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A B S T R A C T   

In sustainable operation of electrical energy network, it is necessary to compute in real-time power flows and 
voltages at nodes for prioritizing power injection from clean energy resources. Intermittent renewable energy 
sources are likely to create voltage and power balancing issues and to maintain the voltage security of electrical 
network, real-time information of network power flows and bus voltages are required accurately and instanta-
neously. This paper presents an approach based on decision trees (DT) for real-time estimation of power flows 
within the electrical energy network and node voltages. A single tree structure is built for estimation of discrete 
(or categorical) as well as continuous values of line flows and node voltages of each line and node separately. A 
simple binary decision tree (BDT) and regression tree (RT) are used for estimation of discrete values and 
continuous values respectively. The training and testing patterns are generated by performing power flow 
analysis on an electrical energy network. Once the DT is trained, it estimates the line power flows and bus 
voltages with desired accuracy. The accuracy of the DT model is tested on a typical IEEE 30-bus system, using test 
patterns. Result shows that mean absolute error in case of line flow estimation for line number 1 and 10 are found 
to be 0.0028 p. u. and 0.0017 p. u. Also mean absolute error in case of bus voltage estimation for bus number 3 
and 10 are found to be 0.0019 p. u. and 0.0016 p. u. Above results are suggestive of instantaneous estimationwith 
desired accuracy of line flow and bus voltages, which is the need of the hour for sustainable electrical energy 
network with integration of cleaner energy resources.Since, DT gives instantaneous result therefore suitable for 
real-time applications in sustainable electrical energy management system.   

1. Introduction 

The grid integration of clean energy sources is increasing exponen-
tially, and it is impacting sustainable operation of electrical energy 
network. It demands a high degree of power network security for sus-
tainable operation. Thus, there is a pressing need to develop fast real- 
time power flow management for managing the electrical energy 
network in secure manner by controlling line power flows, voltage, etc. 
The real-time monitoring methods, which will help power system op-
erators to analyse the level of network security and to apply possible 
control actions in case there is a violation of the system security con-
straints. As a result of disturbances and integration of clean energy re-
sources, the power system operating state may move into an undesirable 

emergency state, whenever there is a violation of security constraints. 
Power system voltage security assessment needs databases that are 
created by load flow simulation study. Practically instabilities in the 
system are very small for most of the systems. Creation of databases are 
laborious task but it is advantageous, because it is possible to create 
large number of scenarios which is required to solve a certain task. 
Under these conditions fast computation of line power flows and bus 
voltage profiles is very important to enhance the power system steady 
state security assessment (Wood and Wollenberge, 1984). The compu-
tation of bus voltage and line flows by load flow analysis time 
consuming as it should run for any change in load/generations. In past 
several approaches are proposed such as distribution factors method 
(Illic-spong and Phadke, 1986; Ching and Nanming, 1992), bounding 
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method (Brandwajn and Lauby, 1989) concentric relaxation method 
(Zaborszky et al., 1980) pattern recognition method (Chang, 1989) etc., 
but they suffer from large computational time. Also,an artificial neural 
network (ANN) based method (Srivastav et al., 1998) is proposed but it 
takes long training time and knowledge to solve the problems is repre-
sented by the synoptic weights of ANN and difficult for system operators 
to understand the insights.Decision tree method (Yang and Hsu, 1994) is 
applied in past for line flows and bus voltage estimations in which all 
input attributes and desired output were taken in terms of levels 
(discrete values). Since input attributes are defined in terms of levels, 
hence splitting level of attribute deviate from true threshold of the 
attribute value, which introduces more classification errors. In this 
approach the number of branches from each node of decision tree is 
equal to the number of levels of the feature in that node hence tree size 
becomes larger as the number of levels are increases. S. Nandanwar et al. 
(Nandanwar and Warkad, 2016) have proposed probabilistic fuzzy de-
cision tree (PFDT) and classification and regression tree (CART) algo-
rithm for voltage security event classification. Both methods were 
compared for classification accuracy which prove the PFDT has more 
accurate. S. Nandanwar et al. (2018) proposed probabilistic fuzzy de-
cision tree for voltage security assessment, in which PFDT is used for 
case-based reasoning approach to learn new cases into the case-base, 
which is further used for security events classification. S.K. Jain et al. 
(2022a) proposed adaptive fuzzified decision tree for voltage security 
classification which only classify in terms of ‘secure’ and ‘insecure’ 
states with fuzzified decision variable but no real values are predicted.S. 
K. Jain et al. (2022b) also proposed power system voltage security event 
classification based on basic decision tree C4.5 model, in which security 
classes are classified secure and insecure operating states. All the above 
approaches discussed were used only for prediction in terms of classes 
like secure or insecure, but not prediction of continuous values of output 
parameter. Xiangfeiet et al. (Meng et al., 2020) proposed a DT approach 
for assessment of voltage security margin using DT algorithm C4.5 and 
CART which gives output in terms of the classes (categorical values) 
only. Meng Mahdi Kioumarsi et al. (Kioumarsi and Dabir-
iAmirrezaKandiri, 2023) proposed a decision tree method for estimation 
of compressive strength of concrete, which give continuous values in 
output. Shahid Husain et al. (Husain and Khan, 2021) proposed decision 
tree approach for assessment of monthly average diffuse solar radiation 
with solitary input forecaster as clearness index. Vasudev Dehalwar 
et al. (Dehalwar et al., 2022) proposed a blockchain-based self-sovereign 
identification method which has been tested by analysing to avert the 
identity theft and masquerading in which IoT devices based on Block-
chain is presented. This approach can minimize the chances of 
identity-based security breaches in the smart grid. 

