
 
 

 

Marine Data Collection based on Embedded System 
with Wired and Wireless Transmission 

By 
Mingli Yue, Yihai Sun 

Supervisors: Lei Jiao, Frank Yong Li 

Master Thesis in Information and Communication Technology 
IKT590, Spring 2013 

 
 

Faculty of Engineering and Science 
University of Agder 

Grimstad, 3 June 2013 
Status: Final 

 

 
 



Marine Data Collection and Transmission  

 
 
Page 2 of 64 
 
 

 
1.0 

 

Abstract: 
A great interest of boat manufacturers is to improve their products by knowing how the boats 
are used after sale. In order to gather information about the condition of usages, a system 
needs to be developed in order to collect data from different marine electronics mounted on 
the boat. Through this thesis work, we developed such data collecting system for leisure boats 
which support CAN Bus the message-based protocol. The data collection system has been 
developed and installed on a Linux-based embedded system connected to the CAN Bus 
network through a gateway in our laboratory. Through the data collection system, all data 
generated from different marine electronics in the network can be captured, filtered, 
transmitted, displayed and then stored in the system. For data transmission and access, we 
have implemented three methods through wired or wireless networks, i.e., the fixed Internet, 
3G/LTE cellular networks and Wi-Fi networks. 
 
Furthermore, the prototype implementation has been extensively tested in both lab and real-
life environment. 
 
 
 
Keywords: CAN Bus, NMEA 2000, embedded system, data filtering, data transmission 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 3 of 64 

 

Preface 
This report is the result of the master thesis IKT 590 (30 ECTS) which is part of our fourth 
semester MSc study at the Faculty of Engineering and Science, University of Agder (UiA) in 
Grimstad, Norway. The work on this project started from 1 January 2013 and ended on 3 
June 2013. We have completed the main goal of our project “Marine Data Collection based 
on Embedded System with Wired and Wireless Transmission”. 
 
This project is part of the ECO-Boat MOL project which is funded by the Research council of 
Norway. We would like to thank our project supervisors Dr. Lei Jiao and Professor Frank Y. 
Li for the guidance in giving feedback on technical and content of report throughout this 
project. Through this thesis work, we learnt a lot about project content and technical report 
writing. We also thank Mr. Ahmad Noor for his constructive suggestions and technical 
support. At last, we would like to give our thanks to Marex AS for providing their boats for 
real-life experiments. 
 
 
Grimstad 
3 June 2013 
Mingli Yue and Yihai Sun 
 





Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 5 of 64 

 

Contents 
 
Abbreviations ........................................................................................................................ 9 
1 Introduction ................................................................................................................ 11 

1.1 Background and Motivation ................................................................................... 11 
1.2 Problem Statement ................................................................................................ 11 
1.3 Approaches ........................................................................................................... 11 
1.4 Thesis Outline ........................................................................................................ 12 

2 Technology Background ............................................................................................. 13 
2.1 CAN Bus and NMEA 2000 ..................................................................................... 13 
2.2 Access Modes ....................................................................................................... 13 

2.2.1 Wired connection .......................................................................................... 13 
2.2.2 Wi-Fi ............................................................................................................. 14 
2.2.3 Cellular networks .......................................................................................... 14 

2.3 Web Service .......................................................................................................... 14 
2.4 Secure Shell .......................................................................................................... 15 
2.5 Netcat .................................................................................................................... 15 
2.6 MySQL .................................................................................................................. 16 
2.7 Secure Sockets Layer ............................................................................................ 16 
2.8 Advanced Encryption Standard .............................................................................. 17 

3 Requirements and System Design ............................................................................. 18 
3.1 Requirements ........................................................................................................ 18 
3.2 System Architecture ............................................................................................... 18 

3.2.1 Local component .......................................................................................... 19 
3.2.2 Remote component ...................................................................................... 19 

3.3 Embedded System ................................................................................................ 19 
3.3.1 Hardware ...................................................................................................... 19 
3.3.2 Software ....................................................................................................... 21 

3.4 Remote Server ...................................................................................................... 22 
3.4.1 Hardware ...................................................................................................... 22 
3.4.2 Software ....................................................................................................... 22 

4 Implementation of Basic Functionalities ...................................................................... 24 
4.1 Data Collection ...................................................................................................... 24 
4.2 Data Filtering ......................................................................................................... 25 

4.2.1 Filtering by device ......................................................................................... 25 
4.2.2 Filtering by type of message ......................................................................... 27 
4.2.3 Filtering by message update interval ............................................................ 28 

4.3 Data Storage ......................................................................................................... 28 
4.4 Data Transmission ................................................................................................. 29 

4.4.1 Real-time data transmission ......................................................................... 30 
4.4.2 Historical data transmission .......................................................................... 30 

4.5 Automatic Operation of Data Collection and Transmission .................................... 31 
4.6 Data Browsing ....................................................................................................... 33 

4.6.1 Data browsing on the embedded system ...................................................... 33 
4.6.2 Data browsing on the remote server ............................................................. 33 
4.6.3 Data browsing from external Internet connection .......................................... 35 

5 Implementation of Advanced Features ....................................................................... 39 
5.1 Data Security ......................................................................................................... 39 
5.2 Transmission Security ........................................................................................... 40 

5.2.1 Secure connection for MySQL ...................................................................... 40 
5.2.2 Secure connection for FTP ........................................................................... 40 

5.3 Local Access and Control by Using SSH ............................................................... 41 
5.4 Reverse Control ..................................................................................................... 42 



Marine Data Collection and Transmission  

 
 
Page 6 of 64 
 
 

 
1.0 

 

6 Test and Validation..................................................................................................... 46 
6.1 Test Scenarios ....................................................................................................... 46 
6.2 Experiment on Access Modes................................................................................ 47 
6.3 Experiment on Real-Time Transmission ................................................................ 48 
6.4 Experiment on Local Access and Control using Android Phone ............................. 48 
6.5 Experiment on Boat ............................................................................................... 50 

7 Discussions ................................................................................................................ 53 
7.1 Operating System .................................................................................................. 53 
7.2 Wi-Fi Stability on BeagleBoard-xM ........................................................................ 53 
7.3 Device ID Assignment ........................................................................................... 53 
7.4 Portability of Software ............................................................................................ 53 
7.5 IP Address Allocation ............................................................................................. 54 

8 Conclusions and Future Work .................................................................................... 55 
8.1 Contributions ......................................................................................................... 55 
8.2 Future Work ........................................................................................................... 55 

References .......................................................................................................................... 56 
Appendix A Installing NGT-1 gateway on embedded system ........................................... 57 
Appendix B Remote control on embedded system through SSH ..................................... 58 
Appendix C Improvement on user experience .................................................................. 59 
Appendix D Integration with other systems ...................................................................... 61 
Appendix E Results of real-life experiment ...................................................................... 62 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 7 of 64 

 

Figures 
 
Figure 1 Application scenario of data collection and transmission system ...................12 
Figure 2 Description of command parameters in Netcat ..............................................16 
Figure 3 System architecture .......................................................................................19 
Figure 4 BeagleBoard-xM and PandaBoard ES ...........................................................20 
Figure 5 Types of RESTful Web service in Netbeans ..................................................22 
Figure 6 Translate raw data to human-readable message ...........................................24 
Figure 7 Priority of filtering criteria ...............................................................................25 
Figure 8 Messages from specified device ....................................................................26 
Figure 9 Messages from devices not in the blacklist ....................................................27 
Figure 10 Messages with a specified PGN ....................................................................28 
Figure 11 Table structure in local database ...................................................................28 
Figure 12 Two modes for data transmission ..................................................................29 
Figure 13 Configuration of startup applications ..............................................................32 
Figure 14 Add startup program ......................................................................................32 
Figure 15 List of startup programs .................................................................................32 
Figure 16 Table structure on remote server ...................................................................34 
Figure 17 Viewing data on remote server ......................................................................34 
Figure 18 Viewing data in Netbeans ..............................................................................35 
Figure 19 Functions of Web service...............................................................................36 
Figure 20 Inquery for single message ............................................................................37 
Figure 21 Inquery for multiple messages .......................................................................37 
Figure 22 Message count ..............................................................................................38 
Figure 23 AES encryption and decryption in MySQL .....................................................39 
Figure 24 Encrypted data and transmission ...................................................................41 
Figure 25 Flow chart of reverse control ..........................................................................42 
Figure 26 Netcat listening port .......................................................................................42 
Figure 27 Reverse control on the embedded system .....................................................44 
Figure 28 Control terminal on the remote server ............................................................44 
Figure 29 Testbed .........................................................................................................46 
Figure 30 Access modes ...............................................................................................47 
Figure 31 Data received in the remote server ................................................................47 
Figure 32 Connect the embedded system to mobile phone through Wi-Fi .....................48 
Figure 33 Login screen ..................................................................................................49 
Figure 34 Log in the embedded system .........................................................................49 
Figure 35 Local access ..................................................................................................50 
Figure 36 Real-life experiment .......................................................................................51 
Figure 37 Real-time data in real-life experiment ............................................................51 
Figure 38 PuTTY configuration ......................................................................................58 
Figure 39 Execute the shell script ..................................................................................59 
Figure 40 Set message update interval .........................................................................59 
Figure 41 Select filtering mode ......................................................................................60 
Figure 42 Specify device ID ...........................................................................................60 
Figure 43 coordinator and wireless sensor ....................................................................61 
 



Marine Data Collection and Transmission  

 
 
Page 8 of 64 
 
 

 
1.0 

 

Tables 
 
Table 1  Technical specifications of PandaBoard ES .................................................20 
Table 2  Filtering criteria and application scenarios ...................................................25 
Table 3  Rule 1: Specified device...............................................................................26 
Table 4  Rule 2: Blacklist ...........................................................................................26 
Table 5  Filtering by PGN ..........................................................................................27 
Table 6  Filtering by update interval ...........................................................................28 
Table 7  Internet-dependent functionalities under different access modes .................47 
Table 8  Compatibility of operating system on the embedded system ........................53 
 
 
 
 
 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 9 of 64 

 

Abbreviations 
 
CAN  Controller Area Network 
 
NMEA  National Marine Electronic Association 
 
GPON  Gigabit-capable Passive Optical Networks 
 
AP  Access Point 
 
LTE  Long Term Evolution 
 
MIMO  Multi-Input Multi-Output 
 
WLAN  Wireless Local Area Networks 
 
SSH  Secure Shell 
 
FTP  File Transfer Protocol 
 
PGN  Parameter Group Number 
 
AES  Advanced Encryption Standard 
 
SSL  Secure Sockets Layer 
 
CA  Certificate Authority 
 
LAN  Local Area Network 
 
SSID  Service Set Identifier 
 
SSH  Secure Shell 
 
GUI  Graphical User Interface 
 
WSN  Wireless Sensor Network 
 
 
 
 
 





Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 11 of 64 

 

1 Introduction 
In Section 1.1, the motivation of this thesis is introduced. Section 1.2 illustrates the problems 
need to solved while Section 1.3 describes our solution. At last, Section 1.4 gives the outline 
of this thesis. 

