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Abstract: Digital twins (DTs) have been implemented in various applications, including wind turbine
generators (WTGs). They are used to create virtual replicas of physical turbines, which can be used to
monitor and optimize their performance. By simulating the behavior of physical turbines in real time,
DTs enable operators to predict potential failures and optimize maintenance schedules, resulting
in increased reliability, safety, and efficiency. WTGs rely on accurate wind speed measurements for
safe and efficient operation. However, physical wind speed sensors are prone to inaccuracies and
failures due to environmental factors or inherent issues, resulting in partial or missing measurements
that can affect the turbine’s performance. This paper proposes a DT-based sensing methodology to
overcome these limitations by augmenting the physical sensor platform with virtual sensor arrays. A
test bench of a direct drive WTG based on a permanent magnet synchronous generator (PMSG) was
prepared, and its mathematical model was derived. MATLAB/Simulink was used to develop the
WTG virtual model based on its mathematical model. A data acquisition system (DAS) equipped
with an ActiveX server was used to facilitate real-time data exchange between the virtual and physical
models. The virtual sensor was then validated and tuned using real sensory data from the physical
turbine model. The results from the developed DT model showed the power of the DT as a virtual
sensor in estimating wind speed according to the generated power.

Keywords: wind turbine; digital twin; virtual sensor

1. Introduction

The advent of the fourth industrial revolution introduced DT technology to improve
the development process. A digital twin (DT) is a virtual replica of a physical object that
facilitates real-time simulation and analysis of its performance [1]. DTs are valuable in
applications involving wind turbines (WTs) where they can be utilized to monitor the
real-time performance of the turbine. This enables engineers to promptly detect and resolve
any issues that may arise, thereby enhancing the efficiency and reliability of the WTG
while lowering the cost of maintenance and repair [2]. DTs can also be used to optimize
the operation of wind turbines by predicting the energy output of the turbine based on
the wind conditions. By using the DT to model the turbine’s behavior in different wind
conditions, engineers can optimize the operation of the turbine to maximize its energy
output. This approach can increase the efficiency of the wind turbine and improve its
overall performance [3].

In a connected context, wind speed sensors are a critical component of wind farms and
are extensively utilized to enable wind energy monitoring, control, and decision support
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for wind turbines [4]. These sensors measure wind speed, thereby playing a pivotal role
in determining the operational performance of wind turbines. The accuracy of these
measurements significantly impacts the wind energy capture rate, fatigue load, and service
life, ultimately leading to the superior operational efficiency of wind turbines. Wind speed
sensors are known to be susceptible to errors, which can have adverse effects on the basic
as well as advanced functionalities of wind turbines. This, in turn, can lead to a decrease
in the overall performance of wind farms and an increased risk level for the system. Such
consequences can range from financial losses to serious safety issues [5]. Therefore, it is
imperative to conduct research on online monitoring, identification, and accommodation
methods for the sensors to ensure their reliability and accuracy.

In a related context, a virtual sensor is a software-based mechanism that processes
data that would otherwise be obtained from physical sensors based on the available
information [6]. By observing the readings from different instruments and learning to
interpret the relationships between various variables, the virtual sensor functions in a
manner that is like a physical sensor. The simulation is designed to imitate the behavior of
real-world products and can be used to capture measurements at various locations. The
readings obtained from the virtual sensor can supplement the data collected from physical
sensors. The primary difference between virtual sensors and estimators is that the latter is
a mathematical model that utilizes data to predict future values or events. Virtual sensors
can be placed on virtual models anywhere, which is different from the physical world [7].
Digital twins (DTs), which are digital replicas of physical systems or objects, can be used to
collect data from virtual sensors. This data can be used to monitor the performance of the
DT and predict its behavior. Figure 1 illustrates the general DT structure.
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The literature showed increased interest in virtual sensors for wind turbine applica-
tions. Li and Shen [4] introduced a DT-driven sensing methodology that utilized virtual
sensor arrays and a spatiotemporal network to detect faulty wind speed sensors, verified
their accuracy, reconstructed normal behaviors, and enhanced the reliability of sensors
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in wind turbines. Abdullahi et al. [8] proposed the utilization of fog computing architec-
ture to enhance the efficiency of wind turbines based on sensory data from real turbines.
Dimitrov and Göçmen [9] introduced machine learning-based virtual sensors, showcasing
their effectiveness in predicting blade root bending moment, detecting wind turbine wake
center location, and forecasting blade tip-tower clearance by establishing mathematical
relationships between the quantities of interest and other measurable sensor readings.
Kamel et al. [10] proposed a data-driven virtual sensor based on a hybrid machine learn-
ing approach, combining a linear state-space model with a non-linear neural network, to
accurately estimate internal loads on wind turbine bearings. Their method achieved a
high correlation coefficient of 98% in the time domain and frequency signature, enabling
applications like real-time force estimation and model predictive control. Nabiyan [11]
et al. implemented a mechanics-based DT for a 2 MW offshore WTG monitoring approach
using sparse measurement data. The proposed model updating approach accurately esti-
mated unmeasured responses and input forces, demonstrating better results compared to a
modal-based model updating method, with the added benefit of input load identification
and uncertainty quantification. Kusiak et al. [12] introduced a data-driven virtual wind
speed sensor for wind turbines using historical wind farm data and various data-mining
algorithms. The resulting virtual sensor, developed based on wavelet-transformed data,
offered potential applications in online monitoring, sensor calibration, and turbine control
for utility-scale wind turbines.

