

Ontology guided financial
knowledge extraction from semi-
structured information sources

by

Eivind Bjoraa

Masters Thesis in
Information and Communication Technology

Agder University College

Grimstad, May 2003

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

i

Abstract

Intermedium has an agent searching the Web for financial articles defined by certain
criteria, for instance an industrial domain of interest. A portal service for reading and
searching these articles, are available for the customers. The sources searched among are
secondary sources, like online newspapers. Secondary sources publish information more
frequently, and other information than can be found in annual reports etc, like
predictions. Finding and comparing financial figures in the articles are often time
consuming and hard to compare with each other. Having the financial figures, and what
these applies for, presented in an application where information could be easy reviewed
and compared, would apply valuable information for decision makers in bigger
companies.

Web documents are usually semi-structured, and therefore almost impossible to query for
information. Only keyword searches are supported by the computers because of the lack
of understanding. Advanced extraction processes of the information needs to be
performed. This thesis evaluates an ontology guided approach for extracting financial
information from semi-structured information sources.

A financial ontology has been constructed based on an investigation of 50 articles
gathered from Intermedium’s agent. Instances with synonyms, the words to extract from
the text, and relations between the instances have been defined. The ontology language
RDF has been chosen and used as ontology language through the entire thesis.

A prototype application has been developed to perform the extraction process. Articles
are loaded from XML files; words to extract from the text are found by query the
ontology using the query language RDQL; NLP and NLTK are used to do the extraction
based on the words found in the ontology; Velocity template is used to get the proper
structure in the output files RDF and XBRL instance document. The ontology is
providing the application with knowledge in the extraction process. When a synonym is
found in one instance, a query for reference to other instances is performed, and
synonyms of these instances are searched for in the text. If a text does not contain any
interesting information, the application does not waste time with trying to match all
words in the ontology with the ones in the text.

The result is presented with semantic tagging in RDF syntax. A part of the information
extracted is also shown as an example of how the financial standard XBRL can be given.
The advantage of XBRL is that it can be used directly by supporting tools; RDF has to be
processed by a more intelligent application. Financial information has in both these
formats been added knowledge with computer processable semantic tagging.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

ii

Preface

This thesis is written for Intermedium, Grimstad, and is part of the “Master in
Technology” degree at Agder University College. The work has been carried out in the
period between December 2002 and May 2003.

I would like to thank my supervisors, Vladimir Oleshchuk at Agder University College
and Asle Pedersen at Intermedium, for valuable help and inspiration during the entire
process of this thesis.

Grimstad, May 2003

Eivind Bjoraa

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

iii

Contents

1 INTRODUCTION...1
1.1 BACKGROUND.. 1
1.2 THESIS ENVIRONMENT ... 2
1.3 THESIS DEFINITION... 2
1.4 THESIS WORK... 3
1.5 REPORT OUTLINE ... 4

2 WEB AGENT AND INFORMATION CAPTURE..5
2.1 INTRODUCTION .. 5
2.2 WEAKNESSES WITH CURRENT INFORMATION PRESENTATION............................... 5
2.3 ENHANCING INTERMEDIUM’S AGENT ... 7

3 SEMANTIC WEB AND ONTOLOGY...8
3.1 BACKGROUND.. 8
3.2 SEMANTIC WEB ... 9

3.2.1 Introduction... 9
3.2.2 The Semantic Web idea... 10
3.2.3 RDF: Enabling the Semantic Web .. 10

3.3 ONTOLOGY INTRODUCTION.. 13
3.3.1 Definitions and basics... 13
3.3.2 Ontology example ... 15

3.4 ONTOLOGY CONSTRUCTION ... 16
3.4.1 Introduction... 16
3.4.2 Top level ontologies .. 16
3.4.3 Ontology languages .. 17
3.4.4 Topic Maps.. 18
3.4.5 Ontology editors.. 18
3.4.6 Parsing and querying RDF... 19
3.4.7 Ontology learning and pruning .. 19

3.5 NATURAL LANGUAGE .. 21
3.5.1 Introduction... 21
3.5.2 Natural Language Toolkit... 21

3.6 XBRL.. 22
3.6.1 Introduction... 22
3.6.2 Definition and basics .. 22
3.6.3 Currency standard in XBRL ... 23

3.7 CURRENT STATUS OF ONTOLOGIES... 24
4 ONTOLOGY USED FOR EXTRACTING INFORMATION25

4.1 INTRODUCTION .. 25
4.2 RELATED WORK ... 25

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

iv

4.2.1 The Artequakt project ... 25
4.2.2 The On-to-knowledge project ... 26
4.2.3 Knowledge integration to overcome ontological heterogeneity 27

5 CONCEPTUAL SOLUTION FOR ONTOLOGY GUIDED EXTRACTION....28
5.1 INTRODUCTION .. 28
5.2 ASSUMPTIONS FOR INPUT ARTICLE FILES ... 28
5.3 USING ONTOLOGY IN FINANCIAL INFORMATION EXTRACTION............................ 29

5.3.1 XML input to extracting system .. 29
5.3.2 The extracting system, the agent... 29
5.3.3 Ontology.. 30
5.3.4 Output of extraction process to an ontology language................................. 31
5.3.5 From output to XBRL.. 31

5.4 VISUALIZING AN OPTIMAL SCENARIO... 32
5.4.1 Overview ... 32
5.4.2 RDF statement graph.. 34
5.4.3 RDF/XML syntax .. 35

6 ONTOLOGY GUIDED INFORMATION EXTRACTION PROTOTYPE........37
6.1 INTRODUCTION .. 37
6.2 XML INPUT TO BE EXTRACTED .. 37

6.2.1 Article information as input XML... 37
6.3 THE FINANCIAL ONTOLOGY.. 38

6.3.1 Introduction... 38
6.3.2 Preliminary studies of articles .. 38
6.3.3 Constructing the ontology... 39
6.3.4 Ontology editor: Protégé .. 41
6.3.5 Naming in Protégé .. 41
6.3.6 Financial domain ontology configuration .. 42
6.3.7 Standards in financial ontology .. 43
6.3.8 Financial domain ontology details ... 43

6.4 THE AGENT; FINANCIAL DATA EXTRACTOR ... 45
6.4.1 Introduction... 45
6.4.2 Parsing input XML.. 46
6.4.3 Parsing and querying the ontology... 47
6.4.4 Natural Language Processing in the agent .. 48
6.4.5 Algorithm for extracting financial information .. 48
6.4.6 Classes in agent .. 50
6.4.7 The “Euro” problem... 53
6.4.8 Extensions of the agent ... 54
6.4.9 Agent summary.. 54

6.5 EXTRACTION RESULTS IN RDF... 54
6.5.1 Introduction... 54

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

v

6.5.2 Article ontology... 55
6.5.3 Output in RDF/XML syntax .. 57

6.6 EXTRACTION RESULTS IN XBRL.. 59
6.6.1 Introduction... 59
6.6.2 Output as an XBRL instance document .. 59

7 DISCUSSION ..62
7.1 INTRODUCTION .. 62
7.2 STATUS ON ONTOLOGY GUIDED EXTRACTION .. 62
7.3 ONTOLOGY GUIDED INFORMATION EXTRACTION ... 63
7.4 EXTRACTING FINANCIAL INFORMATION INTO RDF AND XBRL......................... 64
7.5 RESULTS OF ONTOLOGY GUIDED EXTRACTION ... 65
7.6 FURTHER WORK ... 66

8 CONCLUSION..67

Appendix A – Complete RDF for the financial ontology
Appendix B – Complete RDFS for the financial ontology
Appendix C – Complete RDFS for the article ontology
Appendix D – Java code for parsing XML input documents for information
Appendix E – Java code for parsing and querying the financial ontology
Appendix F – Prototype application agent code
Appendix G – Changes made in NLTK toolkit in the files token.py and tagger.py
Appendix H – Velocity template code for printing RDF output
Appendix I – Velocity template code for printing XBRL output
Appendix J – Example of XML input file of article from Intermedium’s agent
Appendix K – RDF output based on article in Appendix J
Appendix L – XBRL output based on article in Appendix J

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

1

1 Introduction

1.1 Background

Users of the Word Wide Web have the last decade seen a dramatically increase in
electronically available information. Looking at the Internet as a massive information
repository, a major part of this information lies available from every online computer just
some keywords away from our computers.

However, finding the right information at the right time is not always a trivial job. Web
agents of several kinds have been developed to help us solve different issues, including
search engines. Google and Fast are two agents for finding information on the Web.
Although many of these available agents are doing a good job, they do not speak the
same language as humans. They are restricted to keyword based techniques [Fen02],
which reduces their efficiency. We can therefore not ask Google to find information
about all cars made by BMW; rather we need to know what to search for and specify this
in our search statement, like for instance “BMW 320, 325, 520”. This search may also
find hits we were not interested in, and thereby making it necessary to make an additional
human selection.

Things are however about to change in the area of search engines. Google have recently,
at the end of April, acquired “Applied Semantics”. This company produces software
applications for semantic text processing, and online advertising to understand, organize
and extract knowledge from websites. Finding information without any human browsing
needed, where intelligent searches provide answers based on search questions [Fen02]
like the BMW example above, are more focused. This is also what Google tries to
achieve by acquiring Applied Semantics.

The problem of doing intelligent searches up to now has basically been a lack of semantic
markup of information on the Web. Much of the information is provided only for human
consumption in form of natural language [Ala03], which is not understandable for
computers. Adding semantics to Web pages are however seen as a tremendous amount of
work. Humans can not reach over it and automation may not always provide the right
semantic tagging because of lack of understanding of the information given [Gan02].

Ontology has been adopted into computer science from the area of philosophers’, where
it is used to describe words as they exist and the relations between them [Gru93].
Ontologies can provide a way around the lack of semantic tagging of information. Some
major projects have tried this approach ([Ala03] and [Fen02]) for gathering and
managing of information from Web or given documents. These are described more in
Section 4.2.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

2

These projects gap over many areas and functions. This thesis will look into financial
information which can support decision makers at the administration level of companies
or in some financial domain. Leaders need to have the right and all wanted information
easy accessible to support them to make the best decisions. Relevant information may for
instance be financial reports, predictions and statements publicly available on different
company or news web sites. This information is available for everyone as long as you
know where to find it. However, these press releases and reports are often large text files
which are time consuming both to read and to find useful information in. Like in the
BMW example above, you need to make a human selection of information. A preferable
solution would be to have a web agent finding the information you want, specified by
certain criteria’s, independent of the expression used to provide this information. At the
end, the information is represented in a structured way which is understandable and
processable for computers.

1.2 Thesis environment

Intermedium has, as a service provider of competitive intelligence, developed different
agents. One of these is a Web search engine searching news and press releases based on
given criteria, like domain and companies. This information is gathered from several
different Web sites and displayed at a single page individual for each company. Lists of
news are displayed with information about the article divided into date, subject with a
short heading of what the article is about, criteria and link to source.

I have been given access to the sites for two of the companies using this service. This
enables me with real world data to base my practical work upon.

1.3 Thesis definition

Thesis subject definition
“There is available semi-structured data stored in a database as plain texts or html
pages. The purpose of this project is to design new methods for extraction of data and,
based on this, develop a prototype for extracting financial information from the semi-
structured text. For example, in the financial world numbers are often one main target,
but they are meaningless without any semantic meta-data describing what kind of
information they represent. It is therefore necessary to extract semantic information
about the numbers, like currency and financial description, from the text in which they
occur.

The main challenges in this project are trying to design a financial ontology and use this
in the prototype to assist the extraction and to provide better knowledge. We plan to use
an ontology description language, like OWL or Topic Maps, to explain the extracted
entities. The extracted knowledge should be captured in such a way that it can be
exported into financial standards like XBRL.”

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

3

Goals and objectives
• Make a survey of ontology based techniques and methods
• Design a smaller, or find a suited, ontology for the financial domain.
• Develop a prototype for extraction of financial information.
• Use the ontology in the prototype to provide better knowledge in your prototype.
• Capture the financial knowledge in a standard financial language like XBRL.

1.4 Thesis work

Currently, the two major projects, Artequakt [Ala03] and On-to-Knowledge [Fen02] have
reached further within the area of ontology guided information extraction than other
projects. The Artequakt project has implemented an online Web site gathering biography
of artists. It automatically extracts information about the artists from Web pages and
populates a knowledge base.

The On-to-Knowledge project has during the process developed many professional tools,
purchasable for a fee, used in their projects. They also have big customers, like Swiss
Life and BT, where fast and reliable access to long documents, and more efficiently
dissemination of customer-handling rules are provided. If the ontology editor and other
tools had been freely available, these would have probably been used in this project,
claimed by Ontoprise1 to be the most complete modeling tools.
Ontology is a quite new method of thinking in computer science, and has gained a lot of
interest in recent years. This thesis will; through constructing a financial ontology and
developing a prototype application; find out whether an ontology guided approach for
extracting financial information from semi-structured sources can capture financial
information in a semantically tagged way. The result will be financial knowledge
expressed in an ontology language and the financial standard XBRL.

A conceptual solution will be presented, proposing a way to solve this issue, exemplified
by giving an optimal result in RDF and XBRL.

An ontology, defined by [Ber01], has been constructed for the financial domain. A
prototype application have also been developed using the specified words and relations in
the ontology to extract financial information from semi-structured sources. Natural
language processing and the NLTK toolkit have been used in the extraction part.

1 Ontoprise – http://www.ontoprise.de/products

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

4

1.5 Report outline

In the following chapters, a closer look at the techniques mentioned above will be
presented. In chapter 2, a brief description of why the need of information capture is of
importance, and background of important information source and why these are so, will
be given. Chapter 3 introduces techniques and methods used to enable ontology guided
financial extraction from semi-structured information sources. This chapter is divided
into four main parts; Semantic Web as the background for the next Section; Ontology;
Natural language and processing of this; and at the end an introduction to the financial
format standard XBRL. A brief survey of related projects in the area of ontology guided
information extraction is presented in chapter 4, followed by a conceptual solution
exemplified by an optimal scenario in chapter 5. In chapter 6, the process of constructing
the financial ontology, the application prototype for extracting information, including an
algorithm for how this process is carried out, is presented. The output in RDF and XBRL
are also presented in this chapter. In chapter 7, the results are discussed, before a
conclusion is given in chapter 8.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

5

2 Web agent and information capture

2.1 Introduction

Intermedium is providing an automated competitive intelligence service for different
companies. A separate Web agent searches the Web for online news articles and press
releases for specified domains for the customer companies. Although companies operate
in different domains, there are many similarities about their informational needs. The two
companies studied, have both a desire and need to keep track on trends and news
concerning their business domain. This includes new products developed by competitors
and financial news, like stock trends and annual reports, about other firms in their
domain.

This agent finds many news articles of information for these companies and their
domains. As an user of this agent you have the possibility of listing all news hits, or limit
hit results by selecting profile; domain dependent criteria’s; sources where the news are
selected from; and the time factor from which week the news where published. All these
properties make it easier for the user to limit and find wanted article.

The list of articles found are presented with information about every of the filtering
option I stated above. These including date published; subject, which are the ingress of
the article; which criteria it matches; and from which source it is taken from. The header
in the subject field is deployed as a link to the source where you find the article and the
source provide a link to the main page of the news provider of current article.

2.2 Weaknesses with current information presentation

Financial information, like annual reports, is regularly publicly released. For instance are
annual reports only released once a year and does describe real figures like actual results,
for the company this period. Retrieving information more than once a year, or a limited
number of times, makes it hard to stay up to date of competing companies’ status and its
financial movements. Secondary sources, like online newspapers and magazines, are
publishing articles which occur more frequently than the reports the companies present
themselves. A chance to be more continuously updated in the domain is possible through
these sources. Despite to the reports, like annual reports, which provide all financial
figures for the current year, secondary sources provide résumé’s or information that never
or rarely is found in reports. Examples of this is refined data; predictions and forecasts of
e.g. financial results due to income or loss; financial analyses of results; forecasts etc.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

6

Intermedium’s agent supports the user by finding interesting articles defined by filters.
One of the restrictions is not that they should contain financial information. But after
browsing through an amount of articles, it is discovered that many of them do contain
useful information. This was especially true around December and January, where lots of
reports and results were presented. In April and May fewer articles contain financial
information.

Consuming this information is, however, not so easy. When you open a link from the
default site, a new browser window with the selected page appears. Several Internet sites
today get their main income from advertising, making Web pages information intensive.
The window is filled with links, banners and pictures, which sometimes are moving. All
these advertisement factors strive to get your attention while you focus on getting some
information from the article.

Ignoring advertisement, getting the core message of an article can still require an effort.
Information, like annual financial result, loss predictions and share changes, are often
interlaced with textural expressions forcing the user to read through the entire or major
parts of the article to obtaining the desired information. This is time consuming and
makes it hard to utilize all opportunities of the information found. This often leads to the
fact that it is hard to find the right information when you really need it.

Having the optimal agent finding all the information you want, a tool could have
presented this in a way easier to conceive than long articles where finance data needs to
be searched for. Different queries and ways of presenting the result could have been
available. In addition could integration of different information concerning a company be
presented together, or same information compared for validation.

Solving the optimal solution starts out by locating data given in articles. When doing this
a problem occurs. Web pages in general contain very little semantic meaning of the text,
also referred to as semi-structured text. Some structure is defined and allowing simple
queries for retrieving information. Unstructured Web pages has no standard organization
and no precise relations among the data given are made. Many of the articles provided by
the agent can be placed in between semi- and unstructured. The term weakly structured,
used by [Fen02], can give a good description of the article retrieved by the agent.

Another major problem is that, as we operate with weakly structured information, is that
there exists no standard way of saying, or writing, the same information. For instance can
“estimated income next year to be 5 million dollar” and “current expectations for next
years revenue are $5.000.000” refer so to speak to the exact same information. Words
have synonyms used, while numbers and currencies can be written in different
compounds of numbers, words, abbreviations and signs. The opposite problem occurs
when different information is written equally, called ambiguous words, like the word golf

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

7

used both for the car and the sport. In finance a share can denote both the verb for sharing
and a share at the stock exchange. As long as the information is weakly structured, no
metadata are added to the text telling us that golf is a car or the sport. To find out what
the word refer to, you need to analyze the words context.

2.3 Enhancing Intermedium’s agent

Extracting information from weakly structured sources can not be done by simple
queries, like querying databases or XML files. To minimize information to concentrated
knowledge given to the user, more advanced techniques have to be applied. Extraction
can be done by natural language processing, but a definition of what to extract has to be
made.

For further development of Intermedium’s agent, I will try to solve some of the problems
noted in Section 2.2. I will develop methods to extract financial information from the
articles found by the agent. Guided by ontology in the extracting process, groups of
synonyms will be defined and given the same meaning by assigning information to a
standard tag language and thus providing the information a structure. This will enable the
user to concentrate on the financial measures, enabled for querying, more suitable
representation and ability easier comparing information from different articles.

In the next chapter, background theories used for developing an agent extracting financial
information are presented.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

8

3 Semantic Web and Ontology

3.1 Background

Already at the 1970’s the need of a standardized way of encoding knowledge was
recognized because of the lack of merging and sharing information between projects. A
proposal made by the American National Standard Institute (ANSI) stated that an
application domain should be collected in a single conceptual schema [Klu]. Figure 1
illustrates an integrated system where each circle has its own specialization, but they have
all a common application knowledge represented in a shared conceptual schema. “The
user interface calls the database for query and editing facilities, and it calls the
application programs to perform actions and provide services. Then the database
supports the application programs with facilities for data sharing and persistent storage.
The conceptual schema binds all three circles together by providing the common
definitions of the application entities and the relationships between them.” [Sow01]

Figure 1: Conceptual schema as the heart of an integrated system [Sow01].

Since the 70’s has a shared conceptual schema played an important role in integrated
application design, development and use. Several developments have been made based
upon this schema. Among these are the fourth generation languages (4GLs); the object-
oriented programming systems (OOPS); and tools for computer-aided software
engineering (CASE). They have all solved some problems, but integration around a
unified schema has not yet succeeded. One of the latest attempts is to integrate
knowledge on Web into the Semantic Web, also referred to as the second generation of
the World Wide Web. Semantic Web is presented in the next Section.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

9

3.2 Semantic Web

3.2.1 Introduction

Before describing the Semantic Web, a problem scenario is presented describing the
problem of current Web and what the Semantic Web strives to solve.

The Web has expanded to a huge repository of information, with an innumerable amount
of sources and links between them. One problem is that the information has mainly been
published for human consumption, which results in that although the information is out
there; there is not always an easy way of finding what you are looking for. Several Web
search agents, like Google2, provide a quite good job searching and identifying
potentially good candidates from billions of Web pages3. However, as the engines still
are keyword based and have no machine understanding, is the query result restricted
significantly. Take example where you are looking for a book or paper written by Mr.
Jones. The search engines tend to discard different words you may have written in your
statement, like about or by. The result of the often returns loads of links and references
referring to books or papers of Mr. Jones, and not only the actual article or book searched
for.

What if different information was related? Like a book or paper written by a person
object, Mr. Jones, with a relation between them named author or written by. Then a
search could be narrowed the result to actually books and papers written by Mr. Jones.
Another example is a search for palm. Current search engines do not know if this term
refers to a company, the operation system or the PDA named palm. The result of this
search will display hits of all these occurrences, and make it necessary for human
browsing of the output to find the right result.

A statement by Gandon points to the problem of current Web:
“The World Wide Web was originally built for human consumption, and although
everything on it is machine-readable, this data is not "machine-understandable". Because
of that, it is hard to automate things on the Web, and because of the volume of
information it is not possible to manage it manually” [Gan02].

2 Google – http://www.google.com
3 May 1st - 3.083.324.652 searched pages by Google.com

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

10

3.2.2 The Semantic Web idea

The problem of the huge amount of information mainly designed for human consumption
can be solved by associating meaning with content, enabling computers to understand
and process information. This idea, named the Semantic Web, was first introduced in
1996 by Tim Berners-Lee [Ber96], inventor of the World Wide Web. He describes it as
follows:

“The Semantic Web is an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation”
[Ber01].

From a high perspective, we can say that the current Web is a provider of pages
containing information and links between them designed for human consumption. The
Semantic Web aims to augment the existing human-readable Web by adding machine-
readable descriptions to Web pages and other Web resources [Hen03]. This is
accomplished by giving the information an explicit well-defined meaning, also referred to
as metadata, or data about data. Information is considered as a resource [Ste00], where
each resource can be linked to any other resource uniquely identified by its URI4, as
specified in [Ber98]. URL5, a Web link, is the most commonly used URI.

The Semantic Web’s ability to reference and identify resources is one of its foundations
and makes it look like a great global mesh, or a big global database. Berners-Lee
describes it as “Weaving the Web” in [Ber99]. Utilizing this global mesh, software agents
will be able to roam from page to page readily carrying out sophisticated tasks for the
users [Ber01]. The vision is to be able to make a query where an agent gather information
from the Web and provides the right and full information, even though it is presented at
different pages or sources.

3.2.3 RDF: Enabling the Semantic Web

Through the Semantic Web idea, standardizations by W3C have been made to facilitate
semantic interoperability, enabling exposing and processing of metadata. This standard is
a W3C recommendation called RDF, Resource Description Languages [W3C99rdf], based
on the syntax of XML6. An important reason why this format is chosen is that XML lets
you create your own tags. Only following the few rules for tagging, the structure can be
built quite freely. XML also provide the important facility of namespaces which precisely
associate each property with a schema defining its property. This is in fact the meta-data
associated to information.