1.1 Background and Motivation 
In recent years, the market of leisure boats is on steady growth. Especially in North America 
and Europe, there are a large number of leisure boats in use. Meanwhile, Asian market is 
becoming more active. Therefore, it has become the main interest for boat manufacturers to 
improve their products according to various market demands. For that reason, monitoring 
data on boats is required for analysing operation state of equipment, user preference and 
security. 
 
Now marine sensors are widely implemented on leisure boats to provide monitoring 
information. However, as far as we know, there is not any data collection and management 
system on the market. Thus, we aim at developing such a system for boat manufacturers 
and owners. 

1.2 Problem Statement 
The main task of this thesis is to develop an embedded system which can be used to collect, 
filter, transmit and store the data from different marine electronics. Furthermore, with the 
Internet accessibility, the system can transmit the data to the appointed server, so that the 
data can be used for commercial or safety analysis. The problems to be solved can be 
summarized as follows: 

• To create a testbed – a CAN Bus network with sensors connected to it; 

• To select a proper embedded platform with Linux installed on it; 

• To install CAN Bus gateway on embedded system; 

• To develop a program to implement the functionalities of data collection, filtering, 
storage and publishing. 

• To set up a server receives the data from the embedded systems. 

These requirements are the functional demands of the system, which will be described in the 
next chapter. 

1.3 Approaches 
In this thesis, we design a marine data collection and transmission system. It is based on an 
ARM-based single-board computer, which is small in size but provides excellent performance. 
 
Figure 1 illustrates the overall structure of the data collection and transmission system. The 
system can be implemented on boats, being connected to CAN Bus. In the CAN Bus network, 
there are NMEA 2000-compliant sensors generating monitoring data and broadcasting it 
through the bus. The embedded system is designed to collect the data, and store it after 
filtering. Furthermore, the data will be transmitted to the designated remote server through 
Internet. It is worth mentioning that, the embedded system supports flexible connectivity, so 
that we can choose wired or wireless connection according to circumstances. 



Marine Data Collection and Transmission  

 
 
Page 12 of 64 
 
 

 
1.0 

 

 
Figure 1 Application scenario of data collection and transmission system 

For developing the data collection and transmission system, we have done the following: 

• To build a CAN Bus testbed with different sensors and an NMEA 2000 gateway. 

• To develop and an embedded system to fulfil the requirements of data collection, 
filtering, storage and transmission. 

• To set up a server which receive the data from embedded system and publish the 
data on the Internet. 

• To improve the system with data/transmission security and remote control. 
And the prototype of the system has been tested in experiments. 

1.4 Thesis Outline 
The remaining thesis is structured as follows. 

• In Chapter 2, a brief introduction of background technologies adopted in this project is 
given. 

• Chapter 3 describes the functional requirements of the system as well as the system 
architecture.  

• Chapter 4 and 5 present the basic functionalities and advanced features of the 
system respectively.  

• In Chapter 6, tests on the system and results are presented.  

• Discussions is in Chapter 7  

• Chapter 8 gives the conclusions and future works in this thesis. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 13 of 64 

 

2 Technology Background 
As mentioned in the previous chapter, this data collection system is designed for NMEA 
2000-compliant devices in a CAN Bus network. In the following paragraphs, we will introduce 
these two standards. Then we will give a description on the cellular network and Web service 
technology, which enable the data transmission and data publishing. 

2.1 CAN Bus and NMEA 2000 
CAN is the abbreviation for Controller Area Network. CAN Bus is originally developed for the 
automobile industry. However, CAN Bus standard is now also widely implemented in boat 
manufacturing. There are even some specific messages that are specially designed for the 
marine use [1].  
 
The main advantage of a CAN Bus is that devices connected to it may exchange data in all 
directions. And the transmission via CAN Bus is very quick and fulfill the requirements for 
most devices. It is worth mentioning that the CAN Bus is a worldwide standard, which means 
that all CAN Bus-compliant devices can exchange data regardless of manufacturer. The 
CAN Bus system operates in a manner that all devices may listen to the messages 
transmitted in CAN Bus. Devices only accept the messages which are needed, while discard 
the others [2]. 
 
NMEA 2000, which is defined by National Marine Electronic Association, is a data network 
for communications between marine electronic devices. It is based on CAN Bus which 
connects devices together in a common channel. It means that different devices such as 
temperature sensors, GPS and fuel monitor can exchange the data between each other. The 
main goal of the standard is to share marine information in an easy way. We can say that the 
NMEA 2000 is a language defined based on CAN Bus. In an NMEA 2000 network, the data 
transmitted in CAN Bus should follow the frame structure defined in NMEA 2000 standard. 
 
In the NMEA family, there are NMEA 0183 and NMEA 2000. NMEA 0183 standard is the 
predecessor of the other and it is not based on CAN Bus. One advantage of the new 
standard is that it has higher data rate, i.e., 256000 bps compared with 4800 bps in NMEA 
0183. Another advantage is that more compact binary messages are used in NMEA 2000, 
which makes it more efficient than NMEA 0183. In this project, all the devices we use comply 
with NMEA 2000 standard. 

2.2 Access Modes 
In order to transmit the sensor data from the embedded system to the dedicated remote 
server, we need them both connected to the Internet. In this section, we will introduce three 
access modes for the embedded system which apply to different application scenarios. 

2.2.1 Wired connection 
When anchoring at the harbour, it is possible to find wired connection to the Internet. It 
requires that there is an RJ45 port on the embedded system so that wired access mode can 
be adopted. 
 
Normally, wired connection can support higher data transmission rate than wireless 
connection. Take optical network for example, the data rate in uplink can reach 2.4 Gbps and 
1.2 Gbps in downlink according to the standard of GPON [3]. 
 
However, when sailing, it is not possible to obtain wired connection. Thus we need to adopt 
wireless technology which is suitable for mobile devices. 



Marine Data Collection and Transmission  

 
 
Page 14 of 64 
 
 

 
1.0 

 

2.2.2 Wi-Fi 
Nowadays Wi-Fi is widely used in our daily life. It enables electronic devices to exchange 
data wirelessly at a high data rate. For example, according to IEEE 802.11n standard, the 
maximum data rate can reach 600 Mbps in theory by increasing the transmission bandwidth 
and adopting MIMO. 
 
Although Wi-Fi is a good solution of wireless transmission, the problem lies in the limitation of 
transmission range and interference due to license free. In the outdoor environment, the 
transmission range is usually around 160 m. When sailing, it will be natural that boats sail out 
of the range. And because the frequency band of Wi-Fi is free to use, so it may be shared by 
many users and interference may occur. 
 
Besides the Internet access, Wi-Fi can be used for local communication, e.g., establishing 
connection between the embedded system and a mobile router or a laptop. 

2.2.3 Cellular networks 
Today, mobile phones are so popular that almost every person has one. According to BBC 
news, there have been about 6 billion mobile phone subscriptions all over the word at the 
end of 2011 while the world population was nearly 7 billion [4]. By using a data-service-
enabled mobile phone as the wireless access point (AP), we can easily access to the 
Internet via cellular networks. 
 
The transmission range in cellular networks is about 10 to 15 km. By deploying more base 
stations, the coverage of cellular network is close to 100% coverage along Norwegian coasts, 
i.e., nearly all the offshore areas where leisure boats usually sail are under the coverage of 
cellular networks. 
 
The data rate of cellular network is quite high. Take 3G networks for example, the theoretical 
maximum data rate is 384 kbps while moving. And under practical situation, the data rate is 
normally higher than 200 kbps. In an LTE network, the data rate is even much higher. 
 
Since it is easy for us to get access to the Internet via cellular network and the data rate and 
coverage meet the requirements of data transmission, the cellular network can be 
considered as the most popular Internet access mode. 

2.3 Web Service 
Web-Service is a standard-based system that makes applications to communicate with an 
API, which transmits formatted requests from other remote machines through different 
transport protocols. 
 
Generally, Web service has following characters: 

• Communication over network 

• Communication among multiple applications 

• Interoperability between disparate systems 

• Enables loosely coupled design 

• Open protocol is used for establishing communication 

• Exposed interface is platform independent 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 15 of 64 

 

In our case, we used Restful Web service [5] as application for collect and check real-time 
data from embedded system. 
 
Restful Web service: Representational State Transfer (REST) is an architecture style 
described by a researcher named Roy Fielding. In Restful service, once its functionality is 
enabled, service expose resources as a URI and clients can access the resources and 
invoke them by four HTTP verbs, which are GET, PUT, POST and DELETE, respectively. 
 
Restful architectures have following basic principles: 

• All resources use four HTTP verbs 

• The Restful service is stateless 

• The protocol is cacheable 

• By standard URIs, resources are addressable and can be used as hypermedia links 

• It is layered system 

• Uniform interface 

RESTful Web service allows that resources have different representations, such as JSON, 
TXT and XML. The RESTful client can send request for specific representations via the 
HTTP protocols. 

2.4 Secure Shell 
Nowadays, more and more people have multiple computers, such as working laptop in office 
and stationary desktop at home. Thus it would be much more convenient if people can make 
connections between these computers. For instance, you might want to execute commands 
in your remote computer, or transfer files between machines over network. There is variety of 
protocols for these functions. For example, Telnet for remote login, RCP and FTP for file 
transfer. 
 
However, these protocols basically meet an inevitable problem, which is the security risk. 
When you transmit any important files through ftp, a potential intruder can intercept and 
obtain the data. Moreover, if you use telnet to access another machine and remotely execute 
an application, your username and password can be intercepted during the transmission. 
 
To improve security, SSH, the secure shell was standarized by IETF, which is a popular, 
software-based approach [6]. Whenever the data transport through the network, SSH 
automatically encrypts it. After the data reached its destination, SSH automatically decrypts it. 
Although it has encryption and decryption during the transmission, the users can work 
normally and locally regardless of the process of transmission. In addition, SSH uses secure 
and modern encryption algorithms to provide enough protection during transmission. 