This paper highlights the usage of DT as a virtual sensor for WTG. The primary objec-
tive is to present a pioneering approach that leverages DT to enhance sensor capabilities and
address the inherent limitations of conventional physical sensors. It is organized as follows.
Section 1 introduces DTs and their prospective applications for WTG. Section 2 proposes
the mathematical models of the WTG from both mechanical and electrical perspectives.
In Section 3, the main three pillars of DT are described in detail. Section 4 provides the
primary test results of the DT model. Section 5 highlights the main paper’s findings. Finally,
conclusions and future directions are addressed in Section 6.

2. Wind Turbine Generator Basic Principles

The WTG comprises two distinct models: the mechanical turbine model and the
electric PMSG model.

2.1. Wind Turbine Mathematical Model

The objective of this section is to model the aerodynamic aspects of WTG. The mod-
eling approach will be straightforward, focusing on the wind profile and wind turbine
models. The conversion of wind kinetic energy into mechanical energy is facilitated by
the turbine. Additionally, the amount of kinetic energy contained in the air is directly
proportional to the area perpendicularly aligned with the wind speed direction [13].

Wind power (Pwind) can be expressed as:

Pwind =

(
1
2

)
∗ ρ ∗ A ∗ V3 ∗ Xc (1)

where:
ρ = density of air.
A = area perpendicular to the wind direction.
V = wind speed.
Xc = coefficient of performance of the turbine.
Taking into consideration the aerodynamics of the blades, the power extracted by

a wind turbine represents only a portion of the total power available in the wind. This
extracted power can be expressed as:

Pextracted =

(
1
2

)
∗ ρ ∗ A ∗ V3 ∗ Xc ∗ η (2)
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η = efficiency factor of the wind turbine (accounts for losses due to blade drag, gearbox
friction, generator losses, etc.).

T = (Pextracted ∗ 60)/(2 ∗ π ∗ ω) (3)

where:
ω = angular velocity of the turbine blades.

2.2. PMSG Mathematical Model

The mathematical model of a permanent magnet synchronous generator (PMSG) can
be derived from its equivalent circuit as shown in Figure 2 [14].
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The d–q model is a two-axis model that simplifies the analysis of the PMSG. The
d-axis is aligned with the rotor magnetic field, while the q-axis is perpendicular to it.
The d–q model allows us to analyze the electrical and magnetic components of the
generator separately.

The equations of the d–q model of a PMSG can be derived as follows:
The voltage equations for the d- and q-axis are:

vd = R ∗ ids + ωe ∗ ψq vq = R ∗ iqs − ωe ∗ ψd + ωm ∗ Ld ∗ ids (4)

where R is the stator resistance,ωe is the electrical angular velocity,ωm is the mechanical
angular velocity, and Lm is the magnetizing inductance.

The flux linkages in the d- and q-axis are given by:

ψd = Ld ∗ ids + Lmd ∗ iqs (5)

ψq = Lq ∗ iqs + Lmq ∗ ids (6)

where Ld and Lq are the self-inductances of the stator, and Lmd and Lmq are the mutual
inductances between the d- and q-axis.