4 URI - Unified Resource Identifier [w3Adr]
5 URL - Unified Resource Locator
6 XML - eXensible Markup Language, see more at [W3Cxml]

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

11

The structure in XML itself does, however, not specify any relations between the tags.
RDF is an extension of XML, which encodes the meaning in sets of triples, where each
triple is a resource, a property and a value. Almost like subject, predicate and object of an
elementary sentence in the human language. These three words are also often used to
describe the RDF triple. Inserting values in this triple can be done like this; a resource
can for instance be the book Hamlet; the resource has a property (or predicate) like
“author” with William Shakespeare assigned as value (object or literal).

In RDF all the triples are identified by an URI each, introduced in Section 3.2.2. This
enables anyone to define a new resource, predicate or object, simply by assigning an URI
for it. Encoding information with URI ensures a uniquely defined meaning where
resources are not only words, but tied to a unique definition [Ber01]. There are however
no assumptions that the URI refers to any useful Web page or even refers at all [Mae02].

The resource to be described in this example is the book Hamlet. The property (or
predicate) is a slot defining relationships between a resource and an object. In this
example the book Hamlet has a property author referring to William Shakespeare given
by the object. Put together the RDF triple and get a statement as follows.

 http://www.books.com/Hamlet HAS author William Shakespeare

Expressed in RDF syntax this statement will be readable and understandable to machines,
and look something like this:

<?xml version=”1.0”?>
<rdf:RDF
xmlns:rdf=”http://w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:s=”http://description.org/schema/”>
 <rdf:Description about=”http://www.books.com/Hamlet”>

 <s:author>William_Shakespeare</s:author>
 </rdf:Description>

</rdf:RDF>

Table 1- RDF/XML Syntax

To RDF files, there are always a belonging RDF Schema, RDFS. In table 1 is meta-data
given through the two namespaces declared as “rdf:” and “s:”. The namespace “s:” is a
reference to this file’s RDF Schema. RDFS can be seen as a dictionary uniquely defining
and restricting terms used in RDF statements. Rules for using RDF properties are
described. The namespace “rdf:” points to the W3C standard used in this RDF statement.

Giving information meta-data provides machines the ability to read and understand it. A
Web search for books Shakespeare is author of, will provide us with the information
Hamlet and where to find it with URL.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

12

Reading large files of RDF in this format provide no easy way to get an understanding or
a quick overview of RDF expressions for humans. Therefore the RDF standard
[W3C99rdf] provides a standard of drawing diagrams and figures to visualize the
expressions. Ovals are representing resources, while arcs represent named properties and
rectangles string literals. Resources and literals are also seen as nodes. This way of
visualization the statement, also called graph, provides a good way of understanding
relations defined in RDF, it is referred to as a graph. The graph for the statement above is
given in figure 2.

Figure 2 – RDF statement graph

This example can easily be extended by for example adding more information about
Shakespeare, like year of birth and death, and other books he has written. Resources can,
as described in Section 3.2.2, have relations to other resources connected by a property.
For more information, the recommendation by W3C at [W3C99rdf] is referred.

There are in fact three kinds of nodes in RDF; literals which are a string, URI nodes and
blank nodes. As URI is an unique identifier, RDF thereby assumes that two nodes with
the same URI are the same resource. Blank nodes have no URI label; to discover which
resource they represent, the statements assigned has to be looked at.

RDF is, as mentioned above in this Section, an extension to XML, where only
hierarchical nesting is providing some sort of relations between words. Since RDF
supports unique definitions of words, and relations between them, can this be used in
projects concerning information objects and relations between them, almost like a kind of
vocabularies. Example of projects are the vCard project [W3Cvcard], electronic business
card profile, and FOAF (friend for a friend) for managing online communities [foaf03].

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

13

Some tools for adding Semantic information on Web are available. One example of this
is Simple HTML Ontology Extensions7, SHOE. SHOE provides Web page authors the
ability to annotate Web documents with machine-readable knowledge. Another project,
Dublin Core8, is developing standards for adding more descriptive records, meta-data
tags, to information resources. These information resources range from online pictures to
Web pages and online documents [Hil01].

The problem by adding meta-data to Web pages is that it requires some extra effort
compared to just publish information the “old way” and it is therefore still lack of use of
semantic representation of information on Web. Manually updating existing Web pages
will also be a too tremendous job for humans [Gan02], so an automatization may be the
only solution. Precision of the result provided can be a problem with this approach.
Constructing general agents doing this task may produce errors or not see or understand
all details given by all the different pages. Incomplete results may be produced.

Still the Web is not semantic; this approach can therefore not be used without any
solutions providing a definition of words. Ontologies are the link between current Web
and the Semantic Web by defining and specifying meaning and relations between terms.

3.3 Ontology introduction

3.3.1 Definitions and basics

The word ontology comes from two Greek words, onto for being and logos for word.
Originally the term was used by philosophers to deal with nature and the organization of
reality [Gua98], or to model things as they exist in the world.

In the early 90’s the term ontology was adopted for use concerning information
management and in context of the Semantic Web. Several definitions of the term
ontology have since then been made and used within this area. According to Gruber’s
definition of ontology, we say that;

“An ontology is an explicit specification of a conceptualization” [Gru93].

Talking about conceptualization in this context refers to ontology as an abstract model of
a particular domain of knowledge. With explicit specification Gruber means that the
concepts, their attributes and the relationship between the concepts are given an explicit
definition in the ontology, as shown in figure 3.

7 SHOE – http://www.cs.umd.edu/projects/plus/SHOE
8 Dublin Core – http://dublincore.org

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

14

Figure 3 - Conceptual model [Lau02]

By constructing and using ontology, you have made an agreement for use of a known and
shared vocabulary of a particular domain of interest for humans, databases and
applications. A foundation for communication between humans and machine agents has
been established.

The relations between the concepts can be like “subclass-of”, “instance-of” or “refers-to”
together with functions that give certain information about a concept. An example of this
is given in the following function. This says that if we an instance is both a person and a
mother; then we know she is a woman.

mother-of & person → Woman

Figure 4 – Meaning triangle [Ogd23]

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

15

Concepts are usually grouped into a hierarchy of classes, where each class, and sub-class,
can contain sub-classes. Relationships can consequently be established either between
different concepts or classes of concepts. Instances in ontology represent a concrete
instantiation of a particular defined class.

3.3.2 Ontology example

Consider an ontology for vehicles, containing boats, motorcycles and cars. There exists
many manufacturers of cars (e.g. Volvo), and they make different types of cars (S40, S60
and V70). Volvo, BMW and Audi represent different sub-classes of cars in the ontology
of vehicle, while V70, 320 and A4 are specific instances of cars made by different
manufacturers.

Giving this ontology more information and instances, the ontology will provide a
standard, unambiguous representation of the domain of vehicles. When “the symbol” A4
occurs, all users of this ontology will automatically know that this is an instance of the
car Audi, because of the instantiation of the concept in the ontology [Das02] [W3Cowl],
and not the paper format, see figure 4. If two manufacturers get together to produce an
instance car, it would be represented as a relationship between the manufactures. Part of
the example is presented in figure 5, where it can be seen that S60, S60 and V70 are the
only instances of cars Volvo make.

Figure 5 –Ontology example

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

16

An important point, also partly reflected in the given case, is that there is m to n
relationship between words (symbol) and concepts. Different words may refer to the
same concept, or a word may refer to several concepts, like A4 [Mae02]. Ontologies are
specified to be a conceptualization of a specific domain, which reduce the amount of
these examples to a minimum or to exceptions which can be dealt with separately.

Using an unified ontology as an interface to extract information from heterogeneous
distributed data sources, the time-consuming process of learning the individual data
sources can be by-passed [Das02]. Ontologies also make the application more flexible
and intelligent, in the sense that they can more accurate work at the human conceptual
level not depending on any other structures and standards. In the next Section I will look
into the some issues concerning construction of ontologies.

3.4 Ontology construction

3.4.1 Introduction

Constructing an ontology can be done in three different ways. Manually construction
makes use of one of the many supported tools which in the past few years have occurred9.
This way requires a great amount of work and getting a proper ontology also often
require a domain expert, especially considering that the better an ontology is constructed,
the better will it work. The other is a semi-automatic way where a combination of
manually construction and additional ontology learning. The third method is automatic
creation of ontologies. The advantage is that these to do not require so much effort, and
relearning is relatively easy. They are however requiring much more background
knowledge and are far more complex to construct.

3.4.2 Top level ontologies

When starting to construct ontologies, you have to decide which level your ontology is
aimed for. Guarino states four different types of ontologies; Top-level which deals with
very general concepts like time, space and event designed for large communities of users;
domain ontology for a certain domain specified in the top-level ontology, like vehicles;
task ontology describes vocabulary related to a generic task or activity, like selling, also
defined in the top-level; and application ontology as the most specific ontology
depending on both a particular domain and task [Gua98], see figure 6.

9 List of ontology editors - http://www.daml.org/tools

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

17

Figure 6 – Types of ontologies [Gua98]

The most important is, however, that the ontology constructed is following the specified
needs. If an ontology is made to large, containing a lot of classes and relationships, this
may reduce the effort of the ontology. Having to many concepts may result in problems
when equal terms appear. Like A4, if both Audi A4 and the paper size A4 are in the
ontology, which meaning is the right one for this instance? Making the ontology to
narrow, useful information may not be conceived.

It is however not always necessary to start making the ontology from scratch every time.
Existing ontologies can be extended by linking or mapping (merging) them together into
one. Both methods require some equalities providing right linking or mapping to be
performed. I will not go deeper into these topics; instead refer to other resources, like
[Doa02], for more information.

3.4.3 Ontology languages

Ontologies do, like Semantic Web, have languages for representation. In fact is
RDF/RDFS one of these ontology languages. Ontology languages have, like many other
programming standards and languages, evolved through the recent years. Among the
early languages are Ontolingua and LOOM, to later ones like RDF/RDFS. The most used
at this time are probably DAML+OIL followed by RDF/RDFS. DAML+OIL is a joined
force of DAML, an RDF Schema based language, and OIL for better performance
[W3Cd+o]. OWL is a language derived from DAML+OIL, and is currently a working
draft at W3C [W3Cowl]. All these are based on the previous ones and extend their
properties. Key features of OWL, compared to the previous languages, are that it adds
more vocabulary for describing properties and classes. Examples of this are new relations
between classes, like disjointness, cardinality, equality and richer typing properties. OWL
is only supported by a very few number of the currently available ontology editors,
because of still being a working draft. There are converters free online transforming your

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

18

ontology into OWL. In addition to these languages mentioned, there are several others
including Topic Maps, which is briefly looked into, as a comparison to RDF, in the next
Section.

3.4.4 Topic Maps

Semantic Web and ontology is driven by W3C, while Topic Map is an ISO standard.
Topic Map is also a kind of ontology, like thesaurus, taxonomies and semantic nets also
are. Topic Map describes knowledge structures, electronic indices and classification
schema to manage the information glut and structuring of unstructured information.

Garshol has made some studies about Topic Map and different ontology languages, like
RDF, DAML, OIL and OWL [Gar03].

Topic Map is, as RDF, using XML for structuring information with meta-data in
hierarchical manner. They both represent pretty much the same, but uses different names
about it. RDF is built upon the triple of resource, property and object. Topic Map has
something very equal to this; names, occurrences and associations.

Names, associations and occurrences are important in Topic Map, where RDF is limited
to only defining assertions (statement) for things, corresponding to names in Topic Map.
Topic Map has different kinds of relationships and associations are, completely different
to RDF statements, assigned roles.

Where RDF only allows blank nodes, Topic Map also allows blank URI nodes. This is
because URI in Topic Map can be considered to be a subject address (subject identified is
the resource) or a subject identifier (subject is whatever is described by the resource).
These differences make it hard to achieve interoperability between Topic Map and RDF.

There are also some other differences, about reifications and qualifications. I will not go
deeper into this, and refer to more differences and complete comparison at [Gar03].

3.4.5 Ontology editors

Several of the ontology editors available today, especially among the freeware, are
developed by an university. Examples of these are Protégé by Stanford University,
OilEdit by University of Manchester and Kaon by the University of Karlsruhe. These
universities are among the groups who are very active in this field. This is reflected in the
papers and project performed, and in updating rate of the editors, functionality and
different plugins they support. I have joined a mailing list for Protégé, which is very
active and updates are frequently.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

19

Protégé standard download supports construction of ontologies in the following three
formats; standard text file; JDBC database; and RDF Schema. The text file format
represents one file containing a textual ontology without any URI and a file for instances.
The ontology is built hierarchical with classes, subclasses with its properties, constraints
and relations described. The instance file is similar to the N3 notation format used in
RDF, but with a Protégé syntax variant. The JDBC format of Protégé lets you make your
ontology as a knowledge database. Instance file and JDBC part of Protégé have not been
further investigated.

One drawback of Protégé is that it does not support OWL, the new ontology language.
There are very few who does, since this is a new language not completely finished, but
OilEd is however one of them where who support OWL. In OilEd you can export the
ontology to a list of different languages. This tool was not chosen because of poor user
interface and documentation.

There are many plugins available for Protégé. One of these is support for the ontology
language DAML+OIL provided as a third party component from SRI10. This plugin was
unfortunately not found before it was too late. An ontology in RDF was already
constructed, different tools were found and adjusted. I should later be aware after testing,
mailing to SRI and response on Protégé’s mailing list, that this plug was not working
properly and improvement were worked on to next release.

3.4.6 Parsing and querying RDF

Several tools and APIs support querying of ontologies in different formats. Hewlett
Packard (HP) has developed a Java API for RDF called Jena. Subsystems of Jena
include; ARP Parser; RDQL, RDF data query language; DAML API; and two ways of
storing Jena models in relational databases. In addition to querying, Jena can also be used
to add triples to a model. Protégé has also a support for querying ontologies.

RDQL defines a query language, which looks like SQL statements used for database
queries, for retrieving sets of variables. RDF is treated as data and a query of the triple
pattern are provided.

3.4.7 Ontology learning and pruning

Developing ontologies is a time-consuming and error-prone task. Constructing ontologies
in a semi-automatic way may reduce the time, and hence some of the money required,
especially for maintaining and updating it. Construction of ontology semi- or
automatically, together with ontology learning and pruning, are relatively new areas of
research. Only the last two, three years projects around this has been made. The

10 SRI – http://www.ai.sri.com/daml/DAML+OIL-plugin

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

20

Artequakt [Ala03], presented in Section 4.2.1, also points to this as an area of further
work providing difficulties due to decrease of precision and recall of the ontology.

Maedche and Staab have done research projects in ontology learning, a semi-automatic
process supporting ontology engineering and management. Four different phases have
been given in [Mae02]; ontology extraction, reuse, evolution and interoperability.

Ontology extraction from scratch is based on the input data to the ontology, and
engineers’ gets proposals from for ontology modeling tool. Learning from text has for
several years been done by Natural Language Processing, see Section 3.4. This has for
instance been done by matching patterns. Concept learning is another approach where a
given taxonomy is incrementally updated as new concepts from real-world texts are
acquired.

Reuse of whole or part of existing domain ontology for a specific application, see figure
6, is known as ontology pruning. Ontology pruning is data-driven and uses an approach
that is based on word or concept frequencies. The occurrence frequency are analyzed, and
words that refers to concepts in the ontology but do not occur in the domain-specific
corpus are eliminated from the learned ontology. This method may also be used for
evolving ontologies where words or concepts become unused.

Learning from schema can also provide valuable input for developing an ontology. Many
different types of schemas can be used in modeling a system, but almost every system
have at one of the following or another schema assigned; UML, XML-schema, ER-
models or Document Type Definition. Reverse engineering can then be used as a part of
the development process.

Ontology evolution is done by refinements or changing discovery e.g. concept drifts.
Ontology interoperability is done be merging or mapping ontologies. Ontology learning
from interoperability is accomplished by finding semantic mappings between similar
elements from two ontologies and then using both ontologies as one.

Having an ontology provides us with a controlled vocabulary, or shared understanding,
describing entities or concepts and how they are related for a certain domain of interest.
However, this is not enough, we also need to read through text files and find out what
information they give. To achieve this, Natural Language Processing (NLP) is commonly
used. NLP is introduced in the next Section.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

21

3.5 Natural language

3.5.1 Introduction

Information is often given in natural language written for human consumption in the way
we speak, and not for computer understanding. This is the same problem mentioned in
the introduction, in Section 1.1, 2.3 and 3.3.4. Natural language is recognized by lack of
tags assigned giving the text any semantic meaning. For computers to understand the
natural language, it has to be processed. Natural Language Processing (NLP) is one
computational technology where computers process written, and also spoken, language to
locate and extract information. NLP attempts to reproduce the human interpretation of the
information in a way that computers understand. Patterns in grammar and conceptual
relationships between words are key issues in NLP. The goal is to express or match
information given by symbols, relations, and conceptual information so that computers
can use it to implement an artificial language interpretation [ITw00].

3.5.2 Natural Language Toolkit

The Natural Language Toolkit (NLTK) is actual a toolkit developed for a student course
at the University of Pennsylvania 11 providing a basic infrastructure for building NLP
programs. It is basically a set of open source modules written in and for the Python
programming language. The infrastructure contains a collection of basic classes for
representing data relevant to processing of natural language and interfaces for
encapsulating the resources and methods needed for performing specific tasks. NLTK
includes, among others, interfaces for tokenizing into smaller text units and tagging text
as modules. These two will be the most important ones in the extraction process taken
place in the agent described in chapter 5.

The simplest way of representing a text is as single strings, which are dealt with in the
context of semi-structured or weakly structured information sources. Processing text in
this format is a very difficult task. By splitting a text into a list of tokens, you will often
get a more convenient way of working with the text. This task, converting the string into
a list of tokens, is known as tokenizing. The token module processes a text into individual
elements of text like words, lines of text or sentences from a text file. Using this module
for splitting and tokenizing text into parts with a reference to the instance also makes it
possible to loop through the tokens afterwards looking for more information. With the
help of regular expressions we can compare each token against expressions or words
defined in code or in the ontology for match.

11 NLTK - http://nltk.sourceforge.net

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

22

The tagger module tags the tokens with supplemental information. It uses regular
expressions to find out whether it is a number or a string. Numbers are tagged with CD
and strings are tagged with NN.

3.6 XBRL

3.6.1 Introduction

In the thesis definition the sentence “extracted knowledge should be captured in such a
way that it can be exported into financial standards like” are given. One of the goals was
to do express the knowledge found in the extraction by the standard XBRL. A brief
introduction is made in this Section.

3.6.2 Definition and basics

XBRL is an abbreviation from the eXtensible Business Reporting Language. XBRL is
designed to enhance the creation, exchange, and comparison of business reporting
information. Business reporting includes financial statements, financial information, non-
financial information and regulatory filings like annual and quarterly financial
statements.

The working draft [XBRL03] contains definitions of XML elements and attributes that
can (optional) or are to (obligatory) be used in business reporting. XBRL consists of a
core language of XML elements and attributes used in instances of XBRL documents.
The core language’s abstract elements, which by definition not can be used as an
instance, are replaced by concrete elements in XBRL instances. Abstract elements are
defined in taxonomies. Taxonomies describe standard ways to distribute business
information, and can be regarded as an extension of XML schema containing several
hundreds of concepts. XBRL also consists of a language for defining new elements and
taxonomies of elements.

One main goal of XBRL is to improve business reporting, following existing accounting
and business domain standards. A standard format is to be used for storing the
information, but different ways can be used to present it [XBRL03] [xbrl].

XBRL is extensible language enabling any adopter to increase its breadth of applicability,
and is built like a hierarchical structure. A global high-level review is the foundation of
XBRL to ensure that all major sections of primary financial statement are included. The
next level is taxonomies created at country level. Here country dependent elements are
added. In this way more elements are added for each level, like industry and company,
disclosing specific elements [Ric02] [XBRL-FR]. Based on different compositions of
these taxonomies used through namespaces, is XBRL instance documents made
containing the actual financial data [Tib02]. All taxonomies are defined in XML Schema
(XSD) files.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

23

The taxonomies standardized at [XBRL-FR], are only the two most general ones.
National extension together with industrial and company extensions are not provided as
standards yet. Many other working draft taxonomies are also under development, i.e. at
[xbrl].

XBRL allows faster evaluation of data as it separates information from style. XBRL
instance documents are often constructed by other programs filling information and
financial figures into the XBRL file, like accounting systems or other sources of
information. Different examples of instance documents are; printed financials, regulatory
filings, Web sites, tax returns and bank filings. The resulting XBRL file containing all the
figures, are referred to as an XBRL instance document.

One detail of XBRL important to notice is that positive and negative numbers are
differentiated by adding negative numbers with a minus sign. For example are both profit
and loss placed in the same tag, like for instance “ProfitLossAfterTax”12.

A tag called “numericContext” is used to describe the tags giving numbers, like in
“ProfitLossAfterTax”. An attribute in each element (e.g. “ProfitLossAfterTax”) links to
the id of the belonging “numericContext”. Several elements of can link to the same
“numericContext”, as long as they have the same description.

In “numericContext” an important attribute named cwa is given. This attribute is a
Boolean value indicating the validity of a “closed world assumption”. If cwa= “true”,
then the reader of the XBRL document can assume that all relevant information are
provided. When cwa= “false”, we can not assume that all the relevant information is
provided and calculating any new facts based on this can not be done [XBRL03].

In addition to cwa, are also units, like currency, precision and period some of the XBRL
instances that can be defined in “numericContext”. Some of these are optional. The
complete list of instances can be found at [XBRL03].

3.6.3 Currency standard in XBRL

XBRL uses ISO standards to unambiguously express information where there is any
chance for this. One frequently used, is ISO-4217 for describing which currency used to
describe financial amounts. “$” and “€” are not used in this standard, but three letter
notations like “USD” and “EUR”.

12 XBRL sample – http://www.xbrl.org/taxonomy/int/fr/ias/ci/pfs/2002-11-15/Samples.htm

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

24

3.7 Current status of ontologies

Ontologies are a relative new concept in computer science. Since its introduction in the
early 90’s, several ontology languages have been developed as introduced in Section
3.4.3. OWL, as the newest ontology language, is still a working draft at W3.org and is
only supported by a very few freeware ontology editors. RDF and DAML+OIL seem still
to be used most. Most editors supports RDF, but many editors also supports
DAML+OIL. A group of ontology editors are introduced in Section 3.3.3. My
comprehension is, to make a summarization of current status, that the different tools all
have advantages and disadvantages compared to each other. Differences are mainly
according to; ease of installing; user interface; guidelines and tutorials; ontology
language support; plugin support; and update frequency.

The freely available editors are mainly made at universities and are therefore more
educational and not a “professional” editor which OntoEdit, and other applications from
the On-to-knowledge project, seems to be. OntoEdit is not a freeware and license needs
to be bought.

Searching the Web for projects guided or based on ontologies has not resulted in many
hits relevant for the area of using it to extraction of information. Using this technique is
quite new, where papers mostly are written after 1998-1999. Many of these only
describing what ontology is and some have a small test case assigned. Bigger projects are
often not published in detail. The two most interesting ones are described in Section 4.2.1
and 4.2.2. These are both a collection of separate projects which are put together for a
complete working set of applications. Ontological differences are looked at in the project
referred to in Section 4.2.3.

Except giving me some useful ideas and providing more theoretical insight in the domain
of ontologies, the projects found has not given me many practical solutions. A conceptual
solution has therefore been made, described in chapter 5. In chapter 6 the solution based
on the conceptual solution is presented.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

25

4 Ontology used for extracting information

4.1 Introduction

A preliminary study of current projects and status of extraction of data guided by
ontologies has been done. The best projects, and most relevant work in this area to this
thesis, are described in this Section.

