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Abstract: An algorithm to improve the resolution of the frequency spectrum by detecting the number
of complete cycles, removing any fractional components of the signal, signal discontinuities, and
interpolating the signal for fault diagnostics of electrical machines using low-power data acquisition
cards is proposed in this paper. Smart sensor-based low-power data acquisition and processing
devices such as Arduino cards are becoming common due to the growing trend of the Internet of
Things (IoT), cloud computation, and other Industry 4.0 standards. For predictive maintenance, the
fault representing frequencies at the incipient stage are very difficult to detect due to their small
amplitude and the leakage of powerful frequency components into other parts of the spectrum. For
this purpose, offline advanced signal processing techniques are used that cannot be performed in
small signal processing devices due to the required computational time, complexity, and memory.
Hence, in this paper, an algorithm is proposed that can improve the spectrum resolution without
complex advanced signal processing techniques and is suitable for low-power signal processing
devices. The results both from the simulation and practical environment are presented.

Keywords: electrical machine; machine learning; data acquisition; FEM; signal processing; Arduino;
artificial intelligence

1. Introduction

The research in the predictive maintenance of electrical machines is touching new
horizons. Cloud computation and distributed low-cost sensors are integral for Industry
4.0 standards. They can also be considered a paradigm shift in the predictive maintenance
of electrical machines. Low-cost data acquisition sensors are becoming essential as elec-
trical machines are becoming increasingly popular in small and medium-range electric
vehicles. The research in the field of condition monitoring of electrical machines using
stator currents [1–3], stator voltages [4–6], speed and torque ripples [7,8], stray flux [9–14],
vibration analysis [15–19], thermal analysis [20–23], acoustic analysis [24–27], work in
the steady-state interval [28], or transient regime [9,29–32] can be considered as mature
enough after over a century of research. The research path started with conventional signal
processing and harmonic estimation-based techniques. Here, the fundamental rule was
to discover the fault-based new frequency components in the machine’s global signal.
The signal processing techniques were explored by researchers extensively to secure or
protect the tiny, sensitive, fragile, and load-dependent fault-based information. For this
purpose, the improvement in the spectrum resolution both in stationary and transient
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regimes was the common point of interest. To remove the spectral leakage, the best practice
both in IEEE and industry standards is to obtain the coherent sampling to the maximum
extent [33,34]. A variety of other methods have also been explored in the literature, such as
filter banks [35], adaptive filters [36,37], 2D feature [38], optimization of truncating win-
dows [39,40], singular value decomposition [41–43], orthogonal matching pursuit [44–46],
interpolated DFT techniques [47], Taylor Fourier transforms [48], multiple signal classifi-
cation (MUSIC) [49,50], fault estimation using weighted iterative learning [51], auxiliary
classifier generative adversarial network [52], and estimation of signal parameters via
rotational invariance technique (ESPIRIT) [53]. The complexity of the required memory
and calculation time are, however, problems that can limit their application in low-power
data processing devices. The next major research domain is the mathematical modelling of
electrical machines, as those are essential for the design, control, analysis, and fault-based
simulations of electrical machines. The main task on which researchers put a lot of focus is
to reduce the approximations and the simulation time of the fault simulation-compatible
mathematical models. A large amount of research can be found in literature, ranging from
finite element method (FEM) [54] to analytical models such as modified winding function
analysis (MWFA) [55–57], reluctance network-based [58], and hybrid models [59,60]. As
these models should be detailed and able to simulate every kind of fault, the simulation
time and complexity are a big issue. The extended simulation time for fault diagnostics
is not acceptable, as in the most advanced diagnostic techniques the simulation should
run in parallel with the actual hardware, such as digital twin and hardware in the loop. A
considerable research effort regarding the minimization of the simulation time both in FEM
and analytical techniques can be found in literature, where [61] used piece-wise polyno-
mial function for model order reduction, [62] used Loewner matrix interpolation, [63,64]
used proper orthogonal decomposition, [65] used Krylov subspace techniques, etc. The
development of these models opened new research directions where they can be used in
the hardware in the loop environment [66], parameters estimation [67,68], digital twin [69],
and inverse problem theory [70]. The research in these domains is complicated though
due to the complex mathematical models, coupling effects in the motor variables, multiple
solution points of the same problem, etc. These problems then opened the field, such
as optimization theory [71], probability and stochastic analysis [72], non-linear control
theory [73], and statistical analysis [74] of the global signals for the predictive maintenance
of electrical machines. The development of these models paved the way towards another
more advanced field, artificial intelligence [75]. A significant number of AI-based research
articles can be seen in the literature and the number is increasing by leaps and bounds. The
accuracy and maturity of AI algorithms depends on the data size and its variety under
different loading and faulty conditions. Thanks to the research in the field of mathematical
modelling, data collection under different faulty and loading conditions for a variety of
different machines is possible using simulations. Moreover, data storage on the cloud
can increase the training data set every day. The common point in all conventional and
advanced techniques is the input signal. Mostly, the global signals remain the same for all
types of machines as the state variables of all machines are almost the same. Now there is
a paradigm shift in the measurement of all those signals using low-cost data acquisition
devices such as Arduino cards and sending the data in the database without loss or any
additional infiltrations such as noise.

