]. Alternatively, some strategies
add relations (edges) between units as time proceeds, thus not necessarily pre-
serving a grid of neurons. In particular, the literature reports methods that
use a tree-shaped arrangement [15]. Also, some researches have attempted to
devise methods which “forget” old connections as time goes by [13]. There are
strategies that add nodes during training [26], while others use a fixed grid [?]
or arrange different SOMs in layers [9], and combinations of these principles
have also been employed. On the other hand, strategies that try to reduce
the time required for finding the winner neuron have also been designed. The
related approaches focus on the accuracy of the resulting neurons being the
ones to be modified, and on the consequent topology. It is important to remark
that no single one of these approaches has been demonstrated to be a clear
winner when compared to the other strategies, thus leaving the window of op-
portunity open for novel ideas that can be used to solve the above-mentioned
problems.

The desirable feature of the SOM, namely, to yield prototypes which con-
verge in distribution was a landmark, and the formal results which prove that
the stochastic distribution of the prototypes follows the distribution of the un-
derlying data points is available. However, this formal result is true only if the
prototypes are linearly arranged, implying that the concept of neighborhood
and the bubble of activity are also linear. This statement, of course, needs
clarification. For example, if the nodes are arranged on a lattice, the neigh-
bors of any node 〈i, j〉 are the nodes {〈i− 1, j〉, 〈i+ 1, j〉, 〈i, j − 1〉, 〈i, j + 1〉},
which, on a more critical inspection, can be seen to be those “linearly” close
to 〈i, j〉. But this leads us to a host of other open issues. The first issue is the
following: Is it possible for a user to require the prototypes to follow any ar-
bitrary topology? If this is possible, the implication is significant. First of all,
the question of finding the nearest neuron with such a topology (i.e., the win-
ner in the competition) has to be answered. Secondly, the whole issue of how
one describes the bubble of activity, and of migrating neighbors of the winner
is far more significant. Indeed, the question of what we mean by a neighbor,
how the list of neighbors is maintained and what the final convergence is, are
unresolved issues. This, indeed, is the goal of this paper.

Our aim is to permit the user to specify any tree-like topology which can
be entirely up to his imagination. The reason why we prefer a tree-like topol-
ogy is to prevent cyclic neighborhood correspondences. Once this topology
has been fixed, the concepts of the neighborhood and bubble of activity are
specified from this perspective. The question is whether the prototypes can
ultimately learn the stochastic distribution and simultaneously arrange them-
selves with the topology that mimics the one that the user hypothesized from
the outset. We show that this is indeed possible, as demonstrated by a set of
rigorous experiments in which our enhanced ANN, the Tree-based Topology
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Oriented SOM (TTO-SOM) is able to learn both the distribution and the
desired structured topology of the data. Furthermore, a consequence of this
is the fact that as the number of neurons is increased, the approximation of
the space will be correspondingly superior – both from the perspective of the
distribution and of the user-defined topology.

1.1 Contribution of the Paper

The principal contributions of the present work can be summarized as follows:

1. We present a technique by which we can represent data points using pro-
totypes, both with respect to the underlying distribution and any user-
defined topology.

2. In particular, we demonstrate how the user can impose an arbitrary tree-
like topology onto the set of codebook vectors.

3. Since the topology can be fairly arbitrary, we show that the resultant
bubble of activity is different from the ones defined in the prior literature,
both structurally and conceptually.

4. The map learned as a consequence of the training process is able to infer
both the distribution and the structured topology of the data as verified
by extensive experiments.

5. The strategy proposed reduces to the traditional 1-dimensional SOM when
the tree is a linear sequence of nodes. In other words, the traditional SOM
is a special case of the family of ANNs which we propose.

1.2 Organization of the Paper

The organization of the paper is as follows. We first give an overview of the
state of the art in Sec. 2. Thereafter in Sec. 3, we present the new variant,
namely the TTO-SOM, and the experimental results which demonstrate its
power are included in Sec. 4. Finally, Sec. 5 gives some concluding remarks
and discussions.

2 Brief Review of the State-of-the-Art

In general, the objective in competitive learning is to place a certain num-
ber of units (synonymously called codebooks, neurons or prototypes) C =
{c1, c2, .., cM} in such a way that they best represent a set of sample points
X = {x1, x2, .., xN}, xi ∈ IRn, referred to as the input data set. A reference
vector3 vi ∈ IRn is associated with neuron ci indicating its position in the fea-
ture space. The inter-neuron connections are specified by a (possibly empty)

3 The dimensionality of these reference vectors is usually smaller than the dimen-
sionality of the sample points.
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set E ⊂ C × C of neighborhood connections, which are typically unweighted
and symmetric. The generalization to weighted and asymmetric edges is easily
achieved, but not of interest in this paper.

The concept of the direct neighborhood of any unit c, denoted as Nc, is
defined as the set of units such that

Nc = {i ∈ C|(c, i) ∈ E}. (1)

When the ANN receive an input, the closest or Best Matching Unit (BMU)
is represented by

s(x) = arg min
c∈C
‖ x− vc ‖, (2)

where ‖ . ‖ denotes the appropriate norm (for example, the City-Block or
Euclidean distance). Clearly, the notation can be extended to refer to the
closest unit s1(x), the second closest unit s2(x), and so on.

Observe that the units and their edges together constitute a network,
where an unweighted edge represents a relationship between the nodes. These
relationships are useful when the units are updated. For example, such updates
occur if only s1(x), the closest unit, is moved towards the input sample x by
an update process (hard competitive learning), or additionally other units in
the neighborhood of s1(x) are updated as well, as in soft competitive learning
[14].

The SOM [?] is a single-layered forward-directed ANN used in clustering
and visualization. It allows a mapping from a high-dimensional space to lower
dimensions, typically of two or three dimension, so as to enhance visualization.
The SOM attempts to concentrate all the information contained in the set of
input samples X within the set C of representative codebook vectors, which
are the constituent vectors. In order to adjust the values of the neurons, the
SOM prescribes a specific update process. This process involves information
about the input sample x, the closest unit s1(x), which is the BMU, and a
neighborhood function which encapsulates the relative information between
the neurons [31].

There are, probably, hundred of publications that attempt to improve or
take advantage of the SOM. Applications of the SOM are just as numerous and
include the fields of Image and Video Processing, Pattern Recognition (PR),
Artificial Intelligence, Engineering, Medicine, etc. [19, 25, 28]. It is fair to state
that numerous researchers have attempted to produce enhanced variations of
the basic algorithm since its pioneering introduction into the scientific domain.

