Vis enkel innførsel

dc.contributor.authorEid, Mahmoud Sayed Mahmoud
dc.contributor.authorHuynh, Khang
dc.contributor.authorSenanayaka, Jagath Sri Lal
dc.contributor.authorRobbersmyr, Kjell Gunnar
dc.date.accessioned2024-02-15T07:43:58Z
dc.date.available2024-02-15T07:43:58Z
dc.date.created2024-02-09T11:06:28Z
dc.date.issued2023
dc.identifier.citationEid, M. S. M., H., Khang; S., Jagath S. L. & Robbersmyr, K. G. (2023). Robust Multiple-Fault Diagnosis of PMSM Drives Under Variant Operations and Noisy Conditions. IEEE Open Journal of the Industrial Electronics Society (OJ-IES), 4, 762-772.en_US
dc.identifier.issn2644-1284
dc.identifier.urihttps://hdl.handle.net/11250/3117870
dc.description.abstractWith the rapid development of industrial applications using permanent magnet synchronous motors (PMSMs) and the Internet of Things, the demand for using robust fault diagnosis methods working in noisy conditions has increased significantly. The current data-driven methods depend mainly on deep learning (DL) models due to the effectiveness of automated feature extraction. However, these models have shallow depths compared with benchmark convolution neural networks, limiting their accuracy in final predictions, and they are established based on the hypothesis that the measured data are noiseless. Despite this, electric machinery is subjected to various noise sources that interfere with measurements during operation. This article proposes a new scheme combining a transfer-learned pretrained residual neural network (ResNet) and supervised machine learning (S-ML) to enhance the performance of DL models in noisy industrial environments. The effectiveness of the proposed scheme is validated using an in-house setup of a PMSM drive with demagnetization and intern-short circuit faults at variant operating conditions. The results show that the proposed method significantly reduced the computational burden by tenfold on average while improving the average accuracy to 96.84% across all the datasets compared with other DL and S-ML methods, with high robustness in noisy working conditions.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleRobust Multiple-Fault Diagnosis of PMSM Drives Under Variant Operations and Noisy Conditionsen_US
dc.title.alternativeRobust Multiple-Fault Diagnosis of PMSM Drives Under Variant Operations and Noisy Conditionsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Author(s)en_US
dc.subject.nsiVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550en_US
dc.source.pagenumber762-772en_US
dc.source.volume4en_US
dc.source.journalIEEE Open Journal of the Industrial Electronics Society (OJ-IES)en_US
dc.identifier.doihttps://doi.org/10.1109/OJIES.2024.3350443
dc.identifier.cristin2244575
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal