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Abstract: Dew computing aims to minimize the dependency on remote clouds by exploiting nearby
nodes for solving non-trivial computational tasks, e.g., AI inferences. Nowadays, smartphones are
good candidates for computing nodes; hence, smartphone clusters have been proposed to accomplish
this task and load balancing is frequently a subject of research. Using the same real—i.e., in vivo
—testbeds to evaluate different load balancing strategies based on energy utilization is challenging and
time consuming. In principle, test repetition requires a platform to control battery charging periods
between repetitions. Our Motrol hard-soft device has such a capability; however, it lacks a mechanism
to assure and reduce the time in which all smartphone batteries reach the level required by the next test.
We propose an evolutionary algorithm to execute smartphone battery (dis)charging plans to minimize
test preparation time. Charging plans proposed by the algorithm include charging at different speeds,
which is achieved by charging at maximum speed while exercising energy hungry components (the
CPU and screen). To evaluate the algorithm, we use various charging/discharging battery traces
of real smartphones and we compare the time-taken for our method to collectively prepare a set of
smartphones versus that of individually (dis)charging all smartphones at maximum speed.

Keywords: dew computing; smartphones; profiling; benchmarking; Motrol; evolutionary computing

1. Introduction

Dew computing is an emerging paradigm that promotes the utilization of on-premise
edge computing resources to execute different kinds of user applications, with the aim
of reducing the dependency on remote computing resources provided by the cloud [13]
and fog environments [14], and thus improving user experience due to reduced network
latency [1].

In Dew environments, smartphones are considered as valuable on-premise computing
resources [2]. This is mainly because of the capabilities of the newest smartphone models in
the market in terms of computing power, battery capacity, and energy management. How-
ever, to build knowledge on the collective capabilities of these nodes in such environments,
a platform that facilitates the execution and reproduction of battery-driven live tests, which
are focused on studying the impact on battery usage of scavenging user’s smartphone
resources is essential.

In this respect, one of the most recently proposed platforms to study smartphone capa-
bilities in Dew environments is Motrol [3,7]. This platform offers the possibility to execute
benchmarks and battery profiling tests on a set of attached smartphones, whose energy
supply is controlled via a REST API. The platform is supported on Android smartphones
due to the popularity of this mobile OS [15], with over 70% of the market share as of August
2022; nevertheless, the concepts presented in this paper and the broader research line are
mobile OS agnostic.

Benchmarks aim to measure individual capabilities of smartphones when performing
certain tasks, such as determining MFLOPs through the Linpack benchmark. Battery
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profiling records timestamped battery level changes registered in the context of using a
combination of certain components, for example, maintaining CPU usage at 100% while
the screen is on. Battery level change events can be read through the API exposed by
Android [10] or iOS [11]. Collecting battery profiles of the same smartphone by varying
components combined usage while combining portions of these profiles in a unique timeline
allow researchers to model battery behavior based on real world data [8].

There is another type of test, called a synchronized test, which aims to study collective
capabilities of smartphones in executing a compute-intensive scenario, for example, a set of
distributable workloads from a specialized AI application such as object recognition from
images using neural networks [9]. With this type of test, it is relevant to study different load
balancing algorithms to distribute such workloads, with a common base of comparison
given by measuring energy utilization disparity among smartphones performed by each
algorithm. In this kind of test, the experimentation steps are as follows:

(1) Define a workload;
(2) Define the initial conditions for the testbed;
(3) For each load balancing algorithm within the set of load balancing algorithms under evaluation:

(a) Assure initial conditions for the testbed;
(b) Run the workload on the testbed using the current load balancing algorithm;
(c) Collect results for further analysis.

Since real–i.e., in vivo–testbeds with battery-driven devices are involved, recreating
experimental conditions, i.e., performing step 3a, is challenging. In order to make workload
assignment comparisons as fair as possible, device battery levels should be restored from
test to test to the value configured for the experimental scenario. The latter might require
that Device A has x%, Device B has y% and Device C has z% battery levels when workload
assignment of a particular load balancing algorithm starts. Thus, assuring these battery
levels upon starting the evaluation of each load balancing algorithm is necessary for the
sake of fair comparison.

The contributions of this work regarding the state-of-the-art methodologies to run
battery-driven tests on smartphone cluster testbeds are the following:

– Inclusion of a multi-device battery preparation stage as an optimization problem that
uses time-related battery (dis)charging events as input;

– Proposal of an evolutionary algorithm to automate and minimize the battery prepara-
tion time, evaluated using real smartphone battery traces and several combinations of
smartphone cluster sizes and target battery levels;

– Publicly available evolutionary algorithm and simulation engine code, experiment
configuration and battery traces for reuse and modification.

The remainder of the paper is organized as follows. In Section 2, we present an overview
of the Motrol platform, designed to study smartphone capabilities in Dew environments.
In Section 3, we present our novel software component for Motrol, which aims to prepare
smartphones for synchronized tests using evolutionary computing. In Section 4, we present
the experiments carried out to evaluate this novel component. Section 5 presents related work.
Finally, in Section 6, we present the conclusions of this work and future works.

2. The Motrol Platform: Background on the Architecture and Basic Concepts

The Motrol platform is aimed to evaluate individual and collective capabilities of
smartphones. To achieve this, this platform utilizes a backend server and an Android appli-
cation named Normapp [24]. The platform allows users to attach up to four smartphones
and dynamically control their energy supply via custom hardware [7] considering three
energy states (no energy supply, AC power, and USB charging). We describe below the
characteristics of the backend server and Normapp, and the collaboration between them
to reach the aim of this platform. Moreover, we describe where on this platform the new
software component proposed in this paper is located, and how the component interacts
with the existing ones.
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Motrol is an in-lab experimental platform that follows the client-server architectural
style. In this sense, a backend server that runs on an Ri4 [12] receives jobs to be executed
on the attached smartphones. The clients are the smartphones that, while rendering service
to the platform, listen for jobs to be executed and send results back to the server. Currently,
the platform supports two kinds of jobs: benchmarks/profiling and synchronized tests.

The main purpose of benchmarking/profiling jobs is to individually characterize
smartphone capabilities [4]. Feeding the platform with a set of benchmarking/profiling
jobs means that all the attached smartphones process the entire set in parallel. An example
of a benchmark job is the Linpack benchmark which measures the floating-point operations
a device can achieve per second.

A profiling job, specifically a (dis)charging battery profile, captures the battery be-
havior of a device under certain resource usage conditions. For example, a profile might
provide time-related information of battery discharging events under a configured CPU
usage, e.g., 100%, and screen state, e.g., screen on, during the time the battery level starts
at 100% until it reaches 1%. The output of such a profiling job is a battery trace which can
then be used to model battery behavior for simulation purposes [8].

Synchronized tests, in contrast, aim to evaluate the aggregated computational ca-
pabilities of smartphone groups; hence, they are useful for evaluating load balancing
algorithms [5]. This in turn is relevant, for instance, to study how different algorithms
impact the smartphone’s battery usage while processing the input workload. To run this
kind of test, it is required to first define a scenario, which consists of selecting a starting
battery level (not necessarily the same) for all smartphones participating in the test and
a workload. Figure 1 shows three scenario descriptor files (associated with synchronized
tests) in JSON format, which have been simplified to highlight relevant parts. These parts
are the participating smartphones with the desired start battery levels—which along with
the configured workload, remain the same in our example for the three files—and load
balancing algorithms, which vary from test to test.