In this paper, a decision tree-based approach is presented to compute 
transmission line power flows and node voltages of the power system. In 
this approach using the combination of BDT and RT, all the input at-
tributes are taken in terms of their continuous values and output (line 
flows and node voltages) are also estimated in terms of real or contin-
uous values. BDT and RT are embedded into the single tree structure 
referred as decision tree to estimate continuous values of line flow and 
node (i.e., bus) voltages. In a BDT all the input attributes are taken in 
terms of their continuous values and only output i.e., transmission line 
power flows and node voltages are taken in terms of levels (discrete 
values), hence it estimates the output values in terms of levels. BDT is 
useful for categorical classifications like states of power system ‘secure’ 
and ‘insecure’. In RT all the inputs as well as output are considered in 
terms of their real or continuous values. RT would be more useful, as the 
power system operation and control require real values of decision 
variables. The accuracy of decision tree is improved because of splitting 
is done at true threshold values of input attributes. Also, the tree 
structure becomes simple, because each node is associated with two 
branches only. Training time of the decision tree is very less (negligible); 
therefore, decision trees tend to be more useful in circumstances where 
the training is required regularly when new transmission lines and 

generators are added. This approach would also be useful with inte-
gration of clean energy resources which has intermittent nature of 
power generation like solar and wind generation. 

2. Decision tree 

In this approach simple binary decision tree (BDT) and regression 
tree (RT) are embedded into the single tree structure referred as decision 
tree. Here BDT is by-product of RT because RT is generated by first 
generating BDT. RT predict real values, are similar to binary decision 
tree (Pao, 1989; Quinlan, 1986; Wehenkel and Pavella, 1993). RT stores 
the numeric class values in the terminal nodes, whereas in case of binary 
decision tree, the output is obtained in terms of levels. RTs based on 
CART are binary trees, which gives constant real values in the terminal 
nodes and measure of impurity is determined by variance (Breiman 
et al., 1984). In this approach RT created by first creating binary tree and 
measure of impurity is given by entropy of learning data set. The average 
of the output values of instances that reaches to the particular leaf of 
binary decision tree is defined as numeric class value of RT. When a new 
instance is presented to the regression tree for testing, it travels along 
testing nodes and finally reaches to the leaf to which it belongs. The 
output to new instance is the class value of the leaf to which it reaches. If 
the number of levels is increased in the output, then the output values of 
the instances belong to that level of data becomes more closure to the 
average value of them. Hence accuracy of predictions is increased. 

DT required a reach data set, therefore in this work data set is 
generated by simulation under varying load conditions using the AC 
load flow analysis. A separate DT is built for each bus and transmission 
line. And all the DT are configured in parallel. When a testing pattern is 
presented, it will reach to the related DT only. The whole scheme is 
presented and discussed in sub section 3.1. 

