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ABSTRACT With the rapid development of industrial applications using permanent magnet synchronous
motors (PMSMs) and the Internet of Things, the demand for using robust fault diagnosis methods working
in noisy conditions has increased significantly. The current data-driven methods depend mainly on deep
learning (DL) models due to the effectiveness of automated feature extraction. However, these models
have shallow depths compared with benchmark convolution neural networks, limiting their accuracy in
final predictions, and they are established based on the hypothesis that the measured data are noiseless.
Despite this, electric machinery is subjected to various noise sources that interfere with measurements
during operation. This article proposes a new scheme combining a transfer-learned pretrained residual neural
network (ResNet) and supervised machine learning (S-ML) to enhance the performance of DL models in
noisy industrial environments. The effectiveness of the proposed scheme is validated using an in-house setup
of a PMSM drive with demagnetization and intern-short circuit faults at variant operating conditions. The
results show that the proposed method significantly reduced the computational burden by tenfold on average
while improving the average accuracy to 96.84% across all the datasets compared with other DL and S-ML
methods, with high robustness in noisy working conditions.

INDEX TERMS Deep transfer learning (TL), data-driven fault diagnosis, hybrid learning, permanent magnet
synchronous motors (PMSMs), pretrained deep models, wavelet analysis.

NOMENCLATURE
AM Attention-based multiscale module.
ANN Artificial neural networks.
CNN Convolution neural network.
CWT Continuous wavelet transformation.
DBN Deep belief network.
D-F Demagnetization fault.
DL Deep learning.
DRCN Denoising residual convolutional network.
FDD Fault detection and diagnosis.
FEM Feature enhancement module.
HML Hybrid machine learning.

ITSC Intern-short circuit.
JAM Joint attention module.
kNN k-nearest neighbors.
MDM multiscale denoising module.
NC Normal healthy condition.
PMSMs Permanent magnet synchronous motors.
ResNet Residual neural network.
RUL Remaining useful life.
SAE Sparse autoencoder.
SC4-F ITSC fault with 4% severity.
SC6-F ITSC fault with 6% severity.
SGDM Stochastic gradient descent with momentum.
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S-ML Supervised machine learning.
SNR signal-to-noise ratio.
SVM Support vector machine.
TL Transfer learning.

I. INTRODUCTION
Recently, the rapid advancement of permanent magnet ma-
terial and power electronics technology has led to the wide
usage of PMSM in electric vehicles, aeroplanes, wind tur-
bines, and in-house appliances [1]. PMSM drives have unique
advantages of a high power-to-weight ratio, excellent dynam-
ics, high torque, and a wide range of operating conditions.
However, in the aforementioned applications, they are ex-
posed to mechanical and thermal stresses under variant op-
erations, leading to demagnetization and intern-short circuit
faults (ITSC) [2]. In contrast to uniform demagnetization,
which reduces all the magnets by the same ratio, local demag-
netization occurs in a limited area of rotor poles, resulting in
a magnetic asymmetry. These faults cause reduced motor effi-
ciency. Therefore, diagnosing these faults early would reduce
downtime, production losses and maintenance costs.

In recent years, many FDD methods have been significantly
developed and are categorized into three main types: model-
based, signal-based, and data-driven [3]. Model-based tech-
niques require precise physical models and parameters of the
implemented system to compute residuals between the model
and the measurements, being difficult to obtain in reality [4].
Signal-based requires an identification of the fault-related
characteristic frequencies or statistical features from the mea-
sured data [5], [6]. Thus, data-driven methods using machine
learning have been developed rapidly due to their effective-
ness in diagnosing multiple faults using historical data without
prior knowledge of machine models or fault characteristics.