Figure 1. Synchronized test specification examples.
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Figure 2 depicts an overview of all stages involved in the execution of synchronized
tests. As said, the first stage requires human intervention and involves writing at least
one synchronized test specification to indicate the platform relevant runtime entities,
including participating devices (smartphones models)—each of them configured with a
start battery level—, a workload represented by a series of items (images) that a Java module
implemented as part of Normapp processes to produce a result (e.g., object recognition
associated with an specific application), and a specific load balancing algorithm to distribute
the workload among participant devices. Since this stage mainly involves writing test
specifications in the JSON format, there are no steps in the figure that are associated with
this stage.

Figure 2. Overview of Motrol synchronized test plan execution workflow.

The second stage is semi-automatic because it requires user intervention to attach
and register devices to Motrol sockets. This stage is where platform setup is performed.
For a detailed explanation of this stage, please refer to [7], where the involved steps are
illustrated in a video.

The last step is synchronized test plan execution, which aims to be a smart, auto-
matic stage with the proposed evolutionary algorithm introduced in this work. A detailed
look into this stage reveals three steps that are performed upon the initiation of a new
synchronized test. The first step is the one targeted by the proposed solution and com-
prises device battery preparation. This is facilitated by a software/hardware platform [4].
However, doing this automatically while reducing preparation time so as to complete
a set of synchronized tests as early as possible is not addressed by the platform. This
preparation time might account for a considerable time per test, considering that while
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some smartphones might quickly reach the target level, others might be slower in doing so,
which in turn jeopardizes the preparation of the former. It is worth mentioning that battery
level preparation does not necessarily mean that all devices participating in a test should
reach the same battery level. Instead, within a real Dew computing scenario, devices might
collaborate with task computation while joining the group with a different battery level.
The goal of this step is then to assure reproducibility of certain battery level configurations
for all devices when the same scenario is exercised for different load balancing algorithms;
thus, a common ground for comparison is established.

The test execution and results post processing steps are shown to complete the de-
scription of the synchronized test plan execution stage. These steps do not affect the main
functioning of the proposed evolutionary algorithm.

The Battery Preparation Problem for Running Synchronized Tests

Motrol provides a basic functionality to individually charge or discharge, i.e., prepare,
a device battery to run a synchronized test. However, preparing devices for running a
synchronized test requires a component with a global view of the preparation progress
of the whole set of devices. Once a device reaches its configured battery level, e.g., x%,
the platform marks it as ready for start the synchronized test, and only when all devices
participating in a test are marked as ready does the test effectively start. However, by
following this device preparation logic, it is not hard to fall into situations where a device
(marked as ready) waits for other devices to reach their configured battery level, causing its
own battery level to deviate from the required one, forcing another wait for a preparation
state, the complexity of which varies with the number of devices participating in a test.

A way of avoiding this situation is by applying sequences of charge/discharge actions
on the devices in the set so that all of them reach the configured battery levels at similar
points in time. However, determining these sequences of actions, while keeping the
time-taken for this to a minimum for the set of devices, leads to a complex combinatorial
optimization problem. In this paper, we present a novel software component for Motrol that
tackles this problem, which automatically prepares a set of devices to start a synchronized
test. This component uses a specially designed evolutionary algorithm that has a global
view of the smartphone preparation progress.

3. Evolutionary-based Preparation of Smartphones for Synchronized Test Plans

We developed a novel software component for Motrol, which is aimed to automatically
prepare a given set of smartphones for executing a synchronized test. This component
considers a usual pre-condition of synchronized test plans. This pre-condition imposes
pre-defined start battery levels for the smartphones in the set. Then, the component
utilizes a specially designed evolutionary algorithm that produces a sequence of charg-
ing/discharging actions to prepare the whole set of smartphones so that this pre-condition
is satisfied. Specifically, the algorithm is aimed at reaching the configured start battery
levels in the minimum possible amount of time for the set of smartphones. We detail below
the input to this component. Then, we describe in detail the general behavior in terms of
evolutionary computing used by this component.

3.1. Input Data of the Component and Pre-Condition Considered

The component receives as input data a given set of m smartphones attached to Motrol.
Each one of the smartphones in the set has a known initial current battery level, where
this level is represented as an integer in the range [0,100]%. In addition, each smartphone
has associated timestamped battery charge/discharge profiles. Battery profiles represent
realistic time-related information of a smartphones charging/discharging behavior, i.e.,
they allow the evolutionary algorithm to know the time (in milliseconds) required to
charge/discharge the battery of the smartphone from a given level to another given level.

We firstly collected discharging and charging profiles in a laboratory context by follow-
ing the procedure documented in [8]. Capturing battery profiles is a time-consuming task,
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especially when considering the energy consumption impact of all hardware components
and its different operational modes, e.g., DVFS (dynamic voltage frequency scaling), for
CPUs. Then, for practical reasons but without losing generality, we obtained profiles
targeting certain combinations of discrete CPU usages <0, 30, 50, 75, 100> (in %) and screen
states (on/off), resulting in different energy consumption rates. Figures 3 and 4 show a
timeline representation of all charging and discharging battery profiles for the smartphones
considered in the experiment. Combinations of CPU usage and screen state were not
deliberately selected but aim to represent the common mobile usage patterns. For instance,
a profile with 0% CPU usage and an off screen represents an idle smartphone; a profile
with 30% CPU usage and an on screen represents a low demand interactive task, e.g., video
playback; and so on.

This component also considers a pre-condition given by the start battery levels (not
necessarily the same) for the m smartphones in the set. Thus, the component also receives
the given start battery level for each smartphone in the set as input data, where this level is
represented as an integer in the range [0,100]%.

Figure 3. Charging traces for smartphones considered in the experiments.
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Figure 4. Discharging traces for smartphones considered in the experiments.

3.2. The Designed Evolutionary Algorithm

Once the component receives all the input data detailed in Section 3.1, it applies
our designed evolutionary algorithm. This algorithm explores different sequences of
charge/discharge actions that, at experimentation time, could be applied on the smart-
phones in the set to reach the given start battery levels, with the aim of finding the sequences
of actions that reach these levels at the minimal possible time for the set of smartphones. In
other words, this implies minimizing the preparation time for these smartphones under
the given pre-conditions.

This evolutionary algorithm begins by creating an initial population with s feasible
encoded solutions. Each solution encodes and represents sequences of charge/discharge
actions that could be applied on the m smartphones to achieve the given start battery
levels based on the current battery levels of the smartphones. Then, each solution in
this population is evaluated by a fitness evaluation process, according to the considered
objective: reaching the given start battery levels in the minimum possible amount of
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time for the set of smartphones. Then, the algorithm develops an iterative behavior until
reaching the stop condition.