2.5 Netcat 
Netcat is a network debugging tool, which helps in reading and writing data cross network 
connections. In Netcat, it uses TCP/UDP for its functionality working across the networks. In 
addition, it is configurable and can be driven by scripts. There are a lot of inbuilt commands 
that can add different features to the utility.  
 



Marine Data Collection and Transmission  

 
 
Page 16 of 64 
 
 

 
1.0 

 

The following figure shows the description of various command parameters when Netcat is 
working: 
 

 
Figure 2 Description of command parameters in Netcat 

In our project, it acts as a port listener that keeps listening to a specific port to check whether 
there is an in-coming connection request. Once the client side creates an active TCP 
connection to the host on the specified port, we will get a prompt on the server side and can 
successfully control client afterwards. 

2.6 MySQL 
MySQL is a relational database management system that can helps us to create a database 
with tables, columns and indexes. It can be used to store, sort, manage and display data 
content, which is reliable, fast, easy to use and suitable for application of any size. 
 
The following features show the advantages of MySQL database: 

• MySQL has an open source license, therefore it is no cost for the users. 

• MySQL uses a uniform standard SQL data language 

• MySQL has fast working performance and also works well with large data sets. 

• MySQL widely opens interface to PHP, which contributes a lot in Web service 
development 

• MySQL runs on more than 20 operation systems 
Because of its reliability and consistent fast performance, it becomes the most popular open 
source database and a new choice for the LAMP stack applications (Linux, Apache, MySQL 
and PHP). 

2.7 Secure Sockets Layer 
The SSL, Secure Sockets Layer protocol is originally developed by Netscape to provide 
protection for the Web browser. After 20 years development, it has become the most 
accepted Web security standard. The main role of SSL is manage authentication and 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 17 of 64 

 

encrypted communication for Web traffic. It provides the security in terms of message 
integrity, authentication and confidentiality [7]. 

• Confidentiality, by encrypting the data message, only application endpoints 
understand the data 

• Integrity, where the protocol will detects if any data was changed or loss during the 
transmission 

• Authentication, which validate the identity of endpoint users or applications. 
SSL achieves above security features through the use of digital signatures, certificates and 
cryptography. 

2.8 Advanced Encryption Standard 
Advanced Encryption Standard (AES) is an encryption algorithm to process the data block by 
using a single as a part of the encryption process. The size of key can be 128 bits, 192 bits 
or 256 bits. In AES, both encryption and decryption procedure are performed using the same 
key. 
 
There are 6 different ways to use symmetric key in AES encryption method, which are 
named Modes of Operation. The following list shows different modes of operation that can be 
used in AES encryption [8]. 

• Counter (CTR) 

• Cipher block chaining (CBC) 

• Counter (CTR) 

• Cipher feedback (CFB) 

• Output feedback (OFB) 

• Galois/Counter Mode (GCM) 
By these modes, AES provides strong encryption mechanism and thus it is widely used in 
the field of data encryption. 
 
In the next chapter, we will introduce the requirements to the data collection and 
transmission system and the structure of the system. 



Marine Data Collection and Transmission  

 
 
Page 18 of 64 
 
 

 
1.0 

 

3 Requirements and System Design 
In this chapter, we will introduce the requirement and design goal then present the overview 
of system architecture. 

3.1 Requirements 
As the main goal of this project is to develop a system used to collect, filter and store the 
data of marine sensors as well as to transmit data to a remote server from which people can 
obtain the data for analysis. The system should fulfill the following functional requirements. 
 
Basic functionalities: 

1. Data collection: to collect NMEA 2000 messages from CAN Bus network and 
translated the binary raw message in to the format which is human readable. 

2. Data filtering: to filter data by predefined criteria. 

3. Data storage: the filtered data should be properly stored and managed. 

4. Data transmission: to transmit data from the embedded system to the server. 

5. Data publishing: to publish the data on the Internet, users can access the appointed 
web page for the data. 

For data transmission, there are two different working modes: real-time data transmission 
and historical data transmission. The former occurs immediately after the data collection and 
filtering while the latter is performed after the startup of Ubuntu. 

Advanced features: 

1. Data security: to encrypt the data in MySQL. 

2. Transmission security: to encrypt the data in transmission. 

3. Local control: to access and control the embedded system by using SSH. 

4. Reverse control: to enable the remote server to obtain the control on the embedded 
system. 

Basic functionalities are the needs for implementing basic operation of the system, and the 
advanced features are the improvements on security, local and remote control. The 
requirements on them are the main goals of our design, which will be introduced in detail in 
the next two chapters. In the following section, we will present the architecture of the system. 

3.2 System Architecture 
The system consists of two physical entities, one is embedded data collection system and 
the other is the remote server. They together form a total solution for collecting data from 
marine electronics on boats and publishing the data online. 

http://dict.cn/system%20architecture


Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 19 of 64 

 

3.2.1 Local component 
The local component indicates the embedded system. As shown in Figure 3, the embedded 
system collects data from CAN Bus and then filter it. The filtered data will be stored in the 
local database. Meanwhile, if the embedded system and remote server are both online, the 
data will also be transmitted to the remote server and stored in the server’s database. 
 

 
Figure 3 System architecture 

3.2.2 Remote component 
The remote component refers to the server which stores the data transmitted from the 
embedded system and publishes it online through Web service. 
 
In the following sections, these two components will be described respectively. 

3.3 Embedded System 
The embedded system consists of both hardware and the software installed on it. In the 
following subsections, we will introduce them respectively. 

3.3.1 Hardware 
In the initial stage, two development boards are tested as the hardware platform of our data 
collection system as shown in Figure 4. One is BeagleBoard-xM and the other is 
PandaBoard ES. Both of them have good enough performance for running the Linux-based 
system. 
 
However, as there is no integrated wireless adaptor on the BeagleBoard-xM, so we have to 
add a USB adapter to it. We have tried Belkin N150 micro wireless USB adapter and Edimax 
EW-7811Un Nano USB adapter, both are powered by Realtek’s WLAN chip. During the test, 
it is found that the USB adapters are not well supported by Ubuntu. When transmitting the 
data, the embedded system disconnects from the network frequently and the connection 
cannot recover automatically unless rebooting the BeagleBoard-xM or re-plug the USB 



Marine Data Collection and Transmission  

 
 
Page 20 of 64 
 
 

 
1.0 

 

adapter. We check this problem on Internet and find that it is very common among Ubuntu 
users. It also happens to other wireless USB adapters. 
 
After reinstalling the drivers and manually configuring the wireless network, the problem 
remains. Since the stability of wireless network is important for data transmission, we have to 
abandon it and look for a new platform. 

 
Figure 4 BeagleBoard-xM and PandaBoard ES 

PandaBoard ES is a high-performance single-board computer with an on-board wireless 
adapter which supports IEEE 802.11 b/g/n standards. The processor is the dual-core ARM-
based OMAP4460, operating frequency of which is up to 1.2 GHz. For more technical 
specifications, please refer to Table 1. 

Table 1  Technical specifications of PandaBoard ES 

Processor 
OMAP4460 
1.2 GHz dual-core ARM Cortex-A9 MPCore 
with SGX540 384 MHz Graphics Core 

Memory 1 GB low power DDR2 RAM 
Extension Memory Full size SD/MMC card 

Display HDMI v1.3 connector 
DVI-D connector 

USB Ports 2x USB 2.0 High-Speed host ports 
1x USB 2.0 High-Speed On-the-go port 

Connectivity On-board 10/100 Ethernet (with RJ45 interface) 
Wireless 
Connectivity On-board wireless adapter (compatible with IEEE 802.11 b/g/n) 

Length 114.3 mm 
Width 101.6 mm 
Weight 81.5 g 

 
With the help of on-board wireless adapter, the wireless connection between PandaBoard 
ES and the wireless access point is stable. Even when disconnecting from the network, the 
on-board wireless adapter can automatically re-establish the wireless connection if the 
access point remains. 
 
Due to the high performance, small size and low power consumption, the PandaBoard ES is 
adopted as the hardware platform for the embedded system. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 21 of 64 

 

3.3.2 Software 
The software to be installed on PandaBoard ES includes the operating system, database, 
FTP client and the data collection software developed by us. 

Operating system 
We choose Ubuntu as our operating system as it is a popular Linux-based system. After 
installing different version on PandaBoard ES and BeagleBoard-xM, we find that only Ubuntu 
12.04 LTS (desktop version for OMAP board) is available on them. The image of install CD 
can be found on the official website of Ubuntu [9]. There are two versions for OMAP3 and 
OMAP4 respectively. According to the model of processor, we choose OMAP4 version for 
PandaBoard ES. 

Database 
We adopt MySQL (version 5.5.22 for Ubuntu) to store and manage the data on the 
embedded system. Hereinafter, the database installed on the PandaBoard ES is called local 
database while the one on the remote server is called remote database. 
 
In Ubuntu system, MySQL can be downloaded in the Software Center. After installing it on 
PandaBoard ES, we need to log in the database and create a device list table by typing the 
following command before perform the data storage. 

CREATE TABLE device(id INT NOT NULL AUTO_INCREMENT UNIQUE KEY, deviceid INT UNSIGNED); 

The data collection system will record the IDs assigned to the sensors in the NMEA 2000 
network in this table. According to this table, the data collection system can detect new 
devices in the network and create new tables for storing the data generated by them. 

FTP client 
We use FTP tool to transfer the data stored on the PandaBoard ES to the remote server. 
Since the data contains no real-time information, it is hereinafter called historical data. 
 
In this project, we use LFTP for historical data transmission. Because it is a command-line 
FTP client, by shell scripting, we can have automatic data uploading which will be introduced 
in Section 4.5. 

Data collection software 
We develop this data collection software in C by referring to part of an open source program 
called CANboat [10]. The files we refer to are actisense-serial and analyzer. The actisense-
serial is used for retrieving the raw NMEA 2000 messages from the Actisense NGT-1 
gateway while the analyzer is used for translating the raw data to human-readable formats. 
 
All the message formats are defined in NMEA 2000 Appendix B – PGN (NMEA Network 
Messages) Database [11]. We have purchased NMEA 2000 Appendix B in order to use it for 
data translation. 
 