Much research has been carried out using data-driven
methods for diagnosing faults in different applications us-
ing supervised machine learning (S-ML) and DL [7]. S-ML
methods, such as SVM, kNN, and ANN, are frequently used
in fault diagnosis due to significant advantages, such as easy
implementation and low-computational burden [7]. However,
the main challenge of using these models is choosing the
features accurately to get high diagnostic accuracy. This
process requires an expert and is usually time-consuming.
Therefore, DL has been used to overcome this drawback. It
can learn the features from the row data automatically [8].
Many DL methods, namely, CNN, DBN, and SAE, have
been implemented in the field of fault diagnoses. For exam-
ple, a convolutional variational autoencoder was used with
frequency-weighted energy analysis and wavelet kernel con-
volutional block for fault identification of rolling bearings [9],
a convolutional neural network was proposed with multi-
scale residual attention mechanism for bearing fault diagnosis
from vibrational signals in noisy environments [10], and an
attention-based multiscale denoising residual convolutional
neural network method was introduced to assess the safety
of mechanical equipment running under nonstationary con-
ditions and noisy environments [11]. It incorporates a MDM

to filter irrelevant information, a FEM to improve feature
extraction, and a JAM to integrate discriminative features
effectively. A robust diagnostic framework for bearings us-
ing a physics-informed solution was suggested in [12] using
a unique physical modal-property-dominant-generated layer,
which extracts modal properties from training and testing
data, ensuring efficiency even with imperfect data. It intro-
duces a domain-conversion layer to mitigate the impact of
speed variations in bearing diagnostics. These studies sig-
nificantly improved the diagnosis accuracy. However, it is
still limited due to the requirement of a large amount of
labeled data. Therefore, the structure of DL models has al-
most a few limited layers (5)–(7) [13]. Compared with the
benchmark ImageNet-trained CNN models with many layers,
fault-diagnosis DL models are very shallow and may not work
effectively in noisy working environments. Furthermore, it
is challenging to train multilayer deep CNN models without
a large and well-organized training dataset. The bigger the
number and size of hidden layers, the more parameters the
model has, making it difficult to train large networks from
scratch as it demands extensive labeled data and computa-
tional resources. Hyperparameter tuning, involving adjusting
network architecture, learning rates, and dropout rates, is
time-consuming and significantly affects diagnostic accuracy.

For these reasons, some studies used TL or hybrid machine
learning (HML) to provide a suitable option to overcome the
DL drawbacks. TL works by utilizing a deep network trained
on labeled data for another application and then refining it
for the current tasks. For instance, a deep TL approach was
suggested using maximum mean discrepancy and SAE to im-
prove the diagnosis accuracy in the bearing by recognizing
similar features under varying operational conditions [14].
The study in [15] proposed a Bayesian semisupervised TL
method for prognostic of RUL prediction across completely
different machines using an active querying-based training
data selection mechanism, whereas a TL method for RUL pre-
diction of two different aerospace and bearing datasets using
a consistency-based regularization was suggested in [16]. A
digital twin-driven approach for intelligent assessment of gear
surface degradation is suggested in [17], based on physical
system measurements to monitor the dynamic response of
the gear system as wear progresses. The method employs TL
to apply knowledge from the digital twin models to assess
surface wear in physical gearboxes nondestructively. This ap-
proach offers accurate wear severity assessment and expands
the use of digital twin techniques in gear health management.
Using TL only, however, requires that the target and source
domains are similar, otherwise, the model may perform worse
than if it had never been trained. To address this, recent re-
search has focused on combining multiple machine learning
techniques using HML to create more robust models without
constraints for the source and target domains. The goal of
HML is to improve the accuracy and performance of a model
compared with using a single one. For instance, an HML
method combining a convolutional autoencoder and deep
CNN was proposed to improve the classification accuracy of
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two mechanical fault simulations using a few shots [18], while
a multilayer perceptron and CNN were combined to improve
the diagnosis accuracy and robustness of gearbox mixed faults
using feature-level data fusion [19]. Although both studies
improved the classification accuracy, the first study requires
an expert to select the domain knowledge features suitable
for the diagnosis task, and the second may not be effective
for diagnosing variant-operated PMSM drives since a large
amount of data are required for training the deep models.

Despite the significant improvement in fault diagnosis by
the current state-of-the-art methods presented in the literature,
there are still major shortcomings as follows.

1) Most of these approaches are implemented in the hy-
pothesis that the measured data are noiseless [9], [14],
[15], [20]. However, electric machinery is subjected
to a variety of noise sources that interfere with mea-
surements during operation. Therefore, the existing
techniques may be incapable of achieving adequate di-
agnosis results.

2) Prior research typically employs multiscale CNN ar-
chitecture and denoising modules or physical-assisted
models to investigate sufficient features and improve
robustness [11], [12], [17]. These methods will, how-
ever, add an extensive number of parameters to the CNN
model, which obviously requires a significant amount of
time and computing power.