4.2 Related work

4.2.1 The Artequakt project

The Artequakt [Ala03] project by Harith Alani et al. at the University of Southampton is
an ongoing project with a publication in IEEE in the January and February edition this
year. “Automatic ontology-based knowledge extraction from Web documents” is the title
of the publication. The project is exemplified by biographies of artists. It automatically
extracts information about artists from the Web and populates a knowledge base. The
knowledge base allows queries for information. This project has drawn expertise from
three separate projects where different areas have been stated.

The first area includes construction ontology, and automatically populating this from
online documents given the ontology’s representation and WordNet13 lexicons to expand
the list of terms in the ontology. The information has been implemented in Protégé and
stored as a knowledge base (KB), the second key area. The third area has constructed
narrative tools to query the KB for relevant facts through an ontology-server.

For knowledge extraction information extraction (IE) systems have been used to reduce
the documents of natural language to tabular structures. These structures are used to
retrieve fragments of documents as answers to queries. To avoid the use of templates, the
IE processes are providing with direct access to concepts and relations in the ontology.
Articles are first broken into paragraphs and then into sentences. To achieve this are
different tools used in the extraction process. GATE and Apple Pie together with
WordNet has been used to analyze syntactically and semantically the sentences for
identifying relevant information to be extracted. Trusted sites have been defined and used
as basis for quality control between query and result.

Information after extraction is provided as an XML file per document. Different
biography templates are authored in a tool named Fundamental Open Hypermedia Model
(FOHM), and defines templates ranging from database queries to KB queries where
sentences must be constructed.

13 WordNet – http://www.cogsci.princeton.edu/~wn

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

26

The Artequakt project seems to have overcome many problems. In their further
development section, they state some important challenges. Semi-automatic ontology
population is a difficult part, though it reaches a great quantity of data, the precision and
recall may decrease. Managing persistent information, duplicates and overlapping
information from different sources are some issues that need to be dealt with.

Co references are also referred to as a significant challenge. Breaking the documents into
sentences may loose some references, like “he” is used in a sentence referring to the
name of a person given in a previous sentence.

4.2.2 The On-to-knowledge project

The On-to-knowledge project14 [Fen02] is a major Information Society Technologies
project concerning knowledge management using an ontology-based approach, lasting
from 1999 to 2002. An article in IEEE in November 2002 titled “Ontology-based
knowledge management” gives a brief description of their work. Using the term
knowledge management denotes the process of acquiring, maintaining and accessing
information. The projects overall goal was to make a huge amount of electronically
information more accessible by using ontologies to make searches more intelligent and
not keyword based. Intelligent searches answers questions, while keyword based only
matches words.

The approach used in this project includes three different levels. The lowest level
performs extraction of information from structured and semi-structured documents, the
last also called weakly structured information sources. An intermediate level contains an
annotated data repository where automatic access to meta-data is provided. At the highest
level both clients and providers can explore and modify knowledge domains through
implemented push and pull techniques.

Along with the project, a group of applications have been developed. A brief introduction
to some of them is following. Ontology construction is provided in a semi-automatic way
by OntoExtract (from unstructured sources) and OntoWrapper (from structured sources).
The OntoExtract tool, executes some of the same tasks to be solved in this thesis. It
parses, tokenizes and analyzes the text, and generates nodes and relations between them
in DAML+OIL ontology language. The final result is submitted to the RDFS repository
server Sesame. Sesame uses the query language RQL to query these incoming RDFs and
provide result for the high level tools. This includes a number of tools, among these
OntoEdit where you can browse and modify an ontology. OntoShare supports and
encourages for sharing of information. This works together with the projects work to
enable personalization and ontology-based user profiles.

14 On-to-knowledge – http://www.ontoknowledge.org

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

27

This seems to be the project which has reached furthest in the area of ontology-based
extraction. Many tools have been developed, a book is written and some publications are
made. But since they have come so far, tools are not freeware, and publications do not
describe in detail what they do. OntoEdit can be downloaded as a limited edition,
allowing 50 concepts, instances and relations.

Several case studies are done and solutions are provided for big companies, like Swiss
Life and BT, and includes; Applications for large intranets providing fast and reliable
access large documents; managing skills and job functions; disseminating of large
collections of rules and regulations; and to improve knowledge transfer between in-house
researchers and outside specialists via Web pages have been made.

In the next Section a project using ontology to solve the problem of different use of
scales, formats and units in financial systems.

4.2.3 Knowledge integration to overcome ontological heterogeneity

A student project [Fir02] at MIT, USA, has developed an extension to the context
interchange (COIN) framework for representing and reasoning ontological
heterogeneities. Semantic interoperability among traditional and Web data sources are
achieved. Different financial databases reporting the same companies are found to often
have differences. No scale, unit or format is enforced; cases like 50 million or
50.000.000, equal to the issue I have in my case, has therefore needed to be dealt with.

Ontological heterogeneity, also called ontological conflicts, is defined as data items
calculated differently. Profit is in some sources considered as the result before tax, and
after tax in others. In the extended COIN framework a shared ontology is allowed to
assume these different meanings from different contexts. A meta-ontology layer has been
developed in order to do this assumption. A semantic type identifier is used to determine
which type to use based on its context. This brings, according to [Fir02], flexibility into
the system. The ontology is able to deal automatically with ontological conflicts; no
changes in the ontology are required. A mediator performs a task of selecting sources that
can satisfy a given query, which are financial figures.

This project reveals, in financial information systems, that data-level, ontological and
temporal conflict is quite common. Global interoperability is depending on solving these
conflicts. Ontology level components are illustrated in this project, and, as a part of the
logic-based ECOIN (Extended COIN) framework, providing a solution of data-level and
ontological conflict.

In the next Section is a conceptual solution, exemplified with an optimal scenario, for
ontology guided financial information extraction presented.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

28

5 Conceptual solution for ontology guided extraction

5.1 Introduction

For financial information to give any value for the user, they need at least some certain
data. In the shortest and easiest form, we can say that we need to know what happened
and when did this happen. If a company had some income, we are interested in when this
happened and where this income came from, like sales of a special product. Further we
want to know how much this income was, specified in some amount of currency, and
which company this apply for.

Finding information is not always an easy job. One problem may be to find date and year,
often occurring several times in an article and pointing to different periods or dates.
Examples of this are when an action, like payment, took place; profit of some period
ending at a certain date or the date the article was written. Another problem is all the
possibilities of writing a date, which can be done in several different formats as both
numerical and textual. Date and year may not always be stated in the article at all,
assumptions, described in Section 5.2, have therefore been stated.

Another problem is, also described in [Ala03], where a pronoun, like “he”, refers to a
subject given in a sentence before. This may also occur in the financial articles about
company, and period or year. For instance without knowing when the article was written,
it can be impossible to find what year “next year” refers to. This problem is known as
anaphora, [Cri01].

In the next Section assumptions for input file will be stated, a conceptual solution of the
prototype will be presented in Section 5.3, followed by an optimal scenario in Section 5.4
picturing and describing a desirable result of the extraction process.

5.2 Assumptions for input article files

The anaphora problem can be quite difficult to solve when extracting information from
the articles, if not any date and year this article was published are stated for example just
below the title. “First quarter” and “annual report” are example of expressions used
frequently used and can cause problems. However since information about the articles
found by Intermedium’s agent are stored in a database, also date and year found for each
article are stored. Assuming that the article is gathered by the agent the day it is
published, is it easy to store the article release date and year along with the text in the
database. Anaphoric references can then be interpreted and expressions like “first
quarter” can provide additional information about when this data is valid for.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

29

The agent also knows where the article is found; this is the source. URL to the article is
also provided. Having this information ready, will ease the extraction process a little
regarding to setting time to the information.

The input to the system is assumed be an XML file where date, source, URL and the text
to be extracted are tagged. Making a query engine to get the right information from the
database and return it as XML is not a difficult task, neither a focus in this thesis. It will
however be a pretty important part of the system which the prototype will be relied upon.
In addition to provide important information about when this news refers to, it also
provides a standard way of representing the date which can be used when storing output
knowledge in standard format.

5.3 Using ontology in financial information extraction

5.3.1 XML input to extracting system

The input to the process will, as assumed in Section 5.2.2, be an XML file containing at
least release date and year, and the text where the information to extract is. The extraction
process is visualized by figure 7, where Input is presented at the left.

5.3.2 The extracting system, the agent

The retrieval of financial information from input will be carried out by agent who
extracts information from the text variable. The application prototype is called an agent,
and will provide a service that combines the process of text extraction with the use of
ontology and to provide an output. To read the ontology, the agent will have to use an
API or parser which supports the language and standard that the ontology is written in. A
processing language or toolkit is needed for enabling the agent to understand semi-
structured information. Without this, the agent will not be able to read and understand
anything of the text given. In the human world it would be like we should read Chinese
without having any knowledge of this language at all. It would all seem “greek” to us.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

30

Figure 7 – Conceptual process of ontology guided information extraction

One main challenge in this thesis is how to get the extraction and parsing the ontology for
right information in the right order, and get these two to work together for a better
extraction process. Would it better to extract the text first and then check if every word
exists in the ontology? Or is it better to parse the ontology and keep all words and
instances in memory and then extract these words from the text? What’s better may
depend on the size of the ontology compared to the average size of the texts to be
extracted. If the ontology is big, it will be more time consuming the more reading that has
to be performed. An easier and better way will probably be an interaction where the agent
queries either the ontology or the text when needed in the process. This will be especially
true when a property of a resource is found and this new resource has a reference to
another resource, which again is relevant only if the first resource is found. Here it is
necessary to query the ontology again, unless the whole ontology is available in a
searchable memory. Making a loop here, will give us an easy extensible agent where you
will not need to enter the agent code, but only the ontology editor to complement your
extracting system. An algorithm has to be made to clarify this issue.

5.3.3 Ontology

The idea is to build up a sort of net, or grid, of information in the ontology. The ontology
will be a knowledge base of words which relates to each other as synonyms (words with
approximately equal meaning, like income and revenue), relations (words that are in
some kind of relation to another word, like income often refers to an amount of some
currency) and antonyms (words with opposite meaning, like gain vs. loss). Using this
technique, you know that if a currency is found, you want to know what it describes, like
income or loss of something. The resource containing the unit of currency has a reference
to, among others, the resource where income is denoted. The same applies to revenue,
which practically has the same meaning as income and a synonym of the same concept.
Further the resource, where income and revenue are defined, may have a reference to

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

31

another resource, like a resource describing what this income was a result of. This could
for instance be income from operations, which several occurrences of have seen in
articles provided by Intermedium’s Web agent.

One important goal of this extraction process is that an improvement of the system will
be done by extending the ontology, adding more words, relations or mapping to other
ontologies, and not by extending or rewriting the code in the agent. Rewriting of code is a
more difficult process and can be more time demanding than simply adding more effort
into the ontology. This effort can be done automatic, semi-automatic or manual by
humans as introduced in Section 3.3.4. New words, meanings or relations may be wanted
in the ontology for and therefore enforcing expansion of the ontology anyway. The agent
will not be finished by this thesis, but can at some time be considered done, while the
ontology may evolve more or less continuously.

5.3.4 Output of extraction process to an ontology language

When the information extracting is done, together with use of the ontology, the output
will be ready to be written to an external file output. An ontology language, like RDF or
OWL is to be used to enable extracted information with semantic tagging and relation
between them. Querying the result can be performed since the result will be in a
computer understandable language.

5.3.5 From output to XBRL

Information extracted can either be transformed from the ontology language to the
financial standard XBRL, or be made directly from the agent. Expressing the result of the
information extraction in this format will provide the possibilities of using the result in all
applications and by all business supporting XBRL. Probably will the amount of available
software supporting XBRL increase with the time, as the standard grows and gains
support. The customers have then the opportunity to choose which software that provides
the best result for them. Maybe they already have a tool for exchanging financial
information in XBRL, and then can use this application for querying or displaying XBRL
information resulting in no extra cost buying new software.

Filling the XBRL instance document from the output in ontology language with
information found by the agent can, as shown in figure 7, can be done by using an XSL
file to read the output and map to the taxonomy given by XBRL. In the other solution,
where the agent directly writes the XRL document, can a similar approach as for output
be used.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

32

The connection between XBRL and the ontology points to the desire of making the
finance ontology as close up to and equal to the XBRL standard as possible. The more
these two correspond, the easier it will be to map from the output to XBRL. It may also
provide easier reverse engineering when, or if, lacks in the XBRL file are found that is
appropriate to express in the ontology.

Why not give the result directly in XBRL? The thought is that it may be easier to use the
ontology in the process of extracting information when thinking of some corresponding
holes to be filled. Consider given example: One financial term is given, income. Together
with income more facts are needed, like how much is the income in amount and currency.
Further you need to know what this income is about, which could be from operations. In
addition is date and year along with the source of this news already given. To
summarized, we have now “income operations $5 million” and a good indication of when
this was, based on when the news was written. This can be extended to include more
information, like getting which quarter or year, company and department this is about.

5.4 Visualizing an optimal scenario

5.4.1 Overview

Input text is given as a string of sentences from an article, together with date, year and
source information. An information extraction based on a financial ontology will be
performed by the agent and output will be generated in RDF. An XBRL file will also be
generated, like given in figure 7. To be able to see a clearer picture, will an example be
given describing what to do.

Starting point of information extracting is defined to be currencies found in a sentence.
Other starting points could have been chosen, because there might be given much
financial information without saying anything about currencies. Percentage changes in
shares and “gain in income” are just some simple examples of this. An alternative is a
defined set of financial terms given as starting points, which needs to be found for
checking more words in sentence for matches. This should therefore be easy to change. In
this thesis, currencies are taken as starting point.

Using the NLTK toolkit for tokenizing articles into sentences allows each sentence from
an article to be the source for an optimal extraction process. Given an optimal extractor
and a complete ontology, what information will be extracted and given as output?

The sentence is “The loss before tax is expected to be approximately GBP39 million.” is
given as input in figure 8. A sentence containing much information is chosen, not all of
them do so.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

33

Figure 8 – Optimal extraction of example sentence

The extractor will first find GBP and then start a search for more information describing
this currency. 39million is found as the amount of currency in this sentence. Loss is found
as a financial word, but this has modifiers like expected (and approximately both
describing that this is not a final result) and before tax. All these words are defined in the
optimal ontology, and there possible to locate and later assign meaning through
semantics. The other words are just to complete the sentence in the form of natural
language, and of no interest to extract. Date, year and URL are variables given at article
level, and describe when and where this sentence was found. If a complete article was
presented in this scenario, links from this to date, year, URL and source would have been
made. These variables are not added in the sentence level, and are therefore not
considered further in this scenario.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

34

How can this extracted information be presented? There are many different possibilities,
also within the ontology languages RDF and OWL. They both permit some individual
differences as a result of the fact that to persons can make different ontologies about the
same domain. Different ways of writing RDF/XML syntax are also allowed [W3C99rdf].
OWL is the latest working draft of ontology languages; but since RDF is described in
Section 3.2.3 and this is a well defined standard providing all the functions which seems
needed in this extraction process. In the next two Sections an example of an optimal
output solution of this sentence in RDF syntax is considered.

5.4.2 RDF statement graph

A transformation from the extracted words in an unspecified structure, figure 8, to well
defined structure given by RDF statement graph is presented in figure 9. The ontology is
used to find meaning of each word found. URIs are chosen arbitrarily, as introduced in
Section 3.2.3, ovals are resources while rectangles are instances and arcs are properties of
the resources. SentenceID/1 is given this sentence, having an amount of currency and
other words. CurrencyAmount is however considered as the starting point for extracting
financial information and is in this example GBP and 39million. It is also connected to
profitLoss through routs-to, describing what information this financial amount is about.
ProfitLoss are connected to modify and financeTax, it could have been more resources,
but in this case it is instanced by expected and before_tax.

Figure 9 – RDF statement graph of example sentence

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

35

When the relationships are drawn, like in figure 9, in a hierarchical manner, it is clear that
profitLoss are described further by modify and financeTax, and that expected and
before_tax are used to provide more meaning about the profitLoss word loss. One
alternative is that every oval could have been connected from sentenceID1. All the words
would then have been at the same level where no internal relations between the words
were made, only that they belong to the same sentence.

A sentence can contain several items of currency and amount. Then more new nodes
would have been drawn from the sentence node in the same way as in the figure, where
each bough is describing and belongs to the currencyAmount couple. Some properties
can also be equal and count for more than one currencyAmount node. Two or more nodes
can for instance refer to same period node.

5.4.3 RDF/XML syntax

Representing the information given in the graph, figure 9, in format of RDF/XML,
readable and processable for machines, can be made in some different ways, as
previously mentioned. Following the rules of RDF/XML syntax, will the programs be
able to read and understand this syntax, like example given in table 2.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description about="http://www.ebjoraa.no/art01.htm/sentenceID1">
 <s:has>
 <rdf:Description about="http://www.ebjoraa.no/currencyAmount">
 <s:currency>GBP</s:currency>
 <s:amount>39million</s:amount>
 <s:routs_to>
 <rdf:Description about="http://www.ebjoraa.no/profitLoss">
 <s:proLoss>loss</s:proLoss>
 <s:has_modifier>
 <rdf:Description about=" http://www.ebjoraa.no/modify">
 <s:modifier>expected</s:modifier>
 </rdf:Description>
 </s:has_modifier>
 <s:has_tax>
 <rdf:Description about="http://www.ebjoraa.no/financeTax">
 <s:taxIdent>before_tax</s:taxIdent >
 </rdf:Description>
 </s:has_tax>
 </rdf:Description>
 </s:routs_to>
 </rdf:Description>
 </s:has>
 </rdf:Description>
</rdf:RDF>

Table 2 – Example in RDF/XML syntax

The arcs from figure 9 are assigned the namespace “<s:” defined in RDF Schema file.
These connect the resources, like currencyAmount to profitLoss. Several triplets of
information are given in this example, like subject financeTax, property (predicate)
taxIdent and object before_tax.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

36

The example sentence in natural language has been broken up into words and, guided by
the ontology, given semantic meaning expressed in RDF/XML syntax. Transforming this
result to XBRL may be performed by XSL or another application, or directly from the
agent. XBRL will give the information with an accurate and uniform description of the
meaning, and provide easy exchange of data between application and users supporting
this language.

When the words and numbers given in natural language in a sentence are given well
defined tags, is the information seen as knowledge. It can be queried and used by other
applications to present the information for the end user in a well arranged way. The user
will no longer be forced to read through the entire article to catch the information given.

An optimal scenario has been presented in this Section as RDF graph and in RDF/XML
syntax. Construction of the ontology guiding the extraction process will be described in
chapter 6. Based on figure 7, chapter 6 is divided into five main parts describing; input
file, agent, ontology, output, XBRL, in addition to an introduction Section.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

37

6 Ontology guided information extraction prototype

6.1 Introduction

Developing a prototype for information extraction guided by an ontology require several
different applications, standards and programming language with additional libraries
where all these are working together. In the process several different applications and
libraries are found which support needed tasks. The construction of ontologies is one part
where several different editors could have been chosen, another is libraries for reading
ontologies. All the choices have been taken either based on recommendation from the
supervisors or as a result of testing between alternatives and choosing what at that time
seemed best suited for wanted purpose.

In this chapter an overview of the entire process is presented, starting with input articles
in XML, financial ontology and application prototype, to output in RDF and XBRL. The
sections describing the financial ontology (6.3) and the agent prototype (6.4) are both
main parts of this thesis definition and a greater part of the programming performed to
solve the questions given. They are placed under this chapter, although they also contain
some discussions and are described in greater detail then the other sections. This is
chosen in order to be able to provide a full description of the solutions and why it is
solved in this way. To understand how the agent work, a description of how the ontology
is constructed has to be presented. And to see how the outputs are being made, an
understanding of the ontology structure and methods used by agent has to be presented.

6.2 XML input to be extracted

6.2.1 Article information as input XML

The articles are stored in a data warehouse at Intermedium, where each business that
subscribe this service, are using its own data mart for querying for information. How the
agent work are not given any focus in this thesis.

Information is gathered and stored in the database by the agent. In addition to text,
information about source like URL and language the article is written in, together with
date and year found, are stored. Querying a database is an easy task and therefore not
been given any focus in this thesis either. The agent is based on input from XML files
giving the information needed, also given as a condition in Section 5.3. The actual text
from the article, date published and the source (URL) are used in this prototype. A
complete XML file example is presented, where all used input variables listed above, are
presented in Appendix J.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

38

6.3 The financial ontology

6.3.1 Introduction

An existing ontology for the financial domain has been searched for, to be used in
prototype, without any luck. None free ontology where located and found suited for the
purpose of this work. One online financial ontology15, or taxonomy, was recognized. A
request for a free copy of their knowledge base was however rejected. Free online
ontologies seemed either to be small example case or not appropriate for the financial
domain.

It was therefore constructed a new ontology from scratch, which can be a time-
demanding process. Making a complete ontology require much work and knowledge, as
described in Section 3.3, a small version of an ontology for the financial domain which
demonstrates its possibilities in this area of use has been developed. A preliminary study
of 50 articles has been made as a background for the ontology construction; this is
described in the next Section.

6.3.2 Preliminary studies of articles

To figure out what information needed to extract from the text, a study on a collection of
randomly selected articles found by the agent for two companies has been performed. 50
articles were gathered, 25 from each company’s site at Intermedium. They were selected
from different sources and examined for information of financial interest. Currencies in
text are defined as starting point of this thesis. When this is located, information about the
amount must be found and then as much information describing this as possible, or
wanted, to figure out its meaning. I therefore concentrated on finding information
surrounding monetary measures.

While studying these articles, notes were made about what word that where used to
describe the currencies. Among these words, many of them gave different information.
There were also many words practically saying the same thing, like for instance income
and revenue. Words that mean the same thing are known as synonyms. Words meaning
the opposite of others words, like profit and loss, where also found. These are referred to
as antonyms.

Going through a limited set of articles for developing an ontology financial domain, gave
a good background for the further work of constructing the ontology. Many articles are
written by the same publisher, like Reuters and Forbes. Often companies have policies
for writing articles in layout of articles, and it seems so in writing them to. This especially
counts when the same author writes articles. Writing a report about the annual result does

15 InvestorWords - http://www.investorwords.com

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

39

not give so many options telling the same story either. This is however not the case when
the report is given in table form, which are not dealt with in this thesis. The result of this
is that the mostly used expressions can be covered in a limited amount of word.

Words to get started were located. Online dictionaries, freeware and taxonomies have
been used for finding even more synonyms providing the ontology with a higher hit rate.
WordNet, a free downloadable dictionary developed at Princeton University, is one these
which is very helpful. Another one I will emphasize is Bartleby’s16 online dictionaries.
However Bartleby’s dictionaries are more time-consuming and also not available from
any extracting applications.

WordNet is a powerful little program for browsing in a net of words and relations
registered in a database. The relations in the database include, among others, descriptions
of the searched word, its synonyms, antonyms, hyponyms, and conditional terms. By
using these two dictionaries, the net represented in the ontology were enlarged. Testing
against different articles has also resulted in finding some new words, added were into
the ontology. Construction of the ontology is described in the next Section.

6.3.3 Constructing the ontology

Constructing an ontology is a demanding process, ref. Section 3.3.2. Although you have
some of the entries which is to be stored here, you have to consider how to build it up.
Relationships and dependencies have to be modeled in a meaningful way and for the
purpose of use. In this thesis it is to extract information from semi-structured text files.

Figure 10 – Words without any given relations

16 Bartleby’s online dictionary - http://www.bartleby.com/62/

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

40

Consider first the words found by reading the articles, described in Section 6.3.4, before
putting any relation about synonyms or antonyms into the ontology. This case visualized
could look like figure 10, where the circles represent words found in the articles, or
concepts as described in Section 3.3.1. Adding synonyms to each word will increase the
resilience of the concept and the chances of it being captured in the extraction process.
No relations have been stated, so no connection between the words can yet be made, see
figure 10 compared to figure 11 and 3.

