Paper IV

Assessing the individual relationship between physical test improvements and external load match performance in male professional football players – a brief report.

Byrkjedal, P. T., Bjørnsen, T., Luteberget, L. S., Ivarsson, A., & Spencer, M.

Manuscript accepted 2. April (2024) in Frontiers in Sports and Active Living. Doi: 10.3389/fspor.2024.1367894

Assessing the individual relationships between physical test improvements and external load match parameters in male professional football players – A brief report

- Per Thomas Byrkjedal^{1*}, Thomas Bjørnsen¹, Live Luteberget^{1,2}, Andreas Ivarsson^{1,3}, Matt 1
- 2 Spencer¹
- 3 ¹Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
- ²Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway 4
- 5 ³School of Health and Welfare, Halmstad University, Halmstad, Sweden
- 6 * Correspondence:
- 7 Per Thomas Byrkjedal
- 8 per.byrkjedal@gmail.com
- 9 Keywords: Team sports, GPS, Athlete monitoring, Player development, Performance.
- 10 **Abstract**
- 11 **Purpose**: To explore if a meaningful improvement in physical performance following an in-season
- 12 strength training intervention can be related to external load match parameters at an individual level
- 13 in professional male football players.
- **Methods**: Eight male professional football players (25.4±3.1 yrs, 184.1±3.4 cm, 79.3±2.2 kg) 14
- completed a 10-week strength intervention period, in addition to football specific training and 15
- matches. Commonly used physical and external load measures were assessed pre- and post-16
- 17 intervention. Physical performance improvements had to exceed the measurements typical error and
- the smallest worthwhile difference (SWD) to be considered meaningful. SWD and non-overlap of all 18
- 19 pairs (NAP) analysis was performed to assess external load match parameters pre- and post-
- intervention period. A Bayesian pairwise correlation analysis was performed to assess relationships 20
- 21 between changes in physical performance and external load match parameters.
- 22 **Results**: Three players displayed meaningful improvements in 2 to 5 measures of physical
- 23 performance. However, positive changes greater than SWD, and positive effects in NAP results were
- 24 shown for all players in external load match parameters. Kendall's Tau correlation analysis showed
- 25 evidence (base factor >3) for only one correlation (maximum speed – decelerations, $\tau = -.62$),
- 26 between the changes in physical performance and external load measures, while the remaining
- comparisons were unrelated. 27
- 28 **Conclusions**: The findings suggest that improvements in physical performance may not necessarily
- 29 translate to improvements in external load match parameters. Further research, with larger sample
- 30 sizes, is needed to understand potential mechanisms between acute and chronic physical performance
- 31 changes and football external load parameters during training and matches.

33 1 Introduction

- 34 Coaches and practitioners may interpret improvements in physical capacity of fitness tests as
- coinciding with improvements in physical match performance, based on the assumption of a causal
- 36 relationship between these variables, with little evidence of the construct validity (e.g., dose-response
- 37 relationship) (1). Well-developed physical performance is indeed important for football-specific
- 38 performance. However generic measures of physical performance are influenced by numerous
- 39 factors, including reliability and validity, which must be considered whenever interpretating changes
- 40 in physical performance (2, 3). E.g., to minimize the impact of extraneous factors it is imperative to
- 41 conduct physical testing in controlled environments, with an understanding of the equipment's
- 42 inherent measurement errors. For example, common physical performance measures, such as 10- and
- 43 30-m linear sprint time, maximum speed, countermovement jump (CMJ) and leg press power have
- demonstrated a raw and relative (%) typical error (TE) of 0.03-0.05 seconds (TE%: ~1.3), 0.18 m/s
- 45 (TE%: 1.4), 1.7 cm (TE%: 4.6) and 70 W (TE%: 4.4), respectively (2). Besides awareness of
- reliability, determining the meaningfulness of any observed change is an essential aspect of player
- 47 monitoring, and can, as an example, be calculated by estimating the smallest worthwhile difference
- 48 (SWD) (2-4). Thus, utilizing the TE and SWD may be seen as feasible criteria in the process of
- 49 determining whether performance improvements or declines should be interpreted as meaningful or
- 50 not.
- In addition to tracking changes in physical performance over time, external load data is commonly
- used to monitor training and match load in football at a group and individual level (5, 6). Previous
- research has found strong cross-sectional associations between physical performance and match
- running performance in football (7, 8), and football-specific training has been shown to improve
- physical performance (9). Thus, recent research suggests that external load measures can be reflective
- of players physical performance (10). However, physical performance and external load data are
- known to differ between competitive levels (7) and there is a lack of knowledge on how changes in
- 58 physical performance is reflected in external load parameters among highly trained players. For
- 59 example, speed and explosive movements are regarded as important for football-specific
- performance (5, 11) and minor performance enhancements in these players may potentially influence
- 61 the likelyhood of success in match-decisive actions (12, 13). Contrastingly, external load is typically
- assessed cross-sectionally and it is currently unknown how changes in physical performance
- 63 measures impact external load in match-play. In addition, when evaluating highly trained players,
- subtle differences and unique variation within and between players is of upmost importance (12).
- 65 Consequently, the assessment of players in elite sports necessitates a personalized approach,
- 66 highlighting the significance of tailoring evaluations to individual needs (11, 14). Contrastingly,
- 67 research has traditionally focused on group assessments when presenting their findings (6, 14).
- With the importance of assessing individual responses in both physical test performance and external
- 69 match load data, this brief report aims to explore if a meaningful improvement in players physical
- test performance is related to external load match performance by assessing the individual player
- 71 response. This brief report is based on data from a strength intervention study by Byrkjedal et al
- 72 (2023) including a team of male professional football players (15).