2.1. DT Vs other approaches 

Most important features of DT are its inherent ability of selecting 
important input features (real and reactive load at PQ buses) based on 
information gain which has large impact on bus voltage and line flows, 
which is the outcome of this work. But in case of ANN, input feature 
selection needs separate algorithm. DT has taken about very small time 
(in the range of msec)to train and build the decision tree, whereas ANN 
requires large training time due to iterative process used in ANN 
training. After the DTs are trained, the execution time for computing line 
flows and bus voltage is almost instantaneous, because DT has only to 
make few comparisons (if-then rules). As the decision trees generate if- 
then rules to estimate the desired parameters, hence more transparent 
and easier for human user to understand insights, whereas in ANN the 
knowledge is represented by synoptic weights which are impossible to 
understand by operators. Real-time performance of decision tree is 
almost instantaneous, whereas load flow study and analytical methods, 
such as the distribution factor and bounding methods etc. are time 
consuming and not feasible for real time applications. In view of above 
DT are most suitable for real time applications and development of 
future smart grids and sustainable energy networks. 

3. Line flows and bus voltage estimation 

3.1. Methodology 

The block diagram that describes the transmission line power flow 
and bus voltage computation problem is shown in Fig. 1. First the data- 
base is generated by performing optimal power flow analysis. Data base 
consist of real power Pd, and reactive power Qd, at each PQ bus, real 
power generation Pg and voltage Vg of PV buses, transmission line power 
flows and bus voltages at all the lines and PQ buses respectively. DTs are 
generated to extract the hidden knowledge from database. Transmission 
line power flows and bus voltages (p.u. values on the base of 100MVA) 
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are target quantities to be estimated. To identify the pattern and its 
respective bus or transmission line of the power system, an additional 
attribute ‘K’ is introduced into the input pattern vector. 

Thus, the input vector becomes 

X=
[
P1,P2, .....Pn,Q1,Q2, .....Qn,Pgi,Vgi,K

]

where Pn is real and Qn is reactive demand on nth PQ bus respectively. Pgi 
and Vgi are real power generation and voltage of ith PV bus. 

Fig. 2 shows the generalized diagram of proposed approach. DTs are 
required for all the transmission lines or buses separately for computa-
tion of line power flow and bus voltage profiles. DTs are configured in 
parallel to estimate line power flows and bus voltages profiles sepa-
rately. Identifier K is required to identify the DT to which test pattern 
belongs to. Where K is PQ bus or transmission line number. 

3.2. Algorithm 

Detailed procedure for creating the DTs is summarized as follows. 

Step 1 Performing AC load flow to generate large number of load 
patterns by varying the load randomly at each bus. Each pattern 
comprises N (N = 59 in this work) input features (Active load Pd, 
reactive load Qd, active generation Pg, and voltage of PV buses) and 
an output (line flows and bus voltages). These patterns are generated 
for the same topology. 
Step 2 Transmission line power flows and bus voltages (outputs) are 
discretized in to a suitable number of levels between their maximum 
and minimum values (in this work 5 number of levels is found suit-
able to get desired accuracy). Output can be discretized into a greater 
number of levels (in case of large variation in output values) to 
obtain output more closure to actual value. 
Step 3 Determining the root node by computing prior classification 
entropy (A3) of all the attributes and selecting the attribute, which 
has highest entropy. 
Step 4 Dichotomy test (A1) is performed on each test node to split so 
that maximum information gain (A2) can be obtained. 
Step 5 Determining the leaves and dead ends by applying stop 
splitting rule as:  

(a) If the subset S is containing (almost completely) those states, 
which belongs to any one class, then the node is a leaf, i.e. If Hc 
(s) ≤Hmin, minimum value of entropy at the node then the node 
is a leaf node  

(b) If Hc(s) ≤Hmin in step 5(a) is not true, then test on score of best 
attribute has to be done. If the best attribute has a too low score 
(smaller than some minimum value, Scmin), the node is declared 
to be a dead-end. 

Step 6 Determine numeric class values for all the leaves of the tree 
using (A7). 