The electromagnetic torque produced by the generator is given by:

Te = (3/2) ∗ P ∗ (ψd ∗ iqs − ψq ∗ ids) (7)

where Te is the electromagnetic torque, P is the number of poles.
The mechanical equation of the generator is given by:

J ∗ dωm/dt = Te − Tl − B ∗ ωm (8)
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where J is the moment of inertia of the rotor, Tl is the load torque, and B is the viscous
friction coefficient.

These equations describe the dynamic behavior of the PMSG in the d–q reference frame.

2.3. Combined WTG Mathematical Model

In this section, a combination formula between both wind turbine and PMSG mathe-
matical models is developed.

The electromagnetic torque produced by the generator is proportional to the product
of the magnetic flux and the current in the generator. The magnetic flux, in turn, is
proportional to the magnetic field strength and the area of the magnetic circuit. In the case
of a WTG, the wind speed affects the magnetic field strength by changing the rotational
speed of the generator and the velocity of the air flowing through it.

The relation between the electromagnetic torque produced by the generator and the
wind speed can be derived as follows:

The mechanical power from Equation (1) converted into electrical power by the
generator can be expressed as:

Pg = Pgmax ∗ (λ − λmin)/(λrated − λmin) (9)

where Pgmax is the maximum power output of the generator, λ is the tip speed ratio (TSR),
λmin is the minimum TSR required to start the rotor, and λrated is the rated TSR.

The electromagnetic torque produced by the generator can be expressed as:

Te = Pg/ωe (10)

where ωe is the electrical angular velocity of the generator.
The electrical angular velocity of the generator is related to the mechanical angular

velocity by:
ωe = ωm/P (11)

where P is the number of poles of the generator.
The mechanical angular velocity of the generator is related to the wind speed by:

ωm = λ ∗ V/R (12)

where R is the radius of the rotor.
Substituting Equations (10)–(12) into Equation (9) and simplifying, we obtain:

Te = (Pgmax ∗ λ/P) ∗ ((λ − λmin)/(λrated − λmin)) ∗ (R/V̂2) (13)

This equation shows the relation between the electromagnetic torque produced by
the generator and the wind speed. It indicates that the torque is proportional to the tip
speed ratio, which is a function of the wind speed and the rotor radius. The torque is also
proportional to the maximum power output of the generator and the number of poles, and
inversely proportional to the square of the wind speed.

The power generated by a wind turbine generator is dependent on the wind speed
and other factors such as the swept area of the rotor, the efficiency of the generator, and the
electrical load on the generator. The relation between the wind speed and generated power
can be derived as follows:

The electrical power generated by the generator is given by:

Pe = Pg ∗ ηg (14)

where ηg is the efficiency of the generator.
From (9) and (14) the electrical power generated is related to the wind speed as follows:

Pe = (1/2) ∗ ρ ∗ A ∗ V̂3 ∗ Xc ∗ ηg ∗ (λ − λmin)/(λrated − λmin) (15)
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The equations show the relationship between the wind speed and generated power
by the wind turbine generator. It indicates that the generated power is proportional to
the cube of the wind speed and the swept area of the rotor. It is also proportional to the
power coefficient, which is a function of the aerodynamic properties of the rotor blades. The
generated power is further multiplied by the generator’s efficiency to obtain the electrical
power output of the wind turbine generator.

3. WTG—Digital Twin Development Procedures

DT consists of three primary elements: physical model, virtual model, and intercon-
necting interface linking the two. The physical model serves as a representation of the
physical entity or system, like a test bench. The virtual model, on the other hand, is a digital
portrayal of the physical object. The interconnecting interface establishes a connection
between both models, enabling data exchange. This data can be utilized to monitor the
physical object or system and forecast its future performance.

3.1. WTG Physical Model (Test Bench)

The physical model of the direct drive WTG test bench is a comprehensive setup de-
signed to simulate and evaluate its performance. This test bench allows for thorough testing
and analysis of the generator under various scenarios of loading and wind conditions.

At the core of the test bench is a 600 W, eight poles surface-mounted PMSG, which
serves as the primary power-generating component. The PMSG is connected to a servo mo-
tor, which acts as a load emulator, replicating different mechanical and electrical loads that
the generator may encounter in real-world wind turbine applications. This configuration
enables the evaluation of the generator’s response and efficiency under varying conditions.
Table 1 provides an insight into the PMSG parameters. The mechanical parameters of the
WTG are illustrated in Table 2.

Table 1. PMSG parameters.