2 Methods

- 74 This case study originates from a 15-week study where professional footballers underwent a 10-week
- strength training intervention (15). Physical performance (30-m sprint, CMJ, and leg press power)
- was measured pre- and post-intervention, and external load match parameters were monitored in five

- 77 matches at the start ("baseline") and at the end ("follow-up") of the intervention period. An overview
- of the study period is presented in Figure 1. This report aims to identify meaningful improvements in
- 79 player's physical test performance and to explore the relationship with changes in external load
- match parameters. See Byrkjedal et al., 2023 (15) for more details on the original study design and
- 81 data processing.
- 82 "Insert Figure 1 here"

2.1 Subjects

83

- 84 16 outfield players representing a Norwegian 2nd tier club completed the strength intervention period
- and were eligible for inclusion in this brief report. However, players had to participate in a minimum
- 86 of two matches (with ≥60 min playing time per match) in both the baseline- and follow-up period to
- be included in this brief report. Eight male players (baseline n=6, follow-up n=2) were excluded due
- to lack of match participation and/or sufficient playing time. Thus, a total of eight players (25.4 ± 3.1)
- yrs, 184.1 ± 3.4 cm, 79.3 ± 2.2 kg) are included for further analysis. Written informed consent was
- 90 obtained before the study commenced. The study was performed according to the Helsinki
- 91 declaration of 1975, approved by the local ethical committee at the University of Agder,
- 92 Kristiansand, Norway, and Norwegian Center for Research Data (approval reference: 464080).
- 93 Briefly, physical performance testing pre- and post-intervention was completed in one day using a
- 94 test-battery of 30-m sprint, CMJ, and Keiser leg press. The 30-m sprint test involved 2-4 maximal
- 95 sprints with 4 min passive rest, where the best attempt was analyzed. CMJs were completed with 2-3
- sets of 3 jumps performed 30 s apart, separated by 2-3 min passive rest. The mean jump height of the
- 97 two best attempts was analyzed. Lower limb strength and power were assessed using a horizontal
- 98 pneumatic leg press device with a 10-RM protocol (15). To be considered a meaningful
- 99 improvement, performance enhancements had to exceed raw and relative (%) TE and SWD (2-4).
- The same test equipment and protocols as Lindberg et al (2022) (2), were used, and pre-test results
- were used to calculate SWD (3, 4).
- Match performance was assessed with a tracking system from Catapult Sports (Vector S7, Firmware
- 8.10, Catapult Sports, Melbourne, Australia). Ten matches, five in the baseline and in the follow-up
- period were included to investigate the effect in external load match parameters after the intervention
- period. External load parameters, relative to playing time, included distance per min, PlayerLoadTM,
- high-speed running (19.8-25.2 km/h; HSR) and sprint running (>25.2 km/h) distance, accelerations,
- decelerations and change of directions (summary of movements in the respective direction's with an
- intensity >2.5 m/s). The sum of these were displayed as high-intensity events (16).

2.2 Statistics

- Descriptive results were calculated using Microsoft Excel (version 16.67, 255 Microsoft Corp.
- Redmond, WA, USA) and are reported as Mean \pm SD (standard deviation). Differences in external
- load parameters are reported as mean with 95% upper and lower confidence limits. A nonparametric
- Bayesian correlation analysis was performed in JASP (Jeffreys's Amazing Statistics Program;
- version 0.16.1) to investigate the relationship between the physical test performance and external
- load parameters. The Kendall Tau correlations in combination with Bayes Factors (BF) were
- calculated for each comparison. The BF is one method to quantify the likelihood of an alternative
- hypothesis (H1) compared with the null hypothesis (H0) and is expressed as BF_{10} . A $BF_{10} > 3$ was
- interpreted as evidence supporting the association. For a more comprehensive description and full
- interpretation of BF₁₀, see Byrkjedal et al (2023) (16).