3) The other approaches depend on improving the ro-
bustness in noisy environments by fusing information
from multiple sensors or classifier decisions [19], which
increases the cost of the diagnosis scheme and the com-
putational resources.

In addition, prior knowledge of features is required to assist
DL models in extracting the features in a noisy environ-
ment [18].

In this framework, a new HML scheme is proposed using
the residual neural network (ResNet) as a feature extractor
while using S-ML models as classifiers. TL is used to acceler-
ate the training of the deep ResNet architecture of the feature
extractor and to acquire hierarchical features of the data. This
is done using a deep ResNet-18 model trained previously on
large datasets of natural images. The network architecture,
model parameters, and hyperparameters are transferred from
the pretrained network to be used in the fault diagnosis tasks
as a features-extractor target model. The target network adopts
the lower-level weights from the pretrained model and trains
the higher level weights specifically for the fault diagnosis
task. This provides the feature extractor with an optimal start-
ing point and reduces the number of parameters to be updated,
resulting in a substantial improvement in the training process.
The multiple-fault diagnosis of faults under variable work-
ing conditions requires constructing source domain datasets
large enough to represent the machine states under different
working conditions. This will prevent overfitting and avoid
errors during the mathematical operations of multilayer neural
networks. Therefore, S-ML is combined with a tuned pre-
trained model as a feature extractor to overcome each model’s

shortcomings. The major contribution of this article is sum-
marized as follows.

1) A new scheme combining a transfer-learned ResNet
adopted as a feature extractor and S-ML as a classi-
fier to tackle the problem of diagnosing multiple faults
in noisy environments and variant conditions is in-
troduced. To the best of the authors’ knowledge, this
low-computational cost scheme is applied for the first
time to diagnose PMSM faults.

2) The proposed scheme is designed to use a benchmark
ResNet-18 model as a feature extractor, which can auto-
matically generate a discriminative feature for different
faults with low computational burden and without prior
knowledge of the features. In addition, the scheme has
the flexibility to be adjusted to other domains according
to data characteristics.

3) Four datasets, including different demagnetization and
ITSC at variable operating conditions, are implemented
to verify the effectiveness of the proposed scheme using
one-phase current measurements.

Compared with other S-ML and DL models in this study,
the proposed scheme has an outstanding performance for fault
diagnosis tasks, as it reduced the computational burden during
training and improved the classification accuracy under differ-
ent noise conditions, making it an effective solution for fault
diagnosis tasks. The rest of this article is organized as follows.
Section II presents the proposed fault diagnosis scheme in
detail. Section III introduces the experimental setup, faults
implementation of demagnetization and ITSC, and different
datasets. Section IV verifies the effectiveness of the proposed
method. Finally, Section V concludes this article.

II. PROPOSED FAULT DIAGNOSIS SCHEME
The proposed fault diagnosis scheme uses deep TL ResNet
and S-ML models to classify the faults at variable operating
conditions with high accuracy, as shown in Fig. 1. The details
of the scheme are explained as follows.

A. STAGE1: DATA PREPROCESSING
In the first stage, the one-phase current measurements were
collected. The measured current data were subdivided into
equal-size samples and converted to time–frequency images
using CWT. The RGB time–frequency images were adjusted
with a size of 224 × 224 × 3 to fit the input layer of the
pretrained model. This adjustment was done by duplicat-
ing the augmented one-channel Gray-scale images into three
channels with a fixed base in each channel. The CWT is
particularly efficient in analyzing the original signal at varying
resolutions [21]. It is, therefore, commonly used for feature
extraction in fault diagnosis applications. The wavelet trans-
formation was executed by computing the inner product of
the signal and a collection of wavelets that are generated by
scaling and shifting the mother wavelet ψ (t ) as

ψδ,ϕ (t ) = 1√
δ

(
t − ϕ

δ

)
(1)
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FIGURE 1. Proposed fault diagnosis scheme.