In this paper, an algorithm is proposed that can improve the spectral resolution with
the help of the following contributions.

1. The integral number of cycles and the signal’s length whose prime factors are ap-
propriate are calculated first. The fractional parts of the signal in the start and end
reduce the spectrum’s resolution, and an inappropriate length of the signal with a
large number or size of prime factors decreases FFT’s efficiency by increasing the
complexity, required memory, and calculation time.

2. The low sampling frequency is the main problem when the data acquisition devices
are not very powerful and are intended to work online with systems such as Arduino.
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In Industry 4.0, those low-cost devices can have significant importance because of
Internet of Things (IoT), distributed smart sensors, and cloud computation. The
low sampling frequency leads to poor frequency resolution and increased spectral
leakage. The main reason for this is sharp changes in the acquired signal. Hence, those
sharp changes are proposed to be removed using data interpolation. This step is also
important when the diagnostic algorithms depend on the mathematical model of the
system. The most accurate models are the finite element method (FEM), based which
the computational complexity is always a challenge. By using data interpolation,
only the minimum number of steps can be simulated, and the rest of the values can
be approximated.

3. Detecting any data discontinuity and removing it. In low power smart sensors,
the chances of data loss cannot be neglected. This data loss can happen during its
transmission from card to cloud due to network issues, due to some clock issues in
the data acquisition card itself, or due to limited memory to save the signal before its
transmission. This data loss is fatal for FFT-based spectrum analysis. This is due to
the resultant data discontinuities in the acquired signals. So, a method is devised to
remove data discontinuity, if any.

4. Repeating the cycles for the improvement in the resolution with minimal discontinuity.
The increased number of signal cycles lead to a better frequency resolution. As the
current and voltage cycles of the electrical machines working under steady state
regime are periodic, they can be repeated to increase the signal’s length. This repetition
of the signal should not be random, which can make the resolution worse. Hence, a
technique is proposed to repeat the cycles before frequency analysis if necessary.

2. The Theoretical Background

Almost all kinds of faults modulate the machine’s global variables with a particular
set of frequencies. The number and the amplitude of those frequency components are a
function of the fault type and severity. During the early stages of fault, these harmonics
are tiny in amplitude and difficult to detect. They tend to hide themselves under the
frequency lobe of the powerful neighboring frequency component. The strength of any
diagnostic algorithm is determined from its ability to detect those harmonics at the early
stage of the fault. For this purpose, the resolution of the frequency spectrum is of significant
importance, which increases with the decrease in the spectral leakage of the powerful fre-
quency components. To reduce the spectral leakage, a variety of advanced signal processing
techniques are available in the literature, but at the cost of increased computational time
and complexity. It makes those algorithms less suitable for low power signal processing
and controller boards. For low power smart sensor-based data acquisition and processing
devices, the following fundamental precautionary measures should be accounted for.