We also add new features to analyzer. One is data filtering, which helps users to concentrate 
on the data of interest and reduce the traffic of unnecessary data transmission. Furthermore, 
by invoking the MySQL API for C, the filtered data will be store in the local database. 
Meanwhile, if the embedded system and remote server are both online, the data will also be 
transmitted to the remote server and stored in server’s database. Since the data is 
transmitted right after being received, it is hereinafter called real-time data. 
 



Marine Data Collection and Transmission  

 
 
Page 22 of 64 
 
 

 
1.0 

 

All functionalities of the software will be described in details in Chapter 4 as well as the 
usages. 

PHP 
Since we need to run a PHP script to establish the connection with the remote server for 
reverse control, we have to install the PHP developing environment beforehand by using the 
command  

sudo apt-get install php5 libapache2-mod-php5 php5-cli php-pear php5-mysql php5-pgsql 

3.4 Remote Server 
In order to collect real-time data and monitor it in any place with Internet access, we must 
configure a full-function remote server that can deal with these tasks. We will elaborate our 
configuration of server in terms of hardware and software. 

3.4.1 Hardware 
In thesis, we use our own laptop as a server. The laptop is powered by an Intel Core i5 
processor, and with4GB 1333 MHz RAM and 500GB storage, which support all the software 
we need and work smoothly. 

3.4.2 Software 
On the remote server, we need to install the following software and applications. 

Operating system 
The default operating system on the laptop is Windows 7 Professional (64-bit). 

Web service developing environment 
In order to provide Web service, we install the latest Netbeans version 7.3 on the laptop as 
development environment. In our thesis, Java is used as our main developing language for 
Web service establishment. 
 
From Java EE 6 and Java EE 5, Web service standards are supported by Netbeans. We use 
GlassFish open source edition as our server to make service access available from external 
Internet. Since RESTful service is stateless for server and have a simple architecture 
between client and server, we decide to use it as our Web service style. Moreover, Netbeans 
IDE assists us to create RESTful Web services directly from MySQL, thus this functionality 
helps us to wrap entity beans and provide easy CRUD (create, read, update and delete) 
operation. Figure 5 shows the different architecture types for RESTful Web service in 
Netbeans. 

 
Figure 5 Types of RESTful Web service in Netbeans 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 23 of 64 

 

Database 
Similar to the embedded system, MySQL (version 5.5.31 for Windows 7) is installed on the 
remote server for receiving and storing the data transmitted from the embedded system. 
 
Since the default setting of access control in MySQL only allow the access from local IP 
address 127.0.0.1, we need to make the database can be accessed from any IP address. By 
using the following commands after log in MySQL: 

using mysql; 

update user set host = ‘%’ where user = ‘root’ and host = ‘localhost’ 

flush privileges; 

Netcat installation for reverse control 
Besides the function of Web service, the reverse control on the embedded system needs to 
be performed on the remote server. For reverse control, we installed Netcat as a role of 
scanner and listener on the server side. 

FTP server 
For historical data transmission, we need to install a FTP server on the remote server. In our 
case, Serv-U (version 14.0.0.6) is adopted for providing FTP service. 
 
In this chapter, we have presented the requirements and architecture of the system. And the 
requirements are divided into two parts: basic functionalities and advanced features, which 
will be introduced in Chapter 4 and 5 respectively. 



Marine Data Collection and Transmission  

 
 
Page 24 of 64 
 
 

 
1.0 

 

4 Implementation of Basic Functionalities 
The basic functionalities meet the design requirements mentioned in Section 3.1, which 
includes: 

1. Data collection: to collect NMEA 2000 messages from CAN Bus network and 
translated the binary raw message in to the format which is human readable. 

2. Data filtering: to filter data by predefined criteria. 

3. Data storage: the filtered data should be properly stored and managed. 

4. Data transmission: to transmit data from the embedded system to the server. It 
consists of two parts: real-time data transmission and historical data transmission. 

5. Data publishing: to publish the data on the Internet, users can access the appointed 
web page for the data. 

Function 1, 2, 3 and real-time data transmission are implemented by programming in C using 
MySQL API for C. For the implementation of historical data transmission, Linux shell scripting 
is used with LFTP. And the data publishing on the remote server is implemented by using 
RESTful Web service architecture with MySQL. 
 
With these functionalities, the embedded system and the server constitute an integral system 
which provides data collection and transmission service. 

4.1 Data Collection 
As mentioned above, using the program CANboat [10], we are able to collect data from CAN 
Bus. Before performing data collection, we need to install the NGT-1 gateway on 
PandaBoard ES. Refer to Appendix B for the installation guide. Then input the following 
command in the terminal to display the collected messages. 

actisense-serial /dev/ttyUSB0 | analyzer 

The actisense-serial reads the raw data from the ttyUSB0 (NGT-1 gateway) and output it to 
the standard output stream. If we use actisense-serial alone, the raw data will be displayed in 
the terminal. When used with analyzer, the output of actisense-serial will become the input of 
analyzer and the raw data will be translated into human-readable message. 
 

 
Figure 6 Translate raw data to human-readable message 

As shown in Figure 6, the raw data mainly consist of a group of 8-bit binary data which can 
be translated according to the definitions in NMEA 2000 Appendix B [11]. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 25 of 64 

 

4.2 Data Filtering 
The first functionality we add to the system is data filtering. Because there could be different 
types of sensors in an NMEA 2000 network while every sensor sends multiple types of 
messages, there will be abundant of messages generated and transmitted in a short period 
of time. Data bursts onto the screen and updates at a high frequency, which leads to high 
data traffic and it is impossible for human eye to catch the information. Furthermore, we 
sometimes want only to store the data in which we are interested. Therefore, data filtering is 
a necessary feature for our system. 
 
We develop the system in the way that data can be filtered according to different criteria set 
by users. In Table 2, we can see that there are criteria apply to different scenarios. 

Table 2  Filtering criteria and application scenarios 

Criteria Application Scenario 
Filtering by device ID of desired or undesired device is known 
Filtering by type of message PGN of designed message type is known 
Filtering by message update interval Message update frequency needs to be set 

 
The filtering criteria can be adopted individually or concurrently. If multiple criteria are 
designated simultaneously, they will be performed according to the priority illustrated in 
Figure 7. 

 
Figure 7 Priority of filtering criteria 

For the instructions on using the criteria, Please refer to the following subsections. 

4.2.1 Filtering by device 
Every device in an NMEA 2000 network will be assigned with a unique 8-bit device ID [12], 
which is an integer ranges from 0 to 254 (255 is broadcast ID). And when a message is 
transmitted, the device ID of the transmitter is included in the message. Thus the messages 



Marine Data Collection and Transmission  

 
 
Page 26 of 64 
 
 

 
1.0 

 

from different devices can be distinguished according to the transmitters’ IDs. We define two 
different filtering rules for filtering by device. 

Specified device 
Rule 1 is used to retrieve data only from the specified device. Refer to Table 3 for the usage. 

Table 3  Rule 1: Specified device 

Purpose To extract the messages from a specified device 
Usage actisense-serial /dev/ttyUSB0 | analyzer –src <Device ID> 

 
For instance, this rule applies to the scenario that only GPS information are needed, and the 
device ID of GPS receiver is known (ID is 32), the following steps should be performed: 

Step 1: Open the terminal and go to the directory of actisense-serial and analyzer. 

Step 2: Type the following command: 

./actisense-serial -r /dev/ttyUSB0 | ./analyzer -src 32 
By specifying the device ID 32, all the messages from the GPS receiver will be captured and 
displayed on the screen as shown in Figure 8. 
 

 
Figure 8 Messages from specified device 

Blacklist 
Rule 2 is used to discard the data from the device(s) listed in the blacklist, the remaining of 
the data will be captured and displayed. 

Table 4  Rule 2: Blacklist 

Purpose To extract the messages from devices which are not in the blacklist 

Usage actisense-serial /dev/ttyUSB0 | analyzer –nsrc <Device ID1>< Device ID2 
(optional)>… 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 27 of 64 

 

Take our testbed for example, there are four devices connected by a CAN bus: a DST110 
Triducer (ID is 112), a GPS receiver (ID is 32), a TLM100 tank level monitor (ID is 35) and an 
Actisense NGT-1 USB Gateway (ID is 0). In this NMEA 2000 network, if users are only 
interested in the messages from the tank level monitor and Actisense NGT-1 USB Gateway. 
Then the following command should be used for collecting data only from these two devices. 

./actisense-serial -r /dev/ttyUSB0 | ./analyzer -nsrc 32 112 
By listing all the unwanted devices in the blacklist, the messages sent by the GPS receiver 
and DST110 Triducer will be discarded. On contrary, the messages from the tank level 
monitor and NGT-1 Gateway, which are not in the list, are retrieved and displayed on the 
screen as shown in Figure 9. 
 

 
Figure 9 Messages from devices not in the blacklist 

Please note that multiple devices can be put into the blacklist while only one can be selected 
as the specified device. And if a device is designated as the specified device while it is in the 
blacklist, then the messages from this device will be filtered out since Rule 2 has higher 
priority than Rule 1 as shown in Figure 7. 

4.2.2 Filtering by type of message 
The messages transmitted in the NMEA 2000 network are organized into parameter groups 
that are identified by Parameter Group Number (PGN), i.e., the PGN identifies the types of 
messages. Thus we can differentiate messages according to their PGNs. 

Table 5  Filtering by PGN 

Purpose To extract a specified type of messages 
Usage actisense-serial /dev/ttyUSB0 | analyzer <PGN> 

Take the TLM100 tank level monitor as example. It generates six types of messages and 
each one has a PGN. One of them contains the information of fuel level. When users are 
only interested in this type of information, the following command can be used for obtaining 
the specified type of messages (PGN is 127505). The parameter and argument –itv 5 will be 
explained in the next subsection. 

./actisense-serial -r /dev/ttyUSB0 | ./analyzer 127505 –itv 5 
The output is shown in Figure 10. 



Marine Data Collection and Transmission  

 
 
Page 28 of 64 
 
 

 
1.0 

 

 
Figure 10 Messages with a specified PGN 

For another example, a TLM100 (device ID is 112) is installed in the main tank and another 
one (device id is 113) in the auxiliary tank respectively, if users only care about the fuel level 
in the main tank, the following command can be used: 

./actisense-serial -r /dev/ttyUSB0 | ./analyser –src 112 127505 

Only the fluid level messages from the main tank will be displayed. It is also an example of 
data filtering under multiple criteria. The software can automatically distinguish PGNs from 
Device IDs, because the Device ID ranges from 0 to 254 while PGNs are all greater than 256. 