δ is the scaling factor that decreases as frequency increases,
and ϕ is the parameter that defines the transition. The cal-
culation of the CWT of a signal x(t ) involves performing a
convolution between the signal and its complex conjugate and
is defined as

C(δ, ϕ) = 〈
x(t ), ψs,ϕ

〉 = 1√
δ

∫
x(t )ψ∗

(
t − ϕ

δ

)
dt (2)

where the complex conjugate of ψ (·) is represented by the
notation ψ∗(·). The equation illustrates that the original signal
can be divided into various frequency components. Using the
wavelet parameters δ and ϕ, a collection of wavelet coeffi-
cients of the signal x(t ) was obtained and then mapped onto a
2-D plane to create time–frequency images [21].

B. STAGE2: FEATURE EXTRACTION USING DEEP TL
TL was then used for transferring weights from the pretrained
model to our target feature-extractor deep model. This deep
model was actively learned during the training process by cal-
culating the loss and updating the model through the SGDM
algorithm. A deep ResNet-18 pretrained model was tuned us-
ing the TL process. This pretrained model is a ResNet model
that has a 72-layer architecture with 18 deep layers [22]. Since
our time–frequency images differ from the pretrained model
images, some convolution layers were modified to match our
datasets and transfer the abstract features. The dimensions
of the modified layers were adapted to fit the number of
machine-healthy conditions, and their weights were randomly
initialized. The learning layer weights were the only ones
adjusted to reduce the error between the predicted and ac-
tual labels using the datasets as final refinements for the two
convolution and fully connected layers. The pretrained model
was trained afterward using 80% of the images from each
dataset, with the remaining 20% split evenly for validation and
testing purposes. The weights of the model were fine-tuned

thereafter. The testing data were not used during the training
or validation process. During the deep training of the feature
extractor, the features are extracted from the CWT images
using multiple convolution operations between the kernels and
the input image and calculated as

ai, j = a

(
P−1∑
d=0

S−1∑
m=0

S−1∑
n=0

Dm,n,d xi+m, j+n,d + ξ

)
(3)

where x is the input image, which has a depth of P and
position of (i, j) in the output feature map ai, j . xi+m, j+n,d

denotes the value at the location of (i, j) in the d depth. Dm,n,d

is the convolution kernel weight at the location of (m, n) in
the dth depth. S × S is convolution kernel size, and b is the
kernel bias. The pooling layer, which is responsible for the
dimension reduction operation of the extracted features, can
be described as

Ui, j,k = pool(m,n)∈Gi j

(
xm,n,k

)
(4)

where Ui, j,k is the value at (i, j) position in kth feature map
after applying the pooling rule pool(·). xm,n,k is the node at
(m, n) position of the target domain, and Gi j is the pooling of
the target region at position (i, j). During the training of the
pretrained model, the losses are minimized by cross entropy,
which is described as

L1(q, p) = −
∑

i

log(pi ) (5)

where p is the output probability of the model and q is 0 or 1
depending on the label. This value is determined by the cross
entropy that determines the error between true and predicated
labels through updating a stochastic gradient descent with
weight gradients by back-propagation. Once enough epochs
had been completed, the deep architecture and all its param-
eters were saved for the optimized model. Afterward, the
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deep features describing different machine conditions were
extracted from the last pooling layer in the ResNet model.

C. STAGE3: SUPERVISED LEARNING BASED ON THE DEEP
FEATURES
Finally, the deep-extracted features were used to train S-ML
algorithms, and the categorical cross entropy for each class is
calculated as

L2 = −
∑

ytrue × log(ypred) (6)

where ypred is the predicted probability distribution over
classes and ytrue is the true labels. The overall loss (Lo) of
the proposed hybrid learning scheme is a combination of the
feature extractor loss and S-ML loss and can be calculated as

Lo = αL1 + βL2 (7)

where α and β are weighting factors used to minimise the
overall losses of the proposed hybrid scheme so that higher
classification accuracy can be obtained. The suggested HML
scheme improved the classification accuracy and computa-
tional burden during training (training time) since ResNet-18
was effectively used as a feature extractor to train the S-ML
algorithms. Notably, the proposed approach learns fault signa-
tures in an automated way and recognizes different machine
working states from the original current signals.

III. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETUP
The experimental setup consists of a PMSM motor for testing
connected to a loading motor via a torque transducer and
flexible coupling as shown in Fig. 2(a). The testing motor is
powered by an inverter while the output from the load is sta-
bilized by a rectifier circuit to eliminate the ripples as shown
in Fig. 2(b). A pulsewidth modulation (PWM) signal is used
to regulate a brake chopper after amplifying the amplitude
fourfold to be compatible with the data acquisition card. The
brake chopper comprises a three-phase full-bridge rectifier,
a 500 μF capacitor, an insulated-gate bipolar transistor, a
variable resistor, and two flyback diodes. The brake chopper’s
variable resistor is set to 25 � and can consume up to 3.3 kW.
The flyback diodes are connected across the resistor to provide
a path for the stored energy. The required motor speed and
torque during experiments are adjusted using a PWM signal
defined by a duty cycle. The one-phase current measurements
are carried out with a sampling frequency of 10 kHz. This
configuration allows the analysis of different PMSM faults.
Table 1 lists the rated parameters of the tested PMSM drive.

B. FAULTS IMPLEMENTATION
Implementing demagnetization faults is often carried out
through partial removal of the magnets and substitution with
nonmagnetic materials or by adding weaker magnets [23],
[24]. Nevertheless, these solutions are unable to mimic the
local demagnetization that arises from thermal cycling during
the operation of PMSM drives, particularly in traction applica-
tions such as electric vehicles. Therefore, in this article, local

FIGURE 2. Experimental setup. (a) In-house test rig. (b) Schematic
diagram.

TABLE 1. PMSM Rated Parameters

demagnetization fault was implemented by heating specific
regions in the rotor for a specific time using a stovetop while
cooling the other regions with a cooling medium to protect the
other poles from demagnetization [see Fig. 3(a)] [19], [25].
When specific regions of the rotor are heated to a certain tem-
perature, the magnetic field strength of the poles is reduced,
resulting in local demagnetization faults [26]. A magnetic
field meter was used to monitor the flux reduction during the
heat treatment process. The heat treatment time was selected
based on the required demagnetization severity. Two regions
on the north pole lost around 30.4% and 26.5% from their
original field strength after the heat treatment, as shown in
Fig. 3(c). During the diagnosis of the demagnetization fault,
the thermally-treated rotor was positioned inside the stator of
the testing motor. For implementing ITSC faults, the number
of turns per phase was estimated to define the fault severity.
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FIGURE 3. (a) Thermal treatment of rotor demagnetization. (b) ITSC
windings fault. (c) Relative magnetic intensity of the demagnetized pole
compared with the healthy pole. Regions 1 and 2 demagnetized by 30.4%
and 26.5%, respectively. (d) Circuit diagram of ITSC faults implementation
in phase U.

The neutral point was connected to the wire strands through
the short-circuit terminals [see Fig. 3(b)]. The ITSC faults are
implemented in motor phase U with the severity of 4% and 6%
of the phase resistance, and the circuit diagram of the ITSC
faults implementation is shown in Fig. 3(d).

C. DATASETS DESCRIPTION
One-phase stator current signals were collected at different
operating conditions with sampling frequency fs = 10 kHz.
Every measurement file was recorded for 10 s and then split
into 2 s so that each sample file had 20 000 data points,
and three tests were performed repeatedly for each fault
class. Four datasets were created to represent different PMSM
operation conditions, as given in Table 2. The variable oper-
ations in each dataset are achieved by increasing the speed
by 50 r/min every 2 s and recording data at different torque
levels. The first dataset (DS-I) includes 60 operating points at

TABLE 2. Datasets Description

FIGURE 4. Hyperparameters tuning of the ResNet model. (a) Learning rate.
(b) Max epochs. (c) Patch size.

20 speeds from 1250 to 2200 r/min and three different torques
30%, 60%, and 90% of the motor nominal torque. The dataset
has 7200 samples, including 1800 samples for each fault type.
Each dataset consists of four machine conditions: normal con-
dition (NC), local demagnetization fault (D-F), ITSC faults
with 4% severity (SC4-F), and 6% (SC6-F). The existence
of variant-working conditions in each dataset is difficult to
diagnose with high accuracy using only S-ML or DL methods
because it requires many samples at each working condition
enough to extract the features for different machine health
conditions. Therefore, HML, consisting of deep transferred
learning and S-ML, is presented in this article to overcome the
challenges of classifying different faults with high accuracy,
reducing the training time, and improving the robustness of
the scheme to work in noisy conditions simultaneously.