5. The signal frequency and sampling frequency must follow conditions of coherency.
The perfect coherent data is very difficult to obtain because of measurement equip-
ment limitations and noise. This non-coherency can be avoided by windowing
techniques [76]. However, the clever selection of the window is very important to
obtain a narrower main lobe with less leakage energy inside the lobes. So, specialized
knowledge about the windowing function and its impact on the spectrum is needed
to deal with the problems, which cannot be a very easy solution. The drawback of
FFT is that any mismatch between the sampling frequency and signal frequency can
cause spectral leakage.

6. The signal should have an integer number of cycles. The fractional parts of the
signal in the start or end increase the spectral leakage and increase the requirement of
windowing function. This approach will increase the efficiency of FFT, will reduce
the dependency on windowing function, and will reduce spectral leakage, even if the
signal is noisy or its frequency is near the Nyquist rate. The quality of the frequency
spectrum can be checked by measuring the signal to noise ratio (SNR), total harmonic
distortion (THD), spurious free dynamic range (SFDR), signal to noise and distortion
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ratio (SNDR), effective number of bits (ENOF), etc. The number of cycles in a signal
can be calculated as

J = M
fin
fs

= Jint + ∆ (1)

In this equation, J is the total number of cycles, fin is the frequency of the fundamental
component of the near sinusoid signal, fs is the sampling frequency, M is the recorded
signal’s length, Jint are the integral number of signal cycles, and ∆ is the fractional part. The
non-zero ∆ leads to the spectral leakage.

A signal from time domain to discrete domain can be represented as

x(t) = Asin(2π fint + θ) + hh (2)

x[k] = Asin
(

2π fin
k
fs
+ θ

)
+ hh (3)

x[k] = Asin
(

2π
J

M
k + θ

)
+ hh (4)

x[k] = Asin
(

2π
Jint + ∆

M
k + θ

)
+ hh (5)

x[k] = x1[k] + xh[k] (6)

where hh represents the higher order harmonics and can be defined as follows: an and bn
are the Fourier coefficients.

hh(t) = ∑n≥2(ancos2πn fint + bnsin2πn fint) (7)

In squirrel cage induction machines, the main causes of these higher order harmonics
are the non-sinusoidal winding distributions, changing airgap reluctance due to rotor and
stator slot openings, inherent eccentricity, material saturation, harmonics coming from the
supply, and any fault if present in the machine. However, all these harmonics are tiny in
comparison with the fundamental component and the overall current signal remains near
sinusoidal. The initial purpose is to calculate Jint in the acquired signal and discard the
fractional part ∆.

The integer number of cycles are calculated in the way that all values greater than the
RMS value both on positive and negative half cycle are marked as +1 and −1. All elements
are merged into one if the adjacent sign is the same to make a new signal say w[m]. We
merge adjacent same values into one element and take the absolute value.

3. The Effect of Discontinuities in the Signal

Although FFT is a very powerful tool that is extensively used in the field of signal
processing, for smooth, periodic, uniformly sampled points and long signals, FFT no doubt
gives accurate results. However, the results become significantly erroneous if there are
singularities or discontinuities in the signals. Thanks to the symmetrical and sinusoidal
distributed design and performance parameters of electrical machines, almost all global
signals such as current, voltage, and flux are periodic. The data discontinuities are however
possible due to the limitations of the data acquisition devices, particularly if those are low
power cards. This can be because of network limitations such as delay or loss of data
transfer from the device to cloud. Because of the high sample rate, there is a high chance
of data loss while data is being transferred from sensors to the low power cards. This is
mostly because of the delay in the clearance of the buffers when data are being transmitted
for a long time, i.e., a couple of days to weeks. An example of such a data acquisition
system is shown in Figure 1.
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in the signal are the potential cause of hiding the low power fault-based frequencies due 
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Figure 2. Experimental setup for data collection. 