4. Results and discussions 

An IEEE 30-bus test system (Power system test cases, 2023) is used to 
test effectiveness of proposed approach. The 30-bus system is having 6 
PV buses, 24 PQ buses and 41 transmission lines. For each bus and 
transmission line a DT is required separately to be trained to compute 
bus voltage profiles and transmission line power flows, under varying 
demand. Since, for real time voltage security assessment we need to find 
voltage at all the buses and power flows through all the lines under 
varying loads and contingencies to monitor any over/under voltage at 
the buses and overloading of the transmission lines. Since AC load flow 
is an iterative process and takes long times to estimate the bus voltage 
and line flows which is not feasible in practical size power networks. 
Therefore, data mining methods like DT which gives prompt response in 
real time applications and useful for sustainable energy networks. Sys-
tem operators has to monitor any violation of the line loadings which 
may result into blackouts if not identified and appropriate corrective 
action taken in advanced. Since, clean energy resources or intermittent 
in nature which may cause the load flow study more tedious and time 
consuming which is not desirable in real time applications. Therefore, 
DT approach is proposed to estimate line flows and bus voltages in real 
time for sustainable energy networks. In this work, 300 load patterns 
were generated randomly for each bus voltage and lines flows. Out of 
which 200 patterns were used for training purposes and the remaining 
100 patterns are used for testing purposes. 

4.1. Line flow estimation 

Decision trees are built using training set for all the 41 lines. A De-
cision trees for each line has tested by100 test patterns, which were 
unseen to the decision tree. Figs. 3 and 4 shows the decision trees for line 
flows of line number 1 & 10 respectively. Variables inside the node 
(ovals shapes in the figure of the tree) are input attributes i.e., real and 
reactive load at PQ buses, which leads that node (e.g., in Fig. 3, Pd18 is 
the real power demand at bus No. 18, etc.). In the leaves (terminal node) 
of the tree, range of line flows are shown, which were defined as levels in 
their ascending orders and it is the class value of BDT. Constant value in 
the leaves represents the class value of RT. Number appears below the 
leaf’s indicate number of training patterns, falling in to that leaf. 

Because of space limitation, testing results of two lines 1&10, for 10 
samples testing patterns are listed in Tables 1 and 2 respectively. Ta-
bles 1 and 2 shows predicted and actual values in terms of levels and 
continuous values (p.u.) of line flows. The mean absolute error for all the 

Fig. 1. Line flow and bus voltage computation framework.  

Fig. 2. Conceptual diagram of decision tree model for bus voltage and line 
flow estimation. 
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100 testing patterns was found 0.0028 and 0.0017 for lines 1 & 10 
respectively. Line flow estimation using BDT, for lines 1 & 10, respec-
tively, in terms of levels is also given in Tables 1 and 2 in which errors 
was found zero. Testing results for both the lines 1 & 10 for 50 testing 
patterns are graphically presented in Figs. 5 and 6. It can be seen that 

estimated line flows by RT closely matches with the values calculated by 
optimal power flow analysis. 

It is found that discretizing the line flows into 5 numbers of levels are 
enough to get the desired accuracy. Error analysis of BDT for all the 41 
lines is given in Table 5. In which each line is tested for 100 load patterns 

Fig. 3. Decision tree for line-1 flow.  

Fig. 4. Decision tree for line-10 flow.  

Table 1 
Line flow estimation of line-1.  

By Binary decision Tree By Regression Tree 

Actual 
Flow Level 

Predicted 
Flow Level 

Error Actual Line 
Flow 

Predicted Line 
Flow 

Error 

2 2 0 0.074 0.075 0.001 
2 2 0 0.072 0.075 0.003 
2 2 0 0.074 0.075 0.001 
1 1 0 0.066 0.065 − 0.001 
2 2 0 0.074 0.075 0.001 
2 2 0 0.074 0.075 0.001 
4 4 0 0.099 0.101 0.002 
4 4 0 0.104 0.101 − 0.003 
3 3 0 0.089 0.087 − 0.002 
1 1 0 0.071 0.065 − 0.006 
No of test pattern = 100 No of test pattern = 100 
Correctly classified pattern = 100 Mean absolute error = 0.0028  

Table 2 
Line flow estimation of line-10.  