- Differences in external load match parameters between the baseline- and follow-up period were
- analyzed using SWD, calculated as 0.2 of the between players SD at pre-test/baseline (3), and non-
- overlap of all pairs (NAP). NAP is a nonparametric technique for measuring non-overlap or
- "dominance" for two phases, and a feasible way to interpret individual effects between two periods.
- Advantages with the NAP are, for example, that it can be applied in distributions that lack normality
- and all data points collected is included into the analyses. Disadvantages are that it cannot be used to
- evaluate trends or serial dependency. For a more thorough explanation of NAP and its application,
- see Parker and Vannest, 2009 (17). Effect sizes for NAP values were interpreted according to
- previous recommendations: 0-.65 = week effects, .66-.92 = moderate effects, .93-1.0 = large or
- strong effects (17).

3 Results

130

- 131 Results from pre- and post-intervention period and changes in physical test performance and external
- load match parameters are presented in Table 1. Kendall's Tau correlations between changes in
- physical test performance and external load are presented in Table 2. Three players showed physical
- test improvements greater than the SWD, TE and TE%, and their individual NAP effects in the three
- most common external load match parameters (total-, high-intensity running- and sprint running
- distance) (5) are presented in Figure 2. Individual figures and NAP effects across all variables for all
- eight players are available in supplementary materials.
- "Insert Table 1 and 2 here"
- "Insert Figure 2 here"

140 4 Discussion

- 141 This study explored the effects in external load match parameters following a meaningful change in
- physical test performance post an in-season strength intervention including a small sample of
- professional football players. Our results suggest that a meaningful change in physical test
- performance does not directly impact external load match parameters, and we do not observe changes
- in physical test performance to be associated with changes in external load match parameters.
- When looking at the results (Table 1), three players (a, e, and h) showed meaningful physical test
- improvements. Contrastingly several other players showing strong NAP-effects and changes >SWD,
- suggesting that meaningful improvements in physical test performance were not consistently
- reflected in external load match parameters. Indeed, this study was conducted in-season, with a high
- 150 football-specific focus likely explaining the uniform improvements in external load match
- parameters.
- External load has been explored as a simple tool to monitor players physical fitness in a previous
- study, and although some parameters were correlated, it was highlighted that the measures may not
- be sensitive enough to detect small but meaningful alternations in players fitness (10). This
- observation is coherent with our findings. Furthermore, a small range of physical performance
- improvements complicates the identification of a relationship, nevertheless, such minor
- improvements may still be important for football-specific performance. Despite cross-sectional
- assessments demonstrating a relationship between physical performance and external load data across
- subjects (7, 11), our finding suggests that small but meaningful within-subject improvements in
- physical performance might not affect external load parameters.

- 161 Current research emphasize the large variations within external load match data, therefore the lacking
- sensitivity that is a huge challenge when attempting to assess associations in changes of potentially
- associated data such as physical fitness test results (18). It is possible that larger physical
- performance improvements typically seen after years of practice, for example from youth academy to
- senior elite level players (7, 8, 11), would be necessary to reflect changes in external load data.
- Sport-specific performance such as match-play is a highly complex task, difficult to decipher by
- fixed moving patterns such as generic physical performance tests or external load parameters (1, 7,
- 168 16). The inherent challenge of identifying small but meaningful performance changes is evident even
- in simple physical performance assessments (1, 2), and with the variation in external load parameters
- 170 (11, 15), the lack of an association in the current study is not unexpected. However, the importance of
- physical performance testing or external load monitoring per se, should not be neglected. While we
- emphasize the challenges of assuming a causal relationship between them without supportive data
- 173 (1), both physical performance results and external load data in themselves can be of high value for
- practitioners in optimizing player performance and development, minimizing risk of injuries and
- preparing for competitive performance (5, 7, 11).
- Previously (9, 10) and in the current study, external load match data has been included to explore the
- 177 relationships with physical performance, despite the known challenges with match-to-match
- variabilities (19) and influence of contextual factors (20). However, drills, such as small sides games,
- have been thoroughly utilized as a way of standardizing game-play (21). Such drills may represent a
- 180 feasible measure of players performance and should be further explored as a method to standardize
- the external load demands when exploring the relationships between physical fitness and external
- load parameters in future studies (6).