In each iteration, a parent selection process is applied to the current population to
determine which solutions of this population will compose the mating pool, and therefore
will be utilized to generate new encoded solutions. In this respect, the well-known tour-
nament selection process [6] is applied with a tournament size k, to promote the selection
of diverse high-fitness solutions regarding the sequences of actions indicated for the m
smartphones. Then, the solutions in the mating pool are paired, and a crossover process is
applied on each pair of solutions with a probability Pc to generate a pool of new solutions.
In this sense, we designed a crossover process feasible for the used encoding of solutions,
which generates new solutions by interchanging the sequences of actions indicated for the
m smartphones in the parent solutions. Then, a mutation process is applied on each new
solution with a probability Pm to incorporate diversity in the pool of new solutions. In
this respect, we designed a mutation process feasible for the used encoding of solutions,
which generates changes in the sequences of actions indicated for the m smartphones. After
that, each new solution is evaluated by the fitness evaluation process. Then, a survival
selection process is applied on the current population and the pool of new solutions to
decide which solutions will compose the new population for the next iteration. In this
respect, the well-known steady-state selection process is applied [6], with a replacement
percentage r, in order to preserve the best solutions obtained by the algorithm so far.

Once the algorithm reaches the stop condition (i.e., after a given number of iterations,
the algorithm outputs the best solution in the last population as result). This solution is
used by the component to automatically prepare the whole set of m smartphones.

3.2.1. Encoding of Solutions

Each solution in the population of the algorithm is represented as an m-tuple <s1, s2,
. . . , sm>, where m is the number of smartphones considered, i.e., attached to the platform
at the time the synchronized test starts. Then, the term si (i = 1, . . . , m) represents a feasible
sequence of charge/discharge actions (ai1, ai2, . . . , ain(i)) for smartphone i, which allows to
reach sbl(i) (the start battery level corresponding to i) from cbl(i) (the current battery level of
i). When cbl(i) is lower than sbl(i), cbl(i) must be increased; thus, sequence si only includes
battery charge actions. Otherwise, when cbl(i) is higher than sbl(i), cbl(i) must be decreased;
thus, sequence si only includes discharge actions. In both cases, the number, n(i), of actions
of the sequence si is calculated as detailed in Equations (1) and (2).

n(i) = actions(i) (1)

actions(i) = | cbl(i)− sbl(i)| (2)

Each action aij (j = 1, . . . ,n(i)) is represented as a tuple with five elements: <k_action,
initial_level, finish_level, CPU_load, screen_state>, where k_action refers to the kind of battery-
related action (i.e., charge/discharge), initial_level indicates the initial battery level for the
action, and finish_level indicates the end battery level for the action. The element CPU_load
refers to the CPU load under which the action increases/decreases from/to initial_level.
As mentioned in Section 3.1, CPU load belongs to the set {0, 30, 50, 75, 100}%. Finally,
the element screen_state refers to the screen state (i.e., on/off) under which the action
increases/decreases from/to initial_level.

Thus, the length of an encoded solution <s1, s2, . . . , sm> is calculated as detailed in
Equation (3).

length(〈s1, s2, . . . , sm〉) =
m

∑
i=1

n(i) ∗ 5 (3)

Figure 5 shows a sample encoded solution where two smartphones are considered, and
a test plan requiring these smartphones to start with 23% and 71% of battery, respectively. In
relation to smartphone 1, it has a current battery level of 20%. Thus, the solution proposes
a sequence of three charge actions for this smartphone. In this sequence, the first action
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increases the battery level from 20% to 21% under a CPU load of 30% with the screen on.
Then, the second action increases the battery level from 21% to 22% under a CPU load of
75% with the screen off. Finally, the third action increases the battery level from 22% to 23%
under a CPU load of 100% with the screen on. Thus, this sequence starts from the battery
level 20% and reaches the required battery level of 23%. Regarding smartphone 2, it has
a current battery level of 75%. Here, the solution proposes a sequence of four discharge
actions for this smartphone. This sequence starts from the battery level 75% and reaches
the required battery level of 71%.

Figure 5. Encoded solution for an example case.

3.2.2. Fitness Evaluation Process

This process is applied to evaluate each encoded solution of the population according
to the objective considered. Recall that the objective is to reach the pre-defined start battery
levels for the m smartphones in the minimum amount of time for the set of smartphones.
Considering that, as detailed below, the minimal possible time to prepare the set of m smart-
phones can be estimated as per the existence of (dis)charge profiles, then the mentioned
objective means minimizing the difference (i.e., the error) between the time required by
each smartphone to achieve the corresponding start battery level and the minimal possible
time to prepare the set of m smartphones. In order to evaluate each encoded solution
regarding this objective, the process follows the steps described below.

Given an encoded solution <s1, s2, . . . , sm>, where si represents a feasible sequence of
charge/discharge actions to prepare the smartphone i, the process calculates the average
difference (i.e., average error) between the time of each sequence si and the minimum
amount of time to prepare the m smartphones. This average difference is determined
by a well-known metric named mean absolute percentage error (MAPE). This metric is
calculated as detailed in Equation (4), where t(si) refers to the time (milliseconds) of si
and T is the minimal possible time (milliseconds) to prepare the m smartphones. The
term t(si) is calculated by Equation (5), where t(aij) represents the time (milliseconds)
required to develop the action aij. In this respect, the times of actions aij are provided by
the charge/discharge profiles of smartphone i.

The term T is calculated by Equation (6), where min(i) refers to the minimum amount
of time in milliseconds (i.e., optimal time) for preparing smartphone i. Then, the maximum
of these minimum preparation times defines the minimal possible time to prepare the whole
set of m smartphones so they all reach the next battery level as specified in the test plan
being exercised. Regarding min(i), this time is provided by the existing charge/discharge
profiles of i. Specifically, when the current battery level of i must be charged to reach the
start battery level pre-defined for i, the minimal possible time is achieved by charging the
battery under a CPU load of 0% with the screen off. Thus, the minimal possible time to
prepare i is provided by the charge profile inherent to a CPU load of 0% with the screen off.
This is the case when the current test specifies a higher battery level than the current battery
level of smartphone i; thus, a CPU load of 0% with the screen off means charging at a high
rate. On the other hand, when the current battery level of i must be discharged to reach the
start battery level pre-defined for i, the minimal possible time is achieved by discharging
the battery under a CPU load of 100% with the screen on. Therefore, the minimal possible
time to prepare i is provided by the discharge profile inherent to a CPU load of 100% with
the screen on. This is the case when the current test specifies a lower battery level than the
current battery level of smartphone i; thus, a CPU load of 100% with the screen on means
discharging at a high rate.

By applying Equation (4), an MAPE value higher than or equal to 0% is assigned as
the fitness value of each encoded solution. Better MAPE values (i.e., lower MAPE values)
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are assigned to those solutions in which the times, t(si), of the sequences si detailed for
preparing the m smartphones are closest to T. In these solutions, the times, t(si), of the
sequences si are also closer to each other. Therefore, these solutions minimize the discharge
of the m smartphones once these are prepared according to the sequences si (i.e., once the
start battery levels, sbl(i), are reached).

Figure 6 shows the MAPE values and the times t(si) of the sequences si of two feasible
solutions A and B for an example case where a set of four smartphones have to be prepared.
These solutions differ considerably regarding their MAPE value. In this sense, the MAPE
value of solution A (0.01%) is much better (i.e., much lower) than that of solution B (52.37%).
This is because the times, t(si), of solution A (i.e., t(s1) = 16,575,027, t(s2) = 16,575,096,
t(s3) = 16,584,583, and t(s4) = 16,575,097) are closer to T than those of solution B (i.e., t(s1)
= 5,819,963, t(s2) = 16,575,096, t(s3) = 1,623,840, and t(s4) = 7,560,004). As a result, the
times, t(si), of solution A are closer to each other. Specifically, the times, t(si), of solution
A have very low differences among them (i.e., differences are in the range of [1,9556] ms),
whereas the times, t(si), of solution B have very significant differences among them (i.e., the
differences are in the range of [9,015,092, 14,951,256] ms).