By Binary decision Tree By Regression Tree 

Actual 
Flow Level 

Predicted 
Flow Level 

Error Actual Line 
Flow 

Predicted Line 
Flow 

Error 

4 4 0 0.305 0.306 0.001 
1 1 0 0.277 0.280 0.003 
5 5 0 0.318 0.317 − 0.001 
3 3 0 0.299 0.297 − 0.002 
1 1 0 0.280 0.280 0.0 
5 5 0 0.310 0.317 0.007 
1 1 0 0.283 0.280 − 0.003 
5 5 0 0.318 0.317 − 0.001 
3 3 0 0.296 0.297 0.001 
2 2 0 0.292 0.288 − 0.004 
No of test pattern = 100 No of test pattern = 100 
Correctly classified pattern = 98 Mean absolute error = 0.0017  
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(total test are 4100) out of 4100 tests performed, 4035 are having no 
error. Percent of correctly classified patterns for line flows is 98.41%. 
Percent of patterns in which, there is error of one level is 1.57%. Percent 
of patterns in which, there is error of two level is 0.0732%. Percentage 
expected error per test is 1.66%. 

DT has self-contained ability to select important features only, which 
impacts the line flows most. In all the cases of line flows total input 
features were 59 (Pd,& Qd at PQ buses, Pg &Vg at PV buses). Figs. 3 and 4 
shows the tree for line flows of line 1&10, in which out of 59 features 
only 4 input features are selected for building the tree. Input features of 
least importance, which are not significantly influencing the line flow, 
are discarded on the basis of information measure. 

4.1.1. Decision process 
Taking example of estimation of line flow for line number-10 given 

in Fig. 4. For this line, during random pattern generation for 300 pat-
terns, minimum and maximum p.u. value of line loading is divided into 5 
levels defined as Level-1 [0.2750–0.2836], Level-2 [0.2836–0.2922], 
Level-3 [0.2922–0.3008], Level-4 [0.3008–0.3094] and Level-5 
[0.3094–0.3190] as mentioned in Fig. 4. Now during training session 
200 patterns were presented to build the DT. Then these 200 patterns 
were divided in five levels from Level-1 to Level-5 as 26, 26, 22, 16, 110 
respectively. Using Eq. (A7)(in Appendix) the average values of line flow 
for instances falling in each individual levels are mentioned in terminal 
nodes of DT as constant values viz. 0.28, 0.288, 0.297, 0.306, 0.317 in 
Fig. 4. 

When testing pattern (which is unseen to DT) is presented to DT, then 
DT made logical comparisons (using if-then rules) with input attributes. 
Input attributes which are selected during training as mentioned in DT 
of Fig. 4 viz. Pd18, Pd19, Pd20 (i.e. real load on bus no. 18, 19 & 20) and 
Vg27 (voltage at bus no. 27). Based on the values of input attributes, 
given testing pattern finally travels to any of the terminal node to which 
it belongs. Once the testing pattern reached to particular terminal node, 
the average value given in that node is assigned as outcome of the testing 
pattern i.e. line flow corresponding to that loading pattern. Results for 
line flow for line-10 are given in Table-2, in which predicted values are 
in terms of average value of instances in terminal nodes of DT as given in 

Fig. 4. Results reveals that absolute mean error for line-10 flow is 0.0017 
which is very small and acceptable for real-time contingency analysis. 
For other cases of line flow and bus voltages, same process of decision 
making is followed. 

4.2. Bus voltages estimation 

Figs. 7 and 8 shows the decision trees for bus voltages of bus number 
3 & 10 respectively, in which out of 59 input features only 4 input 
features in each are selected for building the tree. Because of space 
limitation, testing results of two buses 3 & 10, for 10 sample testing 
patterns are listed in Tables 3 and 4 respectively. Tables 3 and 4 shows 
the mean absolute error for all the 100 testing patterns, which was 
0.0019 and 0.0016 for buses 3 & 10 respectively. Tables 3 and 4 also 
show the bus voltage estimation in terms of levels using BDT, for buses 3 
& 10, respectively, in which errors was found zero. 