Parameter Description Value Unit

p Number of pole pairs 8 -
Nr Rated speed 750 rpm
Pr Rated output power 600 W
Ir Rated current 2.73 A

KT Torque constant 0.12 Nm/A
J Rotor inertia 0.002 kg ·m2

η Efficiency 92% -

Table 2. Mechanical parameters of WTG.

Parameter Description Value Unit

Ns Startup wind speed 3 m/s
Nc Cut-in wind speed 3.5 m/s
Nr Rated wind speed 12 m/s
Pr Max wind speed 25 m/s
Lp Blade length 1.5 m

To accurately measure and monitor the performance of the generator, a power analyzer
and data acquisition system (DAS) are integrated into the test bench. The power analyzer
enables the measurement and analysis of electrical variables such as voltage, current, power
output, and power quality indicators. The DAS captures and records these measurements
for further analysis and evaluation.

To facilitate precise control over the servo motor and its loading characteristics, a
servo drive system is employed. This servo drive system enables the test bench to simulate
different loading profiles and adjust the load dynamically, providing flexibility in repli-
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cating various wind conditions and evaluating the generator’s behavior under different
operational scenarios. Figure 3 shows the WTG test bench.
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3.2. WTG Virtual Model

The WTG virtual model created using MATLAB Simulink is a representation of a
system that combines the behavior of a wind turbine and a PMSG based on the mathe-
matical equations of combined WTG. This model aims to simulate the performance and
characteristics of a wind turbine generator under various operating conditions. Figure 4
shows the WTG virtual model.
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The model typically consists of several interconnected blocks in Simulink, each repre-
senting a specific component or subsystem of the wind turbine generator system. These
blocks are connected through signal lines, indicating the flow of information or energy
between them. At a high level, the model includes the following components:

(a) PMSG model:

This block receives the values of stator currents, voltages, and the rotor speed as inputs.
Using these inputs, it calculates the produced power output of the PMSG. The rotor speed
provides information about the rotational speed of the generator. By analyzing these inputs,
the PMSG block calculates the power generated by the generator.

(b) Wind Turbine Combined Model:
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The wind turbine combined model block uses the torque and power information from
the PMSG, along with the rotor speed, to infer the wind speed that would be required to
generate such mechanical power. This estimation assumes that the wind turbine system
operates within certain efficiency and power capture characteristics, which are incorporated
into the mathematical model.

3.3. Data Exchange Set (Service Unit)

The service unit, also known as the data exchange set, plays a crucial role in facili-
tating real-time data exchange between physical and virtual models. In this, an ActiveX
server was utilized to retrieve measured data from the DAS channels and transfer it to the
MATLAB workspace.

By employing an ActiveX server, we establish a connection between the DAS channels
and MATLAB, allowing for retrieving real-time data. The ActiveX server is set up to
interface with the DAS channels, which are responsible for acquiring data from physical
sensors or devices. The measured data from the DAS channels is fetched by the ActiveX
server. The ActiveX server communicates with MATLAB, using the appropriate interface
or API, to transfer the acquired data to the MATLAB workspace. Once the data are
available in the MATLAB workspace, it can be directly fed into the Simulink model for
processing and analysis. This approach allows for seamless integration between physical
measurements and virtual modeling in Simulink, enabling the incorporation of real-time
data into simulations.

4. WTG-DT Model Validation

Validation and tuning of the simulation model with the physical model are crucial
steps in the DT development process. This step ensures that the DT accurately represents
the behavior and performance of the real-world WTG.

To validate and tune the simulation model, real data obtained from the test bench
are utilized and serve as the input to the simulation model, allowing it to replicate the
operating conditions and parameters of the physical model. By using the actual data from
the test bench, the simulation model can be evaluated for its ability to accurately mirror the
performance of the physical WTG.

The servo motor drove the WTG under different speed conditions to emulate different
wind speeds. The WTG output was kept open with no loading as a primary stage. Us-
ing DAS, the data collected from the tests were the PMSG three-phase voltage, current,
generated power, and rotor speed.

To validate the accuracy of the model, a series of comprehensive tests were conducted
on the wind turbine. The initial phase involved testing the turbine under no loading
conditions, with the rotation driven solely by a servo motor operating at various speeds.
The resulting data from these tests were meticulously recorded and subsequently utilized
to feed the simulation model of the wind turbine.