A sentence containing information can be seen as a series of words or concepts relating to
each other. To ease the extraction process a little, a prune the words not needed. Because,
when extraction information, there is no need to know every word. The important ones
are numbers, subjects and verbs. The other words may only be there to formulate the
sentence right in natural language.

Figure 11 – Words represented in an ontology with relations

The starting point of this financial extraction was to find whether or not a sentence in an
article contained financial figure; a currency and a number giving the amount. A concept
containing different currencies of interest have been defined; in the ontology called
currencyUnit. This is shown in figure 11 where the currency concept, currencyUnit, is
placed in center. The agent, from chapter 5, will read the ontology for the starting point.
Currencies defined will be found and listed; like ”€”, “$”, “USD” and “NOK”. If one or
more of these is found in the sentence, the agent will find the amount and the relation to
other concepts currencyUnit have. After this it will find synonyms for every of these
concept and check the current sentence for match. If a match is found, a new check for
relations to other resources is performed for more words and synonyms.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

41

Having relations between concepts, see figure 11, gives the opportunity to search for a
word, or a group of synonyms, only on a given set of conditions. When a word given in
concept A is found, then, and only then, a search for words given in the relating concept
are performed B. The advantage of this is that the search and work of the agent are
limited. The extractor is not interested in a word unless a certain condition is fulfilled,
and it is therefore not necessary to search for all concepts for a match in the sentence. The
agent will, as a result of this, be able to work faster.

Alternative entrances can be made for extracting information. A defined set of concepts
are defined as start point, a concept can be a blank node, see Section 3.2.3, only referring
to other concepts where all these synonyms will be checked for matches and relations to
other concepts. The advantage is that information from sentences that does not contain
currencies can be captured. The downside is that the agent will get more work to do,
more words to check for match and therefore be a little slower.

6.3.4 Ontology editor: Protégé

From the tools available on Web, some of them described in Section 3.4.5, are Protégé
chosen for the ontology construction. Protégé is easy to install, easy to use and have good
documentation. In addition a very active mailing list is available, and frequently updates
and new builds are available. Protégé is also used by the Artequakt project, Section 4.2.1.
Protégé 2000, version 1.8 build 1064 was selected.

6.3.5 Naming in Protégé

There have been many contributors to the evolution of ontology, including those that
have made applications for constructing and editing ontologies. More then one name has
therefore been used referring to the same thing. One of these is concepts, which are
constructed as classes in many applications, including Protégé. Classes can, as in object
oriented programming (OO), be built as a hierarchy of classes and subclasses. An
instance of a class is an individual representation of the class, like in OO. An instance of
a subclass is also an instance of the super-class. CurrencyUnit and ProfitLoss, seen at
figure 12, are instances in the financial ontology.

In Protégé properties are called slots, a name used in the rest of this chapter. Synonyms
(“$”, “NOK”, “€” and “krone”) and refInstance (URI reference to another concept) are
examples of slots in figure 12.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

42

Figure 12 - Concepts in the ontology

A quick summarize before going further; the ontology describes the domain of finance
with different classes (concepts); slots (properties) describes various features and
attributes of the classes; in addition there is restrictions on the slots, also called role
restrictions. The ontology together with a set of individual instances of the classes
constitutes a knowledge base [Pro101].

6.3.6 Financial domain ontology configuration

When dealing with extraction of information from semi-structured text, it is important to
remember that there is no single way, or any global pattern, for writing information in
natural language. Many combinations of words can be put together and end up as a
sentence where the meaning can be almost the same. To capture as much useful
information from the text as possible, a way definition of interesting information has to
be made. In this thesis this is done by the ontology. The more fine-meshed the net for
finding information are, the more precision and recall of information will be provided.
There is however a limit here. If it is too fine meshed, it may be difficult to decide what
the information means, like example in Section 3.3.1.

Synonyms and relations between instances are the two main elements in the used
ontology to store information; they are both designed as slots and a little sample of this
was introduced in figure 12. Synonyms may not always be the right word for it; similarity
could have been used as well. Sometimes it is also used for opposites, like profit and loss.
This particular case is made because in many XBRL schemas define special tags, like the
one called “ProfitLossBeforeTax”. Profit and loss are both in the same tag, separated by
positive or negative numbers. This is described more in Section 6.6 about XBRL output.
The slot synonym is however used to group information which has about the same

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

43

meaning or in some way are related and defined in a concept; currencies (“$”, “€”) are
another example of this.

Relations, called refInstance, are used to define relationships between the instances in the
ontology. This works as follows; if a synonym of an instance is found in the text, the
agent should check for references to another instance. If one or more references are
given, these instances are also checked for synonyms against the text, otherwise does the
agent not need to search for this information in the text. This applies from the beginning
of the extraction process; if no amount of currencies is given, no extraction will be done.
If, for example, “$50” is found, the agent starts out with locating references of currency
and then finds its synonyms.

6.3.7 Standards in financial ontology

Under the development of the ontology, different standards relevant to financial
information has been used as much as possible. UNeDocs’, United Nations electronic
Trade Documents, code for currency, and in some degree country codes, are two
standards used. The XBRL specification has also been considered. ISO-4217 has been
used to support XBRL’s standard for currency. A look into Schema files used by XBRL
one can see that XBRL gives very precise definitions in the tags used, e.g. where both
profit and loss are defined in the same element tag. An example of this is already given in
Section 6.3.6 by “ProfitLossBeforeTax”. This is described more in Section 6.6.

6.3.8 Financial domain ontology details

The ontology is divided into three super classes; ReplaceText, MeasurementUnit and
Finance. Several sub-classes and instances, with relations defined as refInstance between
them, are made. Some other slots, in addition to synonyms, have been added for
describing the instances. InverseInstance has been added between some of the instances
denoting a group of inverse words. The XBRL standard uses definitions of tags, meta-
data for data presented, describing both profit and loss in the same tag only separated
with positive or negative numbers or signs. The instances where profit and loss are
synonyms could have been inverse instances. This is skipped because of XBRL’s
definitions of tag. XBRL is described more in Section 6.6. For the complete ontology in
RDF/XML format, see Appendix A and B.

TextReplace
TextReplace is a class containing no sub-classes, but have some instances. It is used
before the agent search and extracts information from the text and its purpose is to ease
the further process of locating and extracting information. For example can $50 million
also be given as $50,000,000. A standard way is supported by replacing every million
and 000,000 to M (for Million), like $50M. Billion (B) and thousand (T) is also replaced

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

44

in the same way. The abbreviations, like M for million, are adopted from articles found
by the news agent at Intermedium, used by magazines like CNN Money17.

Currencies, like “$” and “€” are also changed to USD and EUR, following UNeDocs and
ISO-4217 standard.

While developing the agent, some cases have been discovered that can easier be done in
the ontology. One example of words being transformed from two into one is “first
quarter” which is replaced by “first_quarter”. This is done because the NLTK
tokenization of text, introduced in Section 3.4 and described more in Section 6.4.4, where
a comparison between each single word in the text and synonyms given in the ontology
(as long as a currency occurs) are performed.

Measurement
MeasurementUnit is a class containing different measurable units, containing two sub-
classes; TimeUnit and AmountUnit. The first refers to, as the name indicate, instances
describing different units of time. Four instances of this class has been made; period
which among others hold “first_quarter”; month where each month is given; year where
the years from 2000 to 2004 are given; and period_info describing when a certain action
happened, result occurred or a further description of a TimeUnit; like before and ending.

AmountUnit have a central place in this extraction application. As previous mentioned, is
the extraction process triggered when the extractor discovers a currency in the article of
current interest. The instance CurrencyUnit holds information about the different
currencies of interest, like ”€”, “USD”, “$” and “krone”. Several of the registered
currencies are gathered from UNeDocs currency code list, where each currency is given a
three letter notation. There is however few of these used in the studied articles. Therefore
are also signs like “$” and “€”; and some country dependent currencies like “krone”
which is valid in Norway, Denmark and Sweden; added as currencies of interest. The
currency signs “€” and “$” are in the agent prototype replaced with “eur” and “usd” to
ensure consistency to XBRL and ISO-4217. They are however assigned lower-case
letters of the same instance in the ISO standard, and the user is able to see that a
transformation has been done from the original source. This applies only to the three-
letter description of currencies following ISO-4217, and not currencies like “krone” and
“cent”.

17 CNN Money article – http://money.cnn.com/2003/05/02/news/companies/epicor_st_jude.reut/index.htm

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

45

Finance
Class Finance contains several sub-classes, some of them also containing another level of
sub-classes. The name Finance is chosen because of this is the collection of different
classes and instances containing words often related to or found in the finance area. The
two most important sub-classes of Finance are ProfitLoss and Prediction. ProfitLoss
contain a group of instances dividing financial terms like loss to financeNegative, profit,
buy to financeInput and sell to financeOutput. Several other instances and synonyms to
the ones given as examples here are registered in the ontology, seen in Appendix A.

Relations between instances have been tried developed to provide as global pattern of
expressions. If a synonym of an instance has been found, only then instances of another
instance will be checked. For example if a synonym, like loss in ProfitLoss is found,
instance measurePositive is checked for synonyms like gain or increase and period for
finding i.e. which quarter the loss apply for.

Synonyms and relations for the instances in the ontology are based on the gathered
material found by reading in all over 50 articles from Intermedium’s agent, supplemented
by some more synonyms from WordNet and Bartleby’s dictionary.

It has not been a goal to make an “complete” ontology for the financial domain making
all information thinkable about this domain stored. This would have required more
domain skills and more focus on the ontology construction part. The purpose was to,
based on a set of terms represented from a representative set of articles, to find out how
the ontology could guide the extraction of knowledge to work better. To increase the
effort the ontology provides, the main thing is to add more instances, synonyms and
relations.

An prototype application, called agent, has been developed to extract information. The
agent extracts information based words defined in the ontology. In the next Section this is
described.

6.4 The Agent; financial data extractor

6.4.1 Introduction

The agent, introduced in conceptual solution Section 5.3.2, is extracting information from
articles of XML format based on words defined in the ontology. This process is looked
into the next Section, while reading and querying the ontology follows in Section 6.4.3.
In the preceding Sections of chapter 6.4; natural language processing; the extracting
algorithm; classes in the agent; problems under development; and some further
extensions are described.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

46

6.4.2 Parsing input XML

The articles to be extracted are, as described in Section 6.2.1, given in XML format. To
parse and get the information from the different tags, an XML parser supported in JavaTM
2 SDK, Standard Edition, called “javax.xml.parsers” has been used. Javax parser builds a
nodelist based on a Document Object Model (DOM). Several functions are defined for
DOM’s nodelist; two of these, getElementsByTagName and getNodeValue, are used in
the java file getTextFromOnt.java to parse the XML file, see figure 13. A node is the set
of a start and end tag with value in between, while a nodelist is a list of all the nodes in a
document. By matching getElementsByTagName against the nodelist and using
getNodeValue, the values in the nodes are retrieved.

Figure 13 – Agent prototype architecture

What file and which node to search for information, is given as parameters into the
function. This ensures reuse possibilities, and the function is used to get input
information from all the tags. Usually when dealing with an input files containing many
nodes to get values from are repeatedly calling of the same function not any good
solution. An alternative solution with for instance a vector of all nodes searched for, and

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

47

a vector with all the result returned, could have been made. However, since there are only
a few limited nodes given in the input has this case not been prioritized. The source code
to getTextFromOnt.java can be seen under Appendix D.

6.4.3 Parsing and querying the ontology

RDQL, introduced in Section 3.4.6, has been found most suitable to query the RDF
ontology. The query is performed in getInputFromOnt.java, see figure 13.

The function for finding slots to instances in the ontology is built as general as possible,
where parameters are specifying the file, slot and output queried for. The query for
finding relationships to other instances from currencyUnit is one example of the queries
made to the ontology. The query is shown in table 3. The answer of this query will be
several URL’s to different instances currencyUnit has a refInstance to. All these are
placed in a vector and returned to the calling function.

SELECT ?x,?y,?z
 WHERE (<http://protege.hia.no/ebjoraa/kb#CurrencyUnit>,
 <Finance:refInstance>, ?z)
 USING Finance FOR http://protege.hia.no/ebjoraa/kb#

Table 3 – RDQL query example

“SELECT ?x, ?y, ?z” can be given a arbitrarily name as they are used as temporary
variables in the query. Including “?x” and “?y” are not necessary in this example since
only “?z” is used. The “WHERE” part defines in which RDF triple a match is looked for.
The first part of the “WHERE” part is describing which instance queried for, given by an
URL. “<Finance:refInstance>” denotes that the next constraint specified is the slot
refInstance of the instance. “?z” is used to store the result of the query before returning it
to the calling function. The last line is used to maintain a more readable query, without
the long URIs obscuring the structure of the pattern [hp03]. The complete java code for
querying the ontology is listed in Appendix E.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

48

6.4.4 Natural Language Processing in the agent

Natural Language Processing (NLP) and the toolkit NTLK was introduced in Section 3.4.
NTLK is basically a collection of classes and function, which are added into the Lib
catalog of the Jython directory. Making use of NLTK is done through regular imports and
function calls.

Two of the properties of NLTK have been extensively used by the agent, namely
tokenizing (token.py) and tagging (tagger.py). Some adjustments have been done to make
these two functions better serve the agent’s needs.

In tokenizing of the text from articles, the function LineTokenizing has been modified
from tokenizing line based to sentence based. A sentence end is here defined as either a
dot with a following white space (“. ”) or a question mark (“?”). This will not tokenize
100 percent right, since writing and dot errors may occur in articles. Errors like this are
not dealt with in this tokenizing process.

Tagging the text for deciding whether it is a number or a word, has also been added some
regular expressions for additional allowed instances of numbers. This is done to cover as
many different variations of writing currencies as possible, like $60,9 and GBP98M. M
(for million and 000,000) is used to provide a consistent presentation of financial figures,
described in Section 6.3.8 and 6.4.5, and this transformation is performed before tagging
of words. Numbers and financial figures are tagged “CD” and words are tagged “NN”.

The functions in NLTK where the changes have been done are listed at Appendix G. For
further description and the rest of the code in the toolkit NLTK’s Web pages18 are
referred.

6.4.5 Algorithm for extracting financial information

In figure 14 is a high perspective algorithm written as pseudo code presented. The
algorithm describes the most important functions, loops and if tests the agent performs
while doing financial information extraction. This includes reading the input file, query
the ontology, extracting information form the text and printing the result to RDF and
XBRL.

Each line in the algorithm, except before begin and end, is given a character reference,
like “a)”. This is used to easier see when loops and tests are finished. It is also used in the
next Section, 6.4.6, where the agent’s classes and functions are described. The functions
are given the reference to which task they solve in the algorithm.

18 NLTK - http://nltk.sourceforge.net

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

49

a) get article info, add to dict
b) do text replacements for better extraction
c) do find all currencies in ontology
d) tokenize article into sentences
e) for each sentence do:
 begin
f) do tokenize sentence into words
g) for each word in sentence, do tag word with CD/NN
 begin
h) for each word, do check if it is a number (CD in tag)
 begin
i) if CD found, do check for currency
 begin
j) do handle $ (change to usd) and € (to eur) differently
k) if currency found, do look for synonyms/financial expr
 begin
l) add currency and amount to tempDict
m) get all refInstances from currencies in a vector
n) if refInstances already used for synonyms do skip
 avoid same synonym twice
o) for each instance in vector in m), find it’s
 synonyms
 begin
p) get all synonyms for instance in vector
q) for each synonym, do check against every
 word in sentence for match
 begin
r) if match and instance has refInstance do:
 begin
s) append word found to sentence list
t) check for new refInstances
u) if new unused refInstance found do:
 begin
v) add new references to vector
 in o)
 end t)
 end r)
 end q)
 end o)
w) update list of sentence with tempDict from l)
 end k)
 end i)
 end h)
 end g)
 end e)
x) update dict with sentence list from v)
y) print dict to RDF output file
z) print dict to XBRL output file

Figure 14 – Algorithm in pseudo code for the extraction prototype

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

50

6.4.6 Classes in agent

The agent is the kernel of this extraction part, see figure 13. The ontology is an important
part too, but it is the agent that makes use of all the different inputs and tries to find the
information specified. It is also responsible for the output. In this Section is the prototype
agent developed, and how it works for extracting information, described. References, like
(a), to corresponding action in the algorithm, figure 14, are added to the functions where
these apply. Some lines in the algorithm have more than one reference given below. This
is because the algorithm has been abbreviated, in addition to some functions which calls
other functions for task performed. Where this is the case, both function are referencing
to the algorithm.

The agent is coded in Jython, which is Python programming language with the extension
of being able to import and use Java libraries which python do not have. Java functions
can therefore be used to retrieve input from the articles and the ontology.

Template, InstanceList, TextInOut, TextChange and TextExtract are the five classes that
have been made to separate the different functions developed in the agent.

Template()
Velocity Template Language (VTL)19, a powerful scripting language, also used for
example in dynamic Web sites, has been used to print the output. Providing this template
file with variables to parse and text to print, have a complete structure for output in RDF
and partial for XBRL been made. These templates are described in Section 6.5 and 6.6.
Input variables for Velocity are given as a dictionary. How to parse this is defined in the
Template class. A “Python to Java” transformation of the dictionary to array lists and
hash tables are defined, and placed under the template() class. This class has been
developed at Intermedium.

The dictionary in Jython is filled with all the information extracted from the financial
article. The first elements in the dictionary are article dependent variables, like subject,
language and URL, and apply for all sentences. The “sentences” list contains all
sentences in the article, and all information extracted from the sentences. Examples of
this are currencies (CU), amount (CA) and the synonyms found based on the ontology.
Each sentence can contain several currencyUnits, therefore can the list “CuCa” contain
several dictionaries where each contains a currency and amount couple. An example
dictionary is given at table 5.

19 VTL – http://jackarta .apache.org/velocity

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

51

The dictionary is sent to the velocity files for parsing. This Velocity files contains a
defined template for printing the given data. One is made for RDF and one for XBRL, see
figure 13. Example article variables, like subject and language, are also given in this
dictionary. The template is returned and printed to file. For complete VTL code, see
Appendix H.

{'Subject': 'Financial result',
 'Language': 'English',
 'Source': 'Reuters',
 'fileName': 'xml/inputSentence.xml',
 'pubDate': '20030515',
 'myRDF_file': 'Finance.rdf',
 'URL': 'http://www.yahoo.com/finance/art001.htm',
 'sentences':
 [
 {
 'ProfitLoss': 'loss',
 'tax': 'after_tax',
 'CuCa': [{'CA': '39M.', 'CU': 'GBP'}],
 'predict': 'expected',
 'financeNegative': 'loss',
 'SText': 'The loss after_tax is expected to be approximately GBP39M.
 ::',
 'SID': '1'
 }
]
}

Table 5 – Example dictionary to Velocity file

InstanceList()
InstanceList (n,u) is a class of functions for making, adding, reading and deleting a list of
instances which at the time has been checked for synonyms. A new list is made for every
sentence. This is to prevent never ending loops. It also contains the dictionary, and a
function for updating this which is parsed by the velocity file.

TextInOut()
TextInOut contains three functions where the first two functions are a bridge to the java
class files getTextFromXML.java and getInputFromOnt.java. GetTextFromInputXML()
(a) gets strings of text, URL and all the other information given in the article input file.
The other function, getWordsFromOnt() (c,m,o,p,t), gets the information from the
ontology by calling the getSynonyms from the function getInputFromOnt in the java file.
The result is returned as vector. The last function, printToFile() (y,z), prints the result
from RDF and XBRL Velocity templates to output files.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

52

TextChange()
TextChange contains three different functions for making changes in the text.
TextReplace() (b) replaces words and dots (“.”) that does not mark the end of a sentence
with “;”. This makes it easier for the lineTokenizer from NLTK, see Section 6.4.4, to
break the article into sentences. Regular expressions are used to perform this change.

Another text replacement is ”\n”, which in Jython is the textual denotation of a new line.
This is replaced with a white space. Otherwise “\n” would have been given in the result if
a match word was follow by this sign.

TextReplaceFromOnt() (b) are much the same as TextReplace(), only getting words to
remove and replace from the ontology. This is done for two reasons. The first is to ensure
consistency of equal terms represented differently. For instance is the English “billion”
and Norwegian “milliard” both replaced by “B”. The other reason is to make it easier to
group and find two, or more, words belonging to each other, like “first quarter” which is
replaced with “first_quarter”. This is because of tagging into single words that are
compared to the synonyms from the ontology.

MyTagger is the demo() function copied from tagger.py of NLTK, which calls the
tagging function in tagger.py, which has been adjusted as described in Section 6.4.4.

TextExtract()
This final class contains five functions responsible for matching and extracting data from
the text. FindNumbInSentence() is the first function called when starting to look for
financial figures in the text. First tokenizing (d) the article into sentences, then sentences
into words (f), and thereby tagging with CD or NN (g). All currencies in ontology have
been selected into a vector (c). All these tasks are performed by calling other functions.
For each sentence, every word is checked for numbers, tagged with CD. All numbers are
check for currency assigned. “$” (Dollar) and “€” (Euro) signs are treated with special if
statements; “$” because it is a sign used in regular expressions as the symbol meaning “at
the end” of for instance a sentence; “€” because of it has provided big programming
difficulties due to text encoding. This problem is described further in the Section 6.4.7.
Another way around these problems has been added. “$” and “€” are replaced with “usd”
and “eur” (j). Then also consistency against ISO-4217 and XBRL has been secured, but
the change is still visible to the user. When currency and amount is found (i), the function
findWithRefSyn() is called.

FindWithRefSyn() performs a check to find out if an instance, given as an in parameter
from findNumbInSentence(), have references to other instances (m). The references are
found by calling findRefInstances() and returned as a vector. If this vector contains any
references, one by one is sent to findSyn() (p,q) to find synonyms and perform
information extraction. If a synonym is found in findSyn(), findRefInstances() are called.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

53

A check for references to other instances is performed (r). If this is true, a vector is
returned from findSyn() back to findWithRefSyn(). The vector in findWithRefSyn() is
updated with the new references returned (v, updating vector in p). If not a synonym is
found, you will not look for references to other instances, even if this is given for the
current instance. This loop is never ending; there can be unlimited levels of hierarchy.
The only limitation is that two instances are not checked for synonyms twice, directed by
findRefInstances().

FindSyn() finds all synonyms for current instance and loops through all words in
sentence for a match with given synonyms (p,q). If a match is found, the list of sentences
in the dictionary is updated (s,w). This list, the same as described above in this Section,
are at the end sent to Velocity. If the instance has reference to other instances,
refInstances is returned as a vector back to findWithRefSyn() as just described.

FindRefInstances() (t) finds all references in the slot refInstances, uses checkList() from
the class InstanceList() to check whether or not this instance already has been searched
for synonyms (u). A list of all the refInstances is returned as a vector. The complete
prototype code is listed in Appendix F.

Some programming problems have occurred, in the next Section the one most troubling
are described and how it was resolved.

6.4.7 The “Euro” problem

Euro is a currency used by many nations in Europe and necessary to include in the
ontology as one of the currencies that should be searched for in the articles. Problems
with different encodings of the input files and automatic encoding of text in Jython, has
provided many hours of testing and figuring out how to solve this problem. Asle has
provided useful help during this process.