Testing results for both the buses 3 & 10 for 50 testing patterns are 
graphically presented in Figs. 9 and 10. It can be seen that estimated bus 
voltages by RT closely matches with the values calculated by optimal 
power flow analysis. It is found that discretizing the bus voltages for RT 
into 5 number of levels are enough to get the desired accuracy. Error 
analysis of BDT for all the 24 buses is given in Table 5. In which each bus 
is tested for 100 load patterns (total test are 2400) out of 2400 test 
performed, 2369 are having no error. Percent of correctly classified 
patterns for bus voltages is 98.72%. Percent of patterns in which, there is 
error of one level is 1.29%. In bus voltage estimations only error of one 
level is found, hence percentage expected error per test is same as 
percent of patterns in which error of one level is found. In real-time 
contingency ranking of we need only relative severity. Therefore, 
without performing load flow study in real-time (which is very time 
consuming) proposed approach is most useful and gives results almost 
instantaneously. Objective of this work is to estimate line flow and bus 
voltages in real time, and also the same approach can be extended for 
contingencies ranking and selection using suitable performance indices 
for severity measurement, which will be done in the future work. 

5. Conclusion 

In this paper, a BDT and RT approach has been presented to compute 
transmission line power flow and bus voltages of a 30-bus IEEE test 
system. The BDT gives the accurate results in terms of the pre-defined 
levels. These levels can be analysed and defined as secure or insecure 
for power system security assessment, which is very useful in real time 
environment, where this information is required almost instantaneously. 
RT predicts the values of transmission line power flows and bus voltages 
in terms of continuous values with the desired accuracy. Integration of 
clean energy resources with grid may cause large fluctuation in voltages. 

Fig. 5. Testing result of line-1.  

Fig. 6. Testing result of line-10.  

Fig. 7. Decision tree for Voltage of Bus-3.  
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Therefore, fast computation of real time line flow and bus voltages are 
having paramount importance in a power grid with integration of clean 
energy resources like solar and wind energy. Since, RTs estimates 
continuous values in real time, therefore this approach would equally be 
useful for practical power systems with exponentially increasing clean 
energy resources. The estimated value can be achieved more closure to 
actual value by dividing the output into large number of levels. Most 
important features of DT are its inherent feature selection ability, based 

on information gain it selects only those attributes (real and reactive 
load at PQ buses) for building DT, which influence the transmission line 
flow and bus voltage most. On the other hand, in case of ANN, feature 
selection is to be done separate algorithm to reduce size of architecture 
of ANN. In this work DT has taken about 0.09 s to build the decision tree, 
whereas ANN requires large training time due to iterative process used 
in ANN training. After the DTs are trained, the execution time for 
computing line flows and bus voltage is almost negligible, because DT 
has only to make few comparisons. Due to its inherent feature selection 
capability, DT selects only the features which influence the line flow and 
bus voltage largely, as system size increases, training and execution time 
would not be affected significantly. As the decision trees generate if-then 
rules to estimate the desired parameters, hence more transparent and 
easier for human user to understand insights, whereas in ANN the 
knowledge is represented by synoptic weights which are impossible to 
understand by operators. Real-time performance of decision tree is 
almost instantaneous, whereas load flow study and analytical methods, 

Fig. 8. Decision tree for voltage of bus-10.  

Table 3 
Bus voltage estimation of bus-3.  

By Binary decision Tree By Regression Tree 

Actual 
Voltage 
Level 

Predicted 
Voltage Level 

Error Actual Bus 
Voltage 

Predicted Bus 
Voltage 

Error 

5 5 0 1.036 1.035 − 0.001 
5 5 0 1.037 1.035 − 0.002 
5 5 0 1.025 1.035 0.01 
1 1 0 0.972 0.971 − 0.001 
4 4 0 1.017 1.016 − 0.001 
5 5 0 1.036 1.035 − 0.001 
1 1 0 0.973 0.971 − 0.002 
2 2 0 0.984 0.987 0.003 
5 5 0 1.037 1.035 − 0.002 
5 5 0 1.037 1.035 0.002 
No of test pattern = 100 No of test pattern = 100 
Correctly classified pattern = 100 Mean absolute error = 0.0019  

Table 4 
Bus voltage estimation of bus − 10.  