Moving forward, the validation process proceeded to the second step, which entailed
subjecting the actual wind turbine to a range of diverse wind speed conditions. During
these rigorous tests, the real-time wind speed was precisely measured using a dedicated
wind speed sensor (anemometer). By comparing the data obtained from both the simu-
lated model and the real-world tests, an extensive analysis was conducted to identify any
similarities or discrepancies. Figure 5 shows some results of sampled actual vs. estimated
wind speed.
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It was observed that the estimated wind speeds derived from the simulation model
closely approximated around 83% of the corresponding values obtained from the wind
speed sensor during the real-world tests. However, it is essential to note that certain
external factors affecting the performance of the actual wind turbine were not adequately
accounted for in the simulation. These factors, which cannot be entirely captured in the
model, may explain the slight variance between the estimated and real wind speeds.

The comprehensive validation process undertaken, involving both controlled servo
motor tests and real-world weather condition experiments, provides substantial evidence
supporting the reliability of the model. Nevertheless, it is crucial to consider the limitations
of any simulation model and acknowledge the impact of external factors on the actual
performance of the wind turbine. The following Table 3 shows duplicated results.
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Table 3. Comparison between obtained results from real and virtual sensors.

Generated Power (W) Actual Wind Speed (m/s) Estimated Wind Speed (m/s) Rotor Speed (rpm) MAE

112 3.77 3.2 113 0.57
194 3.98 3.59 195 0.50
253 4.46 4.1 256 0.30
336 5.16 4.8 339 0.36
469 5.91 5.6 471 0.31
507 6.21 5.9 509 0.31
543 6.35 6.1 546 0.25
579 6.76 6.5 583 0.26

The mean absolute error (MAE) values in the provided table reflect the average mag-
nitude of the discrepancies between the estimated wind speeds and the actual wind speeds.
The relatively small MAE values across the data points (ranging from approximately 0.26
to 0.57) suggest that the wind speed estimation model is performing with good accuracy.
These low MAE values indicate that, on average, the estimated wind speeds are very close
to the actual wind speeds for the given data points.

5. Discussion

The application of DT technology as a virtual sensor for WTG has shown promising
results in this study. The DT model, based on the provided wind turbine specifications
and an estimation method, was used to estimate wind speeds based on generated power.
The obtained results were then compared with real-world data collected from wind speed
sensors under different generated power conditions. The conducted study was associated
with one condition of no loading.

The comparison between the estimated wind speeds and the real wind speeds demon-
strates the effectiveness of DT as a virtual sensor for wind turbine generators. The estimated
wind speeds exhibited a close agreement with the real wind speeds within 80% for the
given generated power values.

However, it is important to acknowledge the limitations and the inherent uncertain-
ties associated with the estimation method used. The accuracy of the estimated wind
speeds depends on various factors, including the wind turbine’s design, efficiency, and
environmental conditions, which may not be fully captured in the DT model. Additionally,
the estimation method itself introduces certain assumptions and simplifications that can
contribute to discrepancies between the estimated and real wind speeds.

6. Conclusions

This research underscores the significance of digital twins as a valuable tool for wind
turbine applications. The proposed DT-based sensing methodology offers a promising
solution to the limitations of physical wind speed sensors, contributing to the overall
efficiency and performance of wind turbine generators.

The test bench of a direct drive WTG based on a permanent magnet synchronous
generator (PMSG) served as a physical platform for developing and validating the DT
model. MATLAB/Simulink was utilized to derive the mathematical model and develop
the virtual WTG model. The integration of a data acquisition system (DAS) equipped with
an ActiveX server facilitated seamless real-time data exchange between the physical and
virtual models.

The validation and tuning process involved utilizing real sensory data from the
physical turbine model to ensure the accuracy and reliability of the DT-based virtual sensor.
The results obtained from the developed DT model have demonstrated its capability to
estimate wind speed based on the generated power, showcasing its potential as a reliable
alternative to traditional physical wind speed sensors.

In conclusion, while this study has made significant contributions to the understanding
of DT-based virtual sensors for wind turbine applications, there are several limitations
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that should be addressed in future research. These include conducting tests under varied
loading conditions, incorporating additional factors that can affect WTG performance,
leveraging artificial intelligence and machine learning techniques for advanced analysis,
and expanding the scope of the study to include diverse WTG designs. By addressing these
limitations, future studies can further enhance the accuracy, reliability, and applicability of
DT-based virtual sensors in the wind energy industry.
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