The induction motor is used to collect current signals for all three phases, and it is 
then transmitted to the cloud using Arduino (low powered card). This is the most com-
mon approach used for the data acquisition system when using a low powered card. There 

Figure 1. The schematic diagram of data acquisition and transmission to the cloud using IoT.

Data loss can occur in two scenarios for the above data acquisition setup, while the
data are being transferred from sensors to the low powered cards and the other while the
data are being transferred from the cards to cloud. The protocols used for data transmission
have their own limitations too. The loss of data during transmission can be due to the
limitation of network or delay/loss of network while transferring. Another reason might
be due to the buffers being overloaded and not being properly cleared up before the next
data come in, which can result in a loss of data while in transmission. These sharp changes
in the signal are the potential cause of hiding the low power fault-based frequencies due to
the increased spectral leakage of significant harmonics. It also decreases the computational
time of FFT, decreases its efficiency, and increases the need for increased data length. The
experimental setup used to recreate such scenario is shown in Figure 2.
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Figure 2. Experimental setup for data collection.

The induction motor is used to collect current signals for all three phases, and it is
then transmitted to the cloud using Arduino (low powered card). This is the most common
approach used for the data acquisition system when using a low powered card. There are
alternate systems that have been proposed that further consider data losses with a local
backup of collected data at a node [ref], but the following approach is still widely used. The
flow chart of the setup used for data collection for this experiment is shown in Figure 3.
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The setup was run continuously for multiple days with different sampling rates to
generate data losses. At higher sampling rates, the data losses occurred more often as the
buffer became overloaded. Because of the limitation of the processing power of Arduino
(low powered cards), data loss became inevitable in these cases. This is why the sampling
rate tended to be on the lower side in most cases, but this also resulted in the samples being
too low and similar data loss issues could occur if it kept running for a more extended
period. The other scenario was also created by interrupting the network connection. In
this case, wi-fi was used to transmit data from Arduino to the cloud database. Upon
interruption of the network, as no data were transmitted, this resulted in data being lost.
For some protocols, it could result in a delay at the receiving end, but this will still have
components lost for the received signal. The setup was used to obtain signals with data
discontinuity to check the result of the proposed algorithm.

The data discontinuities were detected by making a moving subtraction filter. The
amplitude difference of every two consecutive samples defined the magnitude of disconti-
nuity in them. For example, in Figure 4, nine discontinuities along with their amplitude are
discovered that need correction.

di f f = |x[n]| − |x[n− 1]| (8)
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For correction, the discontinuous sample is replaced with the average value of the
samples x [n − 1] and x [n + 1]:

x̂[n] =
|x[n + 1]|+ |x[n− 1]|

2
(9)

The integer number of cycles can be calculated using zero cross detection, but, in that
case, wrong computation can occur if there is any data discontinuity in the signal. If there
are more than one consecutive missing data samples then there are some possible methods
of correction. Replace the missing samples with the samples from the same location of the
subsequent cycle. The other way is that the samples will be replaced by random values,
depending on the amplitude of the available samples at the start and end of the missing
segment and the amplitude will be iteratively corrected. The third way is that if the cycles
are affected in a worse manner, then it can be totally replaced with the healthy one from
the signal. This paper at the moment deals with only one discontinuity between two
healthy samples.

4. Counting the Integral Number of Cycles and Removing the Fractional Parts

The integral number of cycles are calculated in the following steps.

A. The samples of the acquired stator current are compared with the RMS value. The
samples with a magnitude greater than the RMS value for both the positive and
negative side are replaced with one, while all of the other samples are replaced with
zero as shown in the equation below and Figure 5b.

y[k] =


1, im√

2
≤ i[k]

0, im√
2
≥
∣∣∣i[k]∣∣∣

−1,− im√
2
≥ i[k]

(10)
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Figure 5. (a) The stator current with red line representing the RMS value, (b) the samples validating
the conditions given in b, (c) the shifting of negative samples towards positive side by taking modulus,
and (d) merging the consecutive samples of same value in one.