IV. RESULTS AND DISCUSSIONS
A. EFFECT OF HYPERPARAMETERS ON DIAGNOSIS
ACCURACY
To select the best parameters during the training of the pre-
trained models, multiple experiments were carried out by
changing learning rates, max epochs and patch size while
studying their effect on the validation losses as shown in
Fig. 4. When the learning rate was 0.001, the pretrained DL
model had the lowest validation losses. Four values were
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FIGURE 5. Average accuracy and elapsed time for training of
deep-transferred ResNet model (Solid line) and scratch-trained D-CNN
(Dash line).

studied for each max epoch and patch size to select the
optimal parameters to reduce the losses during the training
process. The validation loss was reduced significantly at 10
max epochs, before increasing again at 15 and 20 due to
over-fitting. Therefore, the optimal parameters selected during
the training of the deep transferred model were 0.001, 10, and
150 for learning rate, max epochs, and patch size, respectively.

B. SCRATCH-TRAINED AND PRETRAINED FEATURES
EXTRACTOR COMPARISON
A comparison was carried out between using the ResNet-18
pretrained model with transferred weights and the same model
trained from the beginning as a feature extractor for PMSM
faults. The effect of the TF process on the training time and
overall classification accuracy was studied as shown in Fig. 5.
The duration of training was calculated from the beginning
to the end of the process. In dataset DS-I, the pretrained
model took six times less time to train than the scratch-trained
model. In general, the training time of the pretrained model
was less than the model trained from scratch across all the
datasets by 10 times on average. It is obvious that dataset DS-I
consumed more time during training because it has more op-
eration conditions, requiring more time to extract the features
during the DL process. In addition, the classification accuracy
of the pretrained models was higher than the models trained
from scratch, even though they had fewer parameters than
pretrained models. The suggested pretrained model shows
improved convergence rates and classification accuracy.

C. COMPARISON OF DIFFERENT PRETRAINED FEATURE
EXTRACTORS
Several pretrained benchmark models used recently in the
fault diagnosis tasks [8] were implemented, trained on dataset
DS-II, and evaluated by validation losses and training time to
study the effectiveness of the proposed ResNet-18 as a feature
extractor for PMSM drive faults. The architecture and the
specific characteristics of each model are described as follows.

1) AlexNet: Consists of eight layers, five of which are
convolutional layers followed by max-pooling layers,
and the last three are fully connected layers [27].

TABLE 3. Hardware and Software Setups

TABLE 4. Comparison of Different Feature Extractors Benchmark Models

2) VGG-16: It has 16 layers, including 13 convolutional
layers and three fully connected layers [28]. The archi-
tecture consists of 3 × 3 convolutional filters with small
stride and max-pooling layers, which help to capture
fine-grained details in images. However, it has been
largely surpassed by deeper and more efficient architec-
tures in recent years, such as the various models in the
ResNet.

3) ResNet-50: Consists of 50 layers and includes a series of
convolutional layers [29], followed by multiple residual
blocks, each containing several convolutional layers and
skip connections. By using residual connections, very
deep neural networks can be trained without encounter-
ing the vanishing gradient issue.

4) ResNet-18: Is a specific type of ResNet with 18 lay-
ers [22]. Compared with ResNet-50, it serves as a
relatively compact and efficient architecture while still
benefiting from the advantages of deep residual net-
works.

These models were implemented and trained in MATLAB
R2022b and executed on the Windows 10 operating system.
The hardware and software configurations used are listed in
Table 3. Five benchmark models are compared in Table 4,
and the results show that the validation losses and the training
time of ResNet-18 were the lowest among the other models
due to the effectiveness of the residual blocks to improve the
learning of the network to extract the features during training
(see Fig. 6). ResNet-18 has a shallower architecture compared
to ResNet-50, which reduces computational cost without los-
ing much accuracy. In addition, it has demonstrated strong
generalization capabilities, which is important for applica-
tions where the model needs to perform well on a variety of
inputs beyond the training dataset. Although SqueezeNet and
AlexNet have a similar or smaller number of deep layers, the
losses and training time were higher than the ResNet-18 net-
work. Therefore, ResNet-18 was used as an efficient feature
extractor for different PMSM faults to train S-ML models. It
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FIGURE 6. Performance of different feature extractors. The losses and
training time are highlighted in blue and yellow, respectively.

should be noted that the percentage of training time in ResNet-
18 compared with the time used to collect the measurement
samples of the DS-II dataset is 2.18%. This is considered a
significant advantage in the proposed method and can be uti-
lized in industrial applications that have an extensive amount
of historical data that need to be trained frequently.