By Binary decision Tree By Regression Tree 

Actual 
Voltage 
Level 

Predicted 
Voltage Level 

Error Actual Bus 
Voltage 

Predicted Bus 
Voltage 

Error 

1 1 0 0.998 0.999 0.001 
5 5 0 1.038 1.038 0.0 
5 5 0 1.038 1.038 0.0 
1 1 0 1.0 0.999 − 0.001 
5 5 0 1.037 1.038 0.001 
5 5 0 1.038 1.038 0.0 
1 1 0 1.0 0.999 − 0.001 
4 4 0 1.03 1.025 − 0.005 
5 5 0 1.037 1.038 0.001 
3 3 0 1.012 1.009 − 0.003 
No of test pattern = 100 No of test pattern = 100 
Correctly classified pattern = 100 Mean absolute error = 0.0016  

Fig. 9. Testing result of bus-3.  

Fig. 10. Testing result of bus-10.  

Table 5 
Testing results for all the lines and buses.  

Absolute error 
level 

For line flows For bus voltages 

Number of 
tests 

Percentage 
(%) 

Number of 
tests 

Percentage 
(%) 

0 4035 98.41 2369 98.72 
1 65 1.57 31 1.29 
2 3 0.0732 0 – 
3 0 – 0 – 
4 0 – 0 – 
5 0 – 0 –  

Total no. of test performed for 
line flows = 4100 

Total no. of test performed for 
bus voltages = 2400  
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such as the distribution factor and bounding methods etc. are time 
consuming. The proposed approach would support to develop sustain-
able electrical energy networks which may deliver the clean energy 
efficiently and reliably to the consumers. Also due to intermittent nature 
of renewable energy resources, fluctuation in bus voltage and line flow 
may be large and need instantaneous estimation of them, which can be 
done using DT approach. This work can be further extended by 
considering contingencies for real time voltage security assessment. 
Therefore, proposed approach is going to be useful for sustainable 
operation of future electrical energy networks. 
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Appendix 

Dichotomy 

Then dichotomy test ‘T’ is defined as (Quinlan, 1986) 

ai ≤ Vis? (A1) 

Test is performed on each node progressively which chooses an attribute ai and cutoff value as Vis. Test is executed on all the values of ai to 
decompose the training set into subsets at each node. Threshold value is selected in such a way to get the maximum information gain. 

To measure information gain 

According to information gain theory, information gain in set of pattern ‘S’ of the training set at the current node by the test ‘T’ is given by 
(Quinlan, 1986) 

IT
C(S) =HC(S) − HC/T(S) (A2)  

where Hc(s) is prior classification entropy measures the impurity of set ‘S’ given by (Quinlan, 1986) 

HC(S)= −

[(
Nc1

S

)

Log2

(
Nc1

S

)

+

(
Nc2

S

)

Log2

(
Nc2

S

)]

(A3)  

where Nc1 and Nc2 are the number of training patterns pertaining to classes say ‘yes’ and ‘no’ respectively. 
Also,Hc/T(S) is mean posterior classification entropy of subset ‘S’. If test ‘T’ comes true, then number of patterns are Sy and if test ‘T’ is false then ‘S’ 

breaks into subset having states is Sn (Quinlan, 1986). 

HC/T(S) = −

[(
Sy

S

)

×HC
(
Sy
)
+

(
Sn

S

)

×HC(Sn)

]

(A4) 

Normalized form of information gain (called score) is described as (Quinlan, 1986) 

GT
C(S)= 2 ×

IT
C(S)

HC(S) + HT(S)
(A5)  

here HT(s) is the quantify the uncertainty in the outcome of test ‘T’ for the subset ‘S’ at current node. (Quinlan, 1986) 

HT(S) = −

[(
Sy

S

)

Log2

(
Sy

S

)]

+

(
Sn

S

)

Log2

(
Sn

S

)

(A6)  

Regression 

C=
1
N

∑N

i=1
(ci

)

(A7)  

where. 

C = Class value (numeric) of the leaf. 
N = Number of instances reaches to that leaf. 
ci = Class value of ith instance reaches to the leaf. 
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