In attempting to devise enhanced SOM algorithms, researchers have in-
corporated an ensemble of approaches so as to overcome specific handicaps,
for example, that of knowing the size of the map a priori. Not knowing the
map size can often require experimentation with different sized maps, which,
in itself, can be very time consuming. In the case of data clustering, for exam-
ple, the SOM converges to a network in which nodes stabilize, at sometimes,
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sparsely populated areas. In particular, the SOM requires a lot of time to
compute the BMU for large maps.

The literature contains enhancements aimed at addressing the problems
presented above. The main strategy is to generate a lattice that can dynam-
ically grow. Some approaches attempt to grow a SOM grid by adding new
rows or columns if the input samples are too concentrated in some areas of
the feature space [9]. Other methods add relations (edges) between the units
as time proceeds [15], while others yet attempt to “forget” old connections as
time goes by [13]. While there are strategies that add nodes during training
[26], others use a grid-based arrangement of the nodes [4], or arrange differ-
ent SOMs in layers [9], or utilize a hierarchical structure of the neurons [23].
All these strategies possess their unique advantages and disadvantages. The
summary of the key components of relevant SOM variants follows4.

The Growing Cell Structures (GCS) [11], maintains the accumulated error
for each neuron, and after a fixed number of iterations, an additional neuron
is added between the unit possessing the largest accumulated error and its
farthest direct neighbor.

The Neural Gas (NG) [22] generates a ranking of the neurons according to
their distance to the stimulus. Each connection between the neurons includes
a so-called “age” counter utilized for forgetting old connections. Neurons that
are closer to the stimulus generate/rejuvenate their connections. The resulting
topology is neither a tree nor a grid, but a graph that is, possibly, not fully
connected. In this method, the most expensive task is the one that involves
finding the ordering of the elements, requiring O(N logN) time.

The Growing Neural Gas (GNG) [13] successively adds new units to the
network. It keeps the age of the neurons, and forgets connections in the same
way as the NG. Additionally, nodes without connections are deleted. The
GNG maintains an error for each unit which is further employed for creating
new nodes.

The Structure-Adaptive Self-Organizing Map (SASOM) [6] is a SOM-
based NN designed for performing pattern recognition by dynamically adapt-
ing the structure of the network. The algorithm starts with a small SOM
lattice, and trained until convergence is achieved. During the expanding step,
the node that should be split is identified and replaced by a small SOM grid.
Unless every node represents a unique class, the algorithm trains the current
SOM and the process is repeated.

The Growing Hierarchical Self-Organizing Map (GHSOM) [30] is a dynam-
ically growing NN. The GHSOM uses a hierarchical architecture of SOM-like
layers. New rows/columns are added to a layer depending on an error mea-
sure, and the new SOM-like layers are added if the BMU exceeds certain
quantization error criteria.
4 The discussion of the variants of the SOM has been abridged due to the request

of the reviewers.
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The Self-Organizing Tree Map (SOTM) [15] is an incrementally grown
tree-based SOM which starts with an isolated node. The SOTM creates a new
node when the distance between the stimulus and the BMU is greater than a
given threshold. As the algorithm is not capable of “forgetting” connections,
decisions made in early stages of the training process can strongly determine
the shape of the tree.

The Tree-Structured Vector Quantization algorithm (TSVQ) [21] utilizes a
tree structure which is fixed in depth and in breath. After a node is trained for
a certain amount of time it become “frozen”. Frozen units are static neurons,
i.e. they become neurons that do not accept training, but allow the training of
their direct children. The TSVQ incorporates a BMU search heuristic which
is performed in O(log n) time.

The Evolving Tree (ET) [26] utilizes a tree topology that is allowed to
grow. After a certain number of training steps, a node become frozen and
then splits, generating a pre-specified number of children, which are further
trained. This process is repeated recursively, thus generating a tree. One of
the known problems of the ET is that leaves belonging to different branches
may move closer to each other after a certain number of iterations. In this
way, clusters that are identified at higher levels of the hierarchy of the tree,
may not be well represented as one proceeds towards its lower levels.

2.1 Topology Preservation

According to the author of [20], there are three different criteria which can
be used to evaluate how good a map is. The first criterion indicates how
continuous the mapping is, implying that input signals that are close (in the
input space) should be mapped to codebooks that are close in the output space
as well. A second criterion involves the resolution of the mapping. Maps with
high resolution possess the additional property that input signals that are
distant in the input space should be represented by distant codebooks in the
output space. A third criterion imposed on the accuracy of the mapping is
aimed to reflect the probability distribution of the input set.

There exist a variety of measures for quantifying the quality of the topol-
ogy preservation [1]. The author of [29] surveys a number of relevant measures
for the quality of maps, and these include the Quantization Error, the Topo-
graphic Product [3], the Topographic Error [20] and finally the Trustworthi-
ness and Neighborhood Preservation [33].

The ordering of the weights (with respect to the position) of the neurons
of the SOM has been proved for unidimensional topologies [7, ?, 31]. Extend-
ing these results to higher dimensional configurations or topologies leads to
numerous unresolved problems. First of all, the question of what one means
by “ordering” in higher dimensional spaces has to be defined. Further, the is-
sue of the “absorbing” nature of the “ordered state” is open. Budinich, in [5],
explains intuitively the problems related to the ordering of neurons in higher
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dimensional configurations. Huang et al [17] introduce a definition of the or-
dering and show that even though the position of the codebook vectors of the
SOM have been ordered, there is still the possibility that a sequence of stimuli
will cause their disarrangement. Some statistical measures of correlation be-
tween the measures of the weights and distances of the related positions have
been introduced in [2].

This concludes our “brief” survey of the state-of-the-art.

3 The Tree-Based Topology SOM

The Tree-based TOpology SOM (TTO-SOM ) is a tree-structured SOM which
aims to discover the underlying distribution of the input data set X , while
also attempting to perceive the topology of X as viewed through the user’s de-
sired perspective. The TTO-SOM works with an imposed topology structure,
where the codebook vectors are adjusted using a VQ-like strategy. Besides,
by defining a user-preferred neighborhood concept, as a result of the learning
process, it also learns the topology and preserves the prescribed relationships
between the neurons as per this neighborhood. Thus, the primary considera-
tion is that the concept of neurons being “near each other” is not prescribed
by the metric in the space, but rather by the structure of the imposed tree.

3.1 Declaration of the user-defined tree

The topology of the tree arrangement of the neurons plays an important role
in the training process of the TTO-SOM. This concept is not new, and a few
variations of SOMs that take advantage of this approach have been reported
[9, 15, 21, 23, 26, 30].