D. RESULTS AND ANALYSIS OF THE PROPOSED HYBRID
MODELS
In this study, hybrid learning was carried out by extracting the
deep-learned features from the pretrained ResNet model and
training S-ML algorithms on these features, extracted from the
last max-pooling layer. This combination of deep and super-
vised models reduces the overall losses significantly so that a
better diagnosis accuracy can be obtained. The effectiveness
of the hybrid models will be discussed through a comparative
study of the overall classification accuracy of eight different
machine learning models as follows.

1) D-PR: Deep pretrained model using ResNet-18 and was
tuned using TL.

2) D-SC: Deep CNN model had the same number of deep
layers as ResNet and was trained from the beginning.

3) SF-SVM, SF-KNN, SF-CNN: Supervised SVM, kNN,
convolutional neural network models trained using
14 statistical features in time and frequency domain,
namely, mean, standard division, rms, clearance factor,
shape factor, kurtosis, skewness, impulse factor, crest
factor, frequency mean, frequency standard division,
frequency variance, frequency RMS, frequency skew-
ness, and calculated as in [18].

4) H-SVM, H-KNN, H-CNN: The proposed hybrid SVM,
kNN, convolutional neural network models trained us-
ing the deep TL features extractor and S-ML models as
classifiers.

Aco represents the accuracy for all categories and is calcu-
lated as

Aco =
∑M

i=1 x(i)
test,correct

N
(8)

where xtest,correct represents the number of samples in the
ith category test sample that were classified correctly and N
stands for the total number of samples in the test set.

TABLE 5. Fault Diagnosis Results of Different Datasets

FIGURE 7. Average overall accuracy of different methods at the four
datasets.

As given in Table 5 and Fig. 7, the proposed hybrid models
have the highest accuracy in all the datasets. Although the
S-ML models were trained on statistical features from the
time–frequency domain, these models do not have a high
accuracy compared with the other models because the sta-
tistical features are ineffective in classifying the faults at the
datasets with variable-working conditions. It is observed that
the SF-CNN and SF-SVM models of the DS-I dataset have
the lowest diagnostic accuracy among all the others due to
having the largest number of operating conditions. To in-
crease the diagnosis accuracy of the supervised models, the
amount of training data samples needs to be quite large at
each working condition. Therefore, the pretrained ResNet-18
DL model was used as a DL feature extractor because it has
low losses during the validation and a short training time
compared with the D-CNN model trained from the beginning.
The residual blocks in the ResNet-18 improve the mining
of the deep features during the training process. Therefore,
the proposed models could effectively extract the wavelet-
based time–frequency features from the images during
training.

To better demonstrate the feature extraction performance
of the pretrained ResNet-18 model, the output feature vec-
tors were reduced to 2-D by t-SNE. Fig. 8 shows the t-SNE
representation of the learned features of the datasets at the
first max-pooling layer and the last layer (Softmax) in the
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FIGURE 8. 2-D visualization of the extracted features from the first
max-pooling layer and the last layer (Softmax) of the proposed scheme.

FIGURE 9. Average misclassification rate of the four approaches across
different datasets.

pretrained model architecture. It can be seen that in the first
max-pooling layers, the time–frequency features extracted
from the images are overlapped due to the multiple operating
conditions in each dataset. The deep ResNet-18 model charac-
terized different faults effectively after the last layer. However,
the model is prone to problems, such as overfitting under small
samples of each operating condition, and the deep-learned
features are subjected to errors during the calculation of the
multilayer neural network. Therefore, extracting these learned
features in the hybrid learning process to train S-ML models
as classifiers is more effective in classifying the machine faults
working at variable operations with high accuracy.