4.2.3 Filtering by message update interval 
Message update interval is the time interval between two messages which are of the same 
type and from the same sender. As mentioned in Section 4.2, it is conventional that marine 
electronics generate messages at a high frequency. Thus a large number of messages need 
to be stored or transmitted. If users want to reduce the memory consumption or the 
transmission data traffic, the command in Table 6 will be useful. 

Table 6  Filtering by update interval 

Purpose To change the update frequency of messages 
Usage actisense-serial /dev/ttyUSB0 | analyzer –itv <Update Interval (0-59)> 

 
The message update interval can be set in the range from 0 to 59 (in seconds). Set 0 for 
storing and displaying all the messages. If another value n is set, message will be updated 
only once during each update interval (which is equal or larger than n seconds). For example, 
as shown in Figure 10, the messages updates every 5 seconds. If we set the interval to 10 
second, within the same duration, the output data will be half-sized. 

4.3 Data Storage 
After being filtered, the data will be sorted by device and stored in the local MySQL database. 
If the data is from a new device, the system will create a new table automatically and then 
insert the data into it. 
 

 
Figure 11 Table structure in local database 

 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 29 of 64 

 

All the tables for storing data are named by the ID assigned to devices in NMEA 2000 
network, e.g., the data generated by GPS receiver (ID is 32) will be put into the table src32 
while the information of engine (ID is 17) will be stored in table src17. These tables have an 
identical structure which is shown in Figure 11. 
The definitions of the parameters in table are as follows: 

• id: a serial number for each message in table; 

• date: the date on which the message is received; 

• time: the time when the message is received; 

• src: ID of the device by which the message is generated; 

• dst: ID of the device to which the message is sent. 255 is the broadcast ID; 

• prio: priority of the message; 

• pgn: PGN of the message which defines the message type; 

• data: content of the message. 

Except the message serial number, all the other parameters are intercepted from messages. 
It is useful for the user who searches for specified messages. 

4.4 Data Transmission 
In order to publish the data online, the data collected by the embedded system needs to be 
transmitted to the remote server. According to the timeliness of data, we have two data 
transmission modes. 

 
Figure 12 Two modes for data transmission 



Marine Data Collection and Transmission  

 
 
Page 30 of 64 
 
 

 
1.0 

 

As shown in Figure 12, the collected data will be immediately transmitted to the remote 
server and simultaneously stored in the local database on the embedded system. The data in 
local database is called historical data and the one transmitted in real time is called real-time 
data. 

4.4.1 Real-time data transmission 
The real-time data transmission starts together with data collection. And it is implemented by 
establishing TCP/IP connectivity between the embedded system and remote MySQL 
database. 
 
The source code for real-time transmission in analyser.c is as follows. 
 

1 MYSQL re_connection; 
2 int res; 
3 mysql_init(&re_connection); 
4 if (mysql_real_connect(&re_connection, <IP of remote database>, <username>, <password>, 

<name of database>, 0, NULL, CLIENT_FOUND_ROWS)) 
5 { 
6   char sql_insert_re[8400]; 
7   sprintf(sql_insert_re, "INSERT INTO b_001 values(NULL, '%s', '%s', '%s', %u, %u, %u, %u, 

'%s');",<boatname>, strdate, strtime, prio_sql, src_sql, dst_sql, pgn_sql, mbuf); 
8   res = mysql_query(&re_connection, sql_insert_re); 
9   if (res) 

10   { 
11     printf("Fail to write to REMOTE database\n"); 
12   } 
13 } 
14 else 
15 { 
16   printf("Fail to connect to REMOTE database\n"); 
17 } 
18 mysql_close(&re_connection); 

 
Each filtered message will be passed to the function with above codes for real-time 
transmission. The first line of the codes defines a MySQL connection, and then it is initialized 
in Line 3. In line 4, function mysql_real_connect() is used to establish the connect to the 
remote database with correct IP of remote database, username, password and database 
name. The 7th line is for insert the message to the remote database according the data 
structure. After transmitting the message, use mysql_close() to close the connection. The 
process will repeat when another message is passed to the function. 
 
If no available connection between the embedded system and remote server, after a few 
seconds, the operation will be time-out and return an error message -- Fail to connect to 
REMOTE database. However, the message will still be stored into the local database and 
then the system will begin to process the next message. 

4.4.2 Historical data transmission 
The messages in the local database contain the past information of boats, and are uploaded 
to the server through FTP transmission. Although the historical data contains no real-time 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 31 of 64 

 

information, it includes complete information on the running state of boats which holds value 
to boat manufacturers and owners for data analysis. 
 
In order to simplify the operation of FTP uploading, we develop the following shell script 
upload.sh. 
 

1 #!bin/bash 
2 mysqldump –u<MySQL username> -p<MySQL password> b_001 > <directory of exported 

data>/b_001-$(date +%y%m%d).sql 
3 lftp -e "set net:timeout 10;set net:max-retries 3" <<EOF 
4 open <IP of FTP server>:<port no> 
5 user <FTP username> <FTP password> 
6 put <directory of exported data>/b_001-$(date +%y%m%d).sql 
7 bye 
8 EOF 
9 rm <directory of exported data>/b_001-$(date +%y%m%d).sql 

10 rm <directory of exported data>/b_001-$(date +%y%m%d -d "1 day ago").sql 
 
The first line defines the script compiler. The second one is used to export the data from 
MySQL and save it as an sql file under the appointed directory. Line 3 is used to set the 
timeout and retry limit for connecting to FTP server in avoiding infinity reconnection. Line 4, 5 
and 6 are for logging in FTP server login and transferring the file of exported data. Finally, 
the last two lines are used for deleting the files created on the day and the day before. 
 
With the shell script, we still need to type the following command manually in the terminal to 
start the operation. 

cd <directory of upload.sh> 

sh upload.sh 

In order to make the embedded system self-running, we find a solution which will be 
described in the next section. 

4.5 Automatic Operation of Data Collection and Transmission 
For setting up automatic operation, refer to the instructions bellow. 

Step 1: Create a shell script data.sh for running the data collection system on 
PandaBoard ES. 

 

1 #!bin/bash 
2 cd <directory of actisense-serial and analyzer> 
3 ./actisense-serial /dev/ttyUSB0 | ./analyzer -itv 30 

 

Step 2: Click the system button on the top right corner and select Startup Applications 
as shown in Figure 13. 



Marine Data Collection and Transmission  

 
 
Page 32 of 64 
 
 

 
1.0 

 

 
Figure 13 Configuration of startup applications 

Step 3: Click Add button, then input the name and command for adding data.sh. 

 

Figure 14 Add startup program 

The command should be in the following format: 
sh <path name to the script> 

Step 4: Repeat Step 3 to add upload.sh to startup programs. 

 

Figure 15 List of startup programs 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 33 of 64 

 

Now, after system startup, the data collection and real-time transmission will be started and 
keep running in background. Meanwhile, historical data will be exported from database and 
uploaded to the FTP server. The process will be terminated when either the exported data is 
successfully transmitted or connecting requests exceed the limit. 

4.6 Data Browsing 
Since data is already filtered and transmitted by embedded system, users need to check it 
both from the server and external Internet. For boat administrative staff, browsing the data on 
the server can help them know whether data is successfully transmitted to the server and 
check the boat’s current state. For the people who only have the Internet connection but 
want to browse the data, they can directly access the Web-service. It displays all the 
sensors’ parameters which are exactly same as it in the server side. 
 
4.6.1 Data browsing on the embedded system 
For the boat owners, it is easy to log in the local database and view the data by using 
following MySQL commands on the embedded system. 

Step 1: Open the Ubuntu terminal and type: 

mysql –u<username> -p<password> 

Step 2: Choose the database in which the data is stored. 

use <database name>; 

Step 3: There could be multiple tables in the selected database. Show all tables by 
typing: 

show tables; 

Step 4: View the data in a dedicated table. 

Select * from <table name>; 

4.6.2 Data browsing on the remote server 
As we mentioned in data storage part, the real-time data is stored both in local embedded 
system and remote server. In our thesis, we have designed two approaches to view data in 
server side: by using MySQL command application or viewing it from Netbeans IDE. 

Viewing data though MySQL command line client 
Firstly, we launch the MySQL command line client and type the enter password to access. 
Using the ecoboat database, then type the command show tables. As shown in Figure 16, it 
displays all the current tables in our ecoboat database. 
 
By using the following command, we can see table structure in Figure 16. 

describe b_001; 



Marine Data Collection and Transmission  

 
 
Page 34 of 64 
 
 

 
1.0 

 

 
Figure 16 Table structure on remote server 

In order to view the real-time data in this table, we need to enter the command: 
select * from b_001; 

Then all the collected data in client will be displayed as illustrated in Figure 17. 
 

 
Figure 17 Viewing data on remote server 

Viewing data though Netbeans IDE 
Another approach to see data on the server side is to use our Netbeans IDE since the IDE 
has integrated and synchronized the MySQL database. It is a user-friendly graphic interface 
so that the data structure and contents will be showed more clearly in it. 
 
As shown in Figure 18, by opening the Netbeans and choosing Database in the left bar, to 
launch java database driver ecoboat and choose the Tables under the ecoboat directory. 
There are 2 tables in the list: b_001 and src32, right click on b_001 and view data, we can 
observe that all the data that will be display in the IDE. 
 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 35 of 64 

 

 
Figure 18 Viewing data in Netbeans 

4.6.3 Data browsing from external Internet connection 
For the users who are away from administration office or the server, but still want to view the 
data through the Internet, they can access our Web service, which is designed for external 
users to browse the data at any time and location. 
 
In order to publish the Web service, we install the Netbeans 7.3 IDE and make several trials 
under Java developing environment. Here are our steps to publish the RESTful Web service: 
 
Firstly, we create a MySQL table class, which defines the different sensors’ parameters such 
as id, boatname, date, pgn and src. 
 
Then we can invoke these parameters to see the data by the command NamedQueries. For 
example, @NamedQuery(name = "B001.findById", query = "SELECT b FROM B001 b 
WHERE b.id = :id"). 
 
Next, we compile table b_001 into RESTful Web service class. By using 4 operations (GET, 
POST, PUT, DELETE), we can easily invoke the specific parameter and view its content. 
Here we choose three main episodes in my codes to explain how the RESTful service works 
with MySQL database. 
 