The problem starts with Protégé storing RDF/XML in the only supported encoding
format “ISO-8859-1”, also called latin-1. Handling of the currency unit Euro, “€”, is not
supported in this format. “ISO-8859-15” is one encoding that do support “€”. In the
beginning, this was used as encoding for input files. Comparing Euro from two different
encodings does naturally not work. The input file was therefore changed to “ISO-8859-1”
using an explicit definition to support Euro. Definition in XML is provided like this;
<!DOCTYPE Text[<!ENTITY euro "€">]>. All Euro signs from the article is
assumed to be expressed as “€” or "€".

Euro is expressed as “€” in the ontology and no manual change are needed to be
done. In the agent an if test is checking if the currency is “€”. When this is true, the
variable is changed to “unichr(0x20ac)”, “IS0-8859-15” encoded Euro. This needs to be
done, because “€” from the input text has automatically been transformed into this

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

54

char code. The code “#8364” is in ISO-8859-1 used for euro (€) and understood by
Jython as “unichr(0x20ac)”. Then a check of this against the currency found in the text is
performed.

6.4.8 Extensions of the agent

A Python interface to the WordNet, a database of word meanings and relationships, has
been found and tested with some simple command line queries. Download files and
examples are found at footnote20. The interface enables queries against the stored
relations in the database; like synonyms, antonyms, hyponyms, and hyponyms.

It has not been implemented in the prototype, but it could have been used in a semi-
automatic way of expanding the list of terms in the ontology, like in the Artequakt project
in Section 4.2.1. Using this interface, queries for finding synonym and other relations to
other words, would have provided an extended list of terms in the ontology. This could
reduce work in construction of the ontology, or provide more precision and recall than
not using the WordNet database. A manual check for consistency and correctness is
probably to prefer for avoiding errors in the extraction process.

6.4.9 Agent summary

The agent and its surroundings, functions for ontology querying and reading XML input
file, have been made as global as possible. The purpose of this, is that making the
extractor better mainly are supposed to be performed in the ontology by creating new
instances, relations and adding synonyms. If major changes however are wanted, changes
in the agent code are also necessary.

In Section 6.5 the result of the extraction process and output in RDF format is described.

6.5 Extraction results in RDF

6.5.1 Introduction

From an article where text is given as natural language the extraction process, guided by
ontology, search for financial information of interest. Semantics can be added to the
financial figures and expressions as they are found thanks to the ontology describing
words and relations.

Adding semantic to information can be done in many languages; XML, RDF,
DAML+OIL and OWL for instance. RDF has been used throughout the entire thesis,
from describing the Semantic Web, conceptual solution and construction of ontology in
Protégé. The output has been tried to look as much like the conceptual solution, the

20 Python interface to WordNet – http://pywordnet.sourceforge.net

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

55

optimal scenario given in Section 5.4, as possible based on the information found and
programming of the agent. Output in RDF is chosen. RDF enables query of information
and a transformation from the output format to XBRL, as suggested in the conceptual
solution, are possible.
The financial ontology contains, as described in Section 3.2.3, of two files; RDF and
RDF Schema (RDFS). The financial ontology in RDF is used by the agent to find
financial information in the given text. It is also a foundation to produce the output in
RDF in a way looking something like the financial ontology. Structure in the output
could then be built based on the ontology and more dynamically then with an explicit
structure defined.

There is however one difference from the financial ontology RDF to the output RDF that
do not allow reuse of the RDFS file, and forces another approach. Articles are, as
described in the Section 6.4 and 6.5.2, broken into sentences before extracting
information. For each sentence the agent will look for concepts stated in the ontology,
and match these against the words given in the sentence. The financial ontology is at the
sentence level, used over and over again for each sentence for match; while the output
RDF will contain many “information objects”. Many sentences, but far from all, will
provide us with information we seek for. All this information can be seen as “information
objects”, and an article can contain many of these.

Constructing a minor ontology for the domain of articles will provide the RDF output
with a schema file. Information applying to every sentence or at article level can be
conceived in a syntactical correct manner. This is described in the following Section.

6.5.2 Article ontology

The financial ontology does only provide definitions for words to extract for each
sentence in an article. Information about the article stored at Intermedium’s database, like
URL and source, are not defined in the financial ontology. An additional ontology, called
article ontology, has therefore been made to declare all these properties. This ontology is
also constructed in Protégé, and its structure is shown in RDF statement graph syntax in
figure 15, as introduced in Section 3.2.3. The literals found are gathered from the same
sentence used in Section 5.4. For complete RDFS see Appendix C.

The extracted result in RDF/XML syntax is using both the financial and the article
ontology schema as definition of the tags used. An example result of this is presented in
Section 6.5.3.

The article resource, given by its URL, is the main or starting node for defining words
and relations between the resources of interest. The article has four direct literals of
information, in figure 15 given example values. Properties (arcs), given by #source,
#pubDate (date of publication) in format like 04302003, #language and #subject.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

56

An article contains of many sentences, in the figure two sentence resources are inserted.
Each sentence is a part-of an article, given by the #part-of property of the article. The
complete sentence text is given as a literal of the sentence. The text is always printed in
the output file, also when no financial information is found in it.

Figure 15 – RDF statement graph of the article ontology

The extractor starts searching for information looking for currency and amount. The
resource #currencyAmountID is added when these are found. Currency and amount are
coupled and can not be separated. A sentence can however contain more than one
#currencyAmountID couple, and they are added like #currencyAmountID1 is in the
figure. In the optimal solution, displayed in figure 9 Section 5.4.2, a property from the
s:currencyAmount to s:ProfitLoss is made. This is optimal, but one problem dealing with

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

57

natural language, is finding what financial description belongs to what currency and
amount. Different ways of referring meaning can be done, as the example below.

“Total and net revenues are anticipated to be broadly in line with expectations at
 approximately GBP31 million and GBP17 million respectively.”

Description of currency and amount are described by “respectively”. In some sentences
are information separated by comma, in other it comes in a long sequence. Finding what
information belongs to which number, is not dealt with by the prototype agent. If the
agent had been able to do this, changing of the structure of output, like given in figure 9,
would have been easy to accomplish. Much works are however required to make the
agent able to deal with this problem.

When the agent only finds one #currencyAmountID couple in a sentence, the assumption
that all financial expressions most likely are used to refer to found #currencyAmountID
resource can be made. One exception is the few times when information is referred to
something given earlier or later in the article. This is not considered in the prototype.
#currencyAmountID contains always both currencyUnit and currencyAmount.

#finDescr is the resource where all words found in sentence describing #currency-
AmountID are placed. Compared to the optimal scenario in figure 9, are all the
information given as literals directly from the #sentenceID resource. In figure 9 some
words are used to describe others. Such a structure has in some degree been used in
construction of the financial ontology, but not in such a degree that it is implemented in
the output file. A deeper research into words belonging and describing another word
further will discover this. Many words are used only when some other are used, while
other can be used both alone and together with other. Getting this complete with high
precision and recall of extracted information require a deeper study in this field. Focusing
on sub areas of the extraction process have not been prioritized; rather completing a
working sample.

6.5.3 Output in RDF/XML syntax

Templates made in Velocity have, as described in Section 6.4.5, been used to generate
output files from the information found. The same example sentence as in figure 15 has
been run through the extractor, resulting in the output file given in table 6. In addition to
the information found in the sentence, is example article information also given.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

58

<?xml version="1.0" encoding="ISO-8859-15" ?>
<!-- Output from textfile: inputxml/02.xml -->
<!-- RDF file: Finance6.rdf -->
<!DOCTYPE rdf:RDF (View Source for full doctype...)>
<rdf:RDF xmlns:kb="http://protege.hia.no/ebjoraa/kb#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s=http://protege.hia.no/ebjoraa/article/sentence#
 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">
 <rdf:Description
 about="http://biz.yahoo.com/djus/030512/1653001230_1.html"
 s:published="2000512"
 s:language="English"
 s:source="Dow Jones Business News"
 s:subject="Corixa Results: 1Q Financial Table, Comment">
 <kb:part-of>
 <rdf:Description
 about="http://protege.hia.no/ebjoraa/article#sentenceID1"
 s:text="The loss before_tax is expected to be approximately

GBP39M. ::">
 <s:has-CA>
 <rdf:Description about="http://protege.hia.no/
 ebjoraa/sentenceID1/currencyAmountID/1">
 <s:currencyUnit>GBP</s:currencyUnit>
 <s:currencyAmount>39M.</s:currencyAmount>
 </rdf:Description>
 </s:has-CA>
 <s:has-FD>
 <rdf:Description
 about="http://protege.hia.no/ebjoraa/sentenceID1/finDescr">
 <kb:predict>expected</kb:predict>
 <kb:ProfitLoss>loss</kb:ProfitLoss>
 <kb:tax>before_tax</kb:tax>
 </rdf:Description>
 </s:has-FD>
 </rdf:Description>
 </kb:part-of>
 </rdf:Description>
</rdf:RDF>

 Table 6 – RDF output

An example article, independent from the articles from Intermedium’s agent, is given in
the Appendix K together with the result of the extraction process.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

59

6.6 Extraction results in XBRL

6.6.1 Introduction

XBRL is the second output format of the extraction of financial information, introduced
in Section 3.5. To produce an XBRL instance document, a similar approach as for writing
RDF output has been chosen. The same dictionary is sent to a Velocity template adapted
for XBRL, see figure 13. Much of the information found in the articles is for example
predictions, and not real results. This has to be stated in the XBRL instance document.
The articles searched within have very rarely many financial results, the articles which do
have tables of information, like a representation of annual result. These articles have not
been considered for the extractor. The information written to the XBRL document can
therefore be some insufficient. To solve this, different exceptions handling different
missing information has to be made. The information found, must also be added to the
right tags.

Several different taxonomies can be used to define tags in a XBRL instance document. A
standardized schema for electronic financial reporting from IASCF21 [XBRL-FR] has
been used in an example for financial statements22. This has a limited amount of elements
declared in the schema, and has been used in the XBRL part of this thesis.

To provide an working example of an XBRL instance document, an limited support of
information found are dealt with. This is described in the next Section.

6.6.2 Output as an XBRL instance document

The same dictionary as used for making the output in RDF has also been used in the
template for the XBRL document. The dictionary is previously described in Section 6.4.6
and 6.5.2.

The XBRL template, see Appendix I, has been constructed based on the example referred
to in footnote 22. The element “ProfitLossBeforeTax” and “ProfitLossAfterTax” from
the taxonomy schema are used to express currency and amount described by the instance
“ProfitLoss” in the financial ontology. Examples of synonym words in this instance, is;
profit, income, revenue and loss. A check for “before_tax” or “after_tax” specified in the
text are done, and based on this the right tag is used. The amount of any currency found is
displayed between the tags.

21 IASCF – International Accounting Standards Board – http://www.iascf.com
22 XBRL sample – http://www.xbrl.org/taxonomy/int/fr/ias/ci/pfs/2002-11-15/Samples.htm

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

60

“numericContext” is used to define the tags of financial numbers with more information.
URL identifier, currency (ISO-4217) used for the amount, measures of integers (e.g.
decimal), end date, valid period and duration are all examples of this. Many of groups of
“numericContext” can be defined. They are linked from the other elements, like
“ProfitLossAfterTax”, with an attribute referencing to the id of a “numericContext”
group of tags, like “Currenct_forPeriod”.

In table 7 an example of an XBRL instance document created from extracting the
sentence “The revenues are USD50,000 before tax for the fourth quarter.” are presented.
A new example from the one given for RDF is presented to include the presentation of
period informtion.

<?xml version="1.0" encoding="ISO-8859-15"?>
<!-- Date/time article created: February 12, 4:31 pm ET -->
<group xmlns="http://www.xbrl.org/2001/instance"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:iascf-pfs="http://www.xbrl.org/taxonomy/int/fr/ias/ci/
 pfs/2002-11-15"
 xmlns:iso4217="http://www.xbrlSolutions.com/taxonomies/
 iso4217/2002-06-30"
 xsi:schemaLocation="http://www.xbrl.org/taxonomy/int/fr/ias/ci/
 pfs/2002-11-15ias-ci-pfs-2002-11-15.xsd
 http://www.xbrlSolutions.com/taxonomies/iso4217/2002-06-30
 http://www.xbrlsolutions.com/taxonomies/iso4217/2002-06-30/
 iso4217.xsd">

 <iascf-pfs:ProfitLossBeforeTax numericContext=
 "Current_ForPeriod">50T</iascf-pfs:ProfitLossBeforeTax>

 <numericContext id="Current_ForPeriod" precision="Not given"
 cwa="false">
 <entity>
 <identifier scheme="http://www.yahoo.com/test001.htm">
 Express Scripts, Inc.</identifier>
 </entity>
 <period>
 <duration>P1Q</duration>
 <endDate>2003 -12-31</endDate>
 </period>
 <unit>
 <measure>iso4217:USD</measure>
 </unit>
 </numericContext>
</group>

Table 7 – output from XBRL instance document

“ProfitLossBeforeTax” is found to be 50T, where T denotes thousand defined in Section
6.4.6. This tag has a reference to the “numericContext” with id “Current_ForPeriod”.
Here URL and source are, period and the measure defined. The duration is found in the
text to be the fourth quarter, the year is not found in the sentence, but a good guess can be

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

61

made based on the date when the article was found. If the article is published in January,
fourth quarter probably means the ending of the year before. If the article is published
just before or in the fourth period, and in addition a word like expect or approximately
are used, we can assume that this is a prediction of a result and the year should be the
same as when the article was published. A limited if checks are added in this part of the
template.

“cwa” is always set to false in the prototype template because an assumption that all the
relevant information is provided can not be made. Therefore can not any calculating of
new facts only based on this be done [XBRL03]. Precision is one of the optional XBRL
instances that have not been specified in this prototype.

Numbers are in the extractor changed from for instance 50 million or “50,000,000” to
50M for consistency, as described in Section 6.4.6. In XBRL documents it is written as
“50000000”, so a change needs to be performed. This is an easy task in the extractor and
is not dealt with in this prototype.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

62

7 Discussion

7.1 Introduction

The thesis work started out with searching for projects using ontology for extracting
information from online sources to investigate the current status in this area, and to get
some ideas for the prototype to be built. As the extraction of information has been limited
to financial figures and information; a search for existing ontology within the financial
domain has been done. A proper ontology was not found, therefore a financial ontology
was constructed used by a developed a prototype agent for extracting information. The
information found in the semi-structured information sources have been transformed into
both RDF/XML syntax and XBRL instance document.

The purpose of this work has been to see if ontology can guide the process of extracting
information from semi-structured info sources. Based on the words and relations
expressed in the ontology, the prototype should be able to know what to extract.

This discussion will include several major parts in this thesis structured in the order they
have been dealt with. Issues discussed are:

• Current status in the area of ontology guided extraction.
• Ontology guided information extraction.
• Extracting financial information in RDF and XBRL includes a discussion of the

formats used and how they are produced.
• Results of ontology guided extraction
• Further work that of interest in this area. .

7.2 Status on ontology guided extraction

A study for related work in the area of extraction of information based on an ontology has
been done. The two best projects within the extraction area are referred in Section 4.2.1
and 4.2.2. Ontology is providing valuable help in their extraction processes. Both projects
are a collection of projects, have lasted for several years and still have some work to be
done, especially the Artequakt project. They are however using automatic methods for
solving some issues, like ontology construction, which makes it more difficult to ensure
validity.

In Section 4.2.3, a student project providing a solution for ontological differences from
databases and Web data sources is presented. A solution of the problem when words are
used about different terms, like in this case profit that denotes before tax in one source
and after tax in another source, is provided. In this project figures are given and its

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

63

meaning defined, though differently in some cases. The problem in this thesis is that it
might not be stated whether the profit is before or after tax.

In general it seems to be more and more interest around semantics Web and the use of
ontology to help finding information. The search engine Google has recently acquired
“Applied Semantics” to be able to do more advanced queries.

7.3 Ontology guided information extraction

A search for an existing financial ontology has been done without any luck, and a new
ontology was therefore developed from scratch. Appropriate dictionaries have been used
to find synonyms, antonyms etc and added manually into the ontology.

To construct the financial ontology Protégé has been chosen. The ontology language
RDF has been used all along from the financial ontology, article ontology and to RDF
output. Newer ontology language is available; for example do DAML+OIL and OWL
support more relations between instances in the ontology than RDF. In this prototype
RDF supports all the relations needed and RDF is easy to query and interact with.

Extracting information from semi-structured sentences is not easy for computers. Words
or patterns and regular expressions defining what to extract, has to be made. One
advantage of ontology is that you can define instances of words with mutual relations in a
file, and use this as a guidance of what to extract. A prototype application has been
developed performing the whole extraction process. Starting by reading the input file;
extracting information based on queries of words and relations defined, in and returned
from, the ontology; and at the end providing the result in RDF and XBRL.

When using ontology guided approach to extract information, an extension of words to be
searched for and extracted will be done by extending the ontology. No change in the
prototype will be necessary because the application handles instances and relations
through querying the ontology. This is an essential part, though constructing ontologies
are time-consuming, it requires less work than developing new or change extracting
applications. The same application can also be used to extract different kinds of
information based on the assigned ontology’s domain or scope. The financial ontology
could for instance be made in different languages.

Compared to the traditional way, extracting information by NLP use of ontology will
ease the burden of the extracting application. Relations from one instance to another in
the ontology are only explored when a match is found for the first instance. When no
currency and amount is found in a sentence, which is the starting point of extraction in
this prototype, no further word matching is necessary. Directing the extracting process
can then be accomplished depending on the words found.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

64

The application is, in the current version, not able to find out which financial words are
used to describe the different figures, when more than one figure occur in a sentence.
Many different ways of referring to a number in a sentence can be made when dealing
with natural language in semi-structured sources. An extensive algorithm to deal with this
has to be made. This could have been done by using NLTK’s methods of chunking
sentences and building a sentence structure. Some effort could also be made in the
ontology. Defining frequently used words and patterns can help NLP to couple belonging
information. This part has been excluded from this thesis, but is an important part of an
end product for extracting information.

7.4 Extracting financial information into RDF and XBRL

The results of the extraction process are stored in a dictionary, described in Section 6.4.6.
This dictionary is used by two Velocity templates for RDF and XBRL output. Velocity
templates are easy to change and provide a clean way of printing the result. An
alternative is to print the output when it is found. This would have resulted in a less tidy
programming code, if even possible, due to its structure and relations.

Choosing an appropriate output format is important to enable further use of the
information found. Computers should be able to process and query the information found
in the extraction process. To enable this, the ontology language RDF was chosen. An
article ontology has been constructed and its RDFS has been used to declare the tags of
article information in the result RDF file. All tags are therefore valid and the result can
easily be processed and queried by a computer application. RDF is also the language used
in the financial ontology queried by RDQL. RDQL can also be used to query the result
RDF.

XBRL is mainly used to publish and exchange complete financial reports, like annual
results, between different users [xbrl]. All information about the financial numbers is
available for the applications making the XBRL documents. When dealing with semi-
structured information sources, you will not always be able to find all information about
the numbers. It is therefore difficult to make it completely right according to the element
tags and “numericContext”. XBRL has a way of denoting that the information given may
contain errors or lacks through the attribute “cwa”, Section 3.6.

In the conceptual solution in Chapter 5, two different ways of making the XBRL instance
document has been introduced. The first solution was to use an XSL file to parse the
output into XBRL, the other to generate the XBLR document directly from the prototype
agent. This approach was used because a dictionary in Jython had already been made
making the work easier. This solution also seemed to be at least as good as the other in
being able to express the figures in the right semantic way. The templates are also easy to
edit, and making loops and perform queries for the values given is also straight forward.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

65

Only a limited XBRL instance document has been implemented in this prototype, see
Section 3.6. To make a complete XBRL instance document, the template has to be
extended to place all the extracted information found in right XBRL elements. An
example of how this is done for “ProfitLossBeforeTax” and “ProfitLossAfterTax” are
given in the XBRL template.

Knowing which tag to use are defined in different XSD files. When the extractor search
in a large amount of articles, a great variation of information is found. Finding the right
XBRL taxonomy supporting the information extracted is important. It may be necessary
to create a new or add missing elements in an own XBRL XSD to capture all information
correctly. Some editors are available for this purpose, for instance at Fujitsu23.

The extractor does not find out what financial numbers belong to which words. It is
therefore not possible to deal with this in the XBRL part either. If the extractor knew
which words belonged to which financial figure, it would not be difficult to add and
support this in the XBRL template.

Many of the articles are not providing a lot of financial information. To gain more
knowledge, a fusion or clustering of several XBRL documents having something in
common, like company or period, could have been performed. A more complete picture
of knowledge found can be provided, and a comparison of values found for correctness
can also easily be made. This could have been solved by setting some constraints and let
the agent search through a group of articles, placing all fitting result in a dictionary and
send to XBRL template for output. Tools may also be available for comparing different
XBRL documents, this has not been checked, but this will most likely be the best
solution. The agent is then not forced to perform new extracting processes.

7.5 Results of ontology guided extraction

The result in RDF/XML syntax of the extraction process compared to an optimal
solution, presented in chapter 5, are quite equal. One difference is however that in the
optimal solution the words are describing financial results connected to the financial
figures. The extractor is not able to find which numbers and words that belong to each
other, and is a problem when more than one financial figure occurs. This problem has
not, as mentioned above, been dealt with in this thesis.

Another difference is that all words extracted are placed under the node “finDescr”
(figure 15), while in the optimal solution each word have its own node (figure 9). In the
optimal solution this means that a word can define another word further. Since no
relations between the words are found in the extractor, this can be hard to accomplish for

23 Fujitsu XBRL taxonomy editor – http://www.labs.fujitsu.com/free/xbrlconv/en/xbrltaxedit.html

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

66

the extractor. It can however be solved by using the relations in the financial ontology.
Taking care of the relation between the words extracted only because another word was
found, can enable this. This case has not been considered as an important part of this
prototype nor as a big challenges to solve, and therefore left to further work.

7.6 Further work

There are several issues in this thesis that could be a subject for further work. Some cases
have during the development not been considered or prioritized. Brief presentations of
some interesting areas for further work are given below.

• Taking care of relations between the instances in the ontology based on which

synonym found and words extracted, should be considered. This is however not
seen as a major task.

• The agent has not been developed to be able to differentiate which financial figure

words are referring to when more than one figure are given in a sentence. Another
student thesis at HiA is dealing with a problem similar to this and perhaps their
solution can be integrated in this prototype. NLP and NLTK helped by ontology
specifying words used to refer to figure, like “respectively”, can be used to
analyze sentence structures, and based on these find dependencies between words.
The artequakt project has also used Gate and Apple Pie to analyze the sentences
semantically and syntactically. Their approach should also be considered solving
this issue.

• In this thesis a minor financial ontology have been made. An effort to make this

bigger would improve the knowledge extraction. A semi-automatically approach,
almost like in [Ala03], populating the ontology with words from WordNet could
be used. A manual check of the ontology afterwards will most likely be necessary.

• The XBRL instance document is far from complete. Only an introduction to how

this can be done is given in this thesis. An XSD handling all financial figures of
interest that can be found need to be found or made. Then the template should be
extended to being able to deal with all information found, and placing it in the
right tag with right reference to “numericContext”.

• Other and newer ontology language provides more relations. Lacks in RDF has

not been discovered in this prototype, but newer languages supports more
relations and properties added which might come useful in an extension of the
prototype. If a more professional application is to be made, buying license to
editors and tools, used in the On-to-knowledge project in Section 4.2.2, should be
considered.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

67

8 Conclusion

Retrieving computer processable information from texts in natural language has mainly
been done by using natural language processing and specified by regular expressions.
The main target of this project has been to extract financial information from semi-
structured documents, like Web pages, and capture this in a way that provides more
knowledge by giving the information semantic tagging. A financial ontology has been
constructed and an evaluation has been performed of how an ontology can provide a
better extraction process and more knowledge in the result by developing a prototype.