In general, the TTO-SOM incorporates the SOM with a tree which has an
arbitrary number of children. Furthermore, it is assumed that the user has the
ability to describe/create such a tree. The user who presents it as an input to
the algorithm, utilizes it to reflect the a priori knowledge about the structure
of the data distribution5 .

The first task to be conducted is that of declaring, as an input, the user-
defined tree. We propose that this declaration is done in a recursive manner
(see Alg. 1), from which the structure of the tree is fully defined. The input
to the algorithm is an array that contains integers specifying the number of
children for each node in the tree if the latter is traversed in a Depth-First
(DF) manner6.

The algorithm works in a straightforward manner: The input to the al-
gorithm is a pointer to a node to a tree, which could be the root and
5 The beauty of such an arrangement is that the data can be represented in multiple

ways depending on the specific perspective of the user.
6 The tree could also easily be traversed in a breadth-first manner as we will see

presently.
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an associated array. The position i in the array implicitly refers to the
ith node of the final tree if traversed in a DF manner. The contents of
the array elements in the ith position refer to the number of children that
node i has. An example of this is given in Fig. 1 where the input array is
〈2, 3, 4, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0〉, and the resulting tree is shown in the fig-
ure itself. Observe that the same tree could have also been traversed in a
breadth-first manner, in which case, the corresponding array for this tree
would be the array 〈2, 3, 2, 4, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0〉.

Algorithm 1 describe-topology(A,p)
Input:
i) A sequence of n numbers A = 〈a1, a2, . . . , an〉, specifying the number of children

for each node in the tree.
ii) p, a pointer to the current root of the tree.
Method:
1: if n = 0 then
2: return
3: else
4: number-of-children = head(A) {read and cut head of the sequence}
5: for i=1 to number-of-children do
6: create-node(x)
7: add-node(x,p)
8: describe-topology(A,x)
9: end for

10: end if
End Algorithm

3.2 Representation of the Tree

From the immense diversity of possible data structures capable of representing
trees, choosing a data structure that best suits the purposes of our problem
requires the specification of all the constraints that are to be satisfied. First,
each node in the tree could possibly have an arbitrary number of children,
limited only by the user’s “imagination”. Secondly, the form in which the tree
is represented must permit fast traversal, specially for the most expensive
tasks of the algorithm, namely, the location of the current BMU, and the
calculation of the bubble of activity, i.e., the neighborhood of units around it.
Fast identification of the parents is required, since our concept of neighborhood
involves the traversal of the nodes, not only in the direction of the children of
a given node, but also in the direction of its ancestors, as explained in Sec. 3.3,
and pictorially described in Fig. 3, which implicitly requires us to maintain a
link to quickly reach the parent.

An efficient way to represent the structure of the tree, is to use the Left-
most-child, Right-sibling representation. In this approach each node points
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Fig. 1: An example of the description of the original tree topology. The example
shows an array containing the number of children for each node in the tree. If the
latter is traversed in a DF manner, the index of the array is the position in the
DF traversal, and the content of the array is the number of children of the node in
question. The corresponding array, if the tree is traversed in a breadth-first manner,
is 〈2, 3, 2, 4, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0〉.

only to its left-most child and not to all the direct children, and every node is
linked only to its sibling immediately to the right (and not to all the siblings).
Simultaneously, we also maintain a pointer from every node to its parent,
with the exception of the root node which is pointing to the NULL pointer.
Interestingly, the Left-most-child, Right-sibling representation stores the data
in O(M) space, where M is the number of nodes. Also, this strategy permits
the representation of the tree with an arbitrary number of children, to be a
binary tree.

The implementation of the tree using the “Left-most-child, Right-sibling”
is given in Fig. 2 (for the tree of Fig. 1), and will also be represented with the
array 〈2, 3, 4, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0〉.

With regard to the data maintained in each node of the tree, we mention
that, each node will contain the d-dimensional vector in the feature space
migrated as per the position of the input samples and the update rule. Note
that in Fig. 2 the details of the vectors in the feature space are omitted in the
interest of simplicity

3.3 Neural Distance Between Two Neurons

In the TTO-SOM, the Neural Distance, dN , between two neurons depends on
the number of unweighted connections that separate them in the user-defined
tree, and is defined as the number of edges in the shortest path that connects
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Fig. 2: A suitable way to implement the user-defined tree is by using the Left-most-
child, Right-sibling representation, which uses O(n) space. This figure illustrates the
Left-most-child, Right-sibling representation for the tree of Fig. 1. For simplicity, the
details of the vector in the d-dimensional feature space, associated with each node,
are omitted.

the two given nodes. More explicitly, the distance between two nodes in the
tree, is defined as the minimum number of edges required to go from one to
the other. In the case of trees (since this is the focus of the present work),
there is only a single path connecting two nodes, implying the simplicity of
enforcing the definition. Additionally it is worth mentioning that this notion
of distance is not dependent on whether or not nodes are leaves or not, as
in the case of the ET [26], thus permitting the calculation of the distance
between any pair of nodes in the tree.

More specifically, the distance between a neuron and itself is defined to
be zero, and the distance between a given neuron and all its direct children
and its parent is unity. This distance is then recursively defined to farther
nodes as shown pictorially in Fig. 3a. Clearly, if vi and vj are nodes in the
tree, dN (·, ·) possesses the identity, non-negativity, symmetry and triangular
inequality properties:

dN (vi, vj) ≥ 0 (3)
dN (vi, vj) = 0 if and only if vi = vj (4)
dN (vi, vj) = dN (vj , vi) (5)
dN (vi, vk) ≤ dN (vi, vj) + dN (vj , vk). (6)

The reader should observe in Fig. 3 that nodes at different levels could
also be equidistant from any given node. Thus, in the case of Fig. 3a, nodes
B, C and D are all at a distance of 2 units away from A, while in Fig. 3b
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(a) (b)

Fig. 3: Fig. 3a shows the neighborhood for the TTO-SOM. Here nodes B, C and D
are equidistant to A even though they are at different levels in the tree. Observe
that non-leaf nodes may be involved in the calculation. Fig. 3b shows the case for
the ET, where nodes B and C are equidistant to A. In the ET, the definition of the
distance pertains only to leaf nodes.

nodes B and C are at a distance of 5 units from node A. It should also be
mentioned that in the ET, one encounters only distances between the leaves
(as in Fig. 3b) and not between internal nodes, as in Fig. 3a.