@Stateless 
@Path("boattest.b001") 
public class B001FacadeREST extends AbstractFacade<B001> { 

@PersistenceContext(unitName = "boattestPU") 
private EntityManager em; 

public B001FacadeREST() { 
super(B001.class); 

} 
 
This segment of codes illustrates that class B001FacadeREST is defined to have the same 
method as table class B001 and makes the class B001FacadeREST to be stateless. 
 



Marine Data Collection and Transmission  

 
 
Page 36 of 64 
 
 

 
1.0 

 

@POST 
@Override 
@Consumes({"application/xml", "application/json"}) 

public void create(B001 entity) { 
super.create(entity); 

} 
 
The segment of codes above shows that a selection function is added into class, which we 
can decide the type of data content in RESTful Web service. In our case, there are two types 
of format: xml and json. 
 

@GET 
@Path("count") 
@Produces("text/plain") 

public String countREST() { 
return String.valueOf(super.count()); 

} 
 
The last segment of codes is invoking the GET operation to count the total number of data in 
our database. 
 
After the RESTful Web service class setup, we need to design our Web service interface. It 
is a web-page that the clients can access from external Internet and choose which data they 
want to view. Because of the time limitation, we used the Netbeans default RESTful web-
page in our thesis. As shown in Figure 19, it has 3 functions: select a single id to view, select 
a range of id to view and count the total number of data. 
 

 
Figure 19 Functions of Web service 

 

Once we want to check a specific data, for example the data content of id 38. We can use 
the {id} function: to type 38 in id blank, then click Test. It shows entire information of id 38, as 
shown in Figure 20. 
 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 37 of 64 

 

 
Figure 20 Inquery for single message 

The {from}/{to} function in middle of left bar has the similar viewing ability as the previous {id} 
function, but it can display all the ids’ content in a range. Figure 21 shows that we choose the 
id range from 10 to 12 and all the data in this range will be displayed. 
 

 
Figure 21 Inquery for multiple messages 

The last function is to count the total number of data. We can observe that we have 2654 
lines of data in current database as shown in Figure 22. 
 



Marine Data Collection and Transmission  

 
 
Page 38 of 64 
 
 

 
1.0 

 

 
Figure 22 Message count 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 39 of 64 

 

5 Implementation of Advanced Features 
Comparing with the basic functionalities introduced in the previous chapter, advanced 
features are not obligatory for the system but the improvement on information security and 
remote control. As mentioned in Section 3.1, the advanced features of the data collection 
and transmission system include: 

1. Data security: to encrypt the data in MySQL. 

2. Transmission security: to encrypt the data in transmission. 

3. Local control: to access and control the embedded system by using SSH. 

4. Reverse control: to enable the remote server to control the embedded system. 
Function 1 is implemented by using the AES encryption and decryption provided by MySQL. 
Using the SSL encryption on FTP and MySQL, we can implement transmission security. 
Local control is based on SSH while reverse control is implemented by using port listening. 

5.1 Data Security 
As the database may be hacked, some privacy information may be exposed, e.g., the current 
location of the boat. For this reason, data encryption needs to be introduced to the system. 
 
MySQL supports data encryption and decrytion based on AES, which is a standard for the 
encryption of electronic data. AES is a reliable solotion for data security and has been widely 
adopted. 
 

 
Figure 23 AES encryption and decryption in MySQL 



Marine Data Collection and Transmission  

 
 
Page 40 of 64 
 
 

 
1.0 

 

As shown in Figure 23, when storing the data into MySQL, we can use aes_encrypt() to 
encrypt the message string (AES_ENCRYPT_TEST) with a key string (KEY). Then the 
unreadable encrypted data will be stored in the table. If anyone wants to decrypt the data, he 
must have the key. 
 
By implementing AES encryption, the data stored in MySQL is secured as only the key 
holders can decrypt it. 

5.2 Transmission Security 
During the transmission on the Internet, data may be intercepted by hackers. Thus 
establishing a secure connection between the embedded system and remote server 
becomes a requirement. 
 
As we have two different connection modes, the introductions will be given respectively. 

5.2.1 Secure connection for MySQL 
MySQL supports SSL connections between server and client. The following steps should be 
performed. 

Step 1: Create SSL files, including Certificate Authority (CA) certificate, certificates and 
key files for MySQL server and client. 

Step 2: Move CA certificate, server certificate and server key files to the server side. 

Step 3: Move CA certificate, client certificate and client key files to the client side. 

Step 4: Enable SSL connection on both server and client. 

Step 5: Start server and client with their SSL files respectively. 
For more details, please refer to the reference manual on the official website for MySQL [13]. 
 
After finishing the above operations, we also need to modify the source code in analyzer.c. 
Before calling mysql_real_connect(), use the mysql_ssl_set() function to specify the path to 
the certificate and key files for the client side. 
 

1 MYSQL re_connection; 
2 int res; 
3 mysql_init(&re_connection); 
4 mysql_ssl_set(&re_connection, <path name to the key file of client>, <path name to the 

certificate file of client>, <path name to the CA file>, NULL, NULL); 
5 if (mysql_real_connect(&re_connection, <IP of remote database>, <username>, <password>, 

<name of database>, 0, NULL, CLIENT_FOUND_ROWS)) 
 … 

 

5.2.2 Secure connection for FTP 
Serv-U and LFTP support SSL connections as well. Similar to the MySQL SSL connection, 
FTP SSL connection requires the following operation. 

Step 1: Create SSL files, including CA certificate, certificates and key files for FTP 
server and client. 

http://dev.mysql.com/doc/refman/5.5/en/mysql-ssl-set.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-ssl-set.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-ssl-set.html


Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 41 of 64 

 

Step 2: Move CA certificate, server certificate and server key files to the server side. 

Step 3: Move CA certificate, client certificate and client key files to the client side. 

Step 4: Configure Serv-U to enable SSL connection. Refer to the website of Serv-U for 
details [14]. 

Step 5: Configure LFTP to enable SSL connection by typing the following commands in 
terminal. 

lftp 
set ftp:ssl-force true 
set ftp:ssl-protect-data true 
set ssl:verify-certificate no 
set ssl:ca-file < path name to the CA file> 
set ssl:key-file <path name to the client key file> 
set ssl:cert-file <path name to the client certificate file> 

 
By now, all the transmission between the embedded system and remote server has been 
secured by SSL encryption. 
 
As illustrated in Figure 24, with the encryption on both data and transmission, the data is 
always under the protection. Only the key holders, which could be either human or 
applications) can decrypt the data. 

 
Figure 24 Encrypted data and transmission 

5.3 Local Access and Control by Using SSH 
By establishing SSH connection, an authorized user can logging into the embedded system 
remotely by using a laptop or even a smart phone. If the device you use is in the same local 
area network (LAN) as the embedded system, you can take the control over the system with 
knowing its IP address. An example on using an Android phone to control the system will be 
given in Section 6.4. 



Marine Data Collection and Transmission  

 
 
Page 42 of 64 
 
 

 
1.0 

 

5.4 Reverse Control 
Reverse Control is a function that can remotely control a non-public IP machine from a local 
machine with public IP address. 
 
As mentioned in Chapter 3, the reverse control enables the administrative users who are 
close to the server to remotely control the embedded system even it does not have the public 
IP address. Figure 25 illustrates the basic procedures of reverse control: firstly, the remote 
server opens a specific port as scanner and listener. Once the embedded system actively 
launches a connection to the server, the in-coming connection will be detected by the server. 
A notice of successful connection will pop out in the command line in which we can send 
commands to control the embedded system. 
 

 
Figure 25 Flow chart of reverse control 

In this scenario, we use Netcat and PHP script to fulfil the reverse control between our server 
and system. Netcat is used to be a tool that can scan and listen to a specific port on the 
server side, which has been introduced in Section 2.5. 
 

 
Figure 26 Netcat listening port 

Figure 26 reflects the working status of Netcat when it was scanning and listening to the port 
4431 on the remote server. 
 
In PHP scripts, we firstly defined the server’s public IP address, port number, chunk size and 
daemon process as following code episode: 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 43 of 64 

 

set_time_limit (0); 
$VERSION = "1.0"; 
$ip = '128.39.202.145';   
$port = 4431;        
$chunk_size = 1400; 
$write_a = null; 
$error_a = null; 
$shell = 'uname -a; w; id; /bin/sh -i'; 
$daemon = 0; 
$debug = 0; 

 
Then we open the reverse control and spawn the shell process, which is achieved by 
episodes: 

$sock = fsockopen($ip, $port, $errno, $errstr, 30); 
if (!$sock) { 
 printit("$errstr ($errno)"); 
 exit(1); 
} 
// Spawn shell process 
$descriptorspec = array( 
   0 => array("pipe", "r"),  // stdin is a pipe that the child will read from 
   1 => array("pipe", "w"),  // stdout is a pipe that the child will write to 
   2 => array("pipe", "w")   // stderr is a pipe that the child will write to 
); 
$process = proc_open($shell, $descriptorspec, $pipes); 
if (!is_resource($process)) { 
 printit("ERROR: Can't spawn shell"); 
 exit(1); 
} 

 
If nothing blocks the above process, we will have a prompt on the client side to inform users 
whether this connection is success or not. It is achieved by following codes: 

stream_set_blocking($pipes[0], 0); 
stream_set_blocking($pipes[1], 0); 
stream_set_blocking($pipes[2], 0); 
stream_set_blocking($sock, 0); 
printit("Successfully opened reverse control to $ip:$port"); 
while (1) { 
 // Check for end of TCP connection 
 if (feof($sock)) { 
  printit("ERROR: Connection terminated"); 
  break; 
 } 
 // Check for end of STDOUT 
 if (feof($pipes[1])) { 
  printit("ERROR: Process terminated"); 
  break; 
 } 

 



Marine Data Collection and Transmission  

 
 
Page 44 of 64 
 
 

 
1.0 

 

Once the PHP script is running on the embedded system, the prompt of successfully 
connection will automatically pop out, which is shown in Figure 27. Then Figure 28 shows 
that we can enter any Linux commands on the server side as we do in the Ubuntu terminal. 
 

 
Figure 27 Reverse control on the embedded system 

 

 
Figure 28 Control terminal on the remote server 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 45 of 64 

 

We have tested this function in three ways of Internet connection of embedded system: cable 
connection, Wi-Fi connection and 3G/4G Router respectively, more details will be given in 
Chapter 6. It works well in all scenarios, which the connection is stable and the control 
performance is effective. 
 