Figure 6. MAPE values and times t(si) of two feasible solutions for an example case (Y axis is
in milliseconds).

This means than these solutions differ with respect to the discharge of the smartphones
once the start battery levels, sbl(i), are reached. In this sense, in solution A, the time t(s3) is
the maximum of the times t(si). Therefore, smartphone 1 will reach sbl(1) at t(s1), and so
it will be prepared before smartphone 3 reaches sbl(3). Then, given that the time between
t(s1) and t(s3) (i.e., 9556 ms) is not enough to decrease sbl(1), smartphone 1 will maintain
sbl(1) until smartphone 3 reaches sbl(3). In a similar way, smartphone 2 will maintain sbl(2)
and smartphone 4 will maintain sbl(4) until smartphone 3 reaches sbl(3). Thus, solution A
prevents the discharge of the start battery levels sbl(i) reached by the smartphones. Unlike
solution A, in solution B, the time t(s2) is the maximum of the times t(si). Thus, smartphone
4 will reach sbl(4) at t(s4), and it will be prepared before smartphone 2 reaches sbl(2). Then,
since the time between t(s4) and t(s2) (i.e., 9,015,092 ms) is long enough to decrease sbl(4),
smartphone 4 will not be able to maintain sbl(4) until smartphone 2 reaches sbl(2). Likewise,
smartphone 1 will not be able to maintain sbl(1) and smartphone 3 will not be able to
maintain sbl(3) until smartphone 2 reaches sbl(2). Note that the decrease in the levels of



Sensors 2023, 23, 1388 11 of 22

sbl(4)/sbl(1)/sbl(3) (in battery units) depends on the time between t(s4)/t(s1)/t(s3) and
t(s2). The longer the time between t(s4)/t(s1)/t(s3) and t(s2), the higher the decrease in
sbl(4)/sbl(1)/sbl(3). Therefore, solution B enables the discharge of the start battery levels
sbl(i) reached by the smartphones. All in all, solution A outperforms solution B in terms of
minimizing the discharge of the smartphones once the start battery levels sbl(i) are reached.

MAPE(〈s1, s2, . . . , sm〉) =
100
m

m

∑
i=1

|T − t(si)|
T

(4)

t(si) =
n(i)

∑
j=1

t
(
aij
)

(5)

T = maxm
i=1 (min(i)) (6)

3.2.3. Crossover Process

A crossover process is applied to generate new encoded solutions from the solutions
in the mating pool. In this respect, the evolutionary algorithm decides which solutions
from the current population will compose the mating pool by applying the well-known
tournament selection process [6]. Then, the solutions in the mating pool are organized in
pairs, and the crossover process is applied on each pair of solutions with a probability Pc to
generate new encoded solutions. We designed a crossover process feasible for the encoding
of solutions presented in Section 3.2.1. The details of this process is described below.

Given two encoded solutions, p1 and p2, the crossover process generates two new
encoded solutions, o1 and o2, by following the next iterative behavior. For each one of
the smartphones i, this process considers the sequences of actions si detailed in p1 and p2
for i, and after that analyzes one by one the actions, aij, of each sequence. For each action,
aij, of the sequence si detailed in p1(p2), the process considers the five elements which
compose the action and then copies the values detailed in p1(p2) for k_action, initial_level,
and finish_level to the new solution o1(o2), in the same positions for these values in p1(p2).
Regarding the values detailed in p1(p2) for the elements CPU_load and screen_state, each
of these values is copied to the new solution, o1(o2), according to a given probability, u.
Specifically, for each of the mentioned elements, the process generates a random number in
the range of [0,1]. If this number is lower than u, the process copies the value detailed in
p1(p2) for the element to o1(o2), in the same position for this value in p1(p2). Otherwise, if
this number is higher than or equal to u, the process copies the value detailed in p1(p2) for
the element to o2(o1), in the same position for this value in p1(p2). Therefore, this crossover
process allows the generation of two new encoded solutions by interspersing the values
detailed in p1 and p2 for the elements of the actions of each sequence.

Figure 7 shows an example of the crossover process. In this example, the process is
applied on the encoded solutions p1 and p2 and generates the encoded solutions o1 and o2.
Bold values in o1 and o2 indicate values interchanged between p1 and p2.

Figure 7. Example of the crossover process.

3.2.4. Mutation Process

A mutation process is applied to each solution obtained by the crossover process with
a probability Pm, so as to incorporate diversity into the pool of new encoded solutions,
and thus to preserve the diversity of the population throughout the generations of the
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algorithm. We designed a mutation process feasible for the encoding of solutions presented
in Section 3.2.1. The behavior of this process is described below.

Considering an encoded solution p1, our mutation process generates a new encoded
solution o1, by following the next iterative behavior. For each of the smartphones i, this
process considers the sequence of actions, si, detailed in p1 for i, and then analyzes one
by one the actions, aij, of this sequence. For each action, aij, the process considers the
five elements that compose the action. Then, the process copies the values detailed in
p1 for k_action, initial_level, and finish_level to the new solution o1, in the same positions
for these values in p1. In relation to the values detailed in p1 for the elements CPU_load
and screen_state, each one of these values is copied to the new solution o1 according to the
mutation probability, Pm. In particular, for each one of the two mentioned elements, the
process generates a random number in the range of [0,1]. When this number is higher than
Pm, the process copies the value detailed in p1 for the element to o1 to the same position
for this value in p1. On the other hand, when this number is lower than or equal to Pm,
the process does not copy the value detailed in p1 for the element to o1. In this case, the
process randomly chooses other possible value for the element, and then copies this value
to o1 to the same position for the value detailed in p1. Thus, this mutation process allows
the generation of a new encoded solution by changing the values detailed in p1 for the
elements of the actions of each sequence according to Pm.

Figure 8 shows an example of the mutation process. In this example, the process is
applied on the encoded solution p1, and generates the encoded solution o1. Bold values in
o1 indicate new values compared to those in p1.

Figure 8. Mutation process example.

4. Computational Experiments

As described in Section 3, the new software component proposed for Motrol uses the
described evolutionary algorithm to automatically prepare a given set of smartphones.
Thus, we developed computational experiments to evaluate the performance of this evolu-
tionary algorithm on different instances of the addressed problem. The preparation time
was simulated using battery profiles as described in Section 3.1. By interleaving excerpts of
different profiles of the same smartphone it is possible to realistically evaluate the effect of
solutions proposed by the evolutionary algorithm.

In Section 4.1, we present the example sets utilized to develop these experiments. In
Section 4.2, we detail the experimental settings defined for these experiments. Finally, in
Section 4.3, we present and analyze the obtained results.

4.1. Instance Sets

As explained in Section 3, given a set of m smartphones where each smartphone i
must (dis)charge from its current battery level, cbl(i), to a target (also called start) battery
level, sbl(i), the problem consists of finding the sequences of charge/discharge actions to be
applied on the m smartphones, in order to reach the target sbl(i) levels at the same point in
time and in the minimum possible amount of time.