As in the case of the traditional SOM, the TTO-SOM requires the iden-
tification of the BMU, i.e. the closest neuron to a given input signal. This
is achieved by invoking the function TTO-SOM Find BMU (see Alg. 2). To
locate it, the distances, df (·, ·) are computed in the feature space and not in
terms of the edges of the user-defined tree. The algorithm first calculates the
feature-based distance in the feature space between the input signal, x, and
every neuron in the network, and the index of the neuron with the small-
est feature-based distance is returned. In the case of a tie, the index of the
first-found neuron with minimum distance is selected (although a random tie
breaker is also possible). It is important to emphasize that the distance mea-
sured between neurons is completely distinct from the feature-based distance
between a neuron and the input signal, since the latter is computed based
on the coordinates of the neuron and the signal in the feature space, and the
distance between neurons is computed in terms of the number of edges to
be traversed in the user-defined tree. A common choice for the distance is
the Euclidean distance, however, it has been reported that for higher dimen-
sional spaces, this particular definition of distance might be inaccurate [34].
The TTO-SOM attempts to tackle this issue by inheriting the SOM’s update
rule, which utilizes a distance function but does not necessarily specify one
explicitly.
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Algorithm 2 TTO-SOM Find BMU(p,x,v)
Input:
i) p, the node being examined.
ii) x, an input sample.
iii) v, the best matching unit found so far.
Output:
v, the best matching neuron.

Method:
1: if p=NULL then
2: return v
3: else
4: if getDistance(x, v) >getDistance(x, p) then
5: v=p {p is the new best matching unit}
6: end if
7: for all child ∈ p.getChildren() do
8: v=TTO-SOM Find BMU(child,x,v)
9: end for

10: end if
11: return v
End Algorithm

3.4 The Bubble of Activity

Intricately related to the notion of inter-node distance, is the concept referred
as to the “Bubble of Activity” which is the subset of nodes “close” to the
unit being currently examined. These nodes are essentially those which are
to be moved toward the input signal presented to the network. This concept
involves the consideration of a quantity, the so-called radius, which determines
how big the bubble of activity is, and which therefore has a direct impact on
the number of nodes to be considered. The bubble of activity is defined as the
subset of nodes within a distance of r away from the node currently examined,
and can be formally defined as

B(vi;T, r) = {v|dN (vi, v;T ) ≤ r}, (7)

where vi is the node currently being examined, and v is an arbitrary node
in the tree T , whose nodes are V . Note that B(vi, T, 0) = {vi}, B(vi, T, i) ⊇
B(vi, T, i − 1) and B(vi, T, |V |) = V which generalizes the special case when
the tree is a (simple) directed path. Fig. 4 depicts an example of how the
number of neurons in the bubble of activity is increased as the radius is
increased. In the case of the TTO-SOM the BMU can be any node in the
tree, and this becomes the center of the bubble of activity. The question of
whether or not a neuron should be part of the current bubble, depends on
the number of connections that separate the nodes rather than the distance
that separate the points in the solution space (for instance, the Euclidean
distance).

The concept of neighborhood utilized in the present work is distinct and
different from the ones used in other approaches such as the ET [26] or the
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Fig. 4: The figure shows how the bubble of activity includes more nodes as the radius
is increased. The currently examined node is given in black.

SOTM [15]. In the case of the TTO-SOM, non-leaf units are considered in
the bubble of activity. As an example, in our case, nodes distant by a radius
of zero will include, in the bubble of activity, only the node being currently
examined, while a radius of unity will consider the subset of all the direct
children of the unit being examined as well as the direct parent node. As in
any SOM philosophy, the bubble of activity is initially made large enough so
as to include all the nodes in the structure, and subsequently, as the learning
proceeds, gradually decreased to finally only include the node currently being
examined. There are reported works that consider only leaves in the bubble of
activity [26] and some of them use the distance of the neurons in the solution
space [15].

The function TTO-SOM Calculate Neighborhood (see Alg. 3) dictates the
calculation of the subset of neurons that are part of the neighborhood of the
BMU. This computation involves a collection of parameters, including B, the
current subset of neurons in the proximity of the neuron being examined, v,
the BMU itself, and r ∈ N the current radius of the neighborhood. When the
function is invoked for the first time, the set B contains only the BMU (which
is previously estimated using Alg. 2) marked as the current node, and through
a recursive call, B will end up storing the entire set of units within a radius
r of the BMU. The tree is recursively traversed for all the direct topological
neighbors of the current node, i.e. in the direction of the direct parent and
children. Every time a new neuron is identified as part of the neighborhood,
it is added to B and a recursive call is made with the radius decremented by
one unit7, marking the recently added neuron as the current node.

3.5 Training the TTO-SOM

The training process of the TTO-SOM involves positioning the neurons which
describe the user-defined tree in the feature space so as to capture the dis-
tribution and topology of the data points. This process involves a loop of
7 This fact will ensure that the algorithm reaches the base case when r = 0.
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Algorithm 3 TTO-SOM Calculate Neighborhood(B,v,r)
Input:
i) B, the set of the nodes in the bubble of activity identified so far.
ii) v, the node from where the bubble of activity is calculated.
iii) r, the current radius of the bubble of activity.
Output:
The set of nodes in the bubble of activity.

Method:
1: if r ≤ 0 then
2: return
3: else
4: for all child ∈ v.getChildren() do
5: if child /∈ B then
6: B ← B + {child}
7: TTO-SOM Calculate Neighborhood(B,child , r − 1)
8: end if
9: end for

10: parent=v.getParent();
11: if parent 6= NULL and parent /∈ B then
12: B ← B + {parent}
13: TTO-SOM Calculate Neighborhood(B,parent , r − 1)
14: end if
15: end if
End Algorithm

training steps which terminates when the convergence is acceptable to the
user. The Training step involves requesting an input sample from the dataset,
locating the BMU, computing the nodes within the current bubble of activ-
ity, and migrating those neurons toward the input signal using a SOM-like
philosophy.

How the input sample is chosen may vary. In the case of the TTO-SOM,
an input sample is drawn at random from the sample set. Other mechanisms
may involve the shuffling of the elements in the set, generating an order, and
then at each step the samples are chosen as per the pre-established order.
Finally, when the last element in the sequence has been drawn, an epoch is
said to be completed, and optionally a new shuffling takes place.

The TTO-SOM uses the SOM update rule to update the prototypes, and
requires the definition of a learning rate α which is a real number between
0 and 1, which, in turn, specifies the fraction by which the BMU will move
towards the input presented to the network. The value of the learning rate is
initialized to a high value, for example 0.9, and is gradually decreased so as to
achieve convergence. At first the updated positions of the BMU and neighbor
neurons will be highly influenced by the input sample, but as time goes by,
these will tend to move less, and at the end of the process only small changes
in the positions of the neurons will be registered.