The thesis started out by searching for related work in the area of information extraction
guided by ontology. Three projects ([Ala03], [Fen02] and [Fir02]) have been described in
Section 4. The first project use ontology to build up a knowledge base of artists; the
second have developed solutions, based on ontology, for better retrieving information
from e.g. large documents. While the last uses ontology to handle different use of terms
in financial systems.

Example Web articles found by an agent at Intermedium has been used as real world
examples. These have been investigated to find financial words used. This work was the
background for constructing a financial ontology, which have been done in Protégé editor
with the ontology language RDF. Additional words and synonyms have been added by
the help of online and downloadable dictionaries, e.g. WordNet. The structure of the
ontology has been to group synonyms, or words used to express similar thing, in the same
instance. Also some opposites have been put in the same instance. Income and loss are
example of this. This is because this is used in the same tag in XBRL to express
information.

A prototype application has been made for extracting information. A query against the
ontology is made for words to look for in the text. The extraction is done by natural
language processing and regular expression matching of words from the ontology and the
text from the article. A dictionary (Jython) is composed by the information found and
sent to two Velocity templates. Based on the structure defined in Velocity templates and
information given by the dictionary, the results are printed to a file in RDF/XML syntax
and to an XBRL instance document.

Though the prototype application still can be enhanced, has it succeeded to develop an
extraction application where further extensions of the extracted information mainly can
be done by adding more words and relations into the ontology. The result is presented in
both the RDF and XBRL format, which provides computers with readable information
semantically tagged. The result is then considered as knowledge.

One issue that has not been considered in this thesis is when two or more financial figures
appear in one sentence. The prototype application is not able to find out which financial
words describe which figure. Dealing with semi-structured text this problem is difficult
for computers to solve. Several different ways of describing figures are available in
natural language; therefore the application needs to analyze the sentence. This can be
done by NLP, and helped by ontology specifying word used to indicate which figure it
describes.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

68

Abbreviations

4GLs - the Fourth Generation Languages
ANSI - American National Standard Institute
API - Application Programming Interface
CASE - Computer-Aided Software Engineering
COIN - Context Interchange
CWA - Closed World Assumption
DAML - DARPA Agent Markup Language
DOM - Document Object Model
ECOIN - Extended Context Interchange
HP - Hewlett Packard
IE - Information Extraction
IEEE - Institute of Electrical and Electronical Engineers
ISO - International Organization for Standardization
KB - Knowledge Base
NLP - Natural Language processing
NLTK - Natural Language Toolkit
MIT - Massachusetts Institute of Technology
OIL - Ontology Interchange Language
OOPS - Object-Oriented Programming Systems
OWL - Web Ontology Language
PDA - Personal Digital Assistant
RDF - Resource Description Framework
RDFS - Resource Description Framework Schema
RDQL - RDF Query Language
SHOE - Simple HTML Ontology Extensions
SQL - Structured Query Language
URI - Unified Resource Identifier
URL - Unified Resource Locator
XBRL - eXtensible Business Reporting Language
XML - eXensible Markup Language
XSD - XML Schema
XSL - eXtensible Stylesheet Language
VTL - Velocity Template Language

EUR - Euro (€)
GBP - Great Britain pound
NOK - Norwegian krone
USD - United States Dollar ($)

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

69

References
[Ala03] Harit Alani, Sanghee Kim, David E. Millard, Mark J. Weal,

Wendy Hall, Paul H. Lewis, and Nigel R. Shadbolt

Automatic Ontology-based Knowledge Extraction from Web documents

University of Southampton,

IEEE January/February 2003, pages 14-21

 Also in paper some more detailed by the same authors:

 Automatic Ontology-based Knowledge Extraction and Tailored Biography

Generation from the Web,

Intelligence, Agents, Multimedia group, 2003

[Ber96] Tim Berners-Lee

The World Wide Web: Past, Present and Future

http://www.w3.org/People/Berners-Lee/1996/ppf.html

[Ber98] Berners-Lee, T.; Fielding, R.; Irvine, U.C.; Masinter, L.

Uniform Resource Identifiers (URI): Generic Syntax.

IETF Request for Comments: 2396. August 1998

[Online: http://www.ietf.org/rfc/rfc2396.txt]. May 15th

[Ber99] Tim Berners-Lee

Weaving the Web

Harper, San Francisco, USA1999

[Ber01] Tim Berners-Lee, James Hendler, Ora Lassila,

The Semantic Web, W3C.org

Scientific American, May 2001

http://www.w3.org/2001/sw/

[Cri01] Dan Cristea

Anaphora

University of Iasi, EUROLAN – 2001

 http://www.racai.ro/EUROLAN-

 2001/page/resources/profs/Cristea/Anaphora.ppt, May 15th

[Das02] Subrata Das, Kurt Shuster, Curt Wu

Ontologies for Agent-Based Information Retrieval and Sequence Mining

Cambridge, U.S.A.

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

70

[Doa02] A. Doan, J. Madhavan, P. Domingos, and A. Halevy

 Learning to Map between Ontologies in the Semantic Web

 Proceedings of the World-Wide Web Conference (WWW2002),

 ACM Press

[Emb98] Ontology-Based Extraction and Structuring of information from Data-Rich

Unstructured Documents

David W. Embley, Douglas M. Campell and Randy D. Smith

Brigham Young Univerity, Provo, U.S.A.

[Fen02] Dieter Fensel

Ontology-Based Knowledge Management

IEEE November 2002, pages 56-59

[Fir02] Aykut Firat, Stuart Madnick and Benjamin Grosof

 Knowledge Integration to overcome ontological heterogeneity:

 Challenges from financial information systems

 Twenty-Third International Conference on Information Systems

 http://ebusiness.mit.edu/bgrosof/paps/icis2002-final.pdf, May 22th
[foaf03] FOAF: the ‘friend for a friend’ vocabulary

 http://xmlns.com/foaf/0.1, May 15th

[Gan02] Fabien GANDON

Distributed artificial intelligence and knowledge management:

ontologies and multi-agent systems for a corporate semantic web

 nov 2002

[Gar03] Lars Marius Garshol

 Living with topic maps and RDF, Ontopia, 2003

 http://www.ontopia.net/topicmaps/materials/tmrdf.html#N1961,

April 15. 2003

[Gru93] T.Gruber

A translation Approach to portable ontology specifications

Knowledge acquisition

Vol. 5 1993. 199-220

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

71

[Gua98] Guraino N., Welty C.

Formal Ontology and Information Systems

 In proceedings of the 1st International Conference on Formal ontologies in

 Information Systems

FOIS’98, pages 3-15, Italy

IOS Press, June 1998

[Hen03] James Hendler

 Science and the Semantic Web

 www.sciencemag.org January 23. 2003

[Hil01] Diane Hillmann

Using Dublin Core, 2001

 http://dublincore.org/documents/usageguide

[hp03] RDQL – RDF Data Query Language

 http://www.hpl.hp.com/semweb/rdql.htm, May 1st

 [ITw00] The future of natural-language processing

 Unix Insider 12/29/00

[Sow01] John F. Sowa

Building, Sharing, and Merging Ontologies

 http://jfsowa.com/ontology/ontoshar.htm

[Klu] Anthony C. Klug, Dennis Tsichritzis:

Multiple View Support within the ANSI/SPARC Framework

 pages 477-488 Electronic Edition

[Lau02] Boris Lauser, Tanja Wildemann, Allison Poulos, Frehiwot Fisseha,

Johannes Keizer, and Stephen Katz

A Conprehensive Framwork for Building Multilingual Domain Ontologies

DC2002 Florence

http://www.fao.org/agris/aos/Presentations/DC2002.ppt, May 15th

[Mae02] Alexander Maedche and Steffen Stab

ISWC’2002’ Tutorial on Ontologies: Representation, Engineering,

 Learning and Application

University of Karlsruhe 2002

[Ogd23] C. Ogden & I. Richards

 The meaning of meaning: A study of the influence, 1923

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

72

[Pro101] Natalya F. Noy and Deborah L McGuinness

Ontology Development 101: A Guide to Creating Your first Ontology,

Stanford University, USA,

http://protege.stanford.edu/publications

[Ric02] Jim Richards

An Introduction to XML/XBRL

Murdoch University, Australia 2002

http://www.xbrl.org.au/training/XBRLOverview.pdf

[Ste00] Stefan Decker, Prasenjit Mitra, and Sergey Melnik

Framework of the Semantic Web: An RDF Tutorial

Standford University, 2000,

Published http://computer.org/internet nov 2000

[Tib02] Hendrika Tibbits at University Western Sydney and Jim Richards

Murdoch University

Understanding XBRL

Co- Chairs Education Working Group XBRL Australia Limited

 http://www.xbrl.org.au/training/NSWWorkshop.ppt April 23. 2003

[W3Cadr] Naming and Addressing:URIs, URLs, …

 http://www.w3.org/Addressing/

[W3Cd+o] DAML+OIL (March 2001) Reference Description

http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218
[W3Cowl] Web Ontology Language (OWL) Use Cases and Requirements

W3C Working Draft 3 February 2003

http://www.w3.org/TR/2003/WD-webont-req-20030331

[W3C99rdf] Resource Description Framework (RDF) Model and Syntax Specification,

W3C Recommendation 22 February 1999

http://www.w3.org/TR/REC-rdf-syntax-19990222

[W3C03rdf] RDF/XML Syntax Specification (Revised),

W3C Working Draft 23 January 2003

[W3Cxml] Extensible Markup Language

 http://www.w3.org/XML/

[W3Cvcard] Presenting vCard Objects in RDF/XML

 W3C Note 22 February 2001

 http://www.w3.org/TR/2001/NOTE-vcard-rdf-20010222

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

73

[xbrl] XBRL.org

http://xbrl.org May 14th

[XBRL03] Extensible Business Reporting Language (XBRL) 2.1

Public Working Draft of 2003-04-23

 http://www.xbrl.org/2003/XBRL-WD-2003-04-23.pdf

http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20030123

[XBRL-FR] International Accounting Standards Expressed in XBRL for Electronic

Financial Reporting

 htt://www.xbrl.org/taxonomy/int/fr/ias, May 16th

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

1

Appendix A – Complete RDF for the financial ontology

 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE rdf:RDF (View Source for full doctype...)>

 <rdf:RDF xmlns:kb="http://protege.hia.no/ebjoraa/kb#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:a="http://protege.stanford.edu/system#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <kb:AmountUnit rdf:about="http://protege.hia.no/ebjoraa/kb#CurrencyUnit" rdfs:label="CurrencyUnit">
 <kb:synonym xml:space="preserve">
 <![CDATA [€]]>

 </kb:synonym>
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#ProfitLoss" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#accountAnnualFact" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#company" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeInput" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeMeasure" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeNegative" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeOutput" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financePositive" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financialPapers" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#measurePositive" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#payMoney" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#period" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#predict" />
 <kb:synonym>$</kb:synonym>
 <kb:synonym>CAD</kb:synonym>
 <kb:synonym>DKK</kb:synonym>
 <kb:synonym>GBP</kb:synonym>
 <kb:synonym>NOK</kb:synonym>
 <kb:synonym>SEK</kb:synonym>
 <kb:synonym>USD</kb:synonym>
 <kb:synonym>USS</kb:synonym>
 <kb:synonym>cent</kb:synonym>
 <kb:synonym>dollar</kb:synonym>
 <kb:synonym>franc</kb:synonym>
 <kb:synonym>kr</kb:synonym>
 <kb:synonym>krone</kb:synonym>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

2

 <kb:synonym>ruble</kb:synonym>
 </kb:AmountUnit>

 <a:_instance_annotation rdf:about="http://protege.hia.no/ebjoraa/kb#Finance_00056" a:_creation_timestamp="2003.04.22
11:48:58.322 CEST" a:_creator="ebjoraa" rdfs:label="Finance_00056" />

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#ProfitLoss" rdfs:label="ProfitLoss">
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeAction" />
 <kb:inverseInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeNegative" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#measureNegative" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#measurePositive" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#period" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#tax" />
 <kb:synonym>loss</kb:synonym>
 <kb:synonym>profit</kb:synonym>
 </kb:FinanceDescription>

- <kb:ReportFact rdf:about="http://protege.hia.no/ebjoraa/kb#accountAnnualFact" rdfs:label="accountAnnualFact">
 <kb:synonym>annual_account</kb:synonym>
 <kb:synonym>annual_report</kb:synonym>
 <kb:synonym>report</kb:synonym>
 <kb:synonym>result</kb:synonym>
 </kb:ReportFact>

 <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#after_tax" kb:replaceWith="after_tax" kb:synonym="after tax"
rdfs:label="after_tax" />

 <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#annual_report" kb:replaceWith="annual_report"
kb:synonym="annual report" rdfs:label="annual_report" />

 <kb:Companies rdf:about="http://protege.hia.no/ebjoraa/kb#area" kb:synonym="cryptograph" rdfs:label="area" />
 <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#before_tax" kb:replaceWith="before_tax" kb:synonym="before

tax" rdfs:label="before_tax" />
- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#billion" kb:replaceWith="B" rdfs:label="billion">
 <kb:synonym>000,000,000</kb:synonym>
 <kb:synonym>000.000.000</kb:synonym>
 <kb:synonym>billion</kb:synonym>
 <kb:synonym>milliard</kb:synonym>
 </kb:TextReplace>

- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#cent" kb:replaceWith="cent" rdfs:label="cent">
 <kb:synonym>cent</kb:synonym>
 <kb:synonym>cents</kb:synonym>
 </kb:TextReplace>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

3

- <kb:Companies rdf:about="http://protege.hia.no/ebjoraa/kb#company" kb:synonym="NeoRx" rdfs:label="company">
 <kb:synonym>Amersham</kb:synonym>
 <kb:synonym>Galil</kb:synonym>
 </kb:Companies>

- <kb:StockMarket rdf:about="http://protege.hia.no/ebjoraa/kb#exchangeWords" rdfs:label="exchangeWords">
 <rdfs:comment>Words that occur at the exchange (stock market) when you deal with shares.</rdfs:comment>
 <kb:synonym>leap</kb:synonym>
 <kb:synonym>quote</kb:synonym>
 </kb:StockMarket>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#financeAction" rdfs:label="financeAction">
 <kb:synonym>invest</kb:synonym>
 <kb:synonym>operation</kb:synonym>
 </kb:FinanceDescription>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#financeInput" kb:synonym="purchase"
rdfs:label="financeInput">

 <kb:inverseInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeOutput" />
 <kb:synonym>bought</kb:synonym>
 <kb:synonym>buy</kb:synonym>
 </kb:FinanceDescription>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#financeMeasure" rdfs:label="financeMeasure">
 <kb:synonym>cash</kb:synonym>
 <kb:synonym>credit</kb:synonym>
 <kb:synonym>net</kb:synonym>
 <kb:synonym>total</kb:synonym>
 </kb:FinanceDescription>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#financeNegative" kb:synonym="loss"
rdfs:label="financeNegative">

 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeAction" />
 <kb:inverseInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeNegative" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#measureNegative" />
 </kb:FinanceDescription>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#financeOutput" kb:synonym="sold"
rdfs:label="financeOutput">

 <kb:inverseInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#financeInput" />
 <kb:synonym>deliver</kb:synonym>
 <kb:synonym>given</kb:synonym>
 <kb:synonym>sale</kb:synonym>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

4

 <kb:synonym>sell</kb:synonym>
 </kb:FinanceDescription>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#financePositive" kb:synonym="revenue"
rdfs:label="financePositive">

 <kb:synonym>asset</kb:synonym>
 <kb:synonym>income</kb:synonym>
 </kb:FinanceDescription>

- <kb:StockMarket rdf:about="http://protege.hia.no/ebjoraa/kb#financialPapers" rdfs:label="financialPapers">
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#exchangeWords" />
 <kb:synonym>first call</kb:synonym>
 <kb:synonym>fund</kb:synonym>
 <kb:synonym>share</kb:synonym>
 <kb:synonym>stock</kb:synonym>
 </kb:StockMarket>

- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#first_quarter" kb:replaceWith="first_quarter"
rdfs:label="first_quarter">

 <kb:synonym>1st quarter</kb:synonym>
 <kb:synonym>first quarter</kb:synonym>
 </kb:TextReplace>

- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#fourth_quarter" kb:replaceWith="fourth_quarter"
rdfs:label="fourth_quarter">

 <kb:synonym>4th quarther</kb:synonym>
 <kb:synonym>fourth quarter</kb:synonym>
 </kb:TextReplace>

- <kb:Transaction rdf:about="http://protege.hia.no/ebjoraa/kb#getMoney" rdfs:label="getMoney">
 <kb:synonym>get</kb:synonym>
 <kb:synonym>receive</kb:synonym>
 </kb:Transaction>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#measureNegative" kb:synonym="reduction"
rdfs:label="measureNegative">

 <kb:inverseInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#measurePositive" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#percentChange" />
 <kb:synonym>decline</kb:synonym>
 <kb:synonym>decrease</kb:synonym>
 <kb:synonym>down</kb:synonym>
 <kb:synonym>fall</kb:synonym>
 <kb:synonym>fell</kb:synonym>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

5

 <kb:synonym>impair</kb:synonym>
 <kb:synonym>loose</kb:synonym>
 <kb:synonym>losing</kb:synonym>
 <kb:synonym>lost</kb:synonym>
 <kb:synonym>recess</kb:synonym>
 </kb:FinanceDescription>

- <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#measurePositive" rdfs:label="measurePositive">
 <kb:inverseInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#measureNegative" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#percentChange" />
 <kb:synonym>benefit</kb:synonym>
 <kb:synonym>gain</kb:synonym>
 <kb:synonym>grow</kb:synonym>
 <kb:synonym>increase</kb:synonym>
 </kb:FinanceDescription>

- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#million" kb:replaceWith="M" rdfs:label="million">
 <kb:synonym>,000,000</kb:synonym>
 <kb:synonym>000,000</kb:synonym>
 <kb:synonym>000.000</kb:synonym>
 <kb:synonym>million</kb:synonym>
 </kb:TextReplace>

- <kb:TimeUnit rdf:about="http://protege.hia.no/ebjoraa/kb#month" rdfs:label="month">
 <kb:synonym>april</kb:synonym>
 <kb:synonym>august</kb:synonym>
 <kb:synonym>december</kb:synonym>
 <kb:synonym>february</kb:synonym>
 <kb:synonym>january</kb:synonym>
 <kb:synonym>july</kb:synonym>
 <kb:synonym>june</kb:synonym>
 <kb:synonym>march</kb:synonym>
 <kb:synonym>may</kb:synonym>
 <kb:synonym>november</kb:synonym>
 <kb:synonym>october</kb:synonym>
 <kb:synonym>september</kb:synonym>
 </kb:TimeUnit>

- <kb:Transaction rdf:about="http://protege.hia.no/ebjoraa/kb#payMoney" kb:synonym="payment" rdfs:label="payMoney">
 <kb:synonym>expense</kb:synonym>
 <kb:synonym>pay</kb:synonym>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

6

 </kb:Transaction>
- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#percent" kb:replaceWith="%" kb:synonym="prosent"

rdfs:label="percent">
 <kb:synonym>%</kb:synonym>
 <kb:synonym>percent</kb:synonym>
 </kb:TextReplace>

 <kb:AmountUnit rdf:about="http://protege.hia.no/ebjoraa/kb#percentChange" kb:synonym="%" rdfs:label="percentChange" />
- <kb:TimeUnit rdf:about="http://protege.hia.no/ebjoraa/kb#period" kb:synonym="third_quarter" rdfs:label="period">
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#month" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#period_info" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#year" />
 <kb:synonym />
 <kb:synonym>annual</kb:synonym>
 <kb:synonym>first_quarter</kb:synonym>
 <kb:synonym>fourth_quarter</kb:synonym>
 <kb:synonym>period</kb:synonym>
 <kb:synonym>second_quarter</kb:synonym>
 </kb:TimeUnit>

- <kb:TimeUnit rdf:about="http://protege.hia.no/ebjoraa/kb#period_info" kb:synonym="end" rdfs:label="period_info">
 <kb:synonym>after</kb:synonym>
 <kb:synonym>before</kb:synonym>
 </kb:TimeUnit>

- <kb:Prediction rdf:about="http://protege.hia.no/ebjoraa/kb#predict" kb:synonym="prognos" rdfs:label="predict">
 <kb:synonym>anticipat</kb:synonym>
 <kb:synonym>approximat</kb:synonym>
 <kb:synonym>belief</kb:synonym>
 <kb:synonym>claim</kb:synonym>
 <kb:synonym>estimate</kb:synonym>
 <kb:synonym>expect</kb:synonym>
 <kb:synonym>forecast</kb:synonym>
 <kb:synonym>forward-looking</kb:synonym>
 <kb:synonym>intent</kb:synonym>
 <kb:synonym>predict</kb:synonym>
 </kb:Prediction>

- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#second_quarter" kb:replaceWith="second_quarter"
kb:synonym="second quarter" rdfs:label="second_quarter">

 <kb:synonym>2nd quarter</kb:synonym>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

7

 <kb:synonym>andre kvartal</kb:synonym>
 </kb:TextReplace>

 <kb:FinanceDescription rdf:about="http://protege.hia.no/ebjoraa/kb#tax" kb:synonym="tax" rdfs:label="tax" />
- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#textReplace" rdfs:label="textReplace">
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#after_tax" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#annual_report" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#before_tax" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#billion" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#cent" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#first_quarter" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#fourth_quarter" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#million" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#percent" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#second_quarter" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#third_quarter" />
 <kb:refInstance rdf:resource="http://protege.hia.no/ebjoraa/kb#thousand" />
 </kb:TextReplace>

- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#third_quarter" kb:replaceWith="third_quarter"
rdfs:label="third_quarter">

 <kb:synonym>3rd quarter</kb:synonym>
 <kb:synonym>third quarter</kb:synonym>
 </kb:TextReplace>

- <kb:TextReplace rdf:about="http://protege.hia.no/ebjoraa/kb#thousand" kb:replaceWith="T" rdfs:label="thousand">
 <kb:synonym>,000</kb:synonym>
 <kb:synonym>000</kb:synonym>
 <kb:synonym>thousand</kb:synonym>
 <kb:synonym>tusen</kb:synonym>
 </kb:TextReplace>

- <kb:TimeUnit rdf:about="http://protege.hia.no/ebjoraa/kb#year" kb:synonym="2004" rdfs:label="year">
 <kb:synonym>2000</kb:synonym>
 <kb:synonym>2001</kb:synonym>
 <kb:synonym>2002</kb:synonym>
 <kb:synonym>2003</kb:synonym>
 </kb:TimeUnit>
 </rdf:RDF>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

8

Appendix B – Complete RDFS for the financial ontology

 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE rdf:RDF (View Source for full doctype...)>

- <rdf:RDF
xmlns:kb="http://protege.hia.no/ebjoraa/kb#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:a="http://protege.stanford.edu/system#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#AmountUnit" rdfs:label="AmountUnit">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#Area" rdfs:label="Area">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#Companies" rdfs:label="Companies">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 </rdfs:Class>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#CurencyUnit_1" rdfs:label="CurencyUnit_1" />
- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#Facts" rdfs:label="Facts">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#Finance" rdfs:label="Finance">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#FinanceDescription" rdfs:label="FinanceDescription">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" rdfs:label="MeasurementUnit">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#Prediction" rdfs:label="Prediction">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#Report" rdfs:label="Report">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Area" />
 </rdfs:Class>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