5 Practical application

183

193

- Although this data set has a small sample size, we believe our findings can serve as a foundation for
- future studies. In general, we highlight the need to increase the knowledge on how strength training
- adaptations can impact a variety of football match external load parameters and performance. With
- no direct link between improvements in physical performance tests and changes in external load
- match parameters, coaches and practitioners should evaluate the importance of physical and external
- load monitoring separately and avoid postulating an effect between two measures without supportive
- data. We emphasize the need for researchers and practitioners to work closely together to better
- understand and explore how physical performance changes can potentially affect different measures
- of football specific parameters.

6 Conclusions

- 194 Improvements in physical test performance may not necessarily translate to changes in external load
- match parameters. More research is needed to address and understand the mechanisms between
- changes in physical performance and how this affects measures of match related external load
- 197 performance. Future studies should include larger samples of trained players and include a non-
- strength training control group to further investigate the relationship between changes in physical test
- 199 performance and measures of external load from both training and match situations.

200 7 Nomenclature

- 201 CMJ: Countermovement jump
- 202 TE: Typical error

- 203 SWD: Smallest worthwhile difference
- NAP: Non-overlap of all pairs
- 205 HSR: High-speed running
- 206 Bayes Factors: BF

207 **8** Conflict of Interest

- 208 The authors declare that the research was conducted in the absence of any commercial or financial
- relationships that could be construed as a potential conflict of interest.

210 9 Acknowledgments

- The authors would like to thank Atle Thushelle, Kolbjørn Lindberg and Fredrik Tonstad Vårvik for
- their contributions to the work related to this study, and all players and staff from the included team.
- 213 This study would not have been possible without your cooperation, Thank you!

214 10 References

- 1. Impellizzeri FM, Shrier I, McLaren SJ, Coutts AJ, McCall A, Slattery K, et al. Understanding
- 216 Training Load as Exposure and Dose. *Sports Medicine* (2023) 53:1667-79. doi: 10.1007/s40279-023-
- 217 01833-0.
- 218 2. Lindberg K, Solberg P, Bjørnsen T, Helland C, Rønnestad B, Thorsen Frank M, et al.
- 219 Strength and Power Testing of Athletes: A Multicenter Study of Test-Retest Reliability. *International*
- 220 *Journal of Sports Physiology and Performance* (2022) 17(7):1103-10. Epub 2022/04/29. doi:
- 221 10.1123/ijspp.2021-0558.
- Hopkins W. Measures of Reliability in Sports Medicine and Science. Sports Medicine (2000)
- 223 30(1):1-15. doi: 10.2165/00007256-200030010-00001.
- 4. Hopkins W. How to Interpret Changes in an Athletic Performance Test. *Sportscience* (2004)
- 225 8:1-7.
- 226 5. Akenhead R, Nassis GP. Training Load and Player Monitoring in High-Level Football:
- 227 Current Practice and Perceptions. *International journal of sports physiology and performance* (2016)
- 228 11(5):587-93. doi: 10.1123/ijspp.2015-0331.
- 229 6. Ferraz A, Duarte-Mendes P, Sarmento H, Valente-Dos-Santos J, Travassos B. Tracking
- 230 Devices and Physical Performance Analysis in Team Sports: A Comprehensive Framework for
- Research—Trends and Future Directions. Frontiers in Sports and Active Living (2023) 5. doi:
- 232 10.3389/fspor.2023.1284086.
- 233 7. Aquino R, Carling C, Maia J, Vieira LHP, Wilson RS, Smith N, et al. Relationships between
- Running Demands in Soccer Match-Play, Anthropometric, and Physical Fitness Characteristics: A
- 235 Systematic Review. *International Journal of Performance Analysis in Sport* (2020) 20(3):534-55.
- 236 doi: 10.1080/24748668.2020.1746555.
- 237 8. Clemente FM, Nikolaidis PT, Rosemann T, Knechtle B. Dose-Response Relationship
- between External Load Variables, Body Composition, and Fitness Variables in Professional Soccer
- 239 Players. Frontiers in Physiology (2019) 10:1-9. doi: 10.3389/fphys.2019.00443.
- 240 9. Jaspers A, Brink MS, Probst SG, Frencken WG, Helsen WF. Relationships between Training
- Load Indicators and Training Outcomes in Professional Soccer. Sports Medicine (2017) 47(3):533-
- 242 44. doi: 10.1007/s40279-016-0591-0.