Alg. 4 gives the details on how the training step is performed. Initially,
the index of the BMU is obtained by invoking Alg. 2, and will be the first
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neuron to be included in the bubble of activity. The next process involves the
calculation of all the neurons in the bubble, which is obtained by calling Alg.
3. Finally, for each neuron in the bubble, an update process take place, which
is similar to the SOM update rule.

Algorithm 4 TTO-SOM train(x,p)
Input:
i) x, a sample signal.
ii) p, the pointer to the tree.
Method:
1: v ← TTO-SOM Find BMU(p,x,p)
2: B ← {v}
3: TTO-SOM Calculate Neighborhood(B,v,radius)
4: for all b ∈ B do
5: update rule(b.getCodebook(),x)
6: end for

End Algorithm

3.6 The Overall Procedure

In what we have covered, we have explained all the independent modules
of the TTO-SOM. Using these modules we shall show how all the pieces fit
together to compose the overall TTO-SOM algorithm. The main segments
of the algorithm also include the initialization of the values and the main
training loop.

The input to the algorithm consists of a set of samples in the d-dimensional
feature-space, and, additionally, as explained in Sec. 3.1, an array by which
the user-defined tree structure can be specified. Observe that this specification
contains all the information necessary to fully describe the TTO-SOM struc-
ture, such as the number of children for each node in the tree. Furthermore, the
algorithm also includes parameters which can be perceived as “tuning knobs”.
They can be used to adjust the way by which it learns from the input signals.
The TTO-SOM requires a schedule for the so-called decay parameters, which
is specified in terms of a list, where each item in the list records the value
for the learning rate, the radius of the bubble of activity, and the number of
learning steps for which the latter two parameters are to be enforced.

The initialization phase constitutes the creation/description of the user-
defined tree topology, and the value of the vectors in the feature-space associ-
ated with each node within the tree. At the beginning of this phase, the tree
must be built as per Alg. 1, implying the specification of the root of the tree.
Initially the tree is not defined, and this is done by assigning the parameter
p of Alg. 1 to the NULL pointer. At this juncture, the starting values of the
codebook vectors associated with each node of the tree, are set as well. One
common way to accomplish this is by randomly choosing input vectors from
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the input sample set, and assigning their values to the codebook vectors. Al-
ternate methods relying on a Principal Component Analysis have also been
reported in the literature [18].

The essential phase of the process involves the learning iterations, which
is a sequence of steps as per Alg. 4, and are monitored by the schedule of
parameters mentioned earlier. Whenever a learning step takes effect, some of
the nodes in the tree are moved towards the input sample. The number of
nodes moved and the amount by which these neurons are moved, depends on
the current parameters, such as the bubble of activity and the learning rate,
α. Alg. 5 details the whole process, which terminates when the position of the
neurons have converged satisfactorily.

In practice, as we shall see presently, as a result of the execution of Alg.
5, the codebook vectors will be arranged in such a way that they represent
the structure and the distribution of the input data. While the “spatial” dis-
tribution of the neurons follows the stochastic distribution of the data points,
the relationships between the nodes of the TTO-SOM will be as per the user-
defined structure. This preserves the topological information in the data points
(as in the traditional SOM algorithm), but also the information involving the
tree-based relationship between the neurons.

Algorithm 5 TTO-SOM(S,A,X)
Input:
i) S, the schedule of parameters
ii) A, the array containing the number of children for each node in the tree
iii) X, the input sample set
Method:
1: T ← NULL

2: describe-topology(A,T )
3: initialize-codebook(p,X)
4: for all s ∈ S do
5: set-learning-rate(s.learning rate)
6: set-radius(s.radius)
7: for i← 1 to s.number of iterations do
8: x← random-selection(X)
9: TTO-SOM train(x,T );

10: end for
11: end for
End Algorithm

4 Experiments and Results

To demonstrate the power of our method, and to obtain a better understand-
ing on how the structure-oriented SOM works, we have implemented and



18 César A. Astudillo and B. John Oommen

tested it on numerous data sets8. First of all, from a pedagogical perspective,
the fact that the user is capable of visualizing the resulting tree, is important,
because, in this way, a human operator/user will be provided with a quick
and intuitive tool for understanding the “structure” of the data. Thus he will
be able to comprehend what is happening to the tree that attempts to delin-
eate the structure of the points from the data distribution. This is achieved
by virtue of the fact that the position of the nodes belonging to the tree
correspond to the value of the codebook vector associated with each node,
and which are also manipulated by the cloud of points that are randomly
drawn from the input data set. Therefore, to illustrate this philosophy, the
experiments reported here, were done in the 2-dimensional feature space. It is
important to remark that the capabilities of the algorithm are also applicable
for higher dimensional spaces, though, the visualization of the resulting tree
will not be as straightforward. Additionally, in all the cases presented here,
the input samples were drawn from a probability distribution unknown to
the algorithm. While both the distribution and its structure were unknown to
the TTO-SOM, the hope is that the latter will be capable of inferring them
through the learning process, without human intervention, thus, performing
Unsupervised Learning. Lastly, the schedule of parameters was specified so as
to result in a rather “slow” convergence. This was achieved by defining steady
values for the learning rate for a large number of iterations, so that we could
understand how the position of the nodes migrated towards their final config-
uration. We believe that to solve practical problems, the convergence can be
accelerated by appropriately choosing the schedule of parameters.

4.1 Learning the Structure

Consider the data generated from a triangular-spaced distribution as per
Fig. 5. We assume that the a priori knowledge from the user permitted
him to define a tree topology with a complete tree of depth 4, and where
each node has exactly 3 children. This implies that the user’s tree consists of∑4

i=0 3i = 1 + 3 + 9 + 27 = 40 nodes, which is initialized as per the procedure
explained in Sec. 3.1. Fig. 5a, depicts the position of the nodes of the tree
after a random initialization. Random initialization was used by uniformly
drawing points from the unit square. Observe that the original data points do
not lie in the curve. Our aim here was to show how our algorithm could learn
the structure of the data using arbitrary (initial and “non-realistic”) values
for the codebook vectors. The reader must appreciate that the initial random
positioning completely obfuscates the tree structure since the input signals
conform to a cloud of points within the unit square. However, once the main
training loop becomes effective, the codebook vectors get positioned in such
a way that they represent the structure of the data distribution, and simulta-
neously preserve the user-defined topology. This can be clearly seen from Fig.
8 These data sets have been made available to the public, and can be found at
http://www.scs.carleton.ca/~castudil.
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5b and 5c which are snapshots after 1, 000 and 10, 000 samples, respectively.
At the end of the training process (see Fig. 5d), the complete tree fills in the
triangle formed by the cloud of input samples and seems to do it uniformly.
The final position of nodes of the tree suggests that the underlying structure
of the data distribution corresponds to the triangle. Observe that the root of
the tree is placed roughly in the center (i.e. the mean) of the distribution. It
is also interesting to note that each of the three main branches of the tree,
cover the areas directed towards a vertex of the triangle respectively, and their
sub-branches fill in the surrounding space around them.
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Fig. 5: TTO-SOM-based 3-ary tree topology learnt from a “triangular” distribution.