B. The modulus of the resultant vector is taken to shift the negative-sided samples to the
positive side, as shown in Figure 5c.

C. The consecutive samples with same magnitude are merged into one and represented
in Figure 5d. The final number of samples on the zero or unity axis are equal to the
number of signal cycles.
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After counting the number of cycles, the data are saved until the index of steric
completing the integral number of cycles in Figure 5d. Now, two types of discontinuities
may still persist in the signal: the minor discontinuity due to low sampling frequency, as
shown in Figure 6, and the possible discontinuity at te starting and ending time.
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5. Algorithm

The proposed algorithm is shown in Figure 8. Its main parts include the removal of DC
offset which decreases the possibility of a frequency bin at 0Hz in the spectrum, detection
and correction of data discontinuities which increase the spectral leakage, removal of
starting and ending fractional parts and the repetition of the signal if necessary.
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6. Results
6.1. Simulation Results

The motor’s stator current harmonics can be broadly classified into three major cate-
gories: the winding and supply-based odd multiples of the fundamental component, the
slotting harmonics, and the fault generated harmonics. The mathematical description of
these harmonics is given in Table 1. The fault and slotting harmonics are the function of
slip and tend to move in the spectrum as the load varies, while the winding MMF and the
supply harmonics retain their position in the spectrum. Electrical machine simulations are
necessary for several reasons, such as design, control, analysis, and training of the fault
diagnostic algorithms, creation of digital twin, inverse problem theory, hardware in the
loop environment, and parameters estimation. However, the biggest drawback of finite
element method (FEM) models of electrical machines is the computational complexity
and the required simulation time. Moreover, the small step size and the simulation of
complete geometry is required for better resolution of the spectrum because for predictive
maintenance, the importance of wideband harmonics cannot be denied. For this purpose,
the algorithm is first implemented on FEM-based simulation signals with a low sampling
frequency. In Figure 9, it can be seen that even at a high step size with a sampling frequency
of 4 kHz, the spectrum counting the integral number of cycles increases the resolution signif-
icantly without the need for any truncating window. Moreover, the effect of communication
channel-based data discontinuities and their correction is shown in Figure 10.
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Table 1. Fault definition frequencies.

Fault Modulating Frequencies

Broken Rotor Bars fBR = fs ± 2ks fs, k = 1, 2, 3, . . .

Principal slotting harmonic (PSH) and Eccentricity

fecce =
[
(knb ± nd)

(
1−s

p

)
± v
]

f s
More precisely:

fecce =
[
1± k

(
1−s

p

)]
f s

fecce = fs ± k fr, k = 1, 2, 3, . . .
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Figure 9. The simulated stator current spectrum showing stator winding and slotting harmonics
before and after counting integral number of cycles (INOC).
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Figure 10. The effect of signal discontinuities on the spectrum resolution.

6.2. Practical Results

For practical investigations, two similar machines were connected back-to-back. One
machine works as a loading machine, while the other was used as a testing motor where
the healthy and broken rotor bar carrying rotor were tested. Table 2 shows the nominal
parameters of the machine under investigation. Figures 11 and 12 show the improvement
in the spectrum resolution by removing the fractional parts of the signal and data discon-
tinuities without any truncating window. The tiny broken rotor bar harmonics near the
strong supply and spatial harmonics became well legible.
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Table 2. The machine specifications.

Parameter Symbol Value

Number of poles P 4
Number of phases ϕ 3

Connection - Star
Stator slots Ns 48, non-skewed
Rotor bars Nb 40, skewed

Rated voltage V 333 V @50 Hz
Rated power Pr 18 kW @50 Hz
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Figure 11. The practical stator current spectrum showing stator winding, slotting, and broken rotor
bar-based harmonics before and after counting the integral number of cycles (INOC).