- 243 10. Schimpchen J, Correia PF, Meyer T. Validity and Reproducibility of Match-Derived Ratios
- of Selected External and Internal Load Parameters in Soccer Players: A Simple Way to Monitor
- 245 Physical Fitness? *Biology of Sport* (2023) 40(4):1039-46. doi: 10.5114/biolsport.2023.124850.
- 246 11. Ravé G, Granacher U, Boullosa D, Hackney AC, Zouhal H. How to Use Global Positioning
- 247 Systems (Gps) Data to Monitor Training Load in the "Real World" of Elite Soccer. Frontiers in
- 248 *Physiology* (2020):1-11. doi: 10.3389/fphys.2020.00944.
- 249 12. Gabbett TJ, Nassis GP, Oetter E, Pretorius J, Johnston N, Medina D, et al. The Athlete
- 250 Monitoring Cycle: A Practical Guide to Interpreting and Applying Training Monitoring Data. *British*
- 251 Journal of Sports Medicine (2017) 51(20):1451-2. doi: 10.1136/bjsports-2016-097298.
- 252 13. Faude O, Koch T, Meyer T. Straight Sprinting Is the Most Frequent Action in Goal Situations
- in Professional Football. *Journal of Sports Sciences* (2012) 30(7):625-31. doi:
- 254 10.1080/02640414.2012.665940.
- 255 14. Boullosa D, Casado A, Claudino JG, Jiménez-Reyes P, Ravé G, Castaño-Zambudio A, et al.
- 256 Do You Play or Do You Train? Insights from Individual Sports for Training Load and Injury Risk
- 257 Management in Team Sports Based on Individualization. *Frontiers in Physiology* (2020) 11:1-6. doi:
- 258 10.3389/fphys.2020.00995.
- 259 15. Byrkjedal PT, Thunshelle A, Spencer M, Luteberget LS, Ivarsson A, Vårvik FT, et al. In-
- 260 Season Autoregulation of One Weekly Strength Training Session Maintains Physical and External
- Load Match Performance in Professional Male Football Players. *Journal of Sports Sciences* (2023)
- 262 41(6):536-46. doi: 10.1080/02640414.2023.2227536.
- 263 16. Byrkjedal PT, Bjørnsen T, Luteberget LS, Lindberg K, Ivarsson A, Haukali E, et al.
- Association between Physical Performance Tests and External Load During Scrimmages in Highly
- Trained Youth Ice Hockey Players. *International Journal of Sports Physiology and Performance*
- 266 (2023) 18(1):47-54. doi: 10.1123/ijspp.2022-0225.
- 267 17. Parker RI, Vannest K. An Improved Effect Size for Single-Case Research: Nonoverlap of All
- 268 Pairs. Behavior therapy (2009) 40(4):357-67. doi: 10.1016/j.beth.2008.10.006.
- 269 18. Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the Black Box: Applications and
- 270 Considerations for Using Gps Devices in Sport. International journal of sports physiology and
- 271 *performance* (2017) 12(s2):18-26. doi: 10.1123/ijspp.2016-0236.
- 272 19. Gregson W, Drust B, Atkinson G, Salvo V. Match-to-Match Variability of High-Speed
- 273 Activities in Premier League Soccer. *International journal of sports medicine* (2010) 31(04):237-42.
- 274 doi: 10.1055/s-0030-1247546.
- 275 20. Glazier PS. Towards a Grand Unified Theory of Sports Performance. *Human Movement*
- 276 Science (2017) 56:139-56. doi: 10.1016/j.humov.2015.08.001.
- 277 21. Sarmento H, Clemente FM, Harper LD, Costa ITd, Owen A, Figueiredo AJ. Small Sided
- 278 Games in Soccer-a Systematic Review. International journal of performance analysis in sport
- 279 (2018) 18(5):693-749. doi: 10.1080/24748668.2018.1517288.

Table 1: Individual results and change from pre-test/baseline to post-test/follow-up in physical test performance and external load match parameters.