9

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#ReportFact" rdfs:label="ReportFact">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Facts" />
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#StockMarket" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#StockMarket" rdfs:label="StockMarket">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Area" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#TextReplace" rdfs:label="TextReplace">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#TimeUnit" rdfs:label="TimeUnit">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#Transaction" rdfs:label="Transaction">
 <rdfs:subClassOf rdf:resource="http://protege.hia.no/ebjoraa/kb#Area" />
 </rdfs:Class>

- <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/kb#WordNet" rdfs:label="WordNet">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class" />
 </rdfs:Class>

- <kb:WordNet rdf:about="http://protege.hia.no/ebjoraa/kb#WordNet_ROOT" rdfs:label="WordNet_ROOT">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </kb:WordNet>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#child-of" rdfs:label="child-of">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet_ROOT" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#definition" rdfs:label="definition">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet_ROOT" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#inverseInstance" rdfs:label="inverseInstance">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#morphological_form" rdfs:label="morphological_form">

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

10

 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet_ROOT" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#name" a:maxCardinality="1" rdfs:label="name">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet_ROOT" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#pattern" rdfs:label="pattern">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#ref1" rdfs:label="ref1">
 <rdfs:subPropertyOf rdf:resource="http://protege.hia.no/ebjoraa/kb#CurencyUnit_1" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#refClass" a:range="cls" rdfs:label="refClass">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class" />
 <a:allowedParents rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#refInstance" rdfs:label="refInstance">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#AmountUnit" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#TextReplace" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#replaceText" rdfs:label="replaceText">
 <a:allowedClasses rdf:resource="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#TextReplace" />
 <a:allowedClasses rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#replaceWith" a:maxCardinality="1" rdfs:label="replaceWith">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#TextReplace" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

11

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#synonym" rdfs:label="synonym">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#TextReplace" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#WordNet_ROOT" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/kb#type" rdfs:label="type">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

- <rdf:Property rdf:about="http://protege.stanford.edu/system#_name" rdfs:label=":NAME">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#Finance" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#MeasurementUnit" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/kb#TextReplace" />
 </rdf:Property>
 </rdf:RDF>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

12

Appendix C – Complete RDFS for the article ontology
 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE rdf:RDF (View Source for full doctype...)>

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:article="http://protege.hia.no/ebjoraa/article#"
xmlns:a="http://protege.stanford.edu/system#" xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/article#Article" rdfs:label="Article">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdfs:Class>

 <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/article#Financial_tems" rdfs:label="Financial_tems">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdfs:Class>

 <rdfs:Class rdf:about="http://protege.hia.no/ebjoraa/article#Sentences" rdfs:label="Sentences">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource" />
 </rdfs:Class>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#URL" a:maxCardinality="1" rdfs:label="URL">
 <rdfs:comment>ID of the article. Uniqe referance to an articles publication area.</rdfs:comment>
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#currencyAmount" a:maxCardinality="1"
rdfs:label="currencyAmount">

 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Financial_tems" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#currencyUnit" a:maxCardinality="1"
rdfs:label="currencyUnit">

 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Financial_tems" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#financial_ItemID" a:maxCardinality="1" a:range="integer"
rdfs:label="financial_ItemID">

 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Financial_tems" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#language" a:maxCardinality="1" rdfs:label="language">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

13

 </rdf:Property>
 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#part-of" a:maxCardinality="1" a:minCardinality="1"

a:range="cls" rdfs:label="part-of">
 <a:allowedParents rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Financial_tems" />
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Sentences" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#pubdate" a:maxCardinality="1" rdfs:label="pubdate">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#sentenceID" a:maxCardinality="1" a:minCardinality="1"
a:range="integer" rdfs:label="sentenceID">

 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Sentences" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#source" a:maxCardinality="1" rdfs:label="source">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#subject" a:maxCardinality="1" rdfs:label="subject">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#text" a:maxCardinality="1" rdfs:label="text">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Sentences" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#title" a:maxCardinality="1" rdfs:label="title">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#wordType" rdfs:label="wordType">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Sentences" />
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

14

 <rdf:Property rdf:about="http://protege.hia.no/ebjoraa/article#words" rdfs:label="words">
 <rdfs:range rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Literal" />
 </rdf:Property>

 <rdf:Property rdf:about="http://protege.stanford.edu/system#_name" rdfs:label=":NAME">
 <rdfs:domain rdf:resource="http://protege.hia.no/ebjoraa/article#Article" />
 </rdf:Property>
 </rdf:RDF>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

15

Appendix D – Java code for parsing XML input documents for information

package FinanceExtr;
import java.io.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class getTextFromXML
 {
 public static String getString(String myFile, String myNode) throws Exception
 {
 //The file to read and which node to find is given as input parameter
 String myStr = "null"; //"null" is returned of the tag is not found or containing no text
 DocumentBuilderFactory factory=javax.xml.parsers.DocumentBuilderFactory.newInstance();
 DocumentBuilder builder=factory.newDocumentBuilder();
 org.w3c.dom.Document doc=builder.parse(new FileInputStream(myFile));

 NodeList list=doc.getElementsByTagName(myNode); //Go through every node, finds right node by tag name
 for(int i=0;i<list.getLength();++i)
 {
 myStr = FindNodes(list.item(i),0);
 }
 return myStr; //Return text found for given tag to Jython
 }//end getString

 static String FindNodes(Node node,int level)
 {
 String nodeText = "";
 if(node.getNodeValue()!=null)
 {
 nodeText = node.getNodeValue().trim();
 //Gets the value of the node when found
 }
 else
 { System.out.print(); }

 NodeList childnodes=node.getChildNodes();
 for(int i=0;i<childnodes.getLength();++i)
 {
 nodeText = FindNodes(childnodes.item(i),level+1);
 }
 return nodeText; //Return text found for the tag to getString
 }//end findNodes
}//end class

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

16

Appendix E –
Java code for parsing and querying the financial ontology

package FinanceExtr;

import com.hp.hpl.mesa.rdf.jena.model.* ;
import com.hp.hpl.mesa.rdf.jena.mem.* ;
import com.hp.hpl.mesa.rdf.jena.common.* ;
import com.hp.hpl.jena.rdf.query.* ;
import java.util.* ;
import java.io.* ;

public class getInputFromOnt
{
 //reads the ontology, finds different synonyms for an instance
 // and returns a vector of all the synonyms that were found
 // param1: myFile - which ontology file to read
 // param2: myInstance - URI for current instance to search for
 // param3: myResURL - URI for the ontology
 // param3: myResURL - which slot (i.e. synonym or refInstance) to find in the instance
 public Vector getSynonyms(String myFile,String myURL,String myResURL,String mySlot)
 {

 String myString = "test";
 String myString2 = "test";
 String retString = "test";
 Vector v = new Vector();

 try {

 Model model = new ModelMem() ;
 model.read(new FileReader(myFile),
 "http://nowhere/",
 "RDF/XML") ;

 //Declaration of the query
 String queryString = "SELECT ?x, ?resource,?z "+
 "WHERE (<"+myURL+">,<Finance:"+mySlot+">, ?z) "+
 "USING Finance FOR <"+myResURL+">";

 Query query = new Query(queryString) ;
 query.setSource(model);
 //the query is executed

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

17

 QueryExecution qe = new QueryEngine(query);

 //execute query
 QueryResults results = qe.exec();

 for (Iterator iter = results ; iter.hasNext();)
 {
 ResultBinding res = (ResultBinding)iter.next() ;
 Object z = res.get("z") ;

 myString = z.toString();

 boolean isFound = v.contains(myString);
 if (isFound == true)
 {
 //break;
 }//end if
 else
 {
 v.addElement(myString);
 }//end else

 }//end for

 results.close();

 }//end try
 catch (Exception ex)
 {
 System.err.println("Exception: "+ex) ;
 ex.printStackTrace(System.err) ;
 }//end catch

 return v;

 }//end getSynonyms
}//end class

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

18

Appendix F –
Prototype application agent code – Jython code for extracting financial information

from re import *
from nltk.mytoken import *
from nltk.tagger import *
#Java files query for text from input file and ontology
from FinanceExtr import getInputFromOnt, getTextFromXML
from java.util import *

import string,os, sys
import org.apache.velocity.app.Velocity as Velocity
import org.apache.velocity.Template as Template
import org.apache.velocity.VelocityContext as VelocityContext
import java.io.StringWriter as StringWriter
import java.util.ArrayList as ArrayList
import java.util.Properties as Properties

myVelocity_RDF = 'RDF.vm' #velocity tamplate file used to print output in RDF
myVelocity_XBRL = 'XBRL.vm' #velocity tamplate file used to print output in XBRL
myRDF_file = 'Finance.rdf' #Finance ontology file
myRDF_KB = 'http://protege.hia.no/ebjoraa/kb#' #URI for ontology, used in query
RDFcurrencyUnit = 'http://protege.hia.no/ebjoraa/kb#CurrencyUnit' #start point for ontology query
myRDFSchema = 'http://www.w3.org/TR/1999/PR-rdf-schema-19990303#' #RDF Schema for ontology

class Template:
 def __init__(self, templatename):

 p = Properties()
 p.setProperty("runtime.log.logsystem.class", "org.apache.velocity.runtime.log.NullLogSystem")
 Velocity.init(p)

 self.t = Velocity.getTemplate(templatename)

 def py2java(self,v):
 if type(v)==type(""):
 return v
 elif type(v) in [type([]),type(())]:
 l = ArrayList()
 for e in v: l.add(self.py2java(e))
 return l
 elif type(v)==type({}):
 m = Hashtable()

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

19

 for e,i in v.items(): m.put(e,self.py2java(i))
 return m
 else:

#print 'Type is not supported:',type(v)
 return None
 def fill(self, data):
 context = VelocityContext()
 for k,v in data.items():
 context.put(k,self.py2java(v))
 w = StringWriter()
 self.t.merge(context, w)
 return w

class InstanceList:
 def _init_(self):
 l = [] #all resources checked
 refs = [] #all resources to be checked
 sentences = [] #all sentences, information
 currencies = [] #all currencies in one sentence
 myDict = {} #dict to velocity template
 myDict2 = {} #dict to velocity template
 pass
 def setList(self,myIn,c):
 c.append(myIn)
 return c
 def getList(self,c):
 return c
 def getListItem(self,i,c):
 return c[i]
 def getLength(self,c):
 return len(c)
 def delList1(self,c,i):
 if i == 1:
 try:
 theListItem = c[0]
 c.remove(theListItem)
 except:
 pass
 else:
 i = i-1
 try:
 theListItem = c[i]
 c.remove(theListItem)
 except:
 pass

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

20

 def delList(self,c):
 lengthList = len(c)
 for i in range(lengthList):
 theListItem = c[0]
 c.remove(theListItem)
 def updateDict(self,myDictIn):
 myDict.update(myDictIn)

class TextInOut:
 def textInOutFromInputXML(self,myFile,myNode):
 #myFile - which RDF URI/node to search for, usually like myRDF_KB
 #myNode - information to get
 textInOut = getTextFromXML() #making an object of type getTextFromXML from Java
 textString = textInOut.getString(myFile,myNode) #calls getString function in getTextFromOnt.class
 return textString #returns a string

 def getWordsFromOnt(self,myNS,instance,mySlot):

#input er URL til resource og type slot som en vil finne (synonym|reference)
 #myNS - URI namespace to use
 #instance - which instance to query for in the ontology, like "CurrencyUnit"
 #mySlot - which slot (property) of queried instance you want to find, like synonym or refInstance
 getInputSyn = getInputFromOnt() #making an object of type getInputFromOnt from Java

#calls getSynonyms function in getInputFromOnt.class
synVector = getInputSyn.getSynonyms(myRDF_file,instance,myNS,mySlot)

 return synVector #returns a vector of the result

 def printToFile(self,text,ending):
 #prints to file specified in cmd line
 if len(sys.argv) > 2:
 output=open(sys.argv[2]+ending,'a')
 output.writelines(text)
 output.close()
class TextChange:
 def textReplace(self,text):
 #text to do modification on is given as input
 textChange = TextChange() #new instance of class
 text = text.replace('\"','\'') #replace all " with ' because of XML syntax
 text = text.replace('.\n','. \n') #replace all '.' followed by a line enters with a white space
 text = text.replace('\n','') #removes all \n from the text, in python this is a new line
 text = text.replace('--','') #replace all '--' with '-' because this is comment in XML

 r=re.compile('[A-Z]\.[A-Z]\.([A-Z]{2,})')
 text = r.sub(';\\1',text) #replace all U.S. with U.S; to avoid misinterpreted sentence endings

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

21

 r=re.compile('\.([0-9]{1,})')
 text = r.sub(',\\1',text)

#all numbers of format XX.XX are replaced with XX;XX

 r=re.compile('\.([^A-Z|\'|!]{2,})')
 text = r.sub(';\\1',text)

#replace all '.' with ';' which are not followed by a capital letter or ' in the 2 first signs

 text = textChange.replaceTextFromOnt(text) #calls def replaceTextFromOnt
 return text

 def replaceTextFromOnt(self,text):
 #Words given in the ontology defined to be replaced are found and changed here
 textInOut = TextInOut() #new instance of class
 myRef = textInOut.getWordsFromOnt(myRDF_KB,myRDF_KB+'textReplace','refInstance')

#gets URL to all words to be replaced from the ontology

nbRef = len(myRef) #number of referances to words to be changed
 for i in range(nbRef):

#loops through every instance, finding word to replace, and what to replace with
 mySyn = textInOut.getWordsFromOnt(myRDF_KB,myRef[i],'synonym')

#vector of words(synonyms) to replace
 textReplace = textInOut.getWordsFromOnt(myRDF_KB,myRef[i],'replaceWith')

#replace with this word
 nbSyn = len(mySyn)
 for j in range(nbSyn):
 if textReplace[0] == 'M' or textReplace[0] == 'B' or textReplace[0] == 'cent':

 text = text.replace(' '+mySyn[j],textReplace[0])

#takes those with space between them and the word to replace, ex $50 million -> $50M
 text = text.replace(mySyn[j],textReplace[0])

#takes those with space between them and the word to replace, ex $50 million -> $50M
 else:
 text = text.replace(mySyn[j],textReplace[0])

#takes those with space between them and the word to replace, ex $50,000,000 -> $50M
 return text #return the text with changes

 def myTagger(self,textstr):
 """
 Tagger function taken from NTLK toolkit, tagger.py demo().
 Some changes has been made.
 This calls the tagger of myNN_CD_Tagger. A modified CD(number) and NN (word)
 tagger from NLTK.
 """

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

22

 tokens = TaggedTokenizer().tokenize(textstr)
 train_tokens = tokens[:]
 test_tokens = tokens[:]

 #print 'training unigram tagger (%d tokens)...' % len(train_tokens)
 t0 = UnigramTagger()
 t0.train(tokens)

 #print 'training 1st order tagger (%d tokens)...' % len(train_tokens)
 t1 = NthOrderTagger(1)
 t1.train(tokens)

 #print 'training 2nd order tagger (%d tokens)...' % len(train_tokens)
 t2 = NthOrderTagger(2)
 t2.train(tokens)

 #print 'creating combined backoff tagger...'
 ft = BackoffTagger((t2, t1, t0, myNN_CD_Tagger()))
 strFT = str(ft)

 #print 'running the tagger... (%d tokens)...' % len(tokens)
 result = ft.tag(untag(tokens))
 #print 'Accuracy: %.5f' % accuracy(tokens, result)
 return result

class TextExtract:
 def findNumbInSentence(self,text):
 #this function is called only the first time in every sentence, for finding currencies
 instanceList = InstanceList() #new instance of class
 textInOut = TextInOut() #new instance of class
 textChange = TextChange() #new instance of class
 textExtract = TextExtract() #new instance of class

 tokens = MyLineTokenizer().mytokenize(text) #Tokenize text into sentence tokens
 lenTok = len(tokens) #number of tokens

 mySyn = textInOut.getWordsFromOnt(myRDF_KB,RDFcurrencyUnit,'synonym')

#get vector of all currencies in the ontology

nbSyn = len(mySyn) #number of synonyms
 Found = '0' #a variable preventing the loop to enter findWithRefSyn without having found an currencyunit
 myInt = 0 #sentence number

 for token in tokens: #for each sentence in article
 myDict = {} #declaration of dictionary for words found in sentence

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

23

 myDict2 = {}
 myDictcuca = {} #declaration of dictionary for currencies and amount found in sentence
 myList = [] #new list
 FoundAt = [] #list variabel to hold where info was found, not implemented
 print '-------------------NEXT SENTENCE----------------------------'
 thisSentence = token.type() #variable containing the text of the current sentence
 instanceList.delList(l) #deleting the old list of instances checked (loop preventer)

 myInt = myInt + 1
 myDict['SID'] = str(myInt) #Sentence ID is added to dict
 myDict['SText'] = thisSentence #Sentence Text is added to dict

 tagResult = textChange.myTagger(thisSentence)

#function for tagging sentence, ex format: 'ended'/'NN'@[1w] and '2002'/'CD'@[4w]

tagResLen = len(tagResult) #number of words in tagged sentence

 myWordToken = WSTokenizer().tokenize(thisSentence)

#tokenizing the same sentence without CD and NN tags

myCDInt = 0
 for myStr2 in range(tagResLen): # for each word in sentence
 thisWord = (myWordToken[myStr2].type()) #the current word cheched without CD/NN tag
 thisWordLoc = (myWordToken[myStr2].loc())

#the current words location in text (without CD/NN tag), not implemented

tagWord = str(tagResult[myStr2].type()) #the current word cheched with CD/NN tag
 a = 1

 y={}
 try: #Find numbers(CD) in sentence/token
 expr = re.compile('CD')
 p = re.findall(expr, tagWord)
 if p == ['CD']: #a number(CD tag) is found
 sentenceToken = 's'
 if not sentenceToken in tagWord:

#check all words without the one '::' denoting end of sentence
 #myDictcuca.clear()

 #Knows its a number, has is a belonging currencyUnit
 for i in range(nbSyn): #go through the vector of currencies found above
 myV=str(mySyn[i]) #myV is current currency
 e=0 #e denote euro, if e=1 euro(€) is found
 #print repr(myV), thisWord

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

24

 if myV == '€':
#Euro from ontology (or '€':)

 myV = unichr(0x20ac)
#convert to unichar of euro, because of the text has been changed

 try: #check if thisWord is Euro
 pxml = re.compile(myV)
 pont = pxml.search(thisWord)
 if pont:
 if repr(myV) == repr(unichr(0x20ac)):
 e=1 #Euro found
 except:
 pass #Euro not found

 if myV == '$':
 expr = re.compile('\\$')

#$ is a special symbol regular expr and '\\'
#is used to for stating that $ = dollar

 p = re.findall(expr, tagWord)
 else:
 expr = re.compile(myV)

#find match between currencies in onto an thisWord from the article
 p = re.findall(expr, tagWord)
 if p == [myV] or e == 1:
 myCDInt = myCDInt + 1

#keep track of currencies when more than one occur in one sentence

 #currencyUnit is found, go to ontologo for refInstances
 Found = '1'

#ok to go to the findWithRefSyn-loop and find words belonging to
the financial number found

 thisWord = str(thisWord)
 if e == 1:
 print 'ca', str(thisWord)
 thisWordtemp = re.sub(unichr(0x20ac),'', thisWord)

#removes € from thisWord, finds amount

thisWordtemp = re.sub('''[^0-9A-Z]''''','', thisWord)
 #thisWordtemp = re.sub('.','', thisWord)
 myDictcuca['CU'] = 'eur'

#currencyUnit €=EUR for ISO4217 uniformity

 #myDict['CU'] = '€'
#currencyUnit (Euro) is added to dict

 print 'ca', str(thisWordtemp),'ca'
 myDictcuca['CA'] = str(thisWordtemp)

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

25

#currencyAmount ex 56M is added to dict
 else:
 if myV == '$':
 myV = 'usd' #for ISO4217 uniformity
 #thisWordtemp = re.sub('\\$','', thisWord)

#need to be done for python to use the sign $ and not
#internal use

 thisWordtemp = re.sub('\\$','', thisWord)
 myDictcuca['CU'] = myV

#currencyUnit, ex GBP is added to dict
 myDictcuca['CA'] = str(thisWordtemp)

#currencyAmount ex 56M is added to dict

 else:
 thisWordtemp = re.sub('.','', thisWord)
 thisWordtemp = re.sub(myV,'', thisWord)

 myDictcuca['CU'] = myV

#currencyUnit, ex GBP is added to dict
 myDictcuca['CA'] = str(thisWordtemp)

#currencyAmount ex 56M is added to dict
 myList.append(myDictcuca)
 myDictcuca={}
 break #match found, no need to check others

 else:
 expr = re.compile('NN')
 p = re.findall(expr, tagType)
 except:
 i=1#pass
 #The word was not a number/CD
 if Found == '1': #currency is found and call findRefWithSyn to get more information
 print 'Found'
 myDict['CuCa']= myList
 instanceList.updateDict(myDict)
 print 'myDict ',myDict
 textExtract.findWithRefSyn(tagResult,tagResLen,thisWord,myDict,myInt)

#calls findWithRefSyn, necessary parameters are added
 Found = '0' #prevents the loop to go inside findWithRefSyn without finding of currency
 else:
 print 'Not found'
 #add the sentence where no financal info was found to list
 instanceList.delList1(sentences,myInt)

#avoids duplicates, delete a former version of this dict in list

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

26

 instanceList.setList(myDict,sentences) #add new dict to list
 return lenTok

 def findWithRefSyn(self,tagResult,tagResLen,thisWord,myDict,myInt):
 #go to reference of instance and find its synonyms,

#checks against every word in every sentence currency is found
 print '------- Currency Found in sentence -------'
 instanceList = InstanceList() #new instance of class
 instanceList = [] #new list
 firstLevelRef = [] #new list, first level references
 nextLevelRef = [] #new list, references from instances in firstLevelRef
 textExtract = TextExtract() #new instance of class

 myRef = textExtract.findRefInstances(RDFcurrencyUnit,1)

#find all references to other instances from the current instance
 nbRef = len(myRef) #number of references

 for j in range(nbRef): #find synonyms and refInstances to all the instances related to currencyUnit
 firstLevelRef = textExtract.findSyn(myRef[j],tagResult,tagResLen,myDict,myInt)

#checks in findSyn for synonyms
 try:
 listLen = len(firstLevelRef)
 if listLen > 0:
 w = -1 #temp var
 while w < len(firstLevelRef):

#while there are more instances to check for synonyms and refInstance
 w=w+1
 nextLevelRef = textExtract.findSyn(firstLevelRef[w],tagResult,tagResLen,myDict,myInt)

#checks in findSyn for synonyms
 if len(nextLevelRef) > 0: #if a list of refInstances is returned, add to list
 for xx in range(len(nextLevelRef)): #add all returned
 firstLevelRef.append(nextLevelRef[xx])

#the list is updated if synonym is found and refInstances given
 except:
 pass

 def findSyn(self,myRef,tagResult,tagResLen,myDictIn,myInt):
 instanceList = InstanceList() #new instance of class
 textInOut = TextInOut() #new instance of class
 textChange = TextChange() #new instance of class
 textExtract = TextExtract() #new instance of class
 RFoundAt = [] #new list, not inplemented, to find relations
 #between where words are in sentence and compared to other words
 RFound = 0

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

27

 myDict = myDictIn
 newRefI = []

 thisInstSynonyms = textInOut.getWordsFromOnt(myRDF_KB,myRef,'synonym')