To evaluate the performance of the evolutionary algorithm on diverse realistic experi-
mental scenarios, we defined 27 sets of instances of the addressed problem. Each of these
instance sets contains 10 different instances. Each instance of these sets contains a number
of smartphones to be prepared. The 27 defined instance sets correspond to diverse realistic
preparation scenarios in terms of the number of smartphones to be prepared (aspect S)
and battery level actions (aspect A and aspect V) required to prepare the smartphones. In
this sense, the category of an instance is defined in relation to these three aspects that are
described below.
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Aspect S. This aspect refers to the number of smartphones m considered in the instance.
Here, this number belongs to the following set: {4, 8, 16}. Considering that the local facet of
Dew computing comprises on-premise devices within the boundaries of a wireless local area
network, aspect S corresponds to potential on-premise devices in a Dew computing setting,
for which we selected 16 as an upper limit representing the number of devices a domestic
router can handle without compromising the delivered QoS. Thus, three different categories
were considered in relation to the number of smartphones, namely S4, S8, and S16.

Aspect A. This aspect refers to the total number of charge/discharge actions (1 percent
battery level changes) to be applied by the m smartphones considered in the set to reach
the desired start battery levels (i.e., the sum of current-to-target battery level differences of
all smartphones considered in the instance). This number is named A, and is calculated as
detailed in Equation (7), where actions(i) refers to the number of actions to be applied by
smartphone i. Note that actions(i) is calculated as detailed in Equation (2) (Section 3.2.1).
Thus, A belongs to the value range [1*m, 100*m]. In this value range, the value 1*m
corresponds to the instances where each smartphone i must apply only one action to
reach the desired start battery level from the current battery level, and the value 100*m
corresponds to the instances where each smartphone i must apply 100 actions to reach
the start battery level from the current battery level. This value range has been divided
into three distinct subranges in order to consider three different categories in relation to A.
Specifically, this range has been divided into the following subranges: [1*m, 40*m], [41*m,
70*m], and [71*m, 100*m], in order to define the categories Low A (LA), Medium A (MA),
and High A (HA) with similar subrange width, respectively.

A =
m

∑
i=1

actions(i) (7)

Aspect V . This aspect refers to the variation in the number of charge/discharge actions
among the m smartphones considered in the set. In other words, it is a way to differentiate
problem instances based on how the total number of actions (Aspect A) is distributed
among participating smartphones. That is, a smartphone set where a few smartphones
have to perform the majority of the total number of actions presents a quite different
challenge regarding all of them performing the same percentage of the total number of
actions. This variation is measured by a well-known metric named coefficient of variation
(CV). This metric is calculated as detailed in Equation (8), where M refers to the average
number of actions to be applied by the m smartphones (Equation (10)) and SD refers to
the standard deviation of the number of actions to be carried out by the m smartphones
(Equation (9)). Thus, this metric provides a real value in the range of [0,100]%. In this
range, the value 0% corresponds to the instances where the m smartphones must develop
the same number of actions to reach sbl(i) from cbl(i) (i.e., there is no variation regarding
the number of actions among the m smartphones). This range also has been divided into
three distinct subranges in order to consider three different categories in relation to V. In
particular, this range has been divided into the following subranges: [0,10]%, [10,50]%,
and [50,100]%, which determines the categories Low V (LV), Medium V (MV), and High V
(HV), respectively.

CV =
SD
M
∗ 100 (8)

SD =

√√√√√ m
∑

i=1
(actions(i)−M)2

m
(9)

M =

m
∑

i=1
actions(i)

m
(10)
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Table 1 details the characteristics of the 27 defined instance sets regarding the three
aspects previously mentioned. Column 1 indicates the name of each set. Column 2 details
the value of the instances of each set in relation to aspect S. Columns 3 and 4 detail the
value range of the instances of each set in relation to the aspects A and V, respectively.
Finally, Column 5 indicates the number of instances of each set.

Table 1. Characteristics of the defined instance sets.

Instance Set S A V (%) Nr. of Instances

S4_LA_LV 4 [4, 160] [0, 10] 10
S4_LA_MV 4 [4, 160] (10, 50] 10
S4_LA_HV 4 [4, 160] (50, 100] 10
S4_MA_LV 4 [164, 280] [0, 10] 10
S4_MA_MV 4 [164, 280] (10, 50] 10
S4_MA_HV 4 [164, 280] (50, 100] 10
S4_HA_LV 4 [284, 400] [0, 10] 10
S4_HA_MV 4 [284, 400] (10, 50] 10
S4_HA_HV 4 [284, 400] (50, 100] 10
S8_LA_LV 8 [8, 320] [0, 10] 10
S8_LA_MV 8 [8, 320] (10, 50] 10
S8_LA_HV 8 [8, 320] (50, 100] 10
S8_MA_LV 8 [328, 560] [0, 10] 10
S8_MA_MV 8 [328, 560] (10, 50] 10
S8_MA_HV 8 [328, 560] (50, 100] 10
S8_HA_LV 8 [568, 800] [0, 10] 10
S8_HA_MV 8 [568, 800] (10, 50] 10
S8_HA_HV 8 [568, 800] (50, 100] 10
S16_LA_LV 16 [16, 640] [0, 10] 10
S16_LA_MV 16 [16, 640] (10, 50] 10
S16_LA_HV 16 [16, 640] (50, 100] 10
S16_MA_LV 16 [656, 1120] [0, 10] 10
S16_MA_MV 16 [656, 1120] (10, 50] 10
S16_MA_HV 16 [656, 1120] (50, 100] 10
S16_HA_LV 16 [1136, 1600] [0, 10] 10
S16_HA_MV 16 [1136, 1600] (10, 50] 10
S16_HA_HV 16 [1136, 1600] (50, 100] 10

4.2. Experimental Setting

We ran the evolutionary algorithm on each one of the 10 instances of each instance set
presented in Table 2. Considering that evolutionary algorithms are non-deterministic by
nature, we ran this evolutionary algorithm several times (i.e., 30 runs) for each instance
to obtain reliable statistical results. For each run, we recorded the solution provided by
the algorithm for the instance under evaluation, the MAPE value of this solution, and the
computing time taken by the algorithm to obtain this solution.

Table 2. Parameter settings of the evolutionary algorithm.

Parameter Value

Population size 100
k (tournament selection) 10

Pc (crossover) 1.0
Pm (mutation) 1/L

r (steady-state selection) 50%
Number of generations or iterations 2000

To run the evolutionary algorithm, we used the parameter settings detailed in
Table 2. These parameter settings were defined based on preliminary experiments. In
these experiments, we considered different parameter settings, which are usually suggested
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in the technical literature on evolutionary algorithms [6]. Table 3 details the parameter
settings considered. Then, for each of these parameter settings, we ran the evolutionary
algorithm several times (i.e., 30 runs) for each instance and we calculated the average
MAPE value of the 30 solutions obtained for each instance. These experiments showed
that the parameter setting detailed in Table 2 yielded the best average MAPE values for the
evaluated instances.

Table 3. Parameter settings considered in the preliminary experiments.