The proposed hybrid learning models are highly accu-
rate compared with supervised, DL and pretrained models
trained on the same sample number. Through the four datasets,
the proposed fault diagnosis method using hybrid learning
(AV-H) reduced the average misclassification rate compared
with deep pretrained (AV-DPR), scratch-trained (AV-DSC) by
6.59%, 10.1%, while supervised models (AV-SF) have the
highest rate, 17.69% higher than AV-H (see Fig. 9). To further
demonstrate the effects of the proposed hybrid methods at
different machine states, the testing data of the dataset DS-I
were visualized by confusion matrices as shown in Fig. 10.
The number of test samples for each health condition was
180. The horizontal axes are the predicated labels, and the
vertical axes are the true labels. The results show that the pro-
posed hybrid learning gives the best diagnostic performance
for the different classes of PMSM drives working in variant
operations.

TABLE 6. Testing Average Accuracy Under Different Noisy Conditions

E. TESTING ROBUSTNESS OF THE PROPOSED SCHEME IN
DIFFERENT NOISY CONDITIONS
The robustness of the proposed hybrid learning scheme was
tested to extract the weak features from the noisy background
by adding different noise levels to the motor current mea-
surements. The level of the added noise is expressed by the
signal-to-noise ratio (SNR) as

SNR = 10 log

(
Psignal

Pnoise

)
(dB) (9)

where Psignal is the original signal power and Pnoise represents
the noise signal power. The scheme was trained using four
types of noisy signals. For each SNR ratio, three datasets were
used for training, validation, and testing. Three experiments
were carried out, and the mean and standard division of the
accuracy were calculated.

Table 6 gives the accuracy of the proposed method at
three hybrid learning models compared with the pretrained
ResNet-18 model. The proposed scheme consistently main-
tains accuracy levels above 93.9% with a standard deviation
of 0.65% in various noisy environments. The accuracy of the
proposed method rises when the SNR increases. The reason
is that at higher SNR levels, the signal becomes clearer and
easier to recognize in contrast to noise, allowing the proposed
scheme to extract the relevant features from the feature extrac-
tor effectively. Therefore, it is important to test the robustness
of the model to work in different noisy environments. Com-
pared with other D-PR, the proposed method enhanced the
robustness of the diagnostic accuracy in noisy environments
by extracting the features effectively through the deep features
extractor while training the S-ML models on these features to
classify the faults as shown in Fig. 11.

In the framework of PMSM drives working at variant
operating conditions, the proposed fault diagnosis method
has the following advantages: first, the proposed HML ap-
proach effectively extracts rich and discriminative features
from time–frequency images, leading to higher accuracy in
identifying faults compared to traditional methods, such as
DCNN and S-ML. Second, the computational burden during
the training of the hybrid models is reduced significantly to
extract the features in a short time by 10× since the training is
based on transferring the weights from the pretrained model
on another domain to the time–frequency fault diagnosis do-
main. The proposed scheme is applicable with automated
feature extraction for different fault diagnosis tasks without
prior knowledge of the domain and can be adjusted accord-
ing to data characteristics. Finally, the scheme is robust to
work in different noisy environments with high classification
accuracy.
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FIGURE 10. Confusion charts of different faults for DS-I.

FIGURE 11. Accuracy of the proposed method under different levels of
noise.

V. CONCLUSION
This article proposed a robust fault diagnosis scheme for
PMSM drives using a combination of a pretrained deep-TL
model as a feature extractor and S-ML models as classifiers
to tackle the problem of diagnosing multiple faults during
working at variant operations. The suggested hybrid-learning
scheme enhanced the interoperability of the conventional
machine-learning methods to extract the features of different
machine faulty status while reducing the elapsed time in train-
ing by ten times on average. The multiple-fault classification
accuracy is significantly improved since supervised learning
was used to reduce the error of the multilayer feature extractor
model. In addition, the scheme is remarkably more robust
during operating in noisy environments. The proposed method
reached an average accuracy of 96.84% across all datasets
regardless of noise in the collected data while consistently
maintaining accuracy levels above 93.9% with a standard de-
viation of 0.65% in various noisy environments.

Although the proposed scheme has achieved significant re-
sults compared with the other methods in the scope of this
study, some limitations still need further development, such
as dealing with the unknown classes of faults, that may occur
in PMSM and classifying the faults under low-labeled data. In
future research, a further study will address these limitations
while maintaining the proposed scheme’s robustness and low
computational cost.
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