#gets a vector of synonyms for current instance from ontology
 thisInstName = textInOut.getWordsFromOnt(myRDFSchema,myRef,'label') #gets name of instance
 nbSynRef = len(thisInstSynonyms) #number of synonyms

 for m in range(nbSynRef): #for all synonyms
 thisSynonym = str(thisInstSynonyms[m]) #current synonym
 for n in range(tagResLen): #check every words in sentence for match of current synonym
 theWord = myUntagger(tagResult,n) #untagger strips the word for CD/NN

 expr = re.compile(thisSynonym,re.IGNORECASE)
 p = re.findall(expr, theWord) #using reg expr for finding match

 if p == [thisSynonym]: #if match is found
 RFound = 1 #var denoting match found

 if RFoundAt == []: RFoundAt = [n] #list telling where match found, not implemented further
 else: RFoundAt = RFoundAt+[n]
 theWord = theWord.replace('.','')

#replaces '.' with a white space from the found word if this exist
 if len(thisInstName[0]) > 2:
 thisInstName = thisInstName[0]

#thisInstName is taken from a vector, to avoid '[' and ']' the first instance is collected
 myDict[thisInstName] = theWord
 newRefI = textExtract.findRefInstances(myRef,1)

#does this instance have a reference to other instances?

 instanceList.delList1(sentences,myInt) #avoids duplicates, delete a former version of this dict in list
 instanceList.setList(myDict,sentences) #add new dict to list
 if RFound == 1:
 return newRefI #no ref returned to FindWithRefSyn
 else:
 return newRefI #list of refs is returned to FindWithRefSyn

 def findRefInstances(self,RDF_resource,param):
 textInOut = TextInOut() #new instance of class
 textExtract = TextExtract() #new instance of class
 tempList = [] #new list
 refInstances = textInOut.getWordsFromOnt(myRDF_KB,RDF_resource,'refInstance')

#gets all refInstances for this instance
 nbRef = len(refInstances) #number of references to other instances
 for i in range(nbRef):

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

28

 ok = textExtract.checkList(refInstances[i])
#checks for every instance in checklist is synonyms already is found (loop preventer)

 if ok == 1 and param == 0:
 return refInstances[i]
 elif ok == 0 and param == 0:
 return 0
 elif ok == 1 and param == 1:
 tempList.append(refInstances[i])
 return tempList

 def checkList(self,thisInstance):
 instanceList = InstanceList() #new instance of class
 a = 1 #temp var for found in list of instances found synonyms for: 1=not found 0=found
 theList = instanceList.getList(l)
 theListLen = len(theList)
 for i in range(theListLen): #loops through list and checks if already found synonyms
 if thisInstance == theList[i]: #checks every instance is in list
 a = 0 #instance is in list
 break
 else:
 a = 1 #instance is not in list
 if a == 1: #If a==1, instance not in list -> add to list for finding synonyms
 lSet = instanceList.setList(thisInstance,l)
 return a #returns 1 or 0 to findRefInstances

if __name__ == '__main__':
 #import sys
 try:
 templateVelocityRDF = Template(myVelocity_RDF)
 templateVelocityXBRL = Template(myVelocity_XBRL)
 except:
 print '--- Velocity file not found. ---'
 raise SystemExit
 myDict = {}
 instanceList = InstanceList()
 l = [] #alle resources som er sjekket
 refs = [] #alle resources som skal sjekkes
 sentences = [] #all sentences, information
 currencies = [] #all currencies in one sentence

 textInOut = TextInOut()
 textChange = TextChange()
 textExtract = TextExtract()
 try:
 fileName = sys.argv[1]

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

29

 except:
 print '''File name not given, like 'python xx.py text.txt' '''
 raise SystemExit

 textDate = textInOut.textInOutFromInputXML(fileName,'pubDate')
 textSource = textInOut.textInOutFromInputXML(fileName,'Source')
 textSubject = textInOut.textInOutFromInputXML(fileName,'Subject')
 textLang = textInOut.textInOutFromInputXML(fileName,'language')
 textURL = textInOut.textInOutFromInputXML(fileName,'URL')
 textStrings = textInOut.textInOutFromInputXML(fileName,'Text')

 tYear = textDate[0:4] #find this year article published
 tPrevY = str(int(tYear) - 1) #find last year
 tMonth = textDate[4:6] #find month article published
 tDay = textDate[6:8] #find day article published

 myDict = {'fileName':fileName,'myRDF_file':myRDF_file, 'URL':textURL, 'Language':textLang,
 'pubDate':textDate,'Subject':textSubject,'Source':textSource,
 'Year':tYear,'Pyear':tPrevY,'Month':tMonth,'Day':tDay}
 instanceList.updateDict(myDict)

 textString = textChange.textReplace(textStrings)

 mySentenceNR = textExtract.findNumbInSentence(textString)
 sentences=instanceList.getList(sentences)
 myDict['sentences'] = sentences
 print 'myDict->', myDict

 #-- RDF output
 templateTextRDF = templateVelocityRDF.fill(myDict)
 #print templateTextRDF
 textInOut.printToFile(str(templateTextRDF),'.rdf')

 #-- XBRL output
 templateTextXBRL = templateVelocityXBRL.fill(myDict)
 templateTextXBRL = str(templateTextXBRL)
 textInOut.printToFile(templateTextXBRL,'.xml')
 print '''---------------- End this run -----------------------'''

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

30

Appendix G –
Changes made in NLTK toolkit in the files token.py and tagger.py

Token.py

class MyLineTokenizer(TokenizerI):
 """
 A tokenizer that separates a string of text into sentences, based
 on newline characters. Each sentence is encoded as a C{Token}
 whose type is a C{string}. Location indices start at zero, and
 have a unit of C{'s'}.
 """
 def __init__(self): pass

 def mytokenize(self, str, source=None):
 assert _chktype(1, str, types.StringType)
 tokens = []
 i = 0

 for sent in str.split('. ') or str.split('.\n') or str.split('.\' ') or str.split('\n\n') or str.split('?'):

 if sent.strip() != '':
 tok = Token(sent+' ::', Location(i, unit='s', source=source))
 tokens.append(tok)
 i += 1
 return tokens

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

31

Tagger.py

class myNN_CD_Tagger(SequentialTagger):
 """
 A "default" tagger, which will assign the tag C{"CD"} to numbers,
 and C{"NN"} to anything else. This tagger expects token types to
 be C{strings}s.
 """
 def __init__(self): pass

 def next_tag(self, tagged_tokens, next_token):
 # Inherit docs from SequentialTagger
 assert _chktype(1, tagged_tokens, [Token], (Token,))
 assert _chktype(2, next_token, Token)

 if re.match(r'^[0-9]+(.[0-9]+)?$', next_token.type()):
 return 'CD'
 elif re.match(r'[0-9]+(,[0-9]+)?', next_token.type()):
 return 'CD'
 elif re.match(r'\S+[0-9]+[M]', next_token.type()):
 return 'CD'
 elif re.match(r'[0-9]+(;[0-9]+)?', next_token.type()):
 return 'CD'
 elif re.match(r'[0-9]+(,[0-9]+)?', next_token.type()):
 return 'CD'
 elif re.match(r'[0-9]+(;[0-9]+)?', next_token.type()):
 return 'CD'
 elif re.match(r'\S+[0-9]+(;[0-9]+)?', next_token.type()):
 return 'CD'
 elif re.match(r'\S+[0-9]+(;[0-9]+)+(///+)([0-9]+)?', next_token.type()):
 return 'CD'
 elif re.match(r'\S+[0-9]+(,[0-9]+)+(///+)([0-9]+)?', next_token.type()):
 return 'CD'
 else:

return 'NN'

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

32

Appendix H -
Velocity template code for printing RDF output
<?xml version="1.0" encoding="ISO-8859-15" ?>
<!-- Output from textfile: $fileName -->
<!-- RDF file: $myRDF_file -->
<!DOCTYPE rdf:RDF
 [<!ENTITY kb 'http://protege.hia.no/ebjoraa/kb#'>
 <!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
 <!ENTITY s 'http://protege.hia.no/ebjoraa/article/sentence#'>
 <!ENTITY rdfs 'http://www.w3.org/TR/1999/PR-rdf-schema-19990303#'>]>
 <rdf:RDF xmlns:kb="&kb;"
 xmlns:rdf="&rdf;"
 xmlns:s="&s;"
 xmlns:rdfs="&rdfs;">
<rdf:Description about="$URL"
 #if ($pubDate)
 s:published="$pubDate"
 #end
 #if ($Language)
 s:language="$Language"
 #end
 #if ($Source)
 s:source="$Source"
 #end
 #if ($Subject)
 s:subject="$Subject"
 #end
 >
 #set ($sid = 1)
 #foreach($s in $sentences)
 <kb:part-of>
 <rdf:Description about="http://protege.hia.no/ebjoraa/article#sentenceID$sid"
 #if ($s.SText)
 s:text="$s.SText"
 #end
 >
 <s:has-CA>
 #set ($caid = 1)

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

33

 #foreach($c in $s.CuCa)
 <rdf:Description about=
 #if ($caid == 1)
 #if ($c.CU == "0000")
 "No financial figures found in sentence!">
 #else
 "http://protege.hia.no/ebjoraa/sentenceID$sid/currencyAmountID/$caid">
 <s:currencyUnit>$c.CU</s:currencyUnit>
 <s:currencyAmount>$c.CA</s:currencyAmount>
 #end
 #else
 "http://protege.hia.no/ebjoraa/sentenceID$sid/currencyAmountID/$caid">
 <s:currencyUnit>$c.CU</s:currencyUnit>
 <s:currencyAmount>$c.CA</s:currencyAmount>
 #end
 </rdf:Description>
 #set ($caid = $caid + 1)
 #end
 </s:has-CA>
 <s:has-FD>
 #set ($caid = 1)
 <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID$sid/finDescr">
 #if ($s.predict)
 <kb:predict>$s.predict</kb:predict>
 #end
 #if ($s.ProfitLoss)
 <kb:ProfitLoss>$s.ProfitLoss</kb:ProfitLoss>
 #end
 #if ($s.financeAction)
 <kb:financeAction>$s.financeAction</kb:financeAction>
 #end
 #if ($s.annual_report)
 <kb:annual_report>$s.annual_report</kb:annual_report>
 #end
 #if ($s.financePred)
 <kb:predict>$s.financePred</kb:predict>
 #end
 #if ($s.financeOutput)
 <kb:financeOutput>$s.financeOutput</kb:financeOutput>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

34

 #end
 #if ($s.measurePositive)
 <kb:measurePositive>$s.measurePositive</kb:measurePositive>
 #end
 #if ($s.measureNegative)
 <kb:measureNegative>$s.measureNegative</kb:measureNegative>
 #end
 #if ($s.accountAnnualFact)
 <kb:accountAnnualFact>$s.accountAnnualFact</kb:accountAnnualFact>
 #end
 #if ($s.company)
 <kb:company>$s.company</kb:company>
 #end
 #if ($s.financeInput)
 <kb:financeInput>$s.financeInput</kb:financeInput>
 #end
 #if ($s.financialPapers)
 <kb:financialPapers>$s.financialPapers</kb:financialPapers>
 #end
 #if ($s.exchangeWords)
 <kb:exchangeWords>$s.exchangeWords</kb:exchangeWords>
 #end
 #if ($s.payMoney)
 <kb:payMoney>$s.payMoney</kb:payMoney>
 #end
 #if ($s.period)
 <kb:periode>$s.period</kb:periode>
 #end
 #if ($s.periode_info)
 <kb:periode_info>$s.periode_info</kb:periode_info>
 #end
 </rdf:Description>
 </s:has-FD>
 </rdf:Description>
 </kb:part-of>
 #set ($sid = $sid + 1)
 #end
 </rdf:Description>
</rdf:RDF>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

35

Appendix I -
Velocity template code for printing XBRL output

<?xml version="1.0" encoding="ISO-8859-15"?>
<!-- Date/time article created: $pubDate -->

<group xmlns="http://www.xbrl.org/2001/instance"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:iascf-pfs="http://www.xbrl.org/taxonomy/int/fr/ias/ci/pfs/2002-11-15"
 xmlns:iso4217="http://www.xbrlSolutions.com/taxonomies/iso4217/2002-06-30"
 xsi:schemaLocation="http://www.xbrl.org/taxonomy/int/fr/ias/ci/pfs/2002-11-15
 ias-ci-pfs-2002-11-15.xsd
 http://www.xbrlSolutions.com/taxonomies/iso4217/2002-06-30
 http://www.xbrlsolutions.com/taxonomies/iso4217/2002-06-30/iso4217.xsd">

 #set ($id = 1)
 #foreach($s in $sentences)

 #if($s.ProfitLoss)
 <!-- Profit before/after tax -->
 #foreach($c in $s.CuCa)
 #if ($s.tax == "before_tax")
 <iascf-pfs:ProfitLossBeforeTax numericContext="Current_ForSentence$id">$c.CA</iascf-
pfs:ProfitLossBeforeTax>
 #elseif($s.tax == "after_tax")
 <iascf-pfs:ProfitLossAfterTax numericContext="Current_ForSentence$id">$c.CA</iascf-pfs:ProfitLossAfterTax>

 #else
 <iascf-pfs:ProfitLossOperations numericContext="Current_ForSentence$id" comment="Before or after tax is not
specified!">$c.CA</iascf-pfs:ProfitLossOperations>
 #end
 #set ($caid = $caid + 1)
 #end
 #end

 <numericContext id="Current_ForSentence$id" cwa="false">
 <entity>
 <identifier scheme="$URL">$Source</identifier>
 </entity>
 <period>
 #if ($s.period)
 #if ($s.period == "fourth_quarter")

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

36

 <duration>P1Q</duration>
 <endDate>$Pyear -12-31</endDate>
 #end
 #else
 <instant>Period not given!</instant>
 #end
 </period>
 <unit>
 #set ($caid = 1)
 #foreach($c in $s.CuCa)
 <measure>iso4217:$c.CU</measure>
 #set ($caid = $caid + 1)
 #end

 </unit>
 </numericContext>

#set ($id = $id + 1)
#end
</group>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

37

Appendix J - Example of XML input file of article from Intermedium’s agent

<?xml version="1.0" encoding='ISO-8859-1'?>
<Finance>
 <article>
 <Source>Reuters</Source>
 <URL>http://biz.yahoo.com/rc/030522/retail_advancedmarketing_earns_1.html</URL>
 <language>English</language>
 <Subject>Advanced Marketing posts quarterly loss</Subject>
 <pubDate>20030522</pubDate>
 <Text>

NEW YORK, May 22 (Reuters) - Advanced Marketing Services Inc. (NYSE:MKT - News), a distributor of books to warehouse
clubs, on Thursday reported a quarterly loss after a high number of books were returned by customers late in the
quarter.

For the fiscal fourth quarter ended March 31, Advanced Marketing reported a loss of $4.4 million, or 23 cents per share,
reversing a profit of $3 million, or 15 cents per share, a year earlier.

The result was in line with estimates for a loss of 20 to 24 cents per share the company provided earlier this month
when it said results for the quarter would miss its targets. That warning triggered a sharp sell-off in the San Diego-
based company's stock.

Looking ahead, the company held to its previous estimate of fiscal 2004 earnings of between 90 cents and $1.05 per
share, up from the prior year's 57 cents per share.

</Text>
 </article>
</Finance>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

38

Appendix K - RDF output based on article in Appendix J

 <?xml version="1.0" encoding="ISO-8859-15" ?>
- <!-- Output from textfile: inputfile.xml -->
- <!-- RDF file: Finance.rdf -->
 <!DOCTYPE rdf:RDF (View Source for full doctype...)>

- <rdf:RDF xmlns:kb="http://protege.hia.no/ebjoraa/kb#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://protege.hia.no/ebjoraa/article/sentence#"
xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

- <rdf:Description
about="http://biz.yahoo.com/rc/030522/retail_advancedmarketing_earns_1.html"
s:published="20030522"
s:language="English"
s:source="Reuters"
s:subject="Advanced Marketing posts quarterly loss">

- <kb:part-of>
- <rdf:Description about="http://protege.hia.no/ebjoraa/article#sentenceID1" s:text="NEW YORK, May 22 (Reuters) - Advanced

Marketing Services Inc; (NYSE:MKT - News), a distributor of books to warehouse clubs, on Thursday reported a quarterly
loss after a high number of books were returned by customers late in the quarter; For the fiscal fourth_quarter ended
March 31, Advanced Marketing reported a loss of $4,4M, or 23cent per share, reversing a profit of $3M, or 15cent per
share, a year earlier ::">

- <s:has-CA>
- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID1/currencyAmountID/1">
 <s:currencyUnit>usd</s:currencyUnit>
 <s:currencyAmount>4,4M,</s:currencyAmount>
 </rdf:Description>

- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID1/currencyAmountID/2">
 <s:currencyUnit>cent</s:currencyUnit>
 <s:currencyAmount>23</s:currencyAmount>
 </rdf:Description>

- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID1/currencyAmountID/3">
 <s:currencyUnit>usd</s:currencyUnit>
 <s:currencyAmount>3M,</s:currencyAmount>
 </rdf:Description>

- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID1/currencyAmountID/4">

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

39

 <s:currencyUnit>cent</s:currencyUnit>
 <s:currencyAmount>15</s:currencyAmount>
 </rdf:Description>
 </s:has-CA>

- <s:has-FD>
- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID1/finDescr">
 <kb:ProfitLoss>profit</kb:ProfitLoss>
 <kb:accountAnnualFact>reported</kb:accountAnnualFact>
 <kb:financialPapers>share,</kb:financialPapers>
 <kb:periode>fourth_quarter</kb:periode>
 </rdf:Description>
 </s:has-FD>
 </rdf:Description>
 </kb:part-of>

- <kb:part-of>
- <rdf:Description about="http://protege.hia.no/ebjoraa/article#sentenceID2" s:text="The result was in line with estimates

for a loss of 20 to 24cent per share the company provided earlier this month when it said results for the quarter would
miss its targets ::">

- <s:has-CA>
- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID2/currencyAmountID/1">
 <s:currencyUnit>cent</s:currencyUnit>
 <s:currencyAmount>24</s:currencyAmount>
 </rdf:Description>
 </s:has-CA>

- <s:has-FD>
- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID2/finDescr">
 <kb:predict>estimates</kb:predict>
 <kb:ProfitLoss>loss</kb:ProfitLoss>
 <kb:accountAnnualFact>results</kb:accountAnnualFact>
 <kb:financialPapers>share</kb:financialPapers>
 </rdf:Description>
 </s:has-FD>
 </rdf:Description>
 </kb:part-of>

- <kb:part-of>
- <rdf:Description about="http://protege.hia.no/ebjoraa/article#sentenceID3" s:text="That warning triggered a sharp sell-off

in the San Diego-based company's stock ::">

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

40

 <s:has-CA />
- <s:has-FD>
 <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID3/finDescr" />
 </s:has-FD>
 </rdf:Description>
 </kb:part-of>

- <kb:part-of>
- <rdf:Description about="http://protege.hia.no/ebjoraa/article#sentenceID4" s:text="Looking ahead, the company held to its

previous estimate of fiscal 2004 earnings of between 90cent and $1,05 per share, up from the prior year's 57cent per
share. ::">

- <s:has-CA>
- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID4/currencyAmountID/1">
 <s:currencyUnit>cent</s:currencyUnit>
 <s:currencyAmount>90</s:currencyAmount>
 </rdf:Description>

- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID4/currencyAmountID/2">
 <s:currencyUnit>usd</s:currencyUnit>
 <s:currencyAmount>1,05</s:currencyAmount>
 </rdf:Description>

- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID4/currencyAmountID/3">
 <s:currencyUnit>cent</s:currencyUnit>
 <s:currencyAmount>57</s:currencyAmount>
 </rdf:Description>
 </s:has-CA>

- <s:has-FD>
- <rdf:Description about="http://protege.hia.no/ebjoraa/sentenceID4/finDescr">
 <kb:predict>estimate</kb:predict>
 <kb:financialPapers>share</kb:financialPapers>
 </rdf:Description>
 </s:has-FD>
 </rdf:Description>
 </kb:part-of>
 </rdf:Description>
 </rdf:RDF>

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

41

Appendix L - XBRL output based on article in Appendix J

 <?xml version="1.0" encoding="ISO-8859-15" ?>

- <!-- Date/time article created: 20030522 -->
- <group xmlns="http://www.xbrl.org/2001/instance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:iascf-pfs="http://www.xbrl.org/taxonomy/int/fr/ias/ci/pfs/2002-11-15"
xmlns:iso4217="http://www.xbrlSolutions.com/taxonomies/iso4217/2002-06-30"
xsi:schemaLocation="http://www.xbrl.org/taxonomy/int/fr/ias/ci/pfs/2002-11-15 ias-ci-pfs-2002-11-15.xsd
http://www.xbrlSolutions.com/taxonomies/iso4217/2002-06-30 http://www.xbrlsolutions.com/taxonomies/iso4217/2002-06-
30/iso4217.xsd">

- <!-- Profit before/after tax -->
 <iascf-pfs:ProfitLossOperations numericContext="Current_ForSentence1" comment="Before or after tax is not

specified!">4,4M,</iascf-pfs:ProfitLossOperations>
 <iascf-pfs:ProfitLossOperations numericContext="Current_ForSentence1" comment="Before or after tax is not

specified!">23</iascf-pfs:ProfitLossOperations>
 <iascf-pfs:ProfitLossOperations numericContext="Current_ForSentence1" comment="Before or after tax is not

specified!">3M,</iascf-pfs:ProfitLossOperations>
 <iascf-pfs:ProfitLossOperations numericContext="Current_ForSentence1" comment="Before or after tax is not

specified!">15</iascf-pfs:ProfitLossOperations>
- <numericContext id="Current_ForSentence1" cwa="false">
- <entity>
 <identifier scheme="http://biz.yahoo.com/rc/030522/retail_advancedmarketing_earns_1.html">Reuters</identifier>
 </entity>

- <period>
 <duration>P1Q</duration>
 <endDate>2002 -12-31</endDate>
 </period>

- <unit>
 <measure>iso4217:usd</measure>
 <measure>iso4217:cent</measure>
 <measure>iso4217:usd</measure>
 <measure>iso4217:cent</measure>
 </unit>
 </numericContext>
- <!--
 Profit before/after tax

ONTOLOGY GUIDED FINANCIAL KNOWLEDGE EXTRACTION FROM SEMI-STRUCTERED INFORMATION SOURCES

42

 -->
 <iascf-pfs:ProfitLossOperations numericContext="Current_ForSentence2" comment="Before or after tax is not

specified!">24</iascf-pfs:ProfitLossOperations>
- <numericContext id="Current_ForSentence2" cwa="false">
- <entity>
 <identifier scheme="http://biz.yahoo.com/rc/030522/retail_advancedmarketing_earns_1.html">Reuters</identifier>
 </entity>

- <period>
 <instant>Period not given!</instant>
 </period>

- <unit>
 <measure>iso4217:cent</measure>
 </unit>
 </numericContext>

- <numericContext id="Current_ForSentence3" cwa="false">
- <entity>
 <identifier scheme="http://biz.yahoo.com/rc/030522/retail_advancedmarketing_earns_1.html">Reuters</identifier>
 </entity>

- <period>
 <instant>Period not given!</instant>
 </period>

 <unit />
 </numericContext>

- <numericContext id="Current_ForSentence4" cwa="false">
- <entity>
 <identifier scheme="http://biz.yahoo.com/rc/030522/retail_advancedmarketing_earns_1.html">Reuters</identifier>
 </entity>

- <period>
 <instant>Period not given!</instant>
 </period>

- <unit>
 <measure>iso4217:cent</measure>
 <measure>iso4217:usd</measure>
 <measure>iso4217:cent</measure>
</unit>
</numericContext>
</group>