Another example is shown in Fig. 6, where the data was generated from
a “square-shaped” distribution. Analogously, we presuppose that using the
information at the disposal to the user, he defines a tree topology with a
complete tree of depth 4, and where each node has exactly 4 children. As a
consequence, the user’s defined tree will be composed by

∑4
i=0 4i = 1+4+16+

64 = 85 nodes, and is again initialized utilizing the procedure detailed in Sec.
3.1. Fig. 6a, portrays the location of the nodes within the tree after setting
their values by randomly selecting points from the unit square. As we can see,
the initial position of the codebooks based on the structure of the user-defined
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tree is “confusing”, because of the random nature of the samples drawn from
the unit square distribution. Convergence takes place by repeatedly executing
the main training loop, and all the while the codebook vectors are moved until
they represent the structure of the data distribution, and at the same time
maintain the topology of the tree. This can be clearly seen from Fig. 6b and 6c
which display the situation after 10,000 and 100,000 iterations, respectively.
Fig. 6d depicts the situation after training. Observe that the position of the
nodes appears to be uniform inside the square formed by the cloud of samples.
In this case, the position of the nodes implicitly suggests that the underlying
structure of the data distribution corresponds to the square. Similar to the
triangle example, note that in this case, the root of the tree is placed near
the center of mass of the square formed by the cloud of input signals. Also
interestingly, the main branches of the tree cover the principal diagonals of
the square, and their sub-branches spread through the space around these,
respectively.
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Fig. 6: TTO-SOM-based 4-ary tree topology learnt from a “square” distribution.
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With the aim of comparing our method with the traditional SOM, we
considered a discrete data distribution of 500 data points9. For this experiment
an equivalent number of neurons where employed, The SOM utilized a 5× 5
grid, i.e., 25 neurons, while the TTO-SOM employed a complete 4-ary tree of
four level, i.e., 1 + 4 + 16 = 21 ≈ 25 neurons. The resulting maps demonstrate
one of the known drawbacks of the SOM, namely the convergence of neurons
in zero-density areas. Additionally, although the root of the tree trained by
the TTO-SOM lays in a zero-density area, it is located roughly in the center of
mass of the data distribution, and thus renders meaningful information about
the entire data set. In our opinion, the TTO-SOM using a lesser number of
connections yields a mapping which is more easy for a human being to “read”.
Note also that the nodes at second level of the tree lie in the centers of mass
of the four biggest concentration of data points.

(a) SOM (b) TTO-SOM

Fig. 7: The result of invoking the SOM and TTO-SOM on discrete data distribution
using an almost identical number of nodes.

To illustrate the properties of the TTO-SOM by incorporating other struc-
tures, we consider the scenario when the topology is unidirectional. Indeed, we
obtain very impressive results when the tree structure is the 1-ary tree as seen
in Fig. 8. In this case, the user-defined a list (i.e. a 1-ary tree) as the imposed
topology. Initially, the codebook vectors were randomly placed as per Fig.
8a. Again, the reader must observe that at the beginning, the linear topology
is completely lost due to the randomness of the data points. The migration
and location of the codebook vectors after 10, 000 and 100, 000 iterations are
given in Fig. 8b and 8c respectively. At the end of the training process the
list represents the triangle very effectively, as also reported in [?].
9 The data set and the SOM training were extracted from the software De-

moGNG version 1.5, available at the URL http://www.neuroinformatik.

ruhr-uni-bochum.de/ini/VDM/research/gsn/DemoGNG/GNG.html.
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For the case of using a 1-dimensional tree (i.e., a list) as per Fig. 8, our
algorithm is capable of not only representing the whole distribution of the
input samples, but also of preserving this “tree-like” topology. Indeed, on
termination, the indices of the codebook vectors are arranged in an increasing
order as seen in Fig. 8d. In this case, the one-dimensional list of neurons is
evenly distributed over the triangle, preserving the original properties of the
2-dimensional object and also presenting a shape which reminds the viewer of
the so-called Peano curve [27].

As we can see, this one-dimensional representation is achieved by defining
a tree with a single child per node. This example can be effective in distin-
guishing our method over the ET. If the same data was processed using the
ET, the final configuration of the codebook vectors will not represent the in-
put set accurately, even if the topology is preserved. The reason for this is
as follows: In the first stage of the algorithm, the ET’s root is trained for a
certain number of iterations, after which the root will be most likely close to
the center of mass of the input data cloud. The ET then “freezes” the location
of this unit, which implies that it is no longer trained, and thus this codebook
vector remains static. It no longer participates in the competitive learning
process since our assumption of using a 1-ary tree is in place. After freezing
this unit, the ET resorts to a splitting operation. The children are created,
and in this particular case only a single child is created and trained. In this
phase, the child does not compete with the parent because the latter is static.
Consequently, the random samples taken from the input set will again tend to
place the child close to the center of mass of the data cloud. As this process
is repeated for the subsequent children, all of them will be placed near to the
center of the data distribution.

From this perspective, one of the best advantages of the ET is simultane-
ously a drawback. Freezing the unit after a certain time and then splitting it
lends to the algorithm the ability to only train the leaf-nodes. This property is
cleverly exploited by the authors of [26] so as to accelerate the search for the
BMU in O(log n) time. On the other hand, the frozen units are excluded from
the subsequent competition, and open the possibility of being ill-formed code-
book vectors. Briefly put, the 1-ary tree case is an extreme one, and although
for the general n-ary tree (for n > 2) the ET possesses a good performance,
in the linear case our algorithm outperforms the ET.