		Physica	Physical performanc	mance					Ex	External load	ad			
	10-m s	30-m s	Max speed m/s	CMJ cm	Pmax W	TD m/min	Peak speed m/s	Player- Load au/min	HIR m/min	SPR m/min	HIE nr/min	Acc (>2.5) nr/min	Dec (>2.5) nr/min	CoD (>2.5) nr/min
Pre-test/baseline period Player a (n=4)	iod 1.60	4.04	8.64	41.5	1534	106.6 ±	7.96 ±	10.6 ±	3.31 ±	0.55 ±	1.03 ±	0.21 ±	0.21 ±	0.61 ±
Player b (n=5)	1.65	4.27	7.97	27.4	1165	5.5 132.4 ±	7.56 ±	0.8 13.7 ±	7.92	0.66 ±	0.06 1.01 ±	$0.04 \pm 0.25 \pm 0.06$	$0.03 \pm 0.19 \pm 0.04$	$0.02 \\ 0.58 \pm \\ 0.00$
Player c (n=5)	1.44	3.71	9.42	46.9	1164	7.0 112.2 ±	8.74 ±	12.0 ±	6.62 ±	1.90 ± 0.0	$0.14 \\ 0.93 \pm 0.13$	0.00 0.21 ± 0.03	$0.04 \pm 0.24 \pm 0.03$	0.09 0.47 ±
Player d (n=4)	1.49	3.85	90.6	44.0	1902	4.1 100.4 ±	8.01 ± 0.39	9.7 ±	2.28 ±	$0.79 \pm 0.51 \pm 0.25$	1.44 ±	0.03	0.22 ±	0.08 0.81 ±
Player e (n=5)	1.49	3.80	9.36	47.5	2098	4.1 121.0 ±	8.29 ±	12.9 ±	7.19 ±	1.60 ± 0.53	0.0/ 1.21 ± 0.13	0.28 ± 0.05	0.27 ± 0.08	0.09 ± 99.0
Player f (n=3)	1.54	3.93	8.77	42.7	1597	2.4 128.6 ±	8.25 ±	13.3 ±	7.94 ±	1.98 ±	1.26 ±	0.23	0.35 ±	0.07 0.68 ±
Player g (n=2)	1.46	3.79	60.6	38.7	1719	127.0 ±	8.33 ±	0.0 11.3 ±	7.61 ± 1.33	1.01 ±	1.59 ± 0.04	0.36 ±	0.33 ± 0.11	0.90 ± 0.10
Player h (n=5)	1.52	3.92	8.87	39.0	1673	8.1 110.3 ± 7.3	8.32 ± 0.34	10.4 ± 0.9	8.40 ± 2.43	2.47 ± 0.57	0.35 1.51 ± 0.19	0.24 ± 0.02	0.31 ± 0.09	0.96 ± 0.11
Post-test/follow-up period Player a (n=5)	eriod 1.53	3.88	90.6	49.4	1599	111.8 ±	8.58 ±	11.2 ±	5.08 ±	1.16 ±	1.17 ±	0.30 ±	0.18 ±	0.70 ±
Player b (n=3)	1.67	4.29	7.94	28.7	1035	4.2 130.4 ±	7.70 ± 0	12.5 ±	8.72 ± 0.93	0.90 ±	1.04 ±	0.20 ± 0.00	0.02 0.22 ±	0.10 0.61 ± 0.20
Player c (n=5)	1.47	3.78	9.35	43.8	1105	3.0 115.3 ±	8.59 ±	12.1 ±	8.30 ±	2.50 ±	1.19 ± 0.00	0.00 0.27# ±	0.26 ± 0.06	$0.20 \\ 0.65 \pm \\ 0.18$
Player d (n=5)	1.51	3.89	9.14	42.8	1764	107.8# + 3.6	8.31 ±	10.4 ±	4.93# ±	0.93 ±	1.30 ± 0.16	0.39 ± 0.09	0.21 ± 0.05	0.69 ± 0.13
Player e (n=5)	1.46	3.72	09.6	55.7	2267	126.5 ± 4.6	8.57 ± 0.56	13.3 ± 0.4	7.45 ± 0.61	1.77 ± 0.43	0.10 1.42 ± 0.11	0.33 ± 0.07	0.25 ± 0.06	0.10 0.10