Parameter Values Considered

Population size {100, 200}
k (tournament selection) {2, 5, 10}

Pc (crossover) {0.7, 0.8, 0.9, 1.0}
Pm (mutation) {1/L} U {0.1, 0.2, 0.3}

r (steady-state selection) {25%, 50%}
Number of generations or iterations {1000, 2000, 3000, 4000, 5000}

In relation to the parameter Pm, note that one of the considered settings is 1/L. The
term L refers to the number of elements on which the mutation is applied, with Pm, in
an encoded solution. In this case, as detailed in Section 3.2.4, given an encoded solution,
the mutation is applied, with Pm, on two elements of each action of each one of the m
smartphones considered in the solution. Thus, L is equal to 2*(n(1) + n(2) + . . . + n(m)),
where n(i) is the number of actions corresponding to the smartphone i in the encoded
solution, as described in Section 3.2.1.

4.3. Current Method to Prepare Smartphones in the Context of Motrol

To contextualize the performance of the evolutionary algorithm, we considered the
method currently used by Motrol to determine the preparation of a given set of m smart-
phones for synchronized test plans. For simplicity, we will refer to this method as the
Motrol method.

Given a set of m smartphones, this method defines a feasible solution to prepare the m
smartphones, considering the current battery level, cbl(i), of each smartphone i in the set
and the start battery level, sbl(i), to be reached by each smartphone i in the set. Specifically,
for each smartphone i, this method defines one charge/discharge action, ai, which allows
the battery to reach the level sbl(i) from cbl(i) in the minimal possible amount of time for the
smartphone i. When cbl(i) is lower than sbl(i), cbl(i) must be increased to reach sbl(i). Thus,
the method defines a charge action, ai, which must be developed from the level cbl(i) and
must continue until sbl(i) is reached. In addition, ai must be developed under a CPU load of
0% with the screen off to achieve sbl(i) in the minimum possible time for i. Otherwise, when
cbl(i) is higher than sbl(i), cbl(i) must be decreased to reach sbl(i). Therefore, the method
defines a discharge action, ai, which must be carried out from cbl(i) and must continue
until sbl(i) is reached. Moreover, ai must be carried out under a CPU load of 100% with the
screen on in order to achieve sbl(i) in the minimum possible amount of time for i. Finally,
this method provides a solution, which is composed of the m actions ai defined to prepare
the m smartphones.

We applied this method on each one of the ten instances of each instance set. For each
instance, we recorded the solution obtained by this method and we calculated the MAPE
value of this solution in order to compare this value with those of the 30 solutions obtained
by the evolutionary algorithm for each instance.

It is worth mentioning that this method differs from the proposed evolutionary algo-
rithm in two main aspects. First, the method defines one action, ai, for each smartphone i,
which allows Motrol to reach sbl(i) from cbl(i) in the minimum possible amount of time for
the smartphone i. Thus, the action, ai, of each smartphone i is defined independently of the
actions of the other smartphones in the set. Unlike this, the evolutionary algorithm explores
many different sequences, si, of actions for each smartphone i, with the aim of finding a
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sequence, si, to collectively reach sbl(i) from cbl(i) at time T. As described in Section 3.2.2,
T is the minimum possible time-taken to prepare the set of m smartphones. Second, this
method does not consider the difference among the times of the actions, ai, defined for the
m smartphones. In contrast to this, the evolutionary algorithm considers the difference
between the time of the sequence si determined for each of the m smartphones and the
time T, and consequently considers the difference among the times of the sequences si,
which is important to minimize the discharge of the m smartphones once these are prepared
according to the sequences si (i.e., once the start battery levels sbl(i) are reached).

4.4. Experimental Results

In Table 4, we present the main results obtained from the conducted computational
experiments. Column 1 indicates the name of each instance set used in the experiments.
columns 2 and 3 detail the average MAPE value of the solutions obtained by the evolu-
tionary algorithm and the Motrol method for the instances of each set, respectively. Then,
columns 4 and 5 detail the maximum MAPE value obtained by the evolutionary algorithm
and the Motrol method for each instance set, respectively. Finally, columns 6 and 7 detail
the minimum MAPE value obtained by the evolutionary algorithm and the Motrol method
for each instance set, respectively.

Table 4. Average, maximum, and minimum MAPE (%) value obtained by the evolutionary algorithm
(EA) and the Motrol method (M) for each instance set. Bold values indicate better average MAPE (%)
values. The symbol * indicates that the maximum MAPE (%) value reached by EA is lower than the
minimum MAPE (%) value reached by M.

MAPE (%)

Instance
Set Average Maximum Minimum

EA M EA M EA M

S4_LA_LV 17.09 46.66 64.11 70.56 3,E-04 22.31
S4_LA_MV 12.19 48.07 * 33.26 66.73 0.01 34.58
S4_LA_HV 26.30 52.14 53.49 68.72 4.63 26.70
S4_MA_LV 5.05 33.53 * 12.51 43.64 2,E-05 19.13
S4_MA_MV 8.26 37.48 25.96 47.53 1,E-04 21.26
S4_MA_HV 17.99 50.37 36.87 65.05 1,E-03 34.56
S4_HA_LV 3.80 31.43 * 10.22 45.21 2,E-05 13.45
S4_HA_MV 5.14 35.93 * 19.95 48.84 1,E-04 22.49
S4_HA_HV 10.74 45.25 * 23.86 52.37 0.01 36.29
S8_LA_LV 20.07 50.23 53.35 73.70 4.19 28.71
S8_LA_MV 11.62 52.40 * 27.99 62.00 2.32 38.80
S8_LA_HV 15.75 57.88 * 24.92 71.31 4.15 41.10
S8_MA_LV 5.76 33.66 * 11.30 45.77 3,E-04 19.21
S8_MA_MV 16.15 49.84 * 30.59 58.13 1.47 36.37
S8_MA_HV 13.81 48.21 * 27.63 55.87 0.01 36.78
S8_HA_LV 5.72 40.60 * 15.69 52.64 7,E-05 32.41
S8_HA_MV 6.39 40.93 * 19.22 57.58 0.01 29.26
S8_HA_HV 16.51 49.29 * 30.29 57.37 2.34 37.24
S16_LA_LV 6.22 35.24 *8.59 43.22 2.50 24.87
S16_LA_MV 18.83 58.69 * 25.76 65.45 9.37 54.63
S16_LA_HV 25.45 61.99 * 46.31 75.78 14.60 51.59
S16_MA_LV 4.42 34.97 * 10.38 50.27 2,E-03 24.70
S16_MA_MV 15.42 55.39 * 23.81 64.78 7.56 48.38
S16_MA_HV 23.41 61.45 * 36.31 67.81 14.75 53.77
S16_HA_LV 4.87 35.31 * 7.75 42.60 0.14 28.25
S16_HA_MV 12.70 46.82 * 22.34 52.11 7.57 37.75
S16_HA_HV 16.99 49.82 * 24.05 57.52 11.00 38.72
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From Table 4, it can be seen that the average MAPE value of the solutions obtained by
the evolutionary algorithm for each instance set is much lower than that of the solutions
obtained by the Motrol method. For each of the instance sets S4_*A_*V, the difference
between the average MAPE values achieved by the evolutionary algorithm and the Motrol
method is in the range of [25.84, 35.88] %. Similarly, for each of the instance sets S8_*A_*V
and S16_*A_*V, the measured difference is in the range of [27.9, 42.13] % and [29.02, 39.97]
%, respectively. These results regarding the average MAPE value are mainly due to the
following reasons. For most instance sets (i.e., 22 of the 27 sets), the maximum MAPE value
achieved by the evolutionary algorithm is lower than the minimum MAPE value obtained
by the Motrol method. In addition, for each of the 270 instances used, the MAPE values
of the 30 solutions obtained by the runs of the evolutionary algorithm are significantly
lower than the MAPE value of the solution provided by the Motrol method. The statistical
significance of these results was ascertained by the Mann–Whitney U test, with a confidence
level of α = 0.001.