Fig. 9 presents an example in a higher dimensional space, where the TTO-
SOM attempts to learn a unit sphere. In this experiment, so as to display
the capabilities of the algorithm, we decided to use the same 3-ary tree con-
figuration that was utilized in the triangle-shaped distribution shown in Fig.
5, i.e. a complete 3-ary tree of four levels, thus containing 40 nodes. At the
beginning, as shown in Fig. 9a, the initial codebook vectors are randomly dis-
tributed within the circumscribed unit cube. As the training proceeds, Fig.
9b depicts the situation where all the nodes converge into a single point which
is located roughly in the center of the sphere. Fig. 9c, displays the case when
the neurons belonging to lower levels of the tree begin to spread evenly inside
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Fig. 8: TTO-SOM-based 1-ary tree (list) topology learnt from a “triangular” distri-
bution

the sphere. The situation after training is shown in Fig. 9d, where the tree
expands uniformly in the interior of the sphere, suggesting the spherical shape
of the original data manifold. Given the symmetries of the sphere, other tree
topologies can also be utilized to learn its structure.

(a) After 0 iter. (b) 10, 000 (c) 100, 000 (d) 300, 000

Fig. 9: The same 3-ary tree utilized for learning the triangle in Fig. 5 now learns the
unit sphere in 3-dimensions.



24 César A. Astudillo and B. John Oommen

(a) After 0 iter. (b) 10, 000 (c) 100, 000 (d) 300, 000

Fig. 10: The same 4-ary tree utilized for learning the unit square in Figure 6, now
learns the unit sphere in 3-dimensions.

4.2 The Hierarchical Representation

Another distinct advantage of the TTO-SOM, which is not possessed by other
SOM-based networks, is the fact that it has hologram-like properties. In other
words, although the entire tree specified by the user can describe the cloud of
data points as per the required resolution, the same cloud can be represented
with a more coarse resolution by using a lesser number of points. Thus, if
we wanted to represent the distribution using a single point, this can be ade-
quately done by just specifying the root of the tree. A finer level of resolution
will include the root and the second level, where these points and their corre-
sponding edges, will represent the distribution and the structure. Increasingly
finer degrees of resolution can be obtained by including more levels of the tree.
We believe that this is quite a fascinating property.

To clarify this, consider the triangular distribution in Fig. 11, which is the
same distribution of Fig. 5. Fig. 11a shows how the cloud can be represented
by a single point, i.e. the root. In Fig. 11b it is represented by 4 nodes which
are the nodes up to the second level. If we use the user defined tree of four
levels, the finest level of resolution will contain all the 40 nodes, as displayed
in Fig. 11d.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Fig. 11: Multi-level resolution of the results shown in Fig. 5.

To demonstrate the analogous effect in 3-dimensions, we similarly, con-
sider the spherical distribution depicted in Fig. 12, which corresponds to the



Imposing Tree-based Topologies onto Self Organizing Maps 25

distribution of Fig. 6. When the cloud is represented by only one point, i.e.
the root, a rough approximation of the data distribution can be obtained, as
per Fig. 12a, which shows the root of the tree located roughly in the center
of the sphere. In Fig. 12b the entire distribution is represented by 4 nodes
which corresponds to the nodes in the first and second levels of the tree. If
we include nodes up to the fourth level of the tree, the representation at this
resolution will contain all the 40 nodes, as displayed in Fig. 12d.

From these results, we believe that the representations obtained for in-
creasing resolutions are both intriguing and remarkable.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Fig. 12: Multi-level resolution of the results shown in Fig. 9 for a sphere in 3-
dimensions.

4.3 Skeletonization

Intuitively, the objective of skeletonization is to construct a simplified rep-
resentation of the global shape of an object. In general, such a skeleton is
expected to contain much less points than the original image and should be
a thinned version of the original shape. According to the authors of [24],
skeletonization in the plane is the process by which a 2-dimensional shape
is transformed into a 1-dimensional one, similar to a “stick” figure. In this
way, skeletonization can be seen as a dimensionality reduction technique that
captures local object symmetries and the topological structure of the object.
This problem has been widely investigated in the fields of PR and computer
vision.

There are different types of algorithms that attempt to solve the skele-
tonization problem. Traditional skeletonization approaches assume the con-
nectivity of the pixels that constitute the image. Thus, they are inadequate
when pixels in the image lack connectivity, as can happen all too often, as
a consequence of an inappropriate manipulation of the image, noise, or the
intrinsic nature of the data itself. In such cases, traditional methods may
not perform well, and advanced techniques that can also inherently process
structure, are needed.

SOM variations have been used to tackle this situation when points are
sparse in the space [8, 32]. In [8] the authors used a GNG-like approach,
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while in [32], the authors recommend the use of a Minimum Spanning Tree
which is calculated over the positions of the codebook vectors, followed by a
post-refinement phase that adds and deletes edges.

We now advocate a completely different SOM-like strategy, namely the
TTO-SOM. Indeed, as we perceive it, the structure generated by using the
TTO-SOM can be viewed as an endo-skeleton of the given data set, in the
sense that it conforms to an internal framework that support the “soft parts”
of the original object. This skeleton meets at pseudo-joints, which are, in our
representation, the nodes of the tree. As the whole structure of these pseudo-
bones are dependent on the position of the nodes in the feature space, a single
learning iteration of the TTO-SOM is capable of affecting the overall shape of
the skeleton, and on convergence, it will self-organize so as to assimilate the
fundamental properties of the primary representation.

In this context we propose that the edges can be seen as pseudo-bones.
Each pseudo-bone is defined by two codebook vectors in their extremes, and
contrary to what happens with real bones, these pseudo-bones have a great
measure of flexibility, and also the ability to contract or enlarge as a conse-
quence of the movement of the nodes that define their respective extrema. It
is also worth mentioning that the movement of a joint will have the implica-
tion of the modification of at least one edge. Thus, when a node is moved,
all the edges associated with the children and parent will change accordingly,
modifying the shape of the inferred skeleton. The difference between using the
SOM-like philosophy [32] and the TTO-SOM lies exactly here. A SOM-like
algorithm will change the edges of the skeleton but only as the algorithm
dictates as per the MST computed over the nodes and their distances in the
“real” world; i.e., the feature space. As opposed to this, a TTO-SOM like
structure can modify the skeleton as dictated by the particular node in ques-
tion, but also, all the nodes tied to it by the bubble of activity, as dictated
by the user defined tree, i.e., the link distances.

The reader can appreciate, in Fig. 13, the original silhouette of a rhinoceros,
a 2-dimensional person as well as a 3-dimensional person. All three objects
were processed by the TTO-SOM using exactly the same tree structure, the
same schedule for the parameters, and without any post processing of the
edges. From the images at the lower level of Fig. 13 we observe that, even
without any specific adaptation, the TTO-SOM is capable of representing the
fundamental structure of the three objects in a “1-dimensional” way effec-
tively. The figures at the second level display the neurons without the edges.
In this case, it can be seen that our algorithm is also capable of granting an
intuitive idea of the original objects by merely looking at the points.