This is a provisional file, not the final typeset article

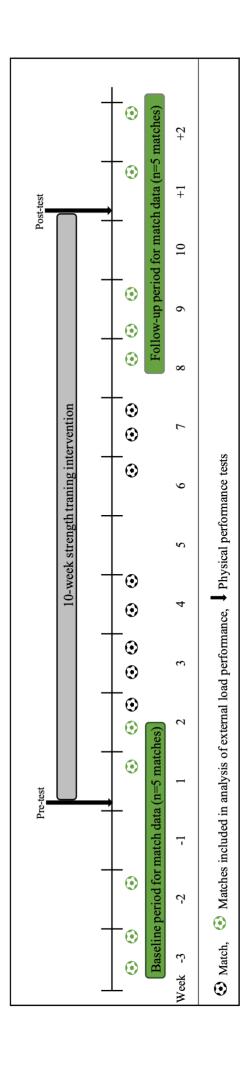
: 1.00# ±	0.86 ± 0.13	0.81 ± 0.04	÷60 0	-0.03,	0.03	-0.21,	0.28	-0.02,	0.38	-0.12	-0.30,	0.06	0.19	0.06, 0.31	0.32 +	0.09,	0.56	-0.03	-0.39,	0.32	-0.15	-0.29,	-0.01
0.42 ±	0.20 ±	0.23 ± 0.02	-0 03	-0.07,	0.04	-0.03,	0.02	-0.05,	0.10	-0.01	-0.08,	0.0	-0.03	-0.13, 0.07	0.07	-0.03,	0.17	-0.13	-0.29,	0.03	-0.08	-0.19,	0.03
0.34#±	0.32 ± 0.07	0.27 ± 0.01	÷800	0.01,	-0.05	-0.15,	0.06	0.01,	0.11	-0.02	-0.16,	0.13	0.05	-0.04, 0.14,	0.11	0.05,	0.18	-0.04	-0.21,	0.14	0.03^{+}	0.01,	0.05
1.77# ±	1.39 ± 0.13	0.15 0.06	0 14*	0.03,	0.02	-0.23,	0.26^{+}	0.02,	0.50	-0.14	-0.35,	0.00	0.22	0.03,	0.51‡	0.33,	89.0	-0.20	-0.75,	0.35	-0.20	-0.44,	0.03
1.67 ± 0.55	2.08# ±	3.25 ± 0.72	0.61	-0.28, 1.49	0.24	-0.51,	0.60†	-0.42,	1.62	0.42†	-0.23,	1.06	0.I/†	-0.63, 0.99	-0.32	-1.82,	1.19	1.06†	-0.03,	2.17	0.78	-0.23,	1.79
7.93 ±	8.73 ±	8.38 ± 0.35	1 77*	0.28,	0.80	-1.90,	1.68†	-0.17,	3.52	2.65†	1.15,	4.14 4.0	0.25	1.00,	-0.01	-2.40,	2.39	1.12‡	-1.39,	3.63	-0.03	-2.97,	2.91
13.4 ±	11.7 ±	10.2 ± 0.3	0 7*	. 6 . 4. 8	-1.3	-3.1,	0.1	-0.4,	9.0	0.7†	0.1,	1.3	0.4 -	-0.1, 1.0	0.0	-1.0,	1.0	0.4†	-1.9,	2.7	-0.3	-1.3,	0.81
8.26 ±	8.81# ±	8.45 ± 0.20	÷290	-0.28,	0.14†	-0.36,	-0.14	-0.72,	0.44	0.30^{+}	-0.21,	0.82	0.28†	-0.53, 0.90	0.00	-0.74,	0.75	0.48^{\ddagger}	-0.08,	1.04	0.13^{+}	-0.33,	0.59
130.3 ±	3.2 126.6 ± 3.8	110.0 ± 1.6	5 34	-2.4, 12.9	-2.0	-12.1,	3.1	-3.1,	11.5	7.4	1.4,	15.7	5.5	0.1,	1.7	-6.9,	10.3	-0.4	13.0,	12.2	-0.3	-9.3,	8.6
1478	1683	1573	59)	-130		-59			-138		7	169*		-119			-36			-100		
39.6	38.9	43.9	*6'L	<u>}</u>	1.3		-3.1			-1.2			×7.8		-3.0			0.2			5.0		
n/a	90.6	9.31	w-up perioo 0.42*	<u>!</u> ;	-0.04		-0.07			0.08		***************************************	0.23*		n/a			-0.03			0.45*		
3.99	3.79	3.88	ost/follo		-0.02		-0.07			-0.04		*00	.0.08 *		-0.05			0.00			0.03		
n/a	1.46	1.52	e period – post/foli 0.08* 0.16*		-0.02		-0.03			-0.02		,	0.03*		n/a			00.00			00.00		
Player f (n=5)	Player g (n=4)	Player h (n=4)	Change pre/baseline period – post/follow-up period Player a 0.18* 0.16* 0.42*		Player b		Player c	•		Player d		ā	Player e		Player f			Player g			Player h		