Based on these results, the solutions achieved by the evolutionary algorithm decrease
the MAPE value for the instances considered. This means that, according to the MAPE
definition given in Section 3.2.2, these solutions reduce the difference between the prepara-
tion time of each of the m smartphones and the time T, and as a consequence, reduce the
difference among the preparation times of the m smartphones. Therefore, as described in
Section 3.2.2, these solutions will reduce the discharge of the m smartphones once these are
prepared (i.e., once the start battery levels, sbl(i), are reached). The smaller the difference
among the preparation times of the m smartphones, the lower the amount of unnecessary
(dis)charge actions of the m smartphones once these are prepared.

Considering the above, in Table 5, we present the average, maximum, and minimum
RPD (relative percentage difference) of the solutions achieved by the evolutionary algo-
rithm, regarding the solutions provided by the Motrol method and in terms of the estimated
discharge of the m smartphones once these are prepared. The metric RPD computes the
average percentage difference of the estimated discharge of the m smartphones once these
are prepared according to sEA (i.e., the solution given by the evolutionary algorithm), re-
garding the estimated discharge of the m smartphones once these are prepared according
to sM (i.e., the solution given by the Motrol method). This metric is calculated according to
Equation (11), where bud(sM, i) and bud(sEA, i) refer to the estimated discharge (in battery
units) of smartphone i once it is prepared according to the solutions of sM and sEA, respec-
tively. When the RPD value is positive, this means that sEA has achieved a saving when
compared to sM in terms of the estimated discharge (in battery units) of the m smartphones
once these are prepared.

The value of bud(s, i) is estimated as follows. Given a solution, s, represented as the m-
tuple <s1, s2, . . . , sm> described in Section 3.2.1, we first calculated the preparation time t(si)
of smartphone i, by applying Equation (5) detailed in Section 3.2.1. After that, we calculated
the maximal preparation time, MPT(s), of the m smartphones with Equation (12), which
determines the preparation time of the set of m smartphones. As described in Section 3.2.2,
when MPT(s) is higher than t(si), smartphone i will be prepared (i.e., smartphone i will
reach its start battery level sbl(i)) before the smartphones that require a preparation time of
MPT(s). Thus, smartphone i will discharge its battery level, sbl(i), during the time between
t(si) and MPT(s). This discharge of sbl(i) (in battery units) depends on the time between
t(si) and MPT(s). The longer this time, the higher the discharge of sbl(i). Therefore, we
calculated this time td(s, i), as detailed in Equation (13). Once td(s, i) is calculated, the
estimated discharge (in battery units), bud(s, i), of sbl(i) during td(s, i) can be determined
from the battery discharge profile of smartphone i (i.e., battery discharge profile inherent to
a CPU load of 0% with the screen off).

RPD =
100
m

m

∑
i=1

bud(sM, i)− bud(sEA, i)
bud(sM, i)

(11)
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MPT (s) =
m

max
i=1

(t(si)) (12)

td(s, i) = MPT(s)− t(si) (13)

Table 5. Average, maximum, and minimum RPD (%) values obtained by the evolutionary algorithm
for each instance set.

Instance Set
RPD (%)

Average Maximum Minimum

S4_LA_LV 32.81 75.00 25.00
S4_LA_MV 45.00 75.00 25.00
S4_LA_HV 33.10 75.00 25.00
S4_MA_LV 50.00 75.00 25.00
S4_MA_MV 49.54 75.00 18.75
S4_MA_HV 50.83 75.00 35.42
S4_HA_LV 56.25 75.00 25.00
S4_HA_MV 52.50 75.00 25.00
S4_HA_HV 50.21 75.00 25.00
S8_LA_LV 31.40 62.50 12.50
S8_LA_MV 51.98 87.50 25.00
S8_LA_HV 50.17 77.08 12.50
S8_MA_LV 41.25 56.25 29.17
S8_MA_MV 50.73 68.75 19.79
S8_MA_HV 41.87 62.50 18.75
S8_HA_LV 61.98 81.25 50.00
S8_HA_MV 58.44 75.00 25.00
S8_HA_HV 52.50 71.88 37.50
S16_LA_LV 12.95 15.63 12.50
S16_LA_MV 53.93 68.75 29.69
S16_LA_HV 53.58 68.75 33.33
S16_MA_LV 44.69 65.63 31.25
S16_MA_MV 61.05 83.33 49.48
S16_MA_HV 53.31 71.46 25.63
S16_HA_LV 53.39 65.63 31.25
S16_HA_MV 58.88 67.19 50.00
S16_HA_HV 54.36 69.27 41.07

From the results in Table 5, it follows that the solutions obtained by the evolutionary
algorithm for each instance set provide a considerable average saving (average RPD) in
terms of the discharge (in battery units) of the m smartphones once these are prepared. For
the instance sets S4_*A_*V and S8_*A_*V, the average saving is in the range of [32.81, 56.25]
% and [31.40, 61.98] %, respectively. For most of the instance sets S16_*A_*V (i.e., eight
out of the nine sets), the average saving is in the range of [44.69, 61.05] %. In addition, the
solutions obtained by the evolutionary algorithm for each instance set also provide very
good minimal and maximal savings (minimal and maximal RPD). For the instance sets
S4_*A_*V and S8_*A_*V, the minimal saving is in the range of [18.75, 35.42] % and [12.50,
50.00] %, respectively. For the instance sets S16_*A_*V, the minimal saving is in the range
of [12.50, 50.00] %. These results regarding the minimal saving show that for each one of
the 270 instances used, the 30 solutions obtained by the runs of the evolutionary algorithm
provide a saving in terms of the discharge (in battery units) of the m smartphones once
these are prepared.

In addition to the results presented in Tables 4 and 5, in Table 6, we present the average,
maximum, and minimum computing time (in seconds) required by the evolutionary algo-
rithm for each of the instance sets. In this sense, all the computational experiments were
executed on a PC equipped with an Intel core i7-3610QM 2.3GHz CPU, a 6.00 GB memory,
a 1 TB HD, and a 64-bit Windows 10 operating system. In addition, the evolutionary
algorithm was implemented in Java 1.8.
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Table 6. Average, maximum, and minimum computing time (in seconds) required by the evolutionary
algorithm for each instance set.