A potentially interesting idea is that of mixing the hierarchical represen-
tation of the TTO-SOM presented in Sec. 4.2 with its skeletonization capabil-
ities. We propose that in this case, the user will be able to generate different
skeletons with different levels of resolution, which we believe, can be used
for managing different levels of resolution at a low computational cost for
applications in the fields of geomatics, medicine and video games.
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Fig. 13: The result of a skeletonization process for the silhouettes of various shapes
using the TTO-SOM, namely, of a rhinoceros, a 2-dimensional person, as well as a
3-dimensional person.

4.4 Clustering and Pattern Recognition Capabilities

Additionally, we have examined the performance of the TTO-SOM in clus-
tering and PR applications for real-world data. The well known Iris dataset10

was chosen for this purpose. The data set gives the measurements (in cen-
timeters) of the variables which are the sepal length, sepal width, petal length
and petal width, respectively, for 50 flowers from each of 3 species of the iris
family. The species are the Iris Setosa, Versicolor, and Virginica.

Since the TTO-SOM is an unsupervised learning algorithm, in order to
show the power of our method, we decided to invoke it using exactly the same
configuration employed to learn the triangle and sphere displayed in Figures
5 and 9 respectively, i.e., the same underlying tree topology of a complete
3-ary tree of depth 4. By this we attempt to show examples of how exactly
the same tree configuration can be utilized to learn the structure from data
belonging to the 2-dimensional, 3-dimensional and also 4-dimensional spaces.
After executing the TTO-SOM, each of the main branches of the tree were
migrated towards the center of mass of the cloud of points in the hyper-
space belonging to each of the three categories of flowers, respectively. It is
important to mention that the TTO-SOM did not know that the data came
from 3 different categories, rather this information was inferred by it. We find
this result quite fascinating, indeed!

After convergence, each of the samples were associated to the closest neu-
ron, thus generating a set of clusters that are arranged in a hierarchical man-
10 The Iris dataset was obtained from The R Project for Statistical Computing,

available at the URL http://www.r-project.org/
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ner. Moreover, if the true labels of the original data set is provided, the TTO-
SOM can be further utilized to perform pattern recognition, by identifying
each of the neurons as a representative of a particular class. The results of
this classification scheme applied to the Iris data set are summarized in Table
1. The information about each category of the Iris families is given in the
first row. Analogously, each column considers one of the three main branches
of the tree. The table indicates how many elements of a particular kind of
Iris were best represented by a particular branch of the tree. For instance, all
the data points which were best represented by neurons belonging to Branch1
happened to be of class Iris Setosa. Moreover, all the 50 instances of Iris Se-
tosa found in the data set are represented by Branch1. The last Column of
Table 1 summarizes the accuracy of recognizing a particular category of Iris.

Setosa Versicolor Virginica Accuracy

Branch1 50 - - 1.00

Branch2 - 48 2 0.96

Branch3 - 2 48 0.96

Table 1: The power of the TTOSOM for learning the characteristics of the Iris
dataset. The underlying tree structure was exactly the same one employed for learn-
ing the triangle and the spheres of Figures 5 and 9, respectively.

The experimental results shown in Table 1, not only demonstrate the po-
tential capabilities of the TTO-SOM for performing clustering, but also sug-
gest the possibilities of using it for pattern classification. According to [10],
there are several reasons for performing pattern classification using an unsu-
pervised approach. Moreover, due to the multi-resolution nature of our pro-
posed strategy, different levels of the tree may be employed for performing
increasingly accurate classification tasks. We are currently investigating such
a classification strategy.

4.5 Theoretical Analysis

Although the applications of the new method have been demonstrated, we feel
that it is appropriate to close this section by mentioning the hurdles that will
be encountered in analyzing the asymptotic distribution of the TTO-SOM11.
In all brevity, we believe that even the tools for such an analysis have not
been fully developed, as we explain below.
11 We are very grateful to an anonymous Referee who pointed us to these references,

and for the insight that he provided. We totally concur with him in that it is dif-
ficult (if not currently impossible) to mathematically solve the explicit equations
for the final distribution and topology for our present solution.
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At the outset, we mention that Bauer et al [3] explain, in great detail, a tool
called the Topographic Product, utilized for the measurement of the topology
preservation. These authors also show the power of this tool by applying it on
different artificial and real-world data sets, and also compare it with different
measures to quantify the topology [2]. Their study concentrates on the tradi-
tional SOM, implying that the topologies evaluated were of a “linear” nature,
with the consequential extension to 2-dimensions and 3-dimensions by means
of grids only. In [16], Haykin mention that the Topographic Product may be
employed to compare the quality of different maps, even when these maps pos-
sess different dimensionality. However, he also noted that this measurement is
only possible when the dimensionality of the topological structure is the same
as the dimensionality of the feature space. Further, tree-like topologies were
not considered in their study. To be more precise, most of the effort towards
determining the concept of topology preservation for dimensions greater than
unity are specifically focused on the SOM [2, 3, 5, 7, 17, ?], and do not define
how a tree-like topology should be measured nor how to define the order in
topologies which are not grid-based. Thus, we believe that even the tools to
analyze the TTO-SOM are currently not available. The experimental results
obtained in our paper, suggest that the TTO-SOM is able to train the NN so
as to preserve the stimuli. However, in order to quantify the quality of this
topology, the matter of defining a concept of ordering on tree-based structure
has yet to be resolved. Although this issue is of great interest to us, this rather
ambitious task lies beyond the scope of our present manuscript.

5 Conclusions

In the paper we have proposed a schema called the Tree-based Topology-
Oriented SOM (TTO-SOM) by which the operator/user is able to impose
an arbitrary, user-defined, tree-like topology onto the codebook vectors of a
SOM. This constraint leads to a neighborhood phenomenon based on the user-
defined tree, and, as a result, the so-called bubble of activity becomes radically
different from the ones studied in the previous literature. The map learnt as
a consequence of training with the TTO-SOM is able to determine both the
distribution of the data and its structured topology, interpreted through the
perspective of the user-defined tree. In addition, we have shown that the
TTO-SOM revealed the ability to represent the original data set in multiple
levels of granularity, and this was achieved without the necessity of computing
the entire tree again. Lastly, we discussed the capability of the TTO-SOM
to extract an skeleton, which is a “stick-like” representation of the image
in a lower dimension of space. All these properties have been confirmed by
numerous experiments on a diversity of data sets.
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