Marine Data Collection and Transmission  

 
 
Page 46 of 64 
 
 

 
1.0 

 

6 Test and Validation 
In order to evaluate the availability and performance of the system, we have conducted a 
number of tests for different scenarios, some of which will be presented in this chapter. 
 
In the first three cases described in the following sections, the tests are concentrated on the 
critical functionalities and feature. The fourth one is an on-site test on the boat provided by 
Marex AS, the overall performance of the system is validated in practical use. 

6.1 Test Scenarios 
For testing the system, we set up a testbed consists of one Actisense NGT-1 USB Gateways, 
one GPS receiver, one DST110 Depth/Speed/Temperature Triducer and one TLM100 Tank 
Level Monitor. These devices are connected to the CAN Bus as shown in Figure 29. The 
testbed is also used in the examples of data filtering mentioned in Section 4.2. 
 

 
Figure 29 Testbed 

The testbed is used in the following experiments. 

• Experiment on access modes 

• Experiment on real-time transmission 

• Experiment on Local access and control using Android phone 

• Experiment on Boat 
In the following sections, the test scenarios will be introduced in detail. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 47 of 64 

 

6.2 Experiment on Access Modes 
An available connection to the Internet is a prerequisite for data transmission. Therefore, the 
Internet connectivity under different access modes is our first concern. 
 

 
Figure 30 Access modes 

Under the access modes shown in Figure 30, all the Internet-dependent activities between 
the remote server (which has a public IP) and embedded system have been conducted. And 
the tests have been repeated for three times, the results are listed in Table 7. 

Table 7  Internet-dependent functionalities under different access modes 

Functionality Access Mode 
(1) 

Access Mode 
(2) 

Access Mode 
(3) 

Real-time data transmission succeed succeed succeed 
Historical data transmission succeed succeed succeed 
Reverse control succeed succeed succeed 

 
The real-time data is received in the remote server as well as the historical data in the file 
b_001-130515.sql as shown in Figure 31. 
 

 
Figure 31 Data received in the remote server 



Marine Data Collection and Transmission  

 
 
Page 48 of 64 
 
 

 
1.0 

 

The results indicate that available connections to the Internet are established and the 
Internet-dependent features function correctly under all the three access modes. 

6.3 Experiment on Real-Time Transmission 
Under the Access Mode (3) described in the last section, we conduct tests on the real-time 
transmission as follows. 

Step 1: Start the remote server with connection to the Internet. 

Step 2: Make sure the IP address of the server is globally routable. 

Step 3: Start the embedded system with connection to the cellular network by using a 
mobile router. 

Step 4: Connect the embedded system to the NMEA 2000 network and then launch the 
data collection system. 

Step 5: Observe the messages added to the remote database. 

After repeating the above steps for 20 times, it is observed that the filtered data on the 
embedded system can be transmitted to the remote server through cellular network. 

6.4 Experiment on Local Access and Control using Android Phone 
By using a smart phone with an SSH client installed, boat owners can easily log in the 
embedded system on their boats to perform any operations by following the steps. 

Step 1: Enable the Wi-Fi access point (hotspot) on the phone after setting the SSID and 
password. 

Step 2: Connect the embedded system to the access point through Wi-Fi and note 
down the IP address. 

 
Figure 32 Connect the embedded system to mobile phone through Wi-Fi 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 49 of 64 

 

Step 3: Start a SSH client application on the phone (In this example, we use VX 
ConnectBot for Android which is free and can be found in the application market) 
and log in by typing: 

<username>@<IP of the embedded system>:<port number of SSH> 

 
Figure 33 Login screen 

Step 4: After inputting the password, the login information will be displayed on the 
phone. 

 
Figure 34 Log in the embedded system 



Marine Data Collection and Transmission  

 
 
Page 50 of 64 
 
 

 
1.0 

 

Now we have obtained the control on the embedded system and can access the data in the 
local database or perform FTP uploading. Through SSH, all operations can be performed by 
inputting corresponding commands on the phone in the same way as they are done on the 
PandaBoard ES. 

 
Figure 35 Local access 

6.5 Experiment on Boat 
For estimating the system performance in practical use, we implemented our data collection 
system on a leisure boat and take an on-site test at sea. 
 
The remote server is placed in the campus of University of Agder in Grimstad while the boat 
sails from Fevik to Arendal and go back to Fevik. 
 
The embedded system is connected to a NMEA 2000 network through the NGT-1 gateway 
and Telenor’s cellular network via the 3G/4G router. And in the NMEA 2000 network, there 
are other two devices: a GPS receiver and an engine. 
 
During the voyage, we can see the collected data on the screen as illustrated in Figure 36. 
The data are generated by either the GPS receiver or the engine. Meanwhile, we contact our 
partner who is monitoring the remote server in the campus by mobile phone for verifying 
whether the data transmission is successfully performed. 
 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 51 of 64 

 

 
Figure 36 Real-life experiment 

The trip took about 60 minutes, during which there is only one failed attempt to transmit the 
real-time data to the remote server. It occurs when the mobile router disconnects from 
Telenor’s network. Then right after the recovering of connection, the real-time data 
transmission resumes. 
The data transmitted by the embedded system was successfully received and stored by the 
remote server, part of which is shown in Figure 37. 
 

 
Figure 37 Real-time data in real-life experiment 

 



Marine Data Collection and Transmission  

 
 
Page 52 of 64 
 
 

 
1.0 

 

From the figure above, we can see the state of the engine (ID is 17), GPS coordinates as 
well as other information. For more information collected in this experiment, please refer to 
Appendix E. 
 
The system performance shown in this experiment is inspiring as it gives evidence that this 
marine data collection system has the potential to be put into commercial use. 
 
To summarize, the results of the tests described in this chapter reflect that the system has 
good availability and stability, which strengthen our confidence to make it a commercial 
product. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 53 of 64 

 

7 Discussions 
There are several topics in which we are interested. During the system development, we 
come across difficulties which even lead to changes in design. After repeated attempt and 
modification, the difficulties are solved and the design goal is fulfilled. In addition, the 
experience we have gained may be helpful to improve our work in the future. 

7.1 Operating System 
In this thesis, we have tested different versions of Ubuntu as shown in Table 8. Statistically, 
Linux systems operate better on PandaBoard ES than on BeagleBoard-xM. When we install 
Quantal Quetzal or Oneiric Ocelot on BeagleBoard-xM, there are occasional freezes after 
booting the system. Only Precise Pangolin operates stably. When installing Precise Pangolin 
server edition on PandaBoard ES, we cannot log into the system. The only available version 
is Ubuntu 12.04 Precise Pangolin desktop edition. 

Table 8  Compatibility of operating system on the embedded system 

Platform Distribution ID Version Code 
Name 

Kernel 
Version Compatibility 

PandaBoard ES Ubuntu for OMAP4 Desktop 12.04 Precise 
Pangolin 3.2.0 Yes 

PandaBoard ES Ubuntu for OMAP4 Server 12.04 Precise 
Pangolin 3.2.0 No 

BeagleBoard-xM Ubuntu for OMAP3 Desktop 11.10 Oneiric 
Ocelot 3.0.42 No 

BeagleBoard-xM Ubuntu for OMAP3 Desktop 12.04 Precise 
Pangolin 3.2.0 Yes 

BeagleBoard-xM Ubuntu for OMAP3 Desktop 12.10 Quantal 
Quetzal 3.5.0 No 

7.2 Wi-Fi Stability on BeagleBoard-xM 
Since there is no integrated Wi-Fi chip on BeagleBoard-xM, we must use a USB Wi-Fi 
adapter instead. However, we find that USB Wi-Fi adapters are not well supported in Ubuntu 
system. The BeagleBoard-xM will be disconnected from access point irregularly and it is 
unpredictable. We use Belkin and Edimax’s Wi-Fi adapter with Realtek RTL8188CU. By 
checking on the Internet, the same problem also happens on Broadcom and D-Link’s 
products. 
 
Therefore, for connection stability, we recommend to use PandaBoard ES as the hardware 
platform. 

7.3 Device ID Assignment 
After many tests, we find that in a CAN Bus network the same Device ID is always assigned 
to a specified device even if the network topology is changed. Take the GPS Receiver for 
example, its ID in the CAN Bus network is always 32 regardless of system reboot or the port 
in which it is installed. Such quasistatic distribution facilitates to set up a mapping between 
devices and their Device IDs. 

7.4 Portability of Software 
Our software is programmed in C, therefore, it has excellent portability, i.e., the software can 
be used in any Linux device as long as there are USB interfaces on that device. 
 



Marine Data Collection and Transmission  

 
 
Page 54 of 64 
 
 

 
1.0 

 

7.5 IP Address Allocation 
As the IP address of the remote server is required for establishing connection, it should be 
consistent and routable. I.e., a static and public address is required for the remote server so 
that the embedded system can transmit data to the dedicated server. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 55 of 64 

 

8 Conclusions and Future Work 
In this project, we have developed a marine electronics data collection system for NMEA 
2000-compliant electronics on boats. Based on other’s work, we make our own contributions 
and create a multifunctional data collection system. Furthermore, we integrate various 
technologies on it for adding advanced features. And the prototype of the system has been 
implemented and tested in both library and real-life experiments. The test results indicate 
that the system is functional and stable in practical use. It is very possible that the system will 
be used commercially and brings actual value to both manufacturers and owners. 

8.1 Contributions 
Our main contributions in this thesis include: 

• Design and develop the system architecture 

• Implement data filtering 

• Data storage and management in MySQL database 

• Automatic data transmission via the Internet 

• Data publishing through web service 

• Data and transmission security 

• Local control and data browse by using SSH 

• Reverse control over the embedded system 
All the features above make the system an integral solution for marine data collection and 
transmission, which has been tested in real-life experiments. 

8.2 Future Work 
For the future work, we need to further simplify the operation by providing a graphical user 
interface (GUI) for the system, so that users can perform tasks by simply clicking a button 
instead of inputting a command. 
 
Furthermore, we can invoke Google Map API in the remote server side, so that boats can be 
located with knowing the real-time GPS coordinates. Or with a set of historical GPS data, we 
can even illustrate the sailing route on the map and estimate the current location. 
 
In addition, we may adopt satellite communication as a new Internet access mode in the 
future so that the transmission range will be greatly extended. 