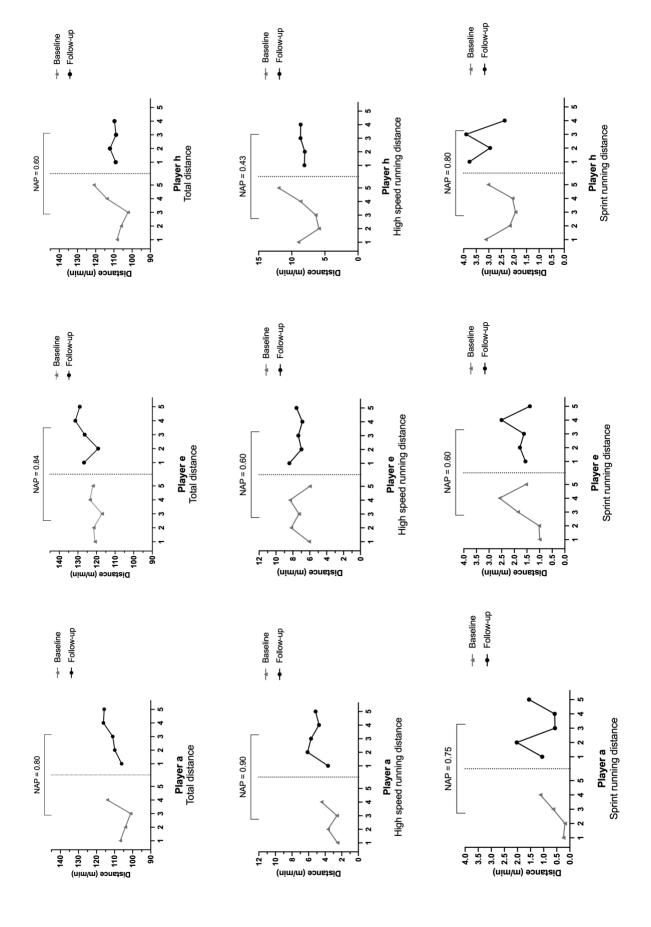
Countermovement jump, Pmax: Max power (W), TD: total distance, AU: Arbitrary units, HSR: high speed running distance, SPR: sprint running changes are reported as mean difference including 95% lower and upper confidence limits. N/a; missing data. *Bold text indicates that physical compared to baseline period). † >SWD calculated from baseline-period results. n: number of included matches in the respective periods, CMJ: Note: Positive change in 10- and 30-m sprint times indicate improved performance from pre to post. Physical performance results are reported with raw data points and raw difference. External load parameters are reported with mean ± SD in the baseline and follow-up period, while est performance changes were >SWD, raw and relative (%) TE. #Strong effects in Non overlap of all pair analysis (in follow-up period distance, HIE: high intensity events, Acc: accelerations, Dec: decelerations, CoD: change of directions.

Table 2: Kendall's Tau correlations between changes in physical performance and external load match parameters from pretest/baseline period to post-test/follow-up period.

290 291

	10-m	30-m	Max speed	CMJ	Pmax
TD	0.07	0.07	0.14 (-0.33, 0.53)	0.07	0.21 (-0.28, 0.57)
Peak speed	0.22 (-0.27, 0.58)	0.57 (-0.03, 0.78)	0.36 (-0.18, 0.66)	0.43 (-0.13, 0.70)	0.14 (-0.33, 0.53)
PlayerLoad TM	0.15 (-0.33, 0.53)	0.21 (-0.28, 0.57)	0.29 (-0.23, 0.62)	0.07 (-0.38, 0.48)	0.36 (-0.18, 0.62)
HSR	-0.30 (-0.63, 0.22)	-0.07 (-0.49, 0.38)	0.00 (-0.43, 0.43)	-0.21 (-0.57, 0.28)	-0.07 (-0.48, 0.38)
SPR	-0.22 (-0.58, 0.27)	0.14 (-0.33, 0.53)	0.36 (-0.18, 0.66)	0.00 (-0.43, 0.43)	0.14 (-0.33, 0.53)
HIE	0.15 (-0.32, 0.53)	-0.26 (-0.60, 0.25)	-0.47 (-0.73, 0.10)	-0.11 (-0.50, 0.35)	0.11 (-0.35, 0.50)
Acc	0.52 (-0.07, 0.75)	0.07 (-0.38, 0.48)	0.00 (-0.43, 0.43)	-0.07 (-0.48, 0.38)	0.21 (-0.28, 0.57)
Dec	-0.04 (-0.46, 0.40)	-0.40 (-0.69, 0.15)	-0.62* (-0.80, -0.01)	-0.33 (-0.65, 0.20)	-0.33 (-0.65, 0.20)
CoD	0.30	-0.14	-0.50	0.00	0.29


running distance, SPR: sprint running distance, HIE: high intensity events, Acc: accelerations, Dec: decelerations, CoD: change * Indicates BF10 >3. Values in brackets indicate 95% lower and upper credible intervals. TD: total distance, HSR: high speed of directions, CMJ: countermovement jump, Pmax: maximum power (W).


292 293 294

This is a provisional file, not the final typeset article

- Figure 1: Schematic overview of the study, including specific test points, strength
- intervention period and matches played.

Figure 2: Non-overlap of all pairs analysis results for total distance, high-speed running distance and sprint running distance for players with a meaningful improvement in physical performance post-strength intervention period.