Electronics 2023, 12, x FOR PEER REVIEW 11 of 16 
 

 

discontinuities without any truncating window. The tiny broken rotor bar harmonics near 
the strong supply and spatial harmonics became well legible. 

Table 2. The machine specifications. 

Parameter Symbol Value 
Number of poles P 4 

Number of phases φ 3 
Connection - Star 
Stator slots Ns 48, non-skewed 
Rotor bars Nb 40, skewed 

Rated voltage V 333 V @50 Hz 
Rated power Pr 18 kW @50 Hz 

 
Figure 11. The practical stator current spectrum showing stator winding, slotting, and broken rotor 
bar-based harmonics before and after counting the integral number of cycles (INOC). 

 
Figure 12. The practical stator current spectrum showing stator winding, slotting, and broken rotor 
bar-based harmonics with and without discontinuities. 

The frequency of slotting harmonics in the current spectrum in comparison with their 
expected frequency according to the equations given in Table 1 as a function of slip is 
shown in Table 3. It is clear that the amplitude of those harmonics decreases with the 

0 150 300 450 600 750 900 1050 1200 1350 1500

Frequency (Hz)

10 0

C
ur

re
nt

 (A
)

Without counting INOC

0 150 300 450 600 750 900 1050 1200 1350 1500

Frequency (Hz)

10 0

C
ur

re
nt

 (A
)

With counting INOC

Slotting Harmonics
with neighbouring
BRB components

Supply and winding harmonics
with neighbouring
BRB components

0 150 300 450 600 750 900 1050 1200 1350 1500

Frequency (Hz)

10 0

C
ur

re
nt

 (A
)

Without Discontinuities

0 150 300 450 600 750 900 1050 1200 1350 1500

Frequency (Hz)

10 0

C
ur

re
nt

 (A
)

With DiscontinuitiesSlotting Harmonics
with neighbouring
BRB components

Supply and winding harmonics
with neighbouring
BRB components

Figure 12. The practical stator current spectrum showing stator winding, slotting, and broken rotor
bar-based harmonics with and without discontinuities.

The frequency of slotting harmonics in the current spectrum in comparison with their
expected frequency according to the equations given in Table 1 as a function of slip is
shown in Table 3. It is clear that the amplitude of those harmonics decreases with the
decreasing slip, which makes their detection difficult when the machine is working under
low or no-load conditions.
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Table 3. The rotor slot harmonics (RSH).

Slip Theoretical
RSH1

Theoretical
RSH2 RSH1 (Hz) RSH2 (Hz) RSH1 (A) RSH2 (A)

0.0030 947 1047 946.7 1046.8 0.00042 0.0005
0.035 915 1015 914.76 1014.76 0.00185 0.0008
0.05 900 1000 899.2 999.2 0.0021 0.0007

7. Conclusions

Low sampling frequency, fractional parts of the signal at starting and ending, and data
discontinuities in the time domain can lead to spectral leakage in the frequency domain
when applying the FFT (Fast Fourier Transform) algorithm. Spectral leakage refers to the
effect where energy from a signal at one frequency “leaks” into other nearby frequencies,
creating artifacts in the spectrum that are not present in the original signal. There can also
be interruptions between the transmitted signals due to limitations of the hardware used or
because of a loss of network. This can also lead to data loss or the receiving signal missing
some harmonics and having some junk values in between. This can further lead to an
incorrect analysis of the collected signal, and, in some cases, it might even be more fatal,
i.e., could lead to the machine being damaged if the issue occurs in the case of monitoring
an electrical machine.

One way to mitigate these effects is by applying a window function to the data before
performing the FFT. A window function can smooth out the signal at the edges of the
analysis window, reducing the abrupt changes and thus the spectral leakage. However,
even with a window function, some level of spectral leakage may still be present, depending
on the characteristics of the signal and the choice of window function. Moreover, the
application of advanced signal processing techniques makes it computationally complex
for low power data acquisition and processing devices.

This paper shows how a simple algorithm can improve the spectrum resolution by
removing the above-mentioned problems.
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