Instance Set
Computing Time (in Seconds)

Average Maximum Minimum

S4_LA_LV 5.00 7.20 2.00
S4_LA_MV 5.96 7.60 3.60
S4_LA_HV 5.64 7.60 3.20
S4_MA_LV 9.92 13.20 5.60
S4_MA_MV 9.64 13.20 6.80
S4_MA_HV 7.88 10.00 6.00
S4_HA_LV 13.16 16.40 10.00
S4_HA_MV 11.96 14.80 9.60
S4_HA_HV 11.60 13.60 9.60
S8_LA_LV 10.32 14.80 3.60
S8_LA_MV 11.84 14.80 8.00
S8_LA_HV 11.48 14.80 8.80
S8_MA_LV 19.80 25.60 13.60
S8_MA_MV 18.12 24.40 10.80
S8_MA_HV 15.24 21.60 10.80
S8_HA_LV 26.88 35.20 19.20
S8_HA_MV 23.92 30.00 18.80
S8_HA_HV 22.64 26.80 18.80
S16_LA_LV 20.58 22.60 18.60
S16_LA_MV 20.80 22.40 19.20
S16_LA_HV 20.36 22.80 18.00
S16_MA_LV 29.88 40.00 23.20
S16_MA_MV 33.64 36.80 29.60
S16_MA_HV 28.92 34.80 23.60
S16_HA_LV 49.04 59.60 41.60
S16_HA_MV 42.32 45.20 41.20
S16_HA_HV 41.60 42.80 40.40

As shown in Table 6, the higher the total number of actions to be applied by the
m smartphones considered in the instance (see values of A in Table 1), the higher the
computing time (in seconds) required by the evolutionary algorithm. This is mainly
because of the following reason. As described in Section 3.2, the main processes of the
evolutionary algorithm (i.e., fitness evaluation, crossover, and mutation processes) are
applied in solutions encoded as an m-tuple <s1, s2, . . . , sm>, where si represents a feasible
sequence of actions for smartphone i. Therefore, the computing time of these processes, and
consequently the computing time of the algorithm, depend on the length of the encoded
solutions. As detailed in Section 3.2.1, the length of the encoded solutions is proportional to
the total number of actions to be applied by the m smartphones in the set. Thus, the higher
the total number of actions, the higher the length of the encoded solutions; therefore, the
higher the computing time of the evolutionary algorithm.

5. Related Work

Consumer electronic devices such as smartphones play a vital role as computing resource
providers in Dew computing. Testbeds and experimentation platforms especially designed for
Dew computing research are scarce. For instance, testbeds—also known as device farms—such
as Firebase Test Lab, Samsung Remote Test Lab, AWS Device Farms, Sauce Labs, and Xamarin
Test Cloud have been designed for developers to test mobile applications on a diverse fleet of
devices. The main objective was to help developers to code their applications to support device
heterogeneity. Device heterogeneity is a key aspect present in Dew computing but not the only
one to be considered [17]. Other crucial aspects, particularly related to service provisioning and
load balancing using clusters of consumer electronic devices, are mobility, energy management
of battery and non-battery driven devices, local node collaboration, and coordination with



Sensors 2023, 23, 1388 20 of 22

nodes located in the fog and cloud layers. Due to the complexity of including all these
aspects in a testbed, simulation is widely accepted and practiced as a performance evaluation
methodology [16–19]. Simulation allows researchers to model complex interactions among
entities that could be hard to realize, not to mention reproduce, with real testbeds. Particularly,
Markus et al. [17] analyzed several simulation toolkits including iFogSim, MobFogSim, IoTSim-
Edge, EdgeCloudSim, DewSim, and DISSECT-CF-Fog and classified them based on the
abstractions and functionalities offered in relation to relevant Dew computing aspects.

Although testbeds for Dew computing are difficult to set up, these are necessary to
validate simulation results. At the time of writing this paper, platforms for automating Dew
computing experiments using testbeds are in the very early development stage. However,
advances in other related research fields can be applied towards building a platform that
holistically provides the means for experimenting and validating results in Dew computing
research. One of these advances is in the line of achieving reproducibility of device mobility,
a problem originally tackled in MANETs research field via the application of mobile robot
technology [20]. Others refer to interfacing nodes communicating using different wireless
protocols through web services to facilitate the evaluation of local collaboration among sen-
sor and computing nodes, and the efficiency of message dissemination protocols. Concerns
such as these are relevant for wireless sensor networks and IoT research; CaBIUs [21] and
Indriya2 [22] are examples of recent testbeds providing such facilities.

With regard to achieving reproducibility of battery-driven Dew experiments, we have
initiated efforts with a software–hardware toolkit [7] that provides researchers with basic
support to (dis)charge smartphones based on a configured battery level. Such functionality
has been vital to automate battery profiling whose resulting traces are used as elementary
input for Dew simulations. After exploratory research using simulations, results valida-
tion becomes a necessary step to advance state-of-the-art load balancing strategies for
executing tasks in clusters of smartphones and to measure the impact on energy utilization
of individual smartphones. However, to make a test reproducible and the effect of load
balancing strategies comparable, a feature to reset all smartphones battery-related states to
the values configured in the testing scenario is required. Such a reset feature hinders the
necessary (dis)charging speed synchronization between all smartphones, which is currently
achieved with human intervention. To advance the automation of this necessary feature,
we proposed an evolutionary algorithm that prepares smartphone battery states to run live
Dew computing scenarios on real testbeds.

6. Conclusions and Future Work

With the aim of covering a gap in the area of Dew computing associated with reproduc-
ing battery-driven tests on real testbeds, we proposed an evolutionary algorithm to tackle
the problem of preparing batteries of smartphone clusters. This state-of-the-art method
using Motrol allows researchers to (dis)charge smartphones to a configured battery level.
However, applying such a method to a cluster of smartphones requires a fine coordination
of smartphone (dis)charging speeds, which is currently executed with human intervention.
This makes the process of running battery-driven tests error prone and difficult to scale
and reproduce. We designed an algorithm to perform such a preparation, consequently
allowing Dew researchers not only to automate the execution of a series of battery-driven
tests, e.g., the evaluation of several load balancing strategies, but also to simultaneously
reduce the time taken to start each test.

The performance of the proposed algorithm was evaluated by simulating battery
behavior using real smartphone traces and covering 270 combinations of different battery
levels and smartphone cluster sizes. The average MAPE obtained with the evolutionary
algorithm was 12.84%, indicating that (dis)charging plans differ on average by around 12%
of the time the slowest smartphone takes to reach the start battery level. This represents a
considerable improvement over the MAPE value obtained with the default approach to
prepare smartphones, called the Motrol method, which was 46.05% on average. Moreover,
when comparing the amount of battery units that smartphones vary by from the time
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each one reaches the start battery level until all in the set are prepared, the evolutionary
algorithm reports between 12 and 61% savings on average w.r.t the Motrol method, meaning
that the evolutionary algorithm prepares a test with less battery variations.

In future work, we plan to design an approach with a global view of both the prepara-
tion and test execution, assuming several preparation scenarios along with test execution
estimations as input. The resulting sequence might involve different scenarios, i.e., scenar-
ios that do not necessarily share the same battery conditions. It is interesting to study to
what extent an approach such as this saves time and battery changes compared to plans
with a local view of scenario preparation as those derived from the proposed evolutionary
algorithm. Moreover, in the experiments, the computational time of solutions provided by
the evolutionary algorithm increases with the number of smartphones and the total amount
of battery changes involved in the preparation scenario, reaching nearly fifty seconds for
the most complex tested scenario. Therefore, an extension we are planning for this research
is improving the execution time of the algorithm by parallelizing the exploration of the
solution space [23].
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