Marine Data Collection and Transmission  

 
 
Page 56 of 64 
 
 

 
1.0 

 

References 
[1] NMEA 2000 and CANbus, http://www.whichmarineelectronics.com/?p=5, [access on Feb. 
14, 2013] 
 
[2] Hella KGaA Hueck and Co., Teknisk informasjon, 
http://www.hellanor.no/filestore/PDF_filer/Teknisk_informasjon/Hella/Elektronikk/can_bus.pdf, 
Nov. 27, 2003 [access on May 19, 2013] 
 
[3] International Telecommunication Union, ITU-T Recommendation G.984.1 Gigabit-capable 
Passive Optical Networks (GPON): General characteristics, March, 2003 
 
[4] UN: Six billion mobile phone subscriptions in the world, 
http://www.bbc.co.uk/news/technology-19925506, [access on May 20, 2013] 
 
[5] RESTful Web service, http://www.oracle.com/technetwork/articles/javase/index-
137171.html [access on April 21, 2013] 
 
[6] Iyappan, P.; Arvind, K. S.; Geetha, N.; Vanitha, S., "Pluggable Encryption Algorithm In 
Secure Shell(SSH) Protocol,"Emerging Trends in Engineering and Technology (ICETET), 
2009 2nd International Conference on, vol., no., pp.808,813, 16-18 Dec. 2009 
 
[7] Suresh, V. M.; Karthikeswaran, D.; Sudha, V. M.; Chandraseker, D.M., "Web server load 
balancing using SSL back-end forwarding method," Advances in Engineering, Science and 
Management (ICAESM), 2012 International Conference on , vol., no., pp.822,827, 30-31 
March 2012 
 
[8] AES Encryption, http://townsendsecurity.com/sites/default/files/AES_Introduction.pdf 
 
[9] Ubuntu 12.04.1 LTS (Precise Pangolin), 
http://cdimage.ubuntu.com/releases/12.04/release/, [access on March 17, 2013] 
 
[10] Welcome to CANboat, https://github.com/canboat/canboat/wiki/CANboat, [access on 
January 20, 2013] 
 
[11] NMEA 2000 Appendix B – PGNs (NMEA Network Messages) Full Database, 
http://www.nmea.org/store/index.asp?show=pdet&pid=325&cid=7, [access on January 23, 
2013] 
 
[12] Frank Cassidy, NMEA 2000 Explained - The Latest Word, March 2, 1999 
 
[13] Using SSL for Secure Connections,  
http://dev.mysql.com/doc/refman/5.5/en/ssl-connections.html, [access on April 10, 2013] 
 
[14] Configuring Serv-U with an SSL Certificate, 
http://www.rhinosoft.com/KnowledgeBase/kbarticle.asp?RefNo=1053&prod=rs, [access on 
April 19, 2013] 
 
[15] Future Technology Devices International Ltd., Technical Note TN_101 Implementing 
Custom FTDI VID and PID Codes using Linux, Oct. 30, 2008. 
 

http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html


Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 57 of 64 

 

Appendix A Installing NGT-1 gateway on embedded system 
 
The guide for installing the NGT-1 Gateway on a Linux embedded system is shown as 
follows. 
 

Step 1 Connect Actisense NGT-1 to the embedded system through USB interface. At 
this stage, the virtual COM (ttyUSB) for NGT-1 has not yet been created. 

 
Step 2 Add product information to ftdi_sio by typing the following command in Ubuntu 

terminal: 
 

sudo modprobe ftdi_sio vendor=0x0403 product=0xd9aa 
 

Step 3 Add ftdi_sio to the system modules for the change to take effect. 
 

echo ftdi_sio >>/etc/modules 
 

Step 4 Create a configuration file for the NGT-1 gateway: 
 

echo options ftdi_sio vendor=0x0403 product=0xd9aa >>/etc/modprobe.d/actisense.conf 
 

Step 5 The virtual COM port (/dev/ttyUSB0) can be found under the directory /dev by 
using the command below: 

 
ls -al dev/ttyUSB* 

 

Step 6 If you do not log in as a root user, please remember to add your username to 
the dialout group, so that all these changes will take effective in your account. 

 
sudo usermod -aG dialout <your-username> 

 
BRLTTY is a Linux/Unix-console access application for blind users. Please uninstall it first if it 
is installed on the system, or else the virtual COM port will not be accessible [15]. 
 
 
 



Marine Data Collection and Transmission  

 
 
Page 58 of 64 
 
 

 
1.0 

 

Appendix B Remote control on embedded system through SSH 
Initially, we use PuTTY on a Windows laptop to enable remote control on the embedded 
system via SSH, which requires that the embedded system should be reachable, i.e., a 
public IP address is required. In order to make connection between our server and 
embedded system, the following steps are performed: 

Step 1: As shown in Figure 38, enter the IP address of the embedded system, which is 
in the same LAN or has a public IP address. 

 

 
Figure 38 PuTTY configuration 

Step 2: Once it successfully connects to the embedded system, a control terminal will 
pop up, in which we need to enter the password of remote embedded system. 

Step 3: After the password is verified, we can type any command to control the remote 
embedded system. 

However, in practical scenario, the cellular network is often selected as the access mode 
when sailing at sea. In cellular networks, the IP address of the embedded system is usually a 
dynamic address assigned by the operator. It is difficulty for the remote server side to obtain 
the address. In addition, operators of cellular networks may restrict the SSH access in terms 
of security consideration. Consequently, SSH is not a proper approach for our case. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 59 of 64 

 

Appendix C Improvement on user experience 
For the users who are not familiar with the Ubuntu terminal operations, it might be difficult to 
memorize the commands. Thus we develop a shell script to simplify the operation. When a 
user intends to manually launch data collection and transmission on the embedded system 
or through local control, he should follow the following steps. 

Step 1: Open the terminal and go to the directory of the shell script and type the 
command in Figure 39 to launch it. 

 

 
Figure 39 Execute the shell script 

Step 2: Set message update interval according to the actual demand. 

 

 
Figure 40 Set message update interval 

Step 2: Select filtering mode. 
As shown in Figure 41, mode 1 is used for collecting message from all the electronics in the 
NMEA 2000 network while mode 2 is adopted for data collection from a specific device. If 
mode 1 is selected, the data collection and transmission will start imediately. Or else go to 
Step 3 if mode 2 is selected. 

http://dict.cn/actual%20demand


Marine Data Collection and Transmission  

 
 
Page 60 of 64 
 
 

 
1.0 

 

 
Figure 41 Select filtering mode 

Step 3: Enter the device ID of the device, in which the user is interested. 
 

 
Figure 42 Specify device ID 

Then only the data from the selected device will be transmitted to the remote server and 
stored in both sides. 
 
This script can also be used in the scenarios of local control by using SSH. 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 61 of 64 

 

Appendix D Integration with other systems 
The data collection and transmission system can be integrated with other systems: the 
wireless sensor network (WSN) and the graphical user interface (GUI) for the remote server. 
 
The WSN system developed by another two master students is used for collecting data from 
wireless sensors installed on boats. A coordinator needs to be connected to the embedded 
system in order to receive the data from the sensors through wireless transmission. 
 

 
Figure 43 coordinator and wireless sensor 

 
The GUI for the remote server is an enhancement to the remote server. It provides more 
user-friendly interface and better performance on data search. 



Marine Data Collection and Transmission  

 
 
Page 62 of 64 
 
 

 
1.0 

 

Appendix E  Results of real-life experiment 
We have real-life experiments on a Marex 320 boat on 16 May 2013. There are five devices 
connected to the CAN Bus: a NGT-1 gateway (ID is 0), a GPS receiver (ID is 32), an engine 
(ID is 17), a tank level monitor (ID is 35) and a DST110 Triducer (ID is 112). As the tank level 
monitor and DST110 Triducer are not installed properly on the boat, so the data from them 
are not accurate. 
 
The following is part of the collected data stored in the remote server. 
 

 

 

 



Marine Data Collection and Transmission  

 
 
1.0 
 
 

 
Page 63 of 64 

 

 

 

 

 



Marine Data Collection and Transmission  

 
 
Page 64 of 64 
 
 

 
1.0 

 

 

 

 

 


	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Approaches
	1.4 Thesis Outline

	2 Technology Background
	2.1 CAN Bus and NMEA 2000
	2.2 Access Modes
	2.2.1 Wired connection
	2.2.2 Wi-Fi
	2.2.3 Cellular networks

	2.3 Web Service
	2.4 Secure Shell
	2.5 Netcat
	2.6 MySQL
	2.7 Secure Sockets Layer
	2.8 Advanced Encryption Standard

	3 Requirements and System Design
	3.1 Requirements
	3.2 System Architecture
	3.2.1 Local component
	3.2.2 Remote component

	3.3 Embedded System
	3.3.1 Hardware
	3.3.2 Software

	3.4 Remote Server
	3.4.1 Hardware
	3.4.2 Software


	4 Implementation of Basic Functionalities
	4.1 Data Collection
	4.2 Data Filtering
	4.2.1 Filtering by device
	4.2.2 Filtering by type of message
	4.2.3 Filtering by message update interval

	4.3 Data Storage
	4.4 Data Transmission
	4.4.1 Real-time data transmission
	4.4.2 Historical data transmission

	4.5 Automatic Operation of Data Collection and Transmission
	4.6 Data Browsing
	4.6.1 Data browsing on the embedded system
	4.6.2 Data browsing on the remote server
	4.6.3 Data browsing from external Internet connection


	5 Implementation of Advanced Features
	5.1 Data Security
	5.2 Transmission Security
	5.2.1 Secure connection for MySQL
	5.2.2 Secure connection for FTP

	5.3 Local Access and Control by Using SSH
	5.4 Reverse Control

	6 Test and Validation
	6.1 Test Scenarios
	6.2 Experiment on Access Modes
	6.3 Experiment on Real-Time Transmission
	6.4 Experiment on Local Access and Control using Android Phone
	6.5 Experiment on Boat

	7 Discussions
	7.1 Operating System
	7.2 Wi-Fi Stability on BeagleBoard-xM
	7.3 Device ID Assignment
	7.4 Portability of Software
	7.5 IP Address Allocation

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Work

	References
	Appendix A Installing NGT-1 gateway on embedded system
	Appendix B Remote control on embedded system through SSH
	Appendix C Improvement on user experience
	Appendix D Integration with other systems
	Appendix E  Results of real